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Abstract:

This study describes a systematic approach to generate control signals of a tactile simulator to render the
touch of textile fabrics. As a friction modulation tactile surface is used, control signals were generated from
tribological measurements on real surfaces. Forces were acquired from an artificial finger, with a texture
mimicking fingerprints. Then the signals are processed in frequency domain and send as control signal to
the tactile stimulator. This paper focusses on the potential benefits of including the fingerprint information
in the simulation of fabrics for achieving realistic tactile perception. A sensory analysis with 36 participants
was carried out using the generated control signals, and results show a better discrimination without

fingerprint information.
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1. Introduction

Tactile simulation of real textures is of significant interest for materials in object design: B2C (business to
consumer) [1] or B2B (business to business) e-commerce of products and in particular textile materials in
direct interaction with humans (garments, furnishing, seat or wall covers for home or transport, etc.).
Indeed, such simulation could allow virtual prototyping as a design aid and reduce the product development
time and the number of samples to produce while also simplifying the interactions necessary for the
development and therefore reducing the environmental impact.

To this end, the tactile rendering should be efficient, i.e. sufficiently close to real surfaces, and the designer
or the manufacturer should be able to easily simulate the surfaces, i.e. should be able to build or complete
its own tactile database. Therefore, the process used to build the database, i.e. to add a control signal for the
given tactile simulator, should be systematic, from the real surface characterization to the control signal,
and without any interaction with a human as a tactile sensor. This needs a specific protocol to be
established, independently from the human, but according to the choice of the tactile simulator.

Several methods are reported in the literature for real texture tactile simulation in terms of i) the method
used to obtain the input information, ii) the input information used for the control signal, iii) the signal
process used to transform the input information into a control signal, iv) the principle of the tactile
stimulator and v) the range of the simulated textures. Moreover, the simulation can be purely tactile or
multimodal, i.e. with visual and/or audio [2], [3], and thermal stimulation [4]. In the present study the

stimulation is purely tactile.



The control signal of the tactile simulator may be acquired by a probe held by a human hand [5], [6], or by
the finger used as a probe [7]-[9]. In another way, the control signal can be partially generated by a probe
and partially from the finger [10]. Therefore, in all these configurations, the control signal is influenced by
the human hand/finger which makes it difficult to identify surface features that are interesting for texture
recognition/classification [11]. It may also be deduced only by using a measurement device [11].

The tactile information used to define the control signal can be the roughness profile [3], [12], [13], the
acceleration between the probe or the finger and the surface, i.e. friction-induced vibrations [5], [8], [9] or
both friction force and acceleration [6]. It can also be visual information from a picture which is converted
into a friction signal [14].

From the acceleration, the whole signal can be considered [8], [9], or only an extraction of criteria adapted
from audio recognition [11] or using deep learning [2]. The friction properties can also be used, particularly
the mean coefficient of friction of the surfaces [7], or its evolution along the surface [4], [15]. Other studies
use the evolution of the resulting force calculated from friction and normal forces [16] or the highest
harmonic of the friction force due to texture [10], [17].

The simulators used can be a haptic stylus held in the hand [2], [4], [6], [11], which could also be the same
device as for the initial signal acquisition [2], [4], [11]. In that case the simulation includes acceleration but
also friction and normal forces [4]. The tactile stimulator can be a small area touched by the finger without
any movement [8], [9] simulating the acceleration, i.e. friction-induced vibrations. It can also be a pad with
an array of vibrating pins [3], [12], [13] simulating a roughness profile, or a continuous plate simulating
friction by using friction modulation, due to electro-adhesion [7], [14] or ultrasonic vibrations [10].

The simulated textures can come from a wide range of materials such as paper, polymer, stone, wood,
textile surfaces, etc. [2], [4], [6], [11]-[13], or in a more reduced space composed by polymer [8], [9] or

textile surfaces [7], [10], [14]. Of course, for the simulation into a same cluster of materials, the



information included in the control signal must be more accurate than for wide clusters. Indeed, in the first
case, the goal is to accurately discriminate surfaces close to each other in comparison to the second case.
Textile fabric texture is very specific because it can present a superficial hairiness which is very difficult to
characterize in terms of roughness. This hairiness can have a main direction, such as for velvet, therefore
the surface property is anisotropic [10], [16]. In addition, the hairs are dense, i.e. several hundred per square
centimetre, and need a good resolution for the simulation. Therefore, pin-array stimulators seem
inappropriate for this purpose, whereas continuous surface stimulators are better candidates. This explains
why the studies considering a wide range of textile surfaces used the friction modulation principle [7], [10],
[14].

The tactile stimulator chosen here, called the STIMTAC, is based on friction modulation due to ultrasonic
vibrations [18] because it has a good spatial resolution, approximately 100 um, for a sufficiently large
active surface, which in its current form is approximately 70x50 mmgz, but larger plates are available.
Moreover, this device has already provided encouraging results for textile surface simulation [10].
However, the control signal was partially generated by a combination of two friction signals: one from an
artificial finger and the other from a real finger; therefore, the procedure was not entirely systematic.

With this aim, the method used to obtain the tactile information necessary to design the control signal
should be independent from a particular finger. The strategy adopted here is to use an artificial finger
previously developed [23], including a texture representing the fingerprint or dermatoglyphs, as an
“average” finger, to acquire the friction data resulting from the surface interaction.

Several studies proved the presence of an interaction between dermatoglyphs and the texture of the
explored surface [19], [20], specifically with textile structures [21], [22] and in particular with hairiness
[23]. This interaction is included in the tactile information obtained from the artificial finger used. On the
other hand, the perception of the simulated texture from the tactile simulator is the result of the interaction

between the surface of the simulator and the finger of the user, with his/her own fingerprints. However, as
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the simulator surface is without any texture (at the scale of interest), this interaction results in a weak
stimulation of the user dermatoglyphs. Therefore, in order to simulate a texture, and specifically a textile
surface, should the information from the interaction with the dermatoglyphs be included in the control
signal or not? The goal of this study is to answer this question.

In the present paper, in the first part the wide range of real textile fabrics investigated and the tribological
experiments are presented, then the systematic signal processing used to generate the virtual fabrics is
described. Then, the two experiments used for the sensory analysis to compare real and virtual fabrics are
described. In the second part, the results are shown, highlighting the similarities and differences between
simulations, with or without taking into account dermatoglyphs, and real surfaces for a wide range of

textile fabrics. Lastly, the discussion gives an analysis and explanation of these similarities and differences.

2. Material and methods
2.1. Real fabrics investigated
For this study, five textile fabrics have been selected as they represent a wide range for the clothing
industry and a wide range of surface states (Table I).
The main characteristics of these fabrics are presented below:
- A Pekin woven cotton fabric which presents very distinct bumps in the warp direction (Fig. 1 a),
- Atwill cotton fabric (Fig. 1 b),
- A plain woven cotton fabric (Fig. 1 c),
- Aknitted velvet made from two yarns: a ground yarn forming the knit structure (in polyester
polyethylene terephthalate - PET) and a plush yarn (in wool) appearing only on one side (Fig. 1 d).
For this fabric, the pile has a preferred direction called “along-pile” in which piles lie down and the
opposite direction is called “against-pile”. These two directions will be tested in this study and are

considered as two different fabrics (R4 and R5 Table I).
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A knitted polar fleece made from two polyester yarns (PET): a ground yarn forming the knit

structure and a yarn forming loops on one side of this structure (Fig. 1 e). After knitting, a raising

process allows the creation of tangled hairs on the two fabric faces. The number of patterns for this

fabric cannot be determined because it is hidden by the hairiness.

From these 5 real fabrics, a total of 6 sample fabrics are considered.

Differences in surface hairiness can be observed: fabrics with little or no hair, such as plain woven (Fig. 1

f), Pekin or twill fabrics have a similar profile, while fabrics such as velvet or fleece are very hairy, as

shown in Fig. 1 g) and h). Moreover, as fabrics are made by interlacing threads, a number of patterns per

cm can define them.

TABLE I: Fabric characteristics

Ref. Fabrics Raw material Patterns/cm
R1  Pekin 100% cotton 7
R2  Twill 100% cotton 8.5
R3  Plain woven 100% cotton 24
R4 Velvet against pile  80% wool
115
R5  Velvetalong pile  20% PET
R6  Polar fleece 100% PET /
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Fig. 1. Images of fabrics: (a) Pekin, (b) cotton twill, (c) plain woven, (d) velvet and (e) polar fleece. Fabric

profile of (f) plain woven, (g) velvet and (h) polar fleece.

2.2. Tribological measurements

2.2.1. Tribometer description

Real fabric tactile information was obtained from a tribometer (Fig. 4) described in a previous paper [1]. It

allowed the study of reciprocating linear motion with a pin on plane contact. A slider was rubbed against



the fabrics placed on a translation table driven by a magnetic brushless linear motor (ILS300LM-S,
Newport, controlled by an XPS-RLDM, Motion Controller, Newport). The slider was linked to the frame
thanks to a strain-gauge sensor (HBM PWA4C3 sensor, HBM France SAS, Mennecy, France, acquired
through a signal conditioning amplifier 2210A, Vishay Measurement Group, Raleigh, North Carolina)
which allowed the measurement of the friction force Ft. Another force sensor (K1107-20N, Scaime,
acquired through a conditioner rail ME520-AJ, Doerler Measures) was used to measure the normal contact
force Fn. Data acquisition was achieved thanks to a Pulse data recorder (Controller Module Tupe 7536,
Briel & Kjaer, Mennecy, France). The macro-tribometer was used with an imposed height configuration
where the slider was fixed at a given height during a test. The height was adjustable and was chosen to

impose the desired normal force.
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Fig. 4. Macro-tribometer.

2.2.2. Artificial finger

An artificial finger developed in a previous study [23] was used as the slider to represent a mean human
finger in contact with textile surfaces. It is composed of a silicone slider covered by a textured fabric (Fig.
5) with a spatial period SPs= 536 + 9 um and a roughness Rt = 95 + 8 um [23]. This fabric was selected

because its characteristics are similar to the dermatoglyphs of human fingers, [26]-[28] and the resulting
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COF (2) between the artificial finger and the fabric was close to that between real fingers and fabrics [23].
However, the artificial finger presents another main period SPw, resulting from the weaving pattern of the

textured fabric, which does not correspond to the finger characteristics.

COF =% )

Friction direction

Fig. 5. Textured fabric covering the silicone slider. SPs is the spatial period representing the fingerprint and
SPw the spatial period due to the weaving pattern. Measured with a scanning electron microscope (SEM,

Jeol JSM-IT 100).

2.3. Virtual fabric generation
2.3.1. Tactile simulator: STIMTAC

The textile fabrics were simulated using a tactile device called the STIMTAC (Fig. 2), which is described

in detail in a previous work [16]. The operating principle of this device is based on the reduction of the



coefficient of friction (COF) by ultrasonic lubrication. The vibration frequency of the STIMTAC is
between 30-40 kHz, which is too high to be perceived by the human finger, which cannot perceive
vibrations at frequencies above 1 kHz [24], [25]. These vibrations are generated by excitations of
piezoelectric ceramics placed under a plate in beryllium coated with a vinyl polymer film (Ra = 1.23 pum).
Friction is reduced by the intermittent contact which occurs between the fingertip and the vibrating surface
as well as the layer of air trapped between the plate and the fingertip. The COF is lowest at the maximum
vibration amplitude, i.e. approximately 2 pm. To simulate textures, the vibration amplitude is controlled as
a function of the finger position on the active surface. A supply signal length of Ns = 1024 is needed while

the STIMTAC values corresponding to the vibration amplitude are coded on an octet.

e
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Fig. 2. STIMTAC.

Some preliminary friction tests were carried out with the tribometer, presented in section 2.2, to validate
STIMTAC capacities to simulate multiple textures frequencies from 10 to 50 Hz, including 1 to 4
frequencies (1_fto 4_f) in the supply signals (1). A corresponds to the vibration amplitude, x the position
on the STIMTAC, fi the frequency added to A. A very good correspondence between the command and

experimental frequencies obtained from STIMTAC has been verified (Fig. 3).
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Fig. 3. Experimental frequencies simulated relative to the STIMTAC command frequencies. Measurements
were performed with the macro-tribometer presented below at a speed of 20 mm.s* and a normal force of

0.5N.

2.3.2. Virtual fabric generation by systematic signal processing

Step 1: Signal acquisition

As presented in section 2.2., tribological measurements were used to obtained the information from the
friction interaction between the real fabrics investigated and the artificial finger. The friction tests were
conducted at a velocity of 20 mm.stover a sliding distance of 70 mm and a desired normal force of 0.5 N.
For each fabric, 8 to 12 samples were used with 15 cycles per sample. Thus, both forces Ft and Fn were

obtained as a function of time at a sampling frequency of 8192 Hz (Fig. 6 — Step 1).

From the complete time signals of both forces Ft and Fn, a 3.2 s time window where the motion speed is
constant was kept for each half cycle, in both directions to obtained the reduced time signals Fi(t) (Fi = Ft
or Fn). An exception was made for the velvet, for which both directions lead to a clear difference in friction

behaviour and perceptions. Therefore, for this fabric, each direction was treated as a separate sample and
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was measured with its own set of parameters to ensure a normal force close to the target. Thus, in this

particular work, the transition signal was not analysed.

Step 2: Forces spectra

Park et al. [29] have shown with a sensory experiment that the Discrete Fourier Transform was the best
method to reduce a 3-axis acceleration signal to a 1-axis vibration signal to transcribe the perception. The

following signal processing step was inspired from the same method.

The signal processing was performed using Matlab. The reduced time signals Fi(t) (Fi = Ft or Fn) were

considered in the frequency domain from a Fast Fourier Transform (FFT).

Algorithm 1 summarizes the operations used to calculate the mean spectrum of both forces F,(f) and
F,,(f) (Fig. 6 — Step 2). For visibility, all spectra are displayed with logarithm scales, and the frequency
range is shown from 10 to 320 Hz. The weighting window W used is a Planck-Taper type (¢ = 0.1035). f is
the frequency and t the time. F,(t) is the average of one time window data points and F,(f) is the average

of the FFT obtained for all of the fabric samples. The frequency spectrum resolution is Af= 0.3125 Hz.

Algorithm 1 Signal processing: Step 2 (Matlab)

Fi(f) = abs (fft (W (Fit) - W)))

F.(f) = mean(Fi(f))

12



Step 3: Resulting force

As determined in [16], the resulting force which combines friction and normal forces has been previously
considered as an interesting variable to incorporate into the control signal the information of hardness or,
more precisely, the finger penetration in thickness directions in soft fabrics. In fact, when the finger

penetrates into hairy surfaces, both tangential and normal force vary during tactile movement.

The resulting force spectrum F(f) was calculated (3) for each fabric (Fig. 6 — Step 3). Peaks were visible
on these spectra and some of them were artifacts that do not contain useful information for the contact

finger/fabric. It was therefore necessary to clean up the peaks of each spectrum.

F() = [FP? + Fa(? ®
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Fig. 6. Different steps of the signal processing used to generate the virtual fabrics from the friction

acquisition signals between the artificial finger and a fabric (here with the example of Pekin).

Step 4: Peak identification and spectrum cleaning
The unnecessary peaks were removed and replaced by a baseline.
The following peaks could be identified and were cleaned:

- The ac power supply leads to multiple fine peaks, at 50 Hz and harmonics.

- The continuous parts from both forces (0 to 10 Hz) are not exploitable due to the very high values
of these bandwidth on the spectra.

- The macro-tribometer is mainly responsible of one peak (70 Hz), which does not depend on the
motion speed. It corresponds to the resonance frequency of the tangential force sensor, as proven by
shock tests.

- The fabric covering the artificial finger has a second period SPw. As indicated previously, this
period does not correspond to the finger characteristics, but it leads to a peak and its third harmonic.
These peaks were thus cleaned.

At the end, for each fabric, two virtual samples were generated (Fig. 6 — Step 4) (see section 2.4):

- GroupD: samples with dermatoglyph information (SPs), containing also the textile peaks and the
baseline.

- GroupWD: samples without dermatoglyph information (SPs), containing only the textile peaks and

the baseline.

Step 5: Inverse Fourier transform
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The next step is to use an Inverse Fast Fourier Transform (IFFT) to generate a time signal for the resulting

force F(t) following (4), and using the weighting window W (Fig. 6 — step 5).

F(t) = (IFFT(N.x F(f)))./W (4)

Step 6: Signal conversion to command STIMTAC

Algorithm 2 summarizes the processing. The first operation aims to convert the temporal signal F(t) into a
spatial signal F(x), relative to x, the finger position on the STIMTAC. As we consider a given exploration
speed of 20 mm.s™, this was done thanks to a constant factor a = 0.64, allowing to generate the wanted

frequencies on the STIMTAC. Finally, the desired signal length (Ns) was kept.

The conversion between force values and the STIMTAC input values is made using two parameters,
depending on the fabrics used in the study.

The friction contrast (FC) [10] was used to adjust the average friction coefficient on the tactile device
thanks to the STIMTAC mean level (MIv) of the vibration amplitude. L is a constant used to adapt the
signal F(t) to the STIMTAC. In this study, the polar fleece is the fabric with the highest COF. COF f4pyics
and Fqprics (f) represent respectively the coefficients of friction and the signal F(f) of all fabrics used.
The root mean square contrast (RMSC) was used to adjust the signal intensity. The constant C = 0.45 was
then introduced and enables to fine-tune the virtual fabric intensity which correspond to the peak-to-peak
value of the vibration amplitude. Finally, the signals were normalized (F yo.-m(x)) before calculating the

STIMTAC supply signals (Fsrimrac(x)) used to generate the virtual samples (Fig. 6 — step 6).
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Algorithm 2 Signal processing: Step 6 (Matlab)

Conversion to a spatial signal

F(x) = resample(F(t), Ns,Ns/a))

Friction contrast
FC =1— COF/ max(COF fopyics)

Mlv = L(1 + FC)

RMS contrast

RMSmax = max (rms (Ffab,.ics (f)))

RMSC =1 + C.In(rms(F(f))/RMSmax)

Conversion to command the STIMTAC

Range = max(F(x)) — min(F(x))

FNorm(x) _ (2 (F(x)—min(F(x))) _ 1)

Range

Fsrimrac(x) = Mlv + RMSC * F gy (X)

2.4. Sensory analysis: Participants, tasks and data processing

All the experiments were carried out in accordance with the 1964 Helsinki declaration and its subsequent
amendments or comparable ethical standards. Informed consent was obtained from all individual

participants included in the study.
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This aims of the experiment were to verify if:

- the virtual fabrics correctly transcribed the perception of the real fabrics,
- the artificial finger main period SPs, representing the finger dermathoglyphs, has to be included in

the control signal to generate a realistic sensory perception on the STIMTAC.

2.4.1. Experiment 1: Confusion matrix

To this end, an experiment where participants had to attribute a virtual fabric to a real one was realized to
achieved confusion matrices, in order to visualize the participants’ capacity to identify the virtual fabrics in

both configurations, with or without dermathoglyph information.

At the start of the test, participants were asked to select the finger they wished to use for exploration,
usually the index finger of their dominant hand. The required movement was only in the proximal
direction, with a required normal force between 0.5 and 1 N and a friction speed of approximately 20 mm.s’

!, Note that in the case of tactile saturation, participants were allowed to change fingers.

The normal force applied by the participants was controlled on the STIMTAC during the experiment and
they had to apply the same force on the real fabrics. It was verified that the participants maintained a stable

normal force during the contact, and were able to repeat tests with the same force.

For evaluating the realistic perception of virtual fabrics, thirty-six participants were selected (15 males and
21 females, with an age range of 21 to 64) from different activity sectors (administrative, technical,
professor and student). None of them had participated in a similar experiment previously.

18



Each participant was requested to follow the same experimental procedure during approximately 30
minutes. The experiment took place in a room whose atmosphere was conditioned (20 +2°C and 65 + 5%

of relative humidity). This procedure was chronologically organized as follows:

- The participant washed and dried his/her hands;

- As in other studies [26], [30], skin hydration was measured using a Corneometer® CM825. To
normalize the results, this device was mounted on a homemade system, enabling the same force
(4.9 N) to be applied for each measurement. The Corneometer is described by Fluhr et al. [31]. Ten
measurements were taken for each participant before the perception tests because the finger skin
hydration can have a considerable influence on friction and therefore on tactile perception [26],
[32];

- Atraining session was performed on real fabrics and on virtual textures, different from those used
in the experiment. This session was done in order to explain the protocol to the participants and
enable them to become familiar with the STIMTAC surface;

- The participants were separated in two groups: GroupD tested the virtual fabrics with the
dermatoglyphs and GroupWD conducted tests without this information. In order to ensure the same
homogeneity in both groups, we paid a particular attention to participant skin hydration to allocate
them. Indeed, skin hydration plays an important role in friction contrast on the STIMTAC by
increasing the COF values and limiting the perception of small stimulation intensity variation [26],

[33]. Thus, it was important to obtain similar distributions regarding skin hydration in both groups.

Firstly, participants had access to the STIMTAC and real fabrics, these being hidden from view in a box. A
virtual fabric was presented to participants who then had to select the real sample they thought

corresponded to the simulation. To avoid perceptual bias, participants wore noise-cancelling headphones,
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the real samples were hidden from view and the order of presentation was random. For each participant, a

confusion matrix can be determined. These matrices are then combined to form a global confusion matrix.

To establish the confusion matrix, the 6 real samples (Ri) are presented in columns and the virtual samples
in rows (Di or WDi depending on the group). Each virtual fabric was presented twice during the session.
For example, the virtual fabrics obtained with the Pekin (R1), named D1 if containing the dermatoglyphs
information or WD if not, were proposed twice. If the participant associates this simulation with the real
R1 fabric in both occurrences, the value 2 will be entered in the matrix on the diagonal. If he/she associates
it once with R1 and once with R2 for instance, the value will be 1 for each fabric.

For the results to be convincing, a well-marked diagonal would have to be found, indicating each
simulation was associated with its corresponding fabric.

By definition, when a confusion matrix is presented, the references, i.e. the real fabrics in this study, must

be classified by proximity. For that purpose, a sensory analysis was performed to classify the fabrics.

2.4.2. Experiment 2: Intensity ratings

In this context, twenty-six participants were selected (14 males and 12 females, with an age range of 24 to
56) from different activity sectors. After some training and assessment of their performance according to
the sensory method used in the literature [34], 11 panellists were selected from the group. The selection
was performed according to their highest repeatability in the sensory analysis. Note that this study was
carried out with French terms, here translated for the needs of publication but with the inevitable minor

changes due to the cultural specificities associated with a language.

20



To characterize the surface of real fabrics, three sensory attributes were chosen: two binary and one single.
Two were taken from the four main psycho-perceptive dimensions that were smooth/rough, slippery,
soft/hard and cold/hot [35]-[38]. As two of them were not relevant to the STIMTAC, a hedonic attribute

was added. The chosen attributes are the following:

- Smooth/Rough (Rp)

- Slippery (Gp)

- Unpleasant/Pleasant (Pp)

The movement of the finger for the perception assessment was the same as previously. For each descriptor,
panellists were asked to rate their intensity using an unstructured linear scale from 0 to 100. The average
was calculated over 4 sessions. To avoid perceptual bias, participants wore noise-cancelling headphones
and the samples were hidden from view. In addition, to avoid any memory effect from one session to the
next, both the samples and attribute evaluations were presented in a random order. Skin hydration was

measured before and after the perception assessment.

In order to classify the fabrics for the confusion matrices, a Principal Component Analysis (PCA) was
performed. PCA allows us to simplify the structure of data while preserving as much information as
possible. With the PCA, a set of correlated variables is transformed into a new set of uncorrelated variables
called principal components. This can be useful for understanding and visualizing data, or for classification.
This statistical method therefore makes it possible to simplify data and extract the essential information.

3. Results

3.1. Tribological measurements

The friction tests were realized with a normal force of 0.47 £ 0.08 N for all real fabrics. Fig. 7 shows the

boxplot of the COF.
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It was shown in a previous work [23] the friction behaviour between a real finger and fabrics without
oriented pile (such as plain woven fabric and polar fleece) was the same in both directions, while for
oriented-pile fabrics, such as velvet, the behaviour differs with the friction direction (along or against pile).
The same behaviour was observed in this work, so only the velvet was analysed in both directions.
Moreover, the COFs obtained here are very close to those between the fabrics and real fingers obtained in
previous work or by Jiao et al. with 120 fabrics [7] as well as by Bertaux et al. [39] where authors used an
artificial skin.

The velvet (R4 — R5) and polar fleece (R6) present a higher mean COF, which is due to the higher
penetration depth of the slider into the fabric thickness. In addition, the COF distribution for the polar
fleece is large compared to the other fabrics. These higher instabilities during the friction can be explained

by the fabric’s pile.
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Fig. 7. Boxplot of the coefficient of friction acquired for each real fabric against the artificial finger with

the macro-tribometer. The mean COF is added to the boxplot.
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Fig. 8 presents the resulting force F spectra calculated for all fabrics and for both virtual sample groups D
and WD. As in previous graphs, spectra are displayed with logarithmic scales and a frequency f range

between 10 and 320 Hz.

The artificial finger peak (SPs) at 37 Hz is present for all fabrics but differs in bandwidth and intensity. The
fabrics with a strong woven pattern such as Pekin (R1), twill (R2) and plain woven (R3) present a higher
intensity of this peak than the other three textiles. It can also be seen that the textile peaks are clearly
present for all samples excepted for the polar fleece (R6). For this surface, only the baseline and the finger
peak seem to exist. This can be explained by the fact that the hairiness of the polar fleece hides the knitting
pattern. The textile peaks correspond to the main pattern of the considered fabrics and its harmonics. For
velvet, in both directions, a peak appears corresponding to the double value of the structure period. It is

assumed that the velvet pile leads to this narrow peak.

Fig. 8 highlights a strong response for the samples R1, R2 and R3, the three other sample peaks are very
weak compared to their baseline. Finally, there is two samples for which the finger information peak has a

higher intensity than the textile peaks: R3 and R®6.

3.2. Sensorial analysis

3.2.1. Experiment 1: Confusion matrix

As explained in section 2.4, participants were divided in two groups according to their finger skin
hydration. The first group (16 participants) worked on virtual fabrics with the dermatoglyph information
(GroupD), and the second group (20 participants) on virtual fabrics without the dermatoglyph information
(GroupWD). As it was expected, the participants skin hydration follows a normal distribution, ensuring
their good separation in both groups (Fig. 9).
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Fig. 8. Spectra obtained from the 6 fabric samples used to generate the virtual fabrics, for both groups of

signals: GroupD with dermatoglyph information and GroupWD without this information.
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Fig. 9. Distribution of skin hydration for both groups

Once the participants were divided into two groups, they were subjected to sensory tests and their
individual confusion matrix was determined. In sensory analysis, a confusion matrix is a tool used to
evaluate and analyse the results of sensory evaluation tests. It is used to compare participant sensory

evaluations with the reference values for each sample. An example of a matrix is presented Fig. 10.

R1|R2|R3|R4|R5|R6

- | D1 11

o,

g D2 [ 11

e[ D3 [2]

o [ D4 1 1

O | ps 1 1
D6 1(1

Fig. 10. Example of an individual confusion matrix obtained by participant named #P1. A red cell
corresponds to a constant association between real and virtual fabric and a blue cell to a lack of association

of the two samples.

Here, the real fabrics were not sorted according to their similarities, which makes reading the results

complex. To improve the analysis, the real fabrics were classed.
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3.2.2. Experiment 2: Intensity ratings

After the four characterization sessions by the panellists, each real fabric was described according to the
three sensory attributes with their own intensity of perception (Table II). It can be noticed skin hydration
was measured before and after the experiment. Contacting the fabrics did not seem to change the finger
moisture or they regulate it, because globally skin hydration did not change before and after the

experiment.

TABLE II: Sensory attributes (Gp Slippery, Rp Rough and Pp Pleasant)

Fabrics Gp Rp Pp
R1: Pekin 28 81 21
R2: Twill 40 71 34
R3: Plain woven 67 37 52

R4: Velvet against pile 19 59 42

R5: Velvet along pile 76 20 79

R6: Polar fleece 75 18 93

Each fabric has its sensory profile. Indeed, the fabrics represent a wide product space for textile materials,
resulting in different perceptions of their surface. According to Table Il, it was possible to determine
groups of fabrics for each attribute (pleasant, slippery or rough). Therefore, based on these data, a Principal
Component Analysis (PCA) was performed to visualize the similarities between our samples and group

them together. The PCA results are presented in Fig. 11.

The three attributes are closely interrelated, enabling us to identify fabrics and also to batch them (Fig. 11

a). The attribute roughness is strongly correlated with the first PCA axis, with a correlation
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coefficient = 0.97. Therefore, two clusters of samples can be easily identified according to their sensory
properties and especially their roughness (Fig. 11 b), so R1, R2 and R4 were the roughest (“Rough” cluster)
and R3, R5 and R6 were the least rough (“Smooth” cluster) fabrics. These two clusters will be used in the

confusion matrices for the remainder of this paper.

During the tests, it was found that perception could vary significantly from one individual to another,
whatever the surface explored, real or virtual. Fig. 12 highlights this variability on virtual surfaces for 4
participants. Each of these matrices provides different sensory information on the participant’s ability to
find the correct sample corresponding to the simulation presented. In order to draw conclusions from these

matrices, participant’s responses were added together for each fabric cluster according to the PCA (Fig.

12).
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Fig. 11. Principal Component Analysis on perception data. a) correlation circle between attributes and b)
PCA biplot for the two main axes.

4. Discussion

Fig. 12 a) presents the sensory results for a participant who was able to discriminate very well the
simulations. Indeed, a diagonal is clearly visible on the matrix, so the participant has succeeded not only in
differentiating the simulations but also in associating the corresponding textile samples. In addition, the

second matrix (Fig. 12 b) shows the participant's ability to correctly perceive each cluster.

Some of the participants were only able to distinguish both clusters. As shown in Fig. 12 ¢) which presents
the results of a participant who was unable to correctly discriminate each simulation. However, he/she was
able to differentiate fabrics into clusters, with the exception of simulations D1 and D6, each of which was

recognized once in the wrong one. Thus, the grouped matrix highlights the recognition of D2, D4 as rough

fabrics and D3, D5 simulations as smooth ones.

In Fig. 12, the results of matrices e) and f) are very mixed, with clusters confused except for simulations

WD3 and WD6, which are correctly recognized. Given the matrices, this participant was not able to

perceive correctly the STIMTAC simulations.
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Fig. 12. Examples of individual confusion matrices: for each fabric (left, i.e. a, ¢, e and g) and by fabric

clusters (right, i.e. b, d, fand h).

The last matrices g) and h) present a special case. The participant is able to differentiate between different
textures because a diagonal is visible, but in the opposite direction, i.e. simulations WD2, WD4 and WD6
were perceived as smooth fabrics and inversely for the others at the exception of WD1 for which results are

mixed. Therefore, it seems that this participant is evaluating textures using a criterion other than roughness.
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To answer the question of whether or not dermatoglyphs are of interest in the virtual fabrics, it is interesting
to perform an analysis at the scale of global matrices, i.e. the matrices grouping together all the responses
of the participants in the study. For this purpose, the individual matrices were summed to determine the
overall confusion matrices with and without dermatoglyphs information (Fig. 13 a) and c)). Each matrix is
expressed as a percentage. As described previously, the fabrics have been grouped into clusters in the

matrices Fig. 13 b) and d) and a colour code indicates whether simulations have been correctly recognized.

Rough | Smooth Rough | Smooth
R1|R2|R4|R3[R5[R6 R1|R2|R4|R3|R5[R6
o D1 [19] 9 ]19]81]13[ 8] | D1 47 53
2 [ p2 [19]31]19]16]16[ 0] | D2 69 31
© | pa [15]21]21]24[15] 3| | pa 58 42
© I'pa [22[19]19]13[16[13] [D3 | 59 41
p5 | 3| 3|13]85]29] 16| | D5 19 M_ax
D6 | 6 |13[13]25][22|22]| | D6 31 69
(a) (b)
Rough | Smooth Rough Smooth
R1|R2|R4|R3|R5|R6 R1|R2|R4|R3|R5|R6
o [wp1]15[33|18[28] 5[ 3| |wD1 65 35 Min
%_ wbp2|25|25]|23[15/ 8| 5| [wp2| 78 28
3_ wb4|13]25]18[23[ 15| 8 | |wpa| 55 45
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wbs| 5 [13] 5 [28]35] 15| [wps| 23
woe| 5 [ 3] 18@8] 18[15] [wps| 25 75

(©) (d

Fig. 13. Global confusion matrices, expressed as a percentage

The global matrix for GroupD (Fig. 13 a) shows differences in perception between simulations: some were
correctly recognized, like D2, by a large proportion of participants, while others were not recognized at all
like D3, D4 or D6 for which no real fabrics were preferably assigned. It can also be noted that among the
unrecognized simulations, some were often confused with the same real sample, such as D1, which was
associated with R3 for 31% of responses.

For the GroupWD, the observations are more or less the same with some differences as for WD6 which was

often linked to R3.
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By comparing the grouped matrices, a trend emerges between simulations with and without dermatoglyph
information, particularly for smooth surfaces. Indeed, the WD3, WD5 and WD6 simulations were
recognized as smooth surfaces in more than 70% of cases. For the “Rough” cluster, the results are
somewhat more mixed. The simulations WD1 and WD?2 are well perceived but simulation WD4 is
randomly assigned to both clusters, since the response percentages are close to 50%.

As can be seen above in Fig. 8, the finger information used for the GroupD virtual samples could contain
more energy than the textile information. It is the case for both samples D3 and D6. For D3, this high peak
can explain why this virtual sample was not attributed to the right cluster (“Smooth”), while it was correctly
attributed for WD3. This was not the case for D6 as the finger peak is less marked and does not create a
strong pattern on the virtual samples. Finally, for Pekin (R1), it seems that the addition of the fingerprint
information is hiding the signal patterns, which can explain why WD is put in the correct cluster while D1
IS not.

Bergmann Tiest et al. [40] have tested a wide range of materials: metals, wood, ceramic and some textiles
mixed in. They asked volunteers to categorize samples from their similarities, and displayed their data in a
PCA. According to their graph, the product space for materials is wide, and textiles represent only a tiny
part of it. Within this space, textiles are very close to each other for their roughness and compressibility.
Therefore, this observation, plus the one-dimension rendering of the STIMTAC, can explain why it is so
difficult for people to discriminate our virtual textile fabrics. Indeed, even if the fabrics considered here
presented large differences of tactile perception for the textile product space, some of these differences can
be attributed to other dimensions such as the soft/hard and cold/hot criteria, which are not correctly

rendered in this experiment.

5. Conclusion
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This paper first presents a systematic approach to generate signals to simulate specific surfaces, i.e. textile
surfaces. In this approach, the signals were processed from the tangential and normal forces acquired by an
artificial finger, with a motion that is similar to a real one, in the proximal direction. The signals measured
were filtered to clean the artefacts that were not representative of the contact.

For the virtual fabric simulation, it was possible to add or not add the dermatoglyph information. This was
done by keeping or not keeping in the resultant force spectrum the peak due to the artificial finger texture
representing dermathoglyphs in terms of spatial period. It is shown that this choice strongly influences the
realistic perception of virtual samples. Thus, in this paper, the main goal was to determine which condition

was better to ensure a good generation of signals for a realistic perception of textile fabrics.

According to the confusion matrices, the absence of dermatoglyph information in the virtual fabrics seems
to be more relevant for surface recognition. This seems to be particularly the case for fabrics where the
fingerprint peak is higher than the textile ones, or for textiles for which the patterns will be hidden by the
addition of the fingerprint information.

Consequently, fabric clusters are better recognized without dermatoglyphs than with dermatoglyphs,
therefore the tactile rendering from tactile device is better in that configuration. To conclude, we suggest to
don’t use dermathoglyph information to simulate fabrics. Without dermatoglyphs information the clusters
were correctly identified in term of roughness, but they are not individually recognized.

In order to improve individual fabric discrimination, two tracks have been identified: STIMTAC surface
coating and control signal design of virtual samples.

The interface between STIMTAC and finger is very sensitive to humidity changes, which is directly related
to friction contrast. As such, another STIMTAC coating or texture could reduce the sensitivity to humidity

changes and improve results by optimizing the finger/fabric interaction [41].
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Regarding the signal processing, the transition between both directions could be studied to generate a more
complete virtual fabric. This complement could be used to simulate the finger penetration into hairiness for
the polar fleece or the specific change of direction for the velvet.

In addition, several studies have highlighted the value of multisensory stimuli, particularly visual [42], [43],
for perception and recognition. Therefore, it would be interesting to carry out a similar study with the real

fabrics in plain sight.
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