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Abstract: 64 

The majority of vulnerability assessments of biodiversity to global changes have so far 65 

been applied to, and designed for, mainland systems, overlooking islands. However, 66 

islands harbour unique biodiversity and are epicentres of ongoing extinctions. We thus 67 

introduce a specific framework for quantifying the vulnerability of terrestrial insular 68 

biota to multiple threats. This framework uses markers of exposure, sensitivity, and 69 

adaptive capacity to account for the unique characteristics of island biodiversity. Our 70 

assessment framework involves five steps: (1) defining the scope of the vulnerability 71 

assessment, (2) selecting the most appropriate markers, (3) computing the vulnerability 72 

metric, (4) evaluating uncertainties, and (5) providing recommendations for 73 

conservation. The development of this vulnerability framework tailored for island 74 

systems is part of a larger initiative to meet international policy targets that better 75 

integrate biodiversity threats and dimensions. We thus discuss the need and urgency for 76 

applying this framework to guide evidence-based decisions for the conservation of 77 

insular biodiversity, and for increased attention to insular biota at the science-policy 78 

interface. 79 

 80 

 81 

 82 

 83 

 84 

 85 
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Introduction  86 

Islands harbour the most vulnerable ecosystems affected by global change (Fernández-87 

Palacios, Kreft, et al., 2021). Approximately 75% of extinctions have occurred on islands, and 88 

over half of all terrestrial species that face imminent extinction are island-dwellers, with 89 

invasive alien species and land-use change as leading drivers of species’ declines. Climate 90 

change emerges as a growing threat for island biota and it may interact in unexpected ways 91 

with invasive alien species and land-use change (Capdevila et al., 2021; Mantyka-Pringle et 92 

al., 2011). As a result, islands are commonly considered the epicentres of past, imminent, and 93 

potential future species extinctions (Supplementary Material S1). 94 

Island ecosystems are disproportionately vulnerable to threats for three key reasons. Most 95 

insular species are intrinsically more sensitive to any given threat due to their specific traits 96 

deriving from the so-called ‘island syndrome’ (Benítez-López et al., 2021; Biddick et al., 97 

2019; Lomolino, 1985; Rozzi et al., 2023). Second, insular species are less likely to adapt to 98 

new threats due to their inherent demographic features (e.g., small population sizes, naturally 99 

fragmented distribution ranges). Lastly, the physiography of islands, specifically in the case of 100 

isolated, small-sized ones, renders their biota more exposed to threats and also less able to 101 

escape compared to their mainland counterparts (Fernández-Palacios et al., 2021; see also the 102 

“uniqueness of insular biota” section for a more complete description of those inherent 103 

vulnerabilities).  104 

Despite the urgency of the need to protect unique and highly vulnerable island biodiversity 105 

from ongoing global change, insular biota receives very cursory attention in international 106 

biodiversity policy frameworks. In December 2022, the 196 parties of the Convention on 107 

Biological Diversity (CBD) adopted the Kunming-Montreal Global Biodiversity Framework 108 

(KM-GBF), involving 23 action-oriented global targets. Among them, only one target (Target 109 

6) explicitly mentions islands as priority areas for conservation (though not explicitly 110 

https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf
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mentioning insular biota) and two other targets (Target 3 and 4, GBF) require strong actions 111 

on islands, reflecting a broader scientific bias toward mainland (Rodrigues et al., 2010). Since 112 

the emergence of climate change vulnerability assessments, the vast majority of those 113 

assessments have been designed for, and applied to, mainland ecosystems. When extended to 114 

islands, these frameworks are often mere adaptations of those developed for mainland 115 

systems. This approach is particularly problematic, as it fails to account for the unique 116 

complexities and specific characteristics of insular biota. Consequently, our knowledge of the 117 

vulnerability of insular ecosystems and species is incomplete and results most likely in an 118 

underestimation of their global vulnerability.  119 

Here, our objective is to introduce an adapted framework that addresses the limitations of 120 

existing approaches by incorporating the idiosyncrasies of island biota. This framework is 121 

specifically designed to quantify the vulnerability of terrestrial insular biota to multiple threats 122 

and aims to capture the distinct challenges posed by the unique attributes of insular 123 

ecosystems, such as the island syndrome, the isolated nature of islands, and their high levels 124 

of endemism (see also Figure 1A). The goal is also to provide improvements of existing 125 

vulnerability frameworks that are not specific to island ecosystems (e.g., the inclusion of 126 

multiple threats and dimension of diversity). We define vulnerability in this framework across 127 

multiple biodiversity dimensions, considering the exposure, sensitivity, and adaptive capacity 128 

of insular biota to multiple threats. The originality of our framework is that it is specifically 129 

designed for insular biodiversity, with the inclusion of multiple threats, taxa, and dimensions 130 

of diversity, such as functional and phylogenetic diversity, as well as the inclusion of 131 

vulnerability markers at species, community and assemblage levels of islands. We first 132 

describe the characteristics that contribute to the vulnerability of island biota to global 133 

changes, which need to be considered in insular biodiversity vulnerability assessments. Then, 134 
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we describe how our framework can address some of the ongoing questions on island biota 135 

vulnerability. 136 

Challenges  137 

The uniqueness of insular biota increases its vulnerability to threatening processes 138 

The inherent uniqueness of insular biota (e.g., endemic species, distinct traits, unique 139 

lineages) increases its overall vulnerability to global change drivers (Fernández-Palacios, 140 

Kreft, et al., 2021). Islands are isolated, have complex topographies, are prone to extreme 141 

events (e.g., volcanic eruption, landslides, hurricanes), and harbour fewer potential refuges 142 

(compared to mainland landscapes), making them more exposed to threats (Russell & 143 

Kueffer, 2019) (Figure 1A). Islands also host a large number of endemic species: up to 90% 144 

of endemic non-vagile taxa (i.e., non-flying vertebrates, seed plants, molluscs or arthropods) 145 

occur on islands (e.g., Madagascar, Antonelli et al., 2022). Endemics have small population 146 

sizes and restricted geographical ranges (sometimes limited to an archipelago, an island or 147 

even a single peak, volcano or cliff) (Fernández-Palacios, Otto, et al., 2021), increasing their 148 

extinction probability (Manes et al., 2021). An iconic example is the radiation of Hawaiian 149 

Honeycreepers, a group of small birds particularly vulnerable to invasive alien species and 150 

habitat modification (Box 1).  151 

 152 
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 153 

 154 

Figure 1: A Conceptual figure of the vulnerability of insular biota to global changes with a 155 

non-exhaustive list of the characteristics contributing to each vulnerability component (i.e., 156 
exposure, sensitivity, and adaptive capacity). For example, insular syndrome traits, 157 

endemicity, and adaptive radiation are characteristics that increase the sensitivity of insular 158 
biota to global changes compared to mainland biota, whereas (i) a lack of functional 159 
redundancy, (ii) disharmonic taxonomic composition, and (iii) genetic vulnerability are 160 

characteristics that decrease adaptive capacity. B Percentage of island biota representation, 161 
taxonomic representation, and vulnerability components representation in current climate 162 

change vulnerability assessments. The numbers are calculated from de los Ríos et al. (2018). 163 

 164 

Insular species have also evolved distinct and unique ecological, physiological, behavioural, 165 

morphological, and life-history traits, a phenomenon commonly referred to as the ‘island 166 
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syndrome’ (Baeckens & Van Damme, 2020). These distinct and unique traits increase their 167 

sensitivity to current and future anthropogenic threats, including overharvesting, habitat loss, 168 

increased drought and invasive alien species (Rozzi et al., 2023; Zizka et al., 2022) (Figure 169 

1A). This phenomenon is for example associated with dioecy in plants, which makes them 170 

more likely to disappear if their mutualists’ species go extinct, increasing their vulnerability to 171 

human-induced perturbations (Schrader et al., 2021). Reduced herbivory and predation 172 

pressure on islands leads to low levels of spinescence compared to their mainland 173 

counterparts, making island species more susceptible to the introduction of exotic herbivores 174 

(Burns, 2016; Clavero et al., 2009), unless they have coevolved with megafaunal herbivores 175 

(Barton et al., 2024). The loss of flight capacity renders insular birds unable to escape from 176 

anthropogenic threats (Sayol et al., 2021), making them more susceptible to extreme weather 177 

events, such as hurricanes, or gradual environmental change (e.g., progressive directional 178 

changes such as climate change) (Burns, 2019; Roff, 1990).  179 

Additionally, the intricate and often rugged topography of oceanic islands frequently leads to 180 

long-term isolations of populations, which may result in genetic drift and then inbreeding 181 

when population sizes are small (Frankham, 2002). Furthermore, island colonization within 182 

archipelagos, and isolation by distance, could also lead to high population structure between 183 

islands (Parmakelis et al., 2015; White & Searle, 2007). These populations are thus more 184 

prone to genetic diversity loss, which may result in fewer opportunities to adapt to changes. 185 

Although this does not necessarily increase their vulnerability per se, the loss of genetic 186 

diversity due to natural or anthropogenic disturbances, especially when exposed to 187 

disturbances over a short time period (Inamine et al., 2022), can cause a demographic or 188 

genetic collapse. Thus, losing an insular population can cause demographic and genetic loss, 189 

whereas it causes only demographic loss on the mainland. Because of that, the effective 190 
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conservation units on islands should be, in most cases, at the population level, rather than 191 

species level (Melo & O’Ryan, 2007).    192 

Besides population- and species-level characteristics, the composition of insular species’ 193 

assemblages harbours features that make them more vulnerable. One example is their 194 

disharmonic taxonomic composition, which refers to the systematic over- or under-195 

representation of certain taxonomic groups compared to mainland assemblages. Notable 196 

examples include the absence of several families of non-volant mammals on many isolated 197 

islands (Brace et al., 2015), and the over-representation of pteridophytes in island flora (Kreft 198 

et al., 2010). The absence of certain functional groups on islands, although partially 199 

compensated by in-situ diversification and differentiation, allows incoming exotic species to 200 

fill vacant niches (Vitousek et al., 1997). These exotic species can exert new role (e.g., 201 

predation, competition) unknown to the native community, which is evolutionarily naive and 202 

functionally unequipped to withstand these novel pressures. Additionally, species traits in 203 

island communities are often complementary rather than redundant, leading to communities 204 

with low functional redundancy (Harter et al., 2015; Whittaker et al., 2014). This makes them  205 

more sensitive to threats (McConkey & Drake, 2015) due to the lack of 'ecological insurance'; 206 

the ability to replace the missing functions (Loreau et al., 2021). 207 

State of the art of vulnerability assessments and their limitations when applied in insular 208 

contexts  209 

Despite the inherent vulnerability of insular biota to global changes, most biodiversity 210 

vulnerability assessments have been designed for and focused on mainland systems. Climate 211 

change vulnerability assessments emerged in the 1990s to anticipate impacts and prepare 212 

appropriate responses (Foden et al., 2018). Most definitions concur that a species’ 213 

vulnerability to a threat is determined by three components: exposure, sensitivity, and 214 

adaptive capacity (Butt et al., 2022; Foden, Butchart, et al., 2013; Foden et al., 2019). Using 215 



10 
 

this definition, a recent review showed that among the 741 studies assessing climate change 216 

vulnerability, the majority focused on mainland systems, with less than one third (n = 231) 217 

including islands (de los Ríos et al., 2018) (see Table S2 for examples) and only 136 studies 218 

associated with a specific insular country. Although this would be representative of the small 219 

land surface area occupied by islands (6.7%), it falls short in terms of biodiversity 220 

representativeness, as island’s biodiversity represents 20% of biodiversity worldwide, with 221 

50% of threatened and 75% of known extinctions (Fernández-Palacios, Otto, et al., 2021). 222 

These island vulnerability assessments are often geographically and taxonomically restricted 223 

towards high income countries (e.g., Australia, the UK, and the USA account for 60% of 224 

studies on insular biota) and plants (49% of studies) (Figure 1B), respectively. In addition, the 225 

large majority of vulnerability assessments do not consider the influence of multiple threats 226 

(but see Santos et al., 2021; Sousa et al., 2021; Ureta et al., 2022), which are likely to act 227 

together, interact with and be exacerbated by climate change (e.g., habitat loss, 228 

overexploitation, biological invasions), potentially leading to synergistic impacts (Leclerc et 229 

al., 2018). Note that these geographic, taxonomic, or conceptual biases occur in both 230 

mainland and insular assessments (see also de los Ríos et al., 2018). Finally, those 231 

assessments do not consider other dimensions of diversity, neither they take into account the 232 

specificities of insular biota (e.g., phylogenetic endemism, geographic isolation of islands, 233 

population size, etc.) that make them more likely to be vulnerable to global changes..  234 

Assuming that exposure is a suitable proxy for the impact of a particular threat, most 235 

vulnerability assessments focused on exposure alone, with less than 10% considering the three 236 

components of vulnerability (Butt et al., 2016; de los Ríos et al., 2018). This assumes that all 237 

species will have equal responses to a threat, which is highly unlikely. In fact, the likelihood 238 

of species being impacted by certain threats, either on the mainland or on islands, is 239 

modulated by their traits (Fromm & Meiri, 2021; Leclerc, Villéger, et al., 2020; Marino et al., 240 
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2022; Soares et al., 2022). We argue that trait-based vulnerability assessments, when applied 241 

to a range of taxa and threats, can provide a useful approach for (i) developing a more 242 

comprehensive index of vulnerability to threats, and (ii) informing effective management 243 

actions for conservation (Gallagher et al., 2021). 244 

An adapted framework for assessing the vulnerability of island biota to multiple threats 245 

We present a conceptual framework divided into five steps that provides a roadmap for 246 

vulnerability assessments of biota in insular systems, considering the three components of 247 

vulnerability (i.e., exposure, sensitivity, and adaptive capacity; Figure 2). Here, we refer to 248 

islands as insular systems that have a landmass smaller than Greenland (i.e., < 2.17 million 249 

km²) and are surrounded by sea water. We built upon previous framework, which focused on 250 

taxonomic diversity in mainland ecosystems (Butt et al., 2022; Foden, Butchart, et al., 2013; 251 

Leclerc, Courchamp, et al., 2020; Parravicini et al., 2014) to include in our framework various 252 

markers for each vulnerability component that are specifically tailored to the inherent 253 

characteristics of island biota, as well as multiple threats, taxa, and dimensions of diversity 254 

(i.e., taxonomic, functional and phylogenetic diversity). The development of this vulnerability 255 

framework tailored for island systems is part of a larger initiative to meet international policy 256 

targets that better integrate biodiversity threats and dimensions (Box 2).  257 

Step 1: Identify the scope and aim of the vulnerability of insular biota 258 

The first step is to define the scope of the vulnerability assessment in terms of spatial and 259 

temporal extent, relevant threats, and studied biota (taxonomic group, biological level, 260 

biogeographical origin of species). This challenging task is pivotal for the assessment design, 261 

which in turn affects the final step of informing conservation actions (Step 5). For example, 262 

broad-scale assessments (e.g., at the global extent or among several archipelagos) contribute 263 
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to strategic planning and to establish a common baseline of vulnerability information (e.g., 264 

IPBES assessments), while local-scale assessments (e.g., within archipelagos or group of 265 

islands) are appropriate for informing site-level management decisions. 266 

For instance, a vulnerability assessment could be conducted at the spatial extent of a national 267 

park, within an island of a few hectares only, with a restricted set of species (e.g., Harper et 268 

al., (2022), 24 ha in South Africa, 18 amphibian and 41 reptile species). This can inform 269 

management priorities at the landscape scale, such as defining park-use zones to help allocate 270 

restricted areas acting as corridors for species migration, or creating habitat conditions for 271 

breeding (Harper et al., 2022). At this level, an explicit treatment of population genetics 272 

and/or population viability analyses could also be conducted, and this may become more 273 

feasible in the future with the emergence of macrogenetics studies (Leigh et al., 2021). In 274 

parallel, studies focusing on the global extent are key to assessing vulnerability metrics, 275 

identifying geographical shortfalls in data coverage, and supporting the implementation of 276 

conservation policies to mitigate biodiversity losses. Note that, in all cases, controlling for 277 

island area or species richness is essential to mitigate biases towards larger islands when 278 

calculating vulnerability metrics. Finally, even if vulnerability assessments are conducted at 279 

the global scale, particular attention should be directed toward endemic species or insular 280 

populations, since island biodiversity conservation operates at the population level.  281 
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 282 

 283 

Figure 2: Conceptual framework for assessing the vulnerability of island biodiversity to 284 
global changes. The framework consists of five steps and can be iteratively applied (see 285 
circular arrow). Markers in bold font represent the markers specifically designed for insular 286 
biota but other markers are also important to indicate species’ sensitivity, independently of 287 

their occurrence on islands or mainland. 288 

Step 2: Determine the markers of exposure, sensitivity, and adaptive capacity 289 
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There are many different relevant markers associated with biodiversity’ vulnerability to 290 

threats. Those markers may vary in type (e.g., ecological or demographic) and organisation 291 

level (e.g., population, species, community, or ecosystem), and could be considered either 292 

simultaneously or separately in the framework. Literature review and expert opinion can be 293 

used to identify and collect relevant markers for each component of vulnerability based on the 294 

scope and purpose of the assessment. For instance, assessing the vulnerability of terrestrial 295 

species to land-use change and climate change requires markers of exposure to climate change 296 

(e.g., change in precipitation regimes, sea-level rise) and land-use change (e.g., urbanization 297 

rates, forest conversion into agriculture, infrastructure development, shift from agriculture to 298 

tourism) (e.g., Bellard, Leclerc, & Courchamp, (2015); Bellard, Leclerc, Hoffmann, et al., 299 

(2015)). Moreover, it is necessary to list the biological traits related to the sensitivity and 300 

adaptive capacity of the studied insular species to the above-listed threats (Figure 2 and Table 301 

S1 for examples of exposure, sensitivity, and adaptive capacity markers). Markers of exposure 302 

can be linked to the focal threat(s) or general global changes, and multiple markers should be 303 

used to capture the multiple dimensions of changes (e.g., temperature change, heat waves, 304 

droughts).  305 

Species’ sensitivities are determined by their intrinsic traits (e.g., climatic niche breadth, 306 

habitat specialization, diet breadth, body size, etc.). Despite the increasing availability of traits 307 

for birds, mammals, reptiles, and plants (Díaz et al., 2022; Faurby et al., 2018; Soria et al., 308 

2021; Tobias et al., 2021), trait-based approaches have been barely applied to date or they are 309 

specific to some threats. Some sensitivity traits might be specific to a given threat (e.g., 310 

temperature tolerance), while others are general and encompass sensitivity to different threats 311 

(e.g., body size, dependence on interspecific interactions). Note that for both sensitivity and 312 

adaptive capacity, a comprehensive list of markers is applicable at either the population or 313 

species level (see Thurman et al., 2020 for a list and Table S1). However, markers applicable 314 
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at the community level, such as functional or phylogenetic diversity, could also be included 315 

(Table 1 for example). Using extinctions scenarios for threatened species, we can also 316 

establish which islands are more likely to lose a significant share of their functional and 317 

phylogenetic diversity (richness, redundancy, originality, uniqueness) (Bellard et al., 2021; 318 

Llorente-Culebras et al., 2024). Those analyses could help identify islands that are more likely 319 

to be sensitive at the community level.  320 

Adaptive capacity refers to the ability of insular biota to respond to stressors, caused by 321 

multiple threats or novel conditions, by either persisting in situ or by shifting in space or time 322 

(following Thurman et al., 2020). Acclimation, behavioural change, phenotypic plasticity and 323 

evolutionary adaptation may all contribute to adaptive capacity (Foden et al., 2018; Royer-324 

Tardif et al., 2021). For mobile animals, especially the most vagile organisms, markers of 325 

adaptive capacity can incorporate traits linked to movement or mobility (e.g., migration 326 

frequency and distance, site fidelity) (Butt et al., 2022; Thurman et al., 2020). Note that for 327 

plants and sessile organisms in general, adaptive capacity mostly refers to their capacity to 328 

persist in situ with mating system and fecundity as strong markers (Thurman et al., 2020). 329 

Finally, adaptive capacity of insular biota can also be modulated by extrinsic factors, such as 330 

habitat quality, habitat availability, habitat connectivity and level of protection, factors which 331 

could therefore be included in the measure of adaptive capacity at the system level (i.e., 332 

island, archipelago). 333 

 334 

 335 

 336 

 337 

 338 
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Table 1: Proposed functional-based and phylogeny-based metrics that could be used as 339 
markers at the community level in vulnerability assessments. 340 

 341 

 Functional-based markers Phylogeny-based markers 

Sensitivity Functional rarity Phylogenetic endemism 

Definition - Functional rarity, expressed 

at the species level, is the combination 

of the functional 

distinctiveness/uniqueness (based on 

traits), the scarcity and the geographic 

restrictedness of a species (Violle et al., 

2017).  

Definition - Phylogenetic endemism is the 

spatial restriction of the phylogenetic 

diversity of a community (Rosauer et al., 

2009). This is a relative measure of 

endemism that represents the degree to 

which lineages or branches of the tree of 

life are spatially restricted.  
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Step 3: Compute measures of vulnerability and its components  342 

Once all the markers of the three components of vulnerability are collected, the next step is to 343 

combine them all into a composite vulnerability measure. However, aggregating multiple 344 

markers into a single value for each of the three vulnerability components is challenging. A 345 

recent review showed that most assessments use arithmetic mean for the aggregation 346 

(Tonmoy et al., 2014). In the case of quantitative markers, as here, one possibility is to 347 

normalise each marker to a 0-1 range. This transformation, which can be done with multiple 348 

methods (e.g. Leclerc et al., 2020), creates unitless metrics with equal weight. Then the 349 

markers of each component (i.e., exposure, sensitivity, and adaptive capacity) can be summed 350 

and re-scaled to obtain normalized values of exposure, sensitivity, and adaptive capacity. This 351 

Rationale - Given that functionally rare 

species can play a critical role in 

ecosystem functioning, and because 

rarity is linked to species’ sensitivity 

(Davies et al., 2004; Loiseau et al., 

2020), areas with a high proportion of 

functionally rare species are particularly 

susceptible to threats. 

Rationale - Areas with high phylogenetic 

endemism are characterized by the 

presence of species that have diversified 

and evolved in response to specific 

environmental conditions within a 

particular location. Among the drivers 

shaping phylogenetic endemism, climate 

plays a significant role (Guo et al., 2023), 

implying that changes in climate 

conditions may disproportionately affect 

these species, potentially leading to their 

decline or extinction. 

Adaptive 

capacity 

Functional redundancy Phylogenetic distinctiveness 

Definition - Functional redundancy of a 

given community reflects the tendency 

for the constituent species to perform 

similar functions (Mouillot et al., 2014). 

Definition - Phylogenetic distinctiveness 

reflects the degree of isolation of a species 

or a group of species within a 

phylogenetic tree (Pavoine & Ricotta, 

2021). 

Rationale - Functional redundancy has 

been theoretically and empirically linked 

to the concepts of resistance and 

resilience of ecosystem functioning to 

species loss (Biggs et al., 2020) via the 

insurance hypothesis (McCann, 2000). 

Hence, more functionally redundant 

systems should show greater resilience 

to perturbations (Mouillot et al., 2014) 

become role of extinction species can be 

fulfilled by functionally close species. 

This indirectly reflects the ability of the 

system to adapt to disturbances. 

Rationale - Evolutionarily distinct species 

or group of species represent uniquely 

divergent genomes (Warren et al., 2008). 

Consequently, sets of evolutionarily 

distinct species are expected to encompass 

a large proportion of the parental clade’s 

total phylogenetic diversity, which may 

play a crucial role in ensuring long-term 

stability and resilience (Cadotte et al., 

2012). This implies that communities 

exhibiting higher phylogenetic 

distinctiveness are more likely to harbor 

increased evolutionary potential, enabling 

them to adapt. 
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technique has the advantage of clearly identifying which components drive vulnerability, by 352 

ensuring that all markers are weighted equally, and can thus effectively guide the 353 

implementation of conservation actions at the island level. The different markers could also 354 

be weighted differently to put more emphasis on specific markers depending on the current 355 

level of island protection policy or biodiversity richness occurring on each island. Finally, 356 

when all the data have been aggregated, the majority of the current methods employ criteria-357 

based approaches, classifying biota into categories of vulnerability from low to high by 358 

summing up the different components of vulnerability (hereby referred to as qualitative or 359 

semi-quantitative frameworks). 360 

To avoid arbitrary thresholds, we propose a quantitative framework using multicriteria 361 

decision analysis (Leclerc, et al., 2020; Parravicini et al., 2014) that provides continuous 362 

vulnerability values and a relative ranking of islands or archipelagos. This method ranks 363 

alternatives according to their distance to positive (i.e., minimal vulnerability, with low 364 

exposure and sensitivity, and high adaptive capacity) and negative ideal solutions (see 365 

(Leclerc, Courchamp, et al., 2020) for details). Note that alternative approaches exist for 366 

combining the three vulnerability components, such as additive effect between components 367 

(Nyboer et al., 2021) or interacting effect between exposure and sensitivity for instance (Silva 368 

Rocha et al., 2024). In any case, we recommend carrying out robustness analyses to explore 369 

the uncertainty potentially introduced by the aggregation and weighting methods.  370 

Step 4: From uncertainty assessments to the improvement of vulnerability assessments and 371 

policy recommendations 372 

The outcomes of vulnerability assessments can be affected by several factors, including 373 

missing data, variation of underlying traits, aggregation techniques, and, in the case of future-374 

looking assessments, by uncertainties about the future trajectories of anthropogenic threats. 375 

Techniques to estimate uncertainty from missing trait data (e.g., Hossain et al., 2019) as well 376 
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as uncertainty in modelling the future of biodiversity (e.g., Thuiller et al., 2019) are readily 377 

available. In addition, we recommended carrying out robustness analyses to assess the impact 378 

of including or excluding specific markers from the calculation, by rerunning the vulnerability 379 

assessment without the focal marker. Robustness analyses may also be used to explore the 380 

effects of alternative aggregation or standardisation techniques (Tonmoy et al., 2014, see also 381 

Boyce et al., 2022). We also recommend validating the outcome of the vulnerability 382 

assessments with data from another temporal period (e.g., by comparing with past data), or by 383 

comparing with other islands using documented vulnerability or other metrics of vulnerability 384 

(e.g., IUCN Red List of species, Living Planet Index). In this context, it is crucial to both 385 

estimate and communicate the uncertainty. This can be achieved by, for example, mapping 386 

the variance of the estimated vulnerability metric or using maps of ignorance (e.g., Rocchini 387 

et al., 2011; Tessarolo et al., 2021). As well as identifying future research priorities, 388 

uncertainty evaluations strengthen confidence in assessments, thereby increasing their uptake 389 

to support policy decisions, including by the IPCC and IPBES (Joyce et al., 2011; Vadrot, 390 

2020). We also advocate for the integration of interactive interfaces and dashboards with 391 

options to select threats, markers, taxa, or ecosystems of interest, as well as different 392 

narratives trajectories, which may complement the scientific message -  particularly helpful 393 

for simplifying multidimensional information (McInerny et al., 2014). Finally, we recommend 394 

conducting an ongoing review and iteration to enable adaptation and improvement of the 395 

vulnerability framework including as new ecological data become available (Henry et al., 396 

2024). 397 

Step 5: From vulnerability assessments to conservation actions and policy 398 

Effective conservation practice under global change relies on identifying which species are 399 

most vulnerable and what drives their vulnerability (Box 2, Step 5). Vulnerability assessments 400 

such as those described in Steps 1-4 provide invaluable information for conservation priority-401 
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setting for island biodiversity. For species of the highest vulnerability, for example, the 402 

specific traits and exposure measures driving the vulnerability can inform appropriate 403 

responses (e.g., captive breeding, assisted translocation, disease management). For species 404 

identified as sensitive to climate change, but which may escape impact through high adaptive 405 

capacity, such responses (e.g. range shifts, phenological change) should be facilitated and 406 

monitored (Foden et al 2013). Species with poor adaptive capacity but low sensitivity can be 407 

assumed to be able to withstand change in situ, but close monitoring should be maintained to 408 

ensure that this assumption is realised (Foden et al, 2013) and that unexpected thresholds are 409 

not crossed. Assessments can also inform landscape-level actions (e.g. protecting hotspots of 410 

high numbers of vulnerable species, habitat restoration, and increasing permeability) (Harper 411 

et al., 2022).   412 

Biodiversity policy too may be guided by species vulnerability assessments. For instance, one 413 

of the targets of the KM-GBF is to minimize the impact of climate change on biodiversity 414 

through (among others) mitigation, adaptation and risk disaster reduction actions. Such aims 415 

require the use of different markers of adaptive capacity through multiple plausible scenarios 416 

(e.g., protected areas, habitat intactness) to inform how different management actions can 417 

impact the vulnerability. Vulnerability assessments can help target the control and eradication 418 

of invasive alien species in conservation priority sites such as islands (Target 6), and also 419 

identify the sites that need to be brought under protection (Target 3) to conserve biodiversity. 420 

Monitoring progress in meeting these conservation targets too may be informed by 421 

vulnerability assessments. Since species sensitivity and adaptive capacity traits change little 422 

over time, while exposure increases at an observable rate, changes in vulnerability may also 423 

provide a measure of the relative effectiveness of conservation actions implemented (Foden, 424 

Mace, et al., 2013). Because the exposure component is common across species (e.g., 425 

inundation, invasive alien species), the threat itself may be managed through dedicated 426 
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programs, such as mangrove rehabilitation or invasive alien species control (Jones et al., 427 

2016). 428 

 Finally, beyond its use in current policies, our vulnerability framework could be useful in 429 

drafting new policies. Indeed, to set relevant targets in the new policies being drafted (e.g., by 430 

[year], reduce by [number] % the number of species threatened by [threat]), policymakers 431 

need to know (i) the current situation and (ii) what could be the future situation under 432 

different scenarios. The proposed vulnerability framework has the potential to provide both 433 

aspects and may contribute to the establishment of policy targets that are ambitious and 434 

attainable for insular biodiversity. 435 

 436 

Concluding remarks  437 

Given the proliferation of multiple threats that islands are facing, efforts must be made to 438 

study island biota in the light of global changes, and thus to embrace the whole of 439 

biodiversity, mainland and insular, in current vulnerability assessments in international arenas 440 

such as the IPCC or IPBES. Our comprehensive and detailed framework lays the foundations 441 

for understanding and predicting island biodiversity vulnerability to global change. Besides, 442 

this framework aims to integrate island-specific characteristics with enhancements to existing 443 

frameworks that may also prove beneficial for continental assessments. These enhancements 444 

include the consideration of multiple threats, indicators that reflect phylogenetic and 445 

functional diversities, and an uncertainty analysis that is essential for all types of vulnerability 446 

assessments. Because the outcomes of vulnerability assessments will be challenged by 447 

missing data and, in the case of future assessments, by uncertainties about the future 448 

trajectories of anthropogenic threats, it is crucial to both estimate and communicate 449 
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uncertainty (e.g., Hossain et al., 2019; Rocchini et al., 2011; Tessarolo et al., 2021; Thuiller et 450 

al., 2019), which will ultimately help to protect biodiversity with more robust information.  451 

 452 

 453 

Glossary: 454 

Adaptive capacity: the ability of a population or species or community to adapt to changing 455 
conditions; this may be via ecological (i.e., physiological and/or behavioural plasticity) or 456 

evolutionary adaptation (i.e., through natural selection acting on traits).  457 
 458 
Adaptive radiation: the rapid diversification of a single evolutionary lineage into multiple 459 

ecologically or morphologically distinct species. 460 

Exposure: the extent to which each population or species’ or a community physical 461 

environment changes due to global threats (Foden, Butchart, et al., 2013). It includes the 462 
intensity, magnitude and frequency of the threat(s).  463 

 464 
Sensitivity: the intrinsic capacity of population or species or community to cope with threats, 465 
based on their life-history, ecology, morphology, or behaviour. 466 

 467 
Threat: external factor that has the potential to impact the viability, abundance, distribution, 468 

or behaviour of a population, species, or community.  469 
 470 
Vulnerability: susceptibility of a system/species to a negative impact following exposure to a 471 
threat 472 
 473 
 474 

 475 
 476 
 477 
 478 
 479 

 480 
 481 

Box 1 | The case of the Hawaiian honeycreepers 482 

The Hawaiian Islands constitute an archipelago of eight larger and numerous smaller volcanic 483 

islands in the North Pacific Ocean, in total about 16,644 km
2
 in size, and about 3,200 km from 484 

the nearest mainland. The islands in the northwest are older and typically smaller, due to 485 

progressive erosion, while the islands in the southeast are larger and still volcanically active. 486 
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Thanks to the archipelago’s extreme isolation and the islands’ variation in size and 487 

environmental conditions, Hawaii has been a hotspot of speciation and adaptive radiation 488 

(Baldwin & Sanderson, 1998; Lerner et al., 2011; Price, 2004). The Hawaiian honeycreepers 489 

(Fringillidae: Drepanidinae) represent one of the most iconic examples of adaptive radiation, 490 

which has resulted in a striking variation in bill morphology (Lerner et al., 2011). This strong 491 

adaptive radiation, however, has also led to species with highly restricted ranges and naturally 492 

small population sizes. Hence, little is needed to push these species over the brink of 493 

extinction and, to date, at least 36 of the 59 known species of honeycreepers are extinct 494 

(Figure 3a). Extinction has been non-random with respect to the functional trait space of the 495 

species, with extinct species generally larger in size (Figure 3b). The main drivers of past 496 

extinction, as well as current threats to the species, are the introduction of invasive alien 497 

species and the loss of habitat due to conversion to agricultural land. Invasive species include 498 

predators of birds and eggs (rats, cats, dogs), herbivores that modify the habitat (for example, 499 

the extinction of Laysan Honeycreeper Himatione fraithii is ascribed to the introduction of 500 

rabbits, which eliminated virtually all vegetation cover from the Laysan islands), and vector 501 

species of infectious diseases, such as avian malaria (Benning et al., 2002). Habitat loss began 502 

with Polynesian colonists, who cleared much of the low-elevation and seasonally dry forest 503 

for agricultural purposes, and was continued by later European colonists, who additionally 504 

converted high-elevation forests for pasturage (Riper & Scott, 2017). Climatic factors 505 

contributed little to past extinctions but are a progressive threat to extant species, especially 506 

because it may lead to an upslope shift of infectious diseases (notably avian malaria) 507 

(Benning et al., 2002). Overall, this example illustrates the importance of (i) considering 508 

multiple threats when focusing on island biota, (ii) taking into account the singularities of 509 

insular syndrome such as restricted ranges, small population size or level of endemicity, as 510 

well as (iii) the importance of considering markers of sensitivity at the community level given 511 
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the non-random distribution of species at risk of extinction and their potential higher 512 

vulnerability to global change.  513 

Figure 3: Conservation status, threats, and morphospace of Hawaiian Honeycreepers. 514 
(a) IUCN Red List threat status of 59 known species of honeycreeper (LC: least concern, NT: 515 

near threatened, VU: vulnerable, EN: endangered, CR: critically endangered, EX: extinct) and 516 
prevalence of threats among the 23 extant species (IAS: invasive alien species, HL: habitat 517 

loss, CC: climate change and extreme events, OE: over-exploitation, Po: pollution) (b) The 518 
morphospace compared between 19 extant honeycreepers (dark grey polygon), 54 extant and 519 
extinct honeycreepers (medium grey polygon), and 5,974 extant passerine birds globally (light 520 

grey polygon). The morphospaces for the extant species were obtained through a principal 521 
component analysis (PCA) based on the eight morphological traits available in AVONET 522 

(Tobias et al., 2021), namely bill length from tip to skull along the culmen, bill length to 523 
nostrils, bill width and depth to nostrils, tarsal, wing and tail length, and Kipp’s distance. The 524 

same eight traits for the extinct honeycreepers were taken from (Matthews et al., 2023). The 525 
first two principal components explain 80% of the total morphological variance and are 526 

primarily associated with body size (PC1) and tarsus length versus Kipp’s distance (PC2), 527 

respectively. The list of species was obtained from (Matthews et al., 2023; Ricklefs, 2017) 528 
and the IUCN Red List of Threatened Species v2023-1. Species names were harmonized and 529 

duplicates removed based on the taxonomic backbone used by the IUCN. 530 
 531 

 532 

  533 
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Box 2 | Leveraging an insular vulnerability framework to inform multiple policies 534 

Our proposed vulnerability framework for insular biodiversity is particularly relevant for 535 

informing various vulnerability policies (in orange) and biodiversity policies (in green) at 536 

both international and supranational levels, such as the European Union (EU).  537 

First, by quantifying the three components of island vulnerability, our framework can directly 538 

provide the currently missing biodiversity component of the Multidimensional Vulnerability 539 

Index (MVI). The MVI is developed by the Small Island Developing States (SIDS; 540 

https://www.un.org/ohrlls/mvi/) with the United Nations to characterise the financing help for 541 

sustainable development needed in the face of global changes (1). The SIDS is a political 542 

coalition of 39 low-lying islands that are united by the threat posed by climate change to their 543 

survival. In climate change negotiations, they are a loud and powerful voice for upscaling 544 

climate action, since they are disproportionally affected by climate change consequences. To 545 

understand and respond, several assessments of these islands’ climate change vulnerability 546 

have been carried out (e.g., (UN High Level Panel, 2022; UNFCCC, 2007)), but none 547 

includes more than a broad mention of biodiversity impacts. A scientifically rigorous 548 

assessment of climate change vulnerability of island biodiversity is, therefore, both extremely 549 

important and critically urgent. Our framework can also help EU Member States, which are 550 

required to report to the European Commission on their disaster risk management activities, to 551 

identify which components of vulnerability they can act on (2). The risk of biodiversity loss 552 

has been recently included in the Recommendations for National Risk Assessment for 553 

Disaster Risk Management in the EU (Poljansek et al., 2021), which does not specifically 554 

cover insular biodiversity. In that context, our framework can provide real added? value for 555 

EU Member States with insular territories. Our framework can also further help identify 556 

whether mitigation strategies for islands to reach Target 8 of the Kunming-Montreal Global 557 
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Biodiversity Framework (hereafter, GBF) should focus on limiting territories’ exposure or 558 

promoting the adaptive capacity of insular biota (3). 559 

Second, our framework can help EU Member States with insular territories to identify and 560 

prioritise which species, sites and threats they should use to best mitigate their vulnerability in 561 

the context of their National Risk Assessment (4). Such actions can also contribute to (i) 562 

identifying the species, sites and to focus the management measures to reach Target 4 of the 563 

GBF (5), (ii) determining the most vulnerable islands to invasive alien species to reach Target 564 

6 of the GBF (6), and helping EU Member States with insular territories to identify species 565 

threatened by invasive alien species on which to focus conservation actions to reach Target 12 566 

of the EU Biodiversity Strategy for 2030 (EU BDS, (7)).  567 

Finally, by providing multiple scenarios of threat trajectories and a list of priority islands for 568 

conservation action, our framework can contribute to documenting the risk of biodiversity 569 

loss under different conservation scenarios to EU Member States with insular territories (8). 570 

The vulnerability framework could contribute to identifying priority islands for restoration 571 

(target 2 of the GBF and target 4 of the EU BDS (9)) and for protection (target 3 of the GBF 572 

and target 1 of the EU BDS (10)), as well as in determining which invasive alien species 573 

should be eradicated or controlled (target 6 of the GBF (11)). 574 

      575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

This figure highlights some possible outcomes of the vulnerability framework and how they 583 
are linked (arrows) to the vulnerability (in orange) and biodiversity policies (in green). Each 584 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52020DC0380
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circled number represents a concrete example of how our vulnerability framework can 585 

support existing policies, and all those examples are detailed in the box.  586 

 587 
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 986 

Supplementary material : 987 

 988 

Supplementary appendix 1 : 989 

 Islands as past, current, and future epicentres of extinctions: The IUCN Red List 990 

documented nearly 1,000 species as globally extinct or extinct in the wild (IUCN Red list 991 

access 04/07/2023). Among the documented extinctions, the overwhelming majority occurred 992 

on oceanic or continental islands. Extinction hotspots are located in the Oceanic realm, 993 

followed by the Afrotropical realm (e.g., Madagascar) and the Nearctic. Among reported 994 

extinctions in the IUCN Red List, the large majority are represented by animal species 995 

(>80%), followed by plants. Most of these species have gone extinct because of invasive alien 996 

species, but a large number have also concurrently been harmed by wildlife exploitation 997 

and/or land use change due to cultivation (Leclerc et al., 2018; Maxwell et al., 2016). In fact, 998 

extinct species within insular regions have faced, on average, four threats within the IUCN 999 

threat classification scheme (i.e., biological invasions, wildlife exploitation, cultivation, and 1000 

habitat modifications), and the exposure to threats for birds, mammals, amphibians, reptiles, 1001 

freshwater fish, plants, arthropods, and gastropods continue to increase, with an average of ten 1002 

threats being faced by threatened species (Leclerc et al., 2018).  1003 

Moreover, islands makes a disproportionate contribution to global biodiversity in relation to 1004 

their surface area, especially regarding the percentage of threatened species (Fernández-1005 

Palacios, Kreft, et al., 2021), the risk for future extinctions is thus high. The first extinction 1006 

due to climate change already occurred on an island near Papua New Guinea (Fulton, 2017). 1007 

In 2016, Melomys rubicola (also called the Bramble Cay melomys) became the very first 1008 

documented extinction due to climate change (Waller et al., 2017). This small rodent was 1009 

endemic to the low-island of Bramble Cay in Australia and was periodically recorded from 1010 
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1978 to 2009. Seven years after its last observation in the field and numerous efforts to trap 1011 

the species in the years after, the species was officially declared extinct. Although only 1012 

symbolic, compared to a thousand species already extinct since 1500, this is one of the first 1013 

documented victims of climate change as a major factor of near-future extinctions in our 1014 

contemporary history. Unfortunately, under future climate change, we can expect that islands 1015 

will continue to contribute disproportionately to the loss of biodiversity, given that the 1016 

overwhelming majority of critically endangered species are endemic to island systems, and 1017 

their inherent characteristics make them extremely vulnerable to global change drivers 1018 

 1019 
Table S1: Traits and characteristics from population to the community that may be included 1020 

in the island biota vulnerability framework (IBVF) with examples of sources where to 1021 
calculate or when directly available.  1022 
 1023 

 Traits Level Availability 

Population dynamic 

Growth rate population 

Living planet database 

(vertebrates), FishGlob 

(fishes), German vegetation 

(plants) 

Population size population 
CoralTraits (corals), 

BIOTime (multiple taxa) 

Reproduction 

 

Reproductive strategies species 

GIFT (plants), 

COMPADRE, GARD 

(reptiles) 

Mating system species  

Clutch size species 

GARD (reptiles), 

AmphiBio (amphibians), 

COMBINE (mammals), 

AVONET (birds) 

Fecundity species 
GARD (reptiles), 

AmphiBio (amphibians) 

Temperature-dependent sex 

determination 
species  

Generation time species 

Amniote (vertebrates), 

CoralTraits (corals), 

COMPADRE (plants) 

Parental care (time) species Amniote (vertebrates) 

Life-history 

 

 

 

Life-cycle  species 
 TRY (plants), GIFT 

(plants) 

Life stage population 

FishBase (fishes), 

CoralTraits (corals), 

Amphibio (amphibians) 

Dependence on intraspecific 

interactions 
species CoralTraits (corals) 

Body dimension (mass/size?) species 

Amniote (vertebrates), TRY 

(Plants), GIFT (plants), 

COMBINE (mammals), 
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AVONET (birds).   

Clonality species 
GIFT (plants), 

COMPADRE (plants) 

Acclimatation or 

evolution 

Phenotypic plasticity population Noble et al 2018 (reptiles) 

Genetic diversity population 
Miraldo et al. 2016 

(mammals) 

Life span species AmphiBio (amphibians),  

Ecological 

characteristics 

 

Climatic niche breadth species 
GARD (reptiles), GBIF 

(plants), BIEN (plants) 

Endemicity  species 

Global Species Database 

(vertebrates, invertebrates, 

plants) 

Habitat specialization species IUCN 

Habitat condition species IUCN 

Diet breadth species 
GARD (reptiles), 

AmphiBio (amphibians),  

Nocturnality species 
GARD (reptiles), Amphibio 

(amphibians) 

Dependence on water for 

reproduction, foraging, shelter 
species Amphibio (amphibians) 

Competitive ability species  

Movement and mobility 

 

 

Dispersal capacity species 
AVONET (birds), TRY 

(plants), GIFT (plants) 

Site fidelity species  

Migration frequency and 

distance 
species AVONET (birds) 

Flight efficiency species AVONET (birds) 

Number of insular populations population  

Home range population HomeRange (mammals) 

Distribution 

 

Geographic rarity population  

Low local abundance island level  

Range size population IUCN 

Community properties 

Level of disharmony community  

Functional redundancy community TRY and GIFT(plants) 

Phylogenetic diversity  community GIFT, WCVP (plants) 

Richness community GIFT, WCVP (plants) 

Intactness  ecosystem  

Phylogenetic endemism community 

Vertlife (vertebrates), 

PhylomeDB (plants), GIFT, 

WCVP (plants) 

Inherent vulnerability 

Behaviour (aggressiveness) species  

Dwarfism-gigantism species 

 Meiri et al 2008 

(mammals), Meiri 2007 

(reptiles), Benítez-López et 

al. 2021, Rozzi et al. 2023 

GIFT (plants) 

Vulnerability to diseases species GABiP (amphibians) 

Tolerance to drought  

try-db.org (plants), Le 

Galliard et al. 2021 

(reptiles) 

Tolerance to fire species try-db.org (plants) 

Endemism community GIFT and WCVP (plants) 

 1024 
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 1081 

Table S2: An overview of studies assessing the vulnerability of species to climate change. 1082 

This is a non-exhaustive summary that focuses on studies that have been conducted recently, 1083 

use trait-based approaches, and include a full assessment of vulnerability with exposure, 1084 
sensitivity, and adaptive capacity markers.  1085 
 1086 

Study Ecosystems 
Spatial 

coverage 
Taxa n Main findings 

(Barry et al., 2023) Freshwater Ireland Fish 32 

All species were vulnerable to some effect of 

climate change with cold water species more 

vulnerable to climate change than warm water 

species. 

(Boyce et al., 2022) Marine Global 

Multiple groups 

(animals, plants, 

chromists, 

protozoans, and 

bacteria) 

24,975 

Almost 90% of all species are at high or 

critical risk under high emissions, with 

exploited species in low-income countries with 

heavy dependence on fisheries at greatest risk. 

(Nyboer et al., 2021) 
Freshwater / 

Marine 
Global Fish 415 

Over 20% of recreationally fishes are 

vulnerable under a high emission scenario, 

with 72% of vulnerable freshwater fish and 

33% of vulnerable diadromous fish being 

without conservation effort, compared to only 

19% for vulnerable marine species. 

(Vaz-Canosa et al., 2023) Terrestrial Uruguay 
Amphibians 

Reptiles 
112 

14.6% of amphibians and 10.9% of reptiles 

were identified as highly vulnerable to climate 

change. 

(Bueno-Pardo et al., 2021) Marine Portugal 
Fish 

Invertebrates 
74 

Under the RCP 8.5 scenario, only two species 

were classified as at very high vulnerability. 

Overall vulnerability scores were low, likely 

due to the high adaptive capacity of species 

from temperate ecosystems. 

(Leclerc, Courchamp, et 

al., 2020) 

Terrestrial – 

insular 
Global Mammals 873 

All islands have some degree of vulnerability 

to future climate change, especially those in the 

Pacific Ocean. Among endemic mammals, 

those with long generation times and high food 

specialization are predicted to be most 

https://doi.org/10.1126/science.add8606
https://doi.org/10.1111/ele.13898
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vulnerable to climate change. 

(Ramírez-Bautista et al., 

2020) 
Terrestrial 

Oaxaca State, 

Mexico 
Rodents 55 

Under the higher impact (MPI-RCP 8.5) 

climate scenarios, some level of threat was 

predicted for all species assessed, with 4 

species predicted to be highly vulnerable. 
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