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Extending Guiding Vector Field to track unbounded UAV paths

Mael Feurgard1, Gautier Hattenberger2, Simon Lacroix1

Abstract— A recent advance in vector field path following
is the introduction of the Parametric Guiding Vector Field
method. It allows for singularity-free vector fields with strong
convergence guarantees, usable even for self-intersecting paths.
However, the method requires significant gain tuning for
practical use. In particular, for unbounded paths, the gains
will inevitably become ill-suited for efficient path following.
We propose a method to overcome this issue by introducing
a dynamic step adaptation strategy, which provides additional
normalization properties to the field. This allows the following
of unbounded curves and reduces the number of gains to tune.
The proposed improvements are verified in simulations using
the PaparazziUAV software.

I. INTRODUCTION

Path following is a fundamental problem in autonomous
robotics, and numerous methods have been developped to
solve it [1, 2]. Among them, vector field path following has
seen interesting recent development [3–6].

In [4], the focus is on designing a vector field path
following algorithm for UAVs robust to perturbations such
as wind, but the paths are limited to lines and circles. In
[3] and [5], path following of arbitrary curves is proposed,
respectively for unicycle robots in 2D and fixed-wing UAVs
in 3D. But both require specific treatments as the methods
create fields with singularities. [3] handles this issue by
ensuring that the singularities are far from the path, and the
robot, if starting close enough, will stay near the path. In
[5], singularities are handled by maintaining the controller
to the last non-singular command when in the vicinity of a
singularity.

More importantly, these designs cannot handle self-
intersecting curves. This specific problem, with the more
general issue of singular points in the field, have been solved
by the Parametric Guiding Vector Field algorithm [6]. It is a
path-following strategy that generates a dynamic vector field
based on a virtual tracking point. It has been designed first
with fixed-wing UAVs in mind [6], then successfully tested
in real conditions [7]. It has also been applied to unmanned
surface vessels [8], and extended to include coordinated path
following [8, 9].

Nevertheless, this algorithm requires a number of gains to
be tuned for practical use. Furthermore, these gains make
the algorithm unable to deal with curves with unbounded
derivatives. In this paper, we introduce a modification to
this algorithm, called step adaptation, to better handle these
unbounded curves and simplify gain tuning.
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Section II introduces the Parametric Guiding Vector Field
algorithm, its benefits and limitations. Section III motivates
and presents the proposed improvements to the algorithm.
Section IV finally validates the improvements by running
simulations using PaparazziUAV [10].

II. PRESENTATION OF THE PARAMETRIC GUIDING
VECTOR FIELD ALGORITHM

We first summarize the general concepts of the Parametric
Guiding Vector Field algorithm, introduced in [6]. Then
we delve into the details of its practical implementation to
discuss its advantages and inconvenients.

A. General description

The Parametric Guiding Vector Field algorithm (abbr. P-
GVF) is a path following algorithm that tracks a point on
the curve to guide the robot and that controls this tracking
point along the curve depending on the robot location. By
combining these two elements, it achieves path following,
even for self-intersecting curves.

P-GVF can be applied to any n-dimension path de-
scribed by a twice continuously differentiable function f ∈
C2(R,Rn). It defines a guiding point f(w) ∈ Rn identified
by its virtual coordinate w ∈ R for the robot located at
p ∈ Rn to follow. Let ξ = (w, p) ∈ R × Rn the extended
coordinate, identitying simultaneously the guiding point and
robot locations p. P-GVF defines a vector field χ : Rn+1 →
Rn+1 to drive ξ with respect to time t, that is such that

dξ

dt
= χ(ξ(t)) (1)

χ updates both the guiding point and robot locations simul-
taneously, aiming to have the robot track the guiding point
and the guiding point move along the path in a way ensuring
both tracking and progress along the path.

χ is mostly defined through the error function ϕ : Rn+1 →
Rn, itself defined as ϕ(ξ) = p − f(w). For p,f and
ϕ, we denote their respective individual components p =
(p1, . . . , pn), f = (f1, . . . , fn) and ϕ = (ϕ1 . . . , ϕn), such
that ϕi(ξ) = pi − fi(w). χ is defined as

χ = × (∇ϕ1, . . . ,∇ϕn)−
n∑

i=1

kiϕi∇ϕi (2)

with ∇ϕi the gradient of ϕi with respect to ξ, ×(·) the
generalized cross product as defined in [11, Chapter 7.2],
and k1, . . . , kn some positive gains.

The second component of the field (−
∑n

i=1 kiϕi∇ϕi) is
a weighted attractor to the guiding point f(w), whereas the
first is orthogonal to all ∇ϕi ([11, Proposition 7.2.1]), and



guides the whole system along the path. The gains k1, . . . , kn
can be used to balance between attraction to the guiding
point and following the path orientation, and this for each
dimension.

The main advantage of this field is that it ensures theo-
retical asymptotic convergence to the guiding point regard-
less of the initial position for all C2 paths, in particular
self-intersecting ones. But as defined here, it lacks several
elements to be used practically. Indeed, as a field based
approach, it requires the addition of a controller for all
nonholonomic robots. Furthermore, the exact definition of
the parametric curve describing the path has a significant
impact on the field which makes it unpractical. This is
balanced by introducing additional gains.

B. Practical considerations

We develop the definitions introduced previously to give
a better insight in the different aspects of the guiding field.
We then introduce the gains used to make the field practical,
and discuss their respective roles.

We can rewrite the main equation (1) to split it into
the virtual field, noted χvirt and the physical field, χphys,
respectively in charge of updating the virtual coordinate and
robot position: 

dw

dt
(t) = χvirt(w, p)(t)

dp

dt
(t) = χphys(w, p)(t)

(3)

With K = diag(k1, . . . , kn) ∈ Mn×n(R), we can sim-
plify their respective expressions to obtain:

χvirt(w, p) = (−1)n + f ′(w)TKϕ(w, p) (4)

χphys(w, p) = (−1)nf ′(w)−Kϕ(w, p) (5)

By definition of ϕ, the physical field χphys is an attractor
to the guiding point, deformed by K and translated by
(−1)nf ′(w). Still, χphys has a centerpoint where is cancels,
we call it the attractor point and denote it p0. We have
p0 = f(w) + (−1)nK−1f ′(w).

To better illustrate the virtual field, we introduce the
displacement field χdispl defined as

χdispl(w, p) = f(w + χvirt(w, p))− f(w)

It is useful as it can be directly plotted to describe the
dynamics of the guiding point depending on the robot
location (see Figure 1).

There are two main elements in the expressions of χvirt

(4) and χphys (5): the error function ϕ(w, p) and the tan-
gent to the curve at the guiding point f ′(w). Using f ′ is
useful as it gives a direction along the curve, but it is also
problematic as its magnitude can vary widely depending on
the parametrization used for the curve. More generally, the
dynamic of the guiding point is highly dependant on the
curve parametrization.

Hence, two additional gains, β ∈ R \ {0} and L ∈ R>0

are introduced:

Fig. 1: Illustration of the entire Parametric GVF through its
physical field χphys (top) and its displacement field χdispl

(bottom) for a circle f(w) = (cos(w), sin(w)). Here w = 0.3
and K = I2

• β ∈ R \ {0}, parametric rescale:

f(w) 7→ f(β · w)

It is intended as a simple way to re-parametrize the
curve and tune its derivative. It affects the fields as
follow:

χphys(w, p) = (−1)n · β · f ′(βw)−Kϕ(βw, p)

χvirt(w, p) = (−1)n + β · f ′(βw)TKϕ(βw, p)

It modifies the balance between the tangential and
attractive components in the physical field. But most
importantly, it modifies the dynamics of the virtual
component, allowing to scale up or down the scale of



the displacement field. Having |β| > 1 has a tendency
to increase the speed of the guiding point, whereas
|β| < 1 reduces it. Taking β negative allows to change
the orientation of the tangent. This is especially useful
to match this orientation with the one defined by the
constant component (−1)n of χvirt.

• L ∈ R>0, error function rescale:

ϕ(w, p) 7→ L · ϕ(w, p)

It rescales the whole field, but non-linearly:

χphys(w, p) = (−L)n · β · f ′(βw)−K · L · ϕ(βw, p)
χvirt(w, p) = (−L)n + L · β · f ′(βw)TKϕ(βw, p)

With the other gains added, the principal change pro-
vided by L is the ability to tune the bias used in χvirt.
This is particularly helpful combined with β to ensure
a good equilibrium between the variable intensity of
the steps, guided by f ′(βw), and its constant intensity,
(−L)n.

One can argue that the gains L and β yield unwieldy ex-
pressions for the fields χvirt and χphys. They are defined by
altering f and ϕ instead of the field construction (2). Hence,
the field can be tuned without altering the convergence result.

To summarize, the whole field with the gains present is:

χphys(w, p) = (−L)n · β · f ′(βw)− L ·K · ϕ(βw, p) (6)

χvirt(w, p) = (−L)n + L · β · f ′(βw)TKϕ(βw, p) (7)

Note that these gains change the formula for the physical
position p0 of the attractor making up χphys:

p0 = f(βw) + (−L)n · β ·K−1 · f ′(βw) (8)

This abundance of gains can make Parametric GVF dif-
ficult to use as tuning should be made with regard to the
parametric curve and robot simultaneously.

III. NORMALIZING CURVES FOR GVF

The main issue of P-GVF is that for some curves, f ′ may
be unbounded. Hence, the constant gain β will inevitably be-
come ill-suited during the execution. To solve this problem,
we propose to dynamically approximate a reparametrization
of f guaranting ∥f ′∥ to be constant.

First, we present how using a normalized parametric
curve simplifies the Parametric GVF algorithm. Then, we
show that for any regular parametric curve, it is possible to
compute a normalized equivalent. And finally, we implement
in Parametric GVF our changes, which allow considering a
normalized equivalent of the curve given any input.
To simplify the description, we limit ourselves to the 3D
case (n = 3). Through the following sections, we consider a
parametric curve f ∈ C2(R,R3).

A. Parametric GVF with a normalized curve

A parametric curve g : R→ R3 is said to be a normalized
curve if, for all s ∈ R ∥∥∥∥∥ dg

ds
(s)

∥∥∥∥∥ = 1 (9)

For such a curve, the parameter s in called curvilinear
abscissa, as a unit variation in parameter ds is equal in length
to a unit variation in space dg.

Let us now consider Parametric GVF but with the addi-
tional hypothesis that the path is described by a normalized
curve g. We rewrite the main fields (6) and (7):

χphys(w, p) = −L3β · g′(βw)− LK · ϕ(βw, p) (10)

χvirt(w, p) = −L3 + L ∥β ·K · ϕ(βw, p)∥ cos(α) (11)

The change is immediately significant for χvirt, as its
variations depend only on two geometric values: the distance
to the guiding point ∥ϕ(βw, p)∥ and the angle α between the
tangent g′(βw) and the error vector ϕ(βw, p).

For χphys, one observable consequence is the distance
between the attractor point p0 (defined in (8)) and the guiding
point g(βw):

∥p0 − g(βw)∥ = L2 |β| ·
∥∥K−1g′(βw)

∥∥
For a scalar gain matrix K = k · I3, k ∈ R>0, the
expression simplifies and becomes independent from w:

∥p0 − g(βw)∥ = L2

∣∣∣∣∣βk
∣∣∣∣∣

When K is not a scalar matrix, we get ∥p0 − g(βw)∥ ≤
L2 |β|

∥∥K−1
∥∥
2
, with ∥·∥2 the induced matrix norm from the

Euclidean norm.
Hence, we argue that using a normalized curve simplifies

the fields used in Parametric GVF, as their definitions can
be described mostly in terms of physical, geometric values.

B. Normal parametrization of a curve

In this section, we show that for any parametric curve f
which is C2 and never stationary (i.e. there are no interval
I ⊂ R such that f ′(I) = {0}), there exists a bijection σ
such that g = f ◦ σ is normalized.

We define the arc-length function γf for all w ∈ R as

γf (w) =

∫ w

0

∥f ′(t)∥ dt (12)

γf is a bijection, since its derivative w 7→ ∥f ′(w)∥ is
nonnegative and is null on no interval. Hence, the reciprocal
γ−1
f exists, and we can define g = f ◦ γ−1

f . Using the chain
rule and the inverse function derivation rule, we get:

g′ =
f ′ ◦ γ−1

f

γ′
f ◦ γ

−1
f

γ′
f (w) = ∥f ′(w)∥, so we can conclude that ∥g′(w)∥ = 1

for all w ∈ R; g is a normal parametrization of f .
Unfortunately, obtaining a closed analytical expression for

γf then γ−1
f is very often impossible to do. Nevertheless, we



can numerically compute an approximation of γ−1
f , which

we shall call σ from now on.

C. Approximating a normal parametrization

Let w(t) : R≥0 → R the temporal evolution of the
virtual coordinate, driving the evolution of the guiding point
f(w(t)). This can be interpreted as a re-parametrization over
time, yielding g = f ◦ w. The speed at which the guiding
point moves with respect to time is given by∥∥∥∥∥ dg

dt
(t)

∥∥∥∥∥ =

∥∥∥∥∥ d(f ◦ w)
dt

(t)

∥∥∥∥∥
=

∣∣∣∣∣ dwdt (t)
∣∣∣∣∣ ·

∥∥∥∥∥ df

dw
(w(t))

∥∥∥∥∥
Hence, note that if f is already normally parametrized, the

actual speed of the guiding point

∥∥∥∥∥ dg

dt
(t)

∥∥∥∥∥ is directly

∣∣∣∣∣ dwdt
∣∣∣∣∣.

By setting

∣∣∣∣∣ dwdt
∣∣∣∣∣ to the aircraft speed, we can ensure that the

guiding point evolution matches the aircraft one.
Now, suppose f is not normally parametrized. We desire

that the guiding point evolution matches the aircraft one,
and have to adapt the evolution of w. Using finite elements
approximation, we can reformulate the previous equation:

∥∥∥∥∥g(t+∆t)− g(t)

∆t

∥∥∥∥∥ =

∣∣∣∣∣∆w

∆t

∣∣∣∣∣ ·
∥∥∥∥∥f(w +∆w)− f(w)

∆w

∥∥∥∥∥
⇔ ∥g(t+∆t)− g(t)∥ = ∥f(w +∆w)− f(w)∥

By defining |∆s| := ∥g(t+∆t)− g(t)∥ the desired spatial
step at time t, we finally obtain:

|∆s| = ∥f(w +∆w)− f(w)∥ (13)

Based on this approximation, given at each time t a desired
physical step ∆s, we have to compute the corresponding
∆w respecting (13) ensuring that the guiding point dynamics
match the expected one, regardless of the parametrization of
f . Note that we used |∆s| instead of ∆s directly in order
to encode an orientation. Indeed, this equation specifies a
step length, but no direction, i.e. a sign for ∆w. Hence, to
achieve any parametrization specified through a sequence a
physical step ∆s, we can solve the following system at each
time step:

{
|∆s| = ∥f(w +∆w)− f(w)∥

0 < (∆s)(∆w)
(14)

Informally, this amount to, given some position on the
curve and a distance to travel, find the next position on the
curve such that its distance from the current one is equal to
the one specified, and in the desired direction.

Since f is twice continuously differentiable on R, we can
approximate f(w+∆w)−f(w) using a second order Taylor

development, yielding:

|∆s| ≃

∥∥∥∥∥(∆w)f ′(w) +
f ′′(w)

2
(∆w)2

∥∥∥∥∥ (15)

Note that with a first order development, obtaining the
matching ∆w is immediate, as long as the curve is not
singular, i.e. f ′(w) ̸= 0.

By squaring, we can develop the norm in (15), resulting
in a polynomial equation in ∆w. Assuming f is never 2-
singular, that is there are no w ∈ R such that both f ′(w) = 0
and f ′′(w) = 0, this equation always has at least one positive
and one negative solution. We focus on finding the smallest
in absolute value satisfying 0 < (∆s)(∆w), hence defining
a function giving approximate solutions of (14). We call this
function step adaptation. It can be computed efficiently
using a polynomial root finder algorithm.

D. Integration into Parametric GVF

As shown in III-A, it is preferable to use a normalized
curve than an arbitrary one in the Parametric GVF algorithm.
Given f , we denote g a normalized equivalent, defined
through an unknown reparametrization function σ such that
g = f ◦ σ. We show in this section how it is nevertheless
possible to consider g instead of f in the algorithm by using
our step adaptation function.

We denote u ∈ R the parameter provided to g, which is
not directly known, and w = σ(u) ∈ R the parameter given
to f , which is known. The first thing we need is to be able
to compute the derivatives of g (g′′ may be required by the
underlying controller). Since ∥g′(u)∥ = 1 for all u ∈ R, we
have the identity:

σ′(u) =
1

∥f ′(σ(u))∥
(16)

(or equivalently, σ′(u) = −1/ ∥f ′(σ(u))∥. Note that the sign
cannot alternate arbitrarily, as it would contradict continuity).
We can exploit it to compute g′(u) and g′′(u) as functions
of f(σ(u)), f ′(σ(u)), f ′′(σ(u)).

We still need to update the virtual parameter we have
access to, that is w := σ(u), without an explicit expression
for σ. We can achieve this by using step adaptation.
We take ∆s as defined by the virtual field based on g, and
adapt it to the aircraft speed by rescaling the step using its
ground speed v and the time step ∆t at which the algorithm
is called. We use this value to drive the step adaptation for
f , computing a ∆w ensuring (14).

Hence, we obtain a dynamic for the guiding point driven
by Parametric GVF, following the normally parametrized
curve g, having the same shape as f . The method is summa-
rized by the pseudocode algorithm (algorithm 1), with the
differences introduced by normalization in red.

We have depicted a way to transform any parametric curve
f into an equivalent normalized one in the context of the
Parametric GVF algorithm. It ensures that the resulting curve
has a bounded derivative, with constant norm. We call this
new algorithm Normalized GVF.



Algorithm 1: N-GVF main loop
input : Values for parameters L, β,K; initial w and

function f : R→ Rn

output: Commands to controller

begin
Initialize w
t← get time()
repeat

p, v ← get state()
ϕ← p− f(βw)
χphys ←
(−L)n · β · f ′(βw)/ ∥f ′(βw)∥ −K · L · ϕ
χvirt ← (−L)n+L·β·f ′(βw)TKϕ/ ∥f ′(βw)∥
curr t← get time()
∆s← v · (curr t− t) · χvirt

w ← w + step adaptation(∆s, f, βw)
Provide χphys to controller
t← curr t

until End Of Time

IV. EXPERIMENTS

We argue that the new properties introduced with Nor-
malized GVF ease the tuning of the algorithm, make it less
sensitive, and allows to tackle more efficiently unbounded
paths. To validate our improvements, we compare the former
Parametric GVF with our new Normalized GVF in simu-
lations. We use the 6 Degrees of Freedom simulator from
PaparazziUAV [7, 12]. The controller, is the one introduced
in [6, Section VI.B].

A. Simulation methodology

We present the results of two experiments using self
intersecting curves. For each experiment and each method,
we deploy three identical fixed wing aircrafts, starting from
the same takeoff point (collisions are disabled), in an open
area (no obstacles, flat ground). They are all tuned with
slightly different gains in order to study their respective
impact and sensitivity. The tuning is based on previous
experiments if existing, and otherwise manually empirically
determined.

The two different paths used for testing are:
• 3D Lissajous: used both in [6, Section VI.E] and

[9, Section VII.B], it serves as a baseline to ensure
performances are not diminished and to illustrate a
simplification in gain tuning. It is defined as:

f(w) =

ax sin(ωxw + φx)
ay sin(ωyw + φy)
az sin(ωzw + φz)


with ax = ay = 225m, az = −20m, ωx = 1, ωy =
ωz = 2, and φx = φz = 0, φy = π/2.

• Drifting Ellipse (Figure 2): it is equivalent to following
a point on a XY ellipse which is being scaled up while

drifting along the X-axis. It is defined as:

f(w) =

ax · w · cos(2πfw) + vx · w
ay · w · sin(2πfw)

0


with vx = 5m, ax = 2m, ay = 4m, f = 0.05.

y = ±
ay

vx
· x

f

A

vx · w

+y

-y

+x

Fig. 2: Illustration of a Drifting Ellipse curve

Our main metric is the Euclidean distance between the
aircraft and its associated guiding point f(w), given by
∥ϕ(w, p)∥, that measures the accuracy of the path following.

To complement this metric, we define a summarizing
value. We consider that the ”asymptotic” part of our time
series are reached for the second half of the experiment.
We use this part to define the asymptotic mean Euclidean
distance ∥ϕ∥. These values should be taken with caution,
as it is difficult to reduce the time series to a single value.
Nevertheless, we use them to complement our comparison
when needed.

B. Results analysis

The graphs for ∥ϕ(w, p)∥ are given in Figure 3, top graph
for 3D Lissajous experiment and bottom for Drifting Ellipse.
A summary of the best results with the gain configurations
is given in Table I.

For the 3D Lissajous experiment (Figure 3, top), the
general behavior is similar across all aircraft, namely a
periodicity in the values taken by the euclidean distance.
This is due to overshooting by all aircraft at the sharp turns
of the curve. Still, note that because of the different gain
tunings, not all aircraft behave similarly. For instance, among
the three running with Normalized GVF (AC 21,22,23), AC
21 has a significantly higher error on average, and AC 23
oscillates more often. These are respectly due to under and
overfitting the gains for this path following task. On the other
hand, the performances of the aircraft using Parametric GVF
are quite similar despite the different gain configurations.

For the Drifting Ellipse experiment (Figure 3, bottom),
we observe unstable behavior using Parametric GVF. We
suppose this is due to a specific balance between the gains
and curve derivative, leading to a first augmentation followed
by a stronger divergence in the error. The latter is most likely
due to numeric instability in the update of the guiding point



Fig. 3: Euclidean distance to the guiding point for the two experiments (3D Lissajous top, Drifting Ellipse bottom)
AC 11,12,23 are running Parametric GVF; AC 21,22,23 are running Normalized GVF

location. Regarding the aircraft running Normalized GVF,
there are no major issues. Still, we notice the same flaws as
in the 3D Lissajous experiment, namely oscillations for AC
23 and understeering for AC 21.

For each experiment and method, we decide which aicraft
performs best by first looking at the time series for the
Euclidean distance, then the averaged error ∥ϕ∥. In the
Drifting Ellipse experiment, for the aircraft running with
Parametric GVF, we select AC 11 as best, being the last
to diverge. The summary of results is given in Table I.

TABLE I: Summary of best results (3D-L for 3D Lissajous,
D-E for Drifting Ellipse)

Method ID β, L, k1, k2, k3 ∥ϕ∥ (m)

3D-L P-GVF 12 0.03, 0.55, 0.042, 0.042, 0.0525 8.4
N-GVF 22 1, 1, 0.042, 0.042, 0.0525 3.9

D-E P-GVF 11 0.5, 0.2, 0.01, 0.01, 0.01 −
N-GVF 22 1, 1, 0.06, 0.06, 0.06 1.2

The main result is that Normalized GVF maintains con-
vergence when Parametric GVF does not in the case of
the unbounded Drifting Ellipse curve. This illustrates both
the inherent limits of Parametric GVF and the success of
the proposed modifications. It can also be observed that in
our experiments, the best aircraft using Normalized GVF
has two fewer gains and performs always better than its
Parametric GVF counterpart. There may exist better tunings
for both algorithms with respect to the curves used, but it is
important to note that there are no known automatic tuning
strategy other than empirical testing. Hence we argue that
using Normalized GVF reduces the number of gains to tune,
simplifying tuning for this method.

V. CONCLUSIONS AND FUTURE WORKS

Dynamic normalization of a curve has been introduced
in the Parametric Guiding Vector Field algorithm. This new
method, called Normalized Guiding Vector Field, allows path
following for unbounded self-intersecting paths. Addition-
ally, it reduces the number of gains to tune for using this
method in practice.

There are still significant limits to this method. Even if
there are less gains to tune, gain tuning is still required and
non-trivial. Nevertheless, we believe it is possible to build an
automatic tuning method based on a normalized curve, as the
gains impact can be geometrically measured. This geometric
interpretation can then be linked to the robot characteristics.
Another important limit concerns the simulations. Indeed,
they were performed without wind, which has a significant
impact on small UAVs. Still, we think this is not too much
of an issue, as real experiments in windy conditions were
done with success using Parametric GVF [7], and we did
not modify the controller nor the general shape of the field.
Furthermore, the method can be applied to other vehicules,
such as Unmanned Surface Vessels [8].

In future work, we will focus on adapting Normalized
GVF to the coordinated path following problem. Indeed,
Parametric GVF has already been extended to this end [8, 9].
But the coordination is mostly based on the abstract virtual
coordinate. As it is not linked to any physical value, it makes
tuning more difficult. We hope that, using normalized curves,
we will be able to implement coordination in Parametric
GVF related to geometric values.
Acknowledgments: Work partially founded by the ANR
Projet “Panache” (ANR-21-ASRO-0007)
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