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Abstract: 62 

The majority of vulnerability assessments of biodiversity to global changes have so far 63 

being designed for mainland systems, overlooking islands. However, islands harbour 64 

unique biodiversity and are epicentres of ongoing extinctions. We thus introduce a new 65 

framework for quantifying the vulnerability of terrestrial insular biota to multiple 66 

threats. This framework uses markers of exposure, sensitivity, and adaptive capacity 67 

that reflect the unique characteristics of island biodiversity, from population to island 68 

levels. Our framework involves five steps: (1) identifying the scope of the vulnerability 69 

assessment, (2) selecting the most appropriate markers, (3) computing the vulnerability 70 

metric, (4) evaluating uncertainties, and (5) providing recommendations for 71 

conservation. We discuss the need and urgency to deploy this framework to guide 72 

evidence-based decisions for the conservation of insular biodiversity and for an 73 

improved attention to insular biota at the science-policy interface. 74 
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Introduction  83 

Islands harbour the most vulnerable ecosystems affected by global changes (Fernández-84 

Palacios, Kreft, et al., 2021). Approximately 75% of extinctions have occurred on islands, and 85 

over half of all terrestrial species that face imminent extinction are island-dwellers, with 86 

invasive alien species and land-use change as leading drivers of species’ declines. Climate 87 

change emerges as a growing threat for island biota and it may interact in unexpected ways 88 

with invasive alien species and land-use change (Capdevila et al., 2021; Mantyka-Pringle et 89 

al., 2011). As a result, islands are commonly considered the epicentres of past, imminent, and 90 

potential future species extinctions (Supplementary Material S1). 91 

At least three reasons can explain the disproportionate vulnerability of island ecosystems. 92 

Most insular species are intrinsically more sensitive to any given threat due to their specific 93 

traits deriving from the so-called ‘island syndrome’(Benítez-López et al., 2021; Biddick et al., 94 

2019; Lomolino, 1985; Rozzi et al., 2023). Second, insular species are less likely to adapt to 95 

new threats due to their inherent demographic features (e.g., small population sizes, naturally 96 

fragmented distribution ranges). Lastly, the physiography of islands, specifically in the case of 97 

isolated, small-sized ones, renders their biota more exposed to threats and also less able to 98 

escape compared to their mainland counterparts (Fernández-Palacios et al., 2021; see also the 99 

“uniqueness of insular biota” section for a more complete description of those inherent 100 

vulnerabilities).  101 

Despite the urgency needed to protect the unique and highly vulnerable island biodiversity 102 

from ongoing global changes, insular biota is only briefly mentioned in international 103 

biodiversity policy frameworks. In December 2022, the 196 parties of the Convention on 104 

Biological Diversity (CBD) adopted the Kunming-Montreal Global Biodiversity Framework 105 

(KM-GBF), involving 23 action-oriented global targets. Among them, only one target (Target 106 

6) explicitly mentions islands as priority areas for conservation (though not explicitly 107 

https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf
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mentioning insular biota) and only two other targets (Target 3 and 4, GBF) require strong 108 

actions on islands. This lack of attention reflects the scientific bias towards mainland or 109 

charismatic species (Albert et al., 2018; Rodrigues et al., 2010), with remote islands receiving 110 

less consideration in biodiversity assessments, hindering the development of effective 111 

conservation plans on insular biota (Troudet et al., 2017).  112 

Here, we introduce a new framework for quantifying the vulnerability of terrestrial insular 113 

biota to multiple threats, which is specifically designed to reflect the challenges associated 114 

with the uniqueness of insular biota, enhances their vulnerability to global changes (e.g., 115 

island syndrome, isolated nature of islands, high endemism; see also Figure 1A). We define 116 

vulnerability across multiple biodiversity dimensions, considering the exposure, sensitivity, 117 

and adaptive capacity of insular biota to multiple threats. The originality of our framework is 118 

that it is specifically designed for insular biodiversity, with the inclusion of multiple threats, 119 

taxa, and dimensions of diversity, such as functional and phylogenetic diversity, as well as the 120 

inclusion of vulnerability markers at species, community and assemblages levels of islands. 121 

We first describe the characteristics that contribute to the vulnerability of island biota to 122 

global changes, which need to be considered in insular biodiversity vulnerability assessments. 123 

Then, we describe how our framework can address some of the ongoing questions on island 124 

biota vulnerability. 125 

 126 

Challenges  127 

The uniqueness of insular biota enhances their vulnerability to threatening processes 128 

The inherent uniqueness of insular biota (e.g., endemic species, distinct traits, unique 129 

lineages) increases their overall vulnerability to global change drivers (Fernández-Palacios, 130 

Kreft, et al., 2021). Islands are isolated, have complex topographies, are prone to extreme 131 
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events (e.g. volcanic eruption, landslides, hurricanes), and harbour fewer potential refuge 132 

(compared to mainland), making them more exposed to threats (Russell & Kueffer, 2019) 133 

(Figure 1A). Islands also host a large number of endemic species: up to 90% of endemic non-134 

vagile taxa (i.e., non-flying vertebrates, seed plants, molluscs or arthropods) occur in islands 135 

(e.g., Madagascar, Antonelli et al., 2022). Endemics have small population sizes and restricted 136 

geographical ranges (sometimes limited to an archipelago, an island or even a single peak, 137 

volcano or cliff) (Fernández-Palacios, Otto, et al., 2021), increasing their extinction 138 

probability (Manes et al., 2021). An iconic example is the radiation of Hawaiian 139 

Honeycreepers, a group of small birds particularly vulnerable to invasive alien species and 140 

habitat modification (Box 1).  141 

 142 

 143 

 144 

 145 

 146 

 147 
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 148 

 149 

Figure 1: A Conceptual figure of the vulnerability of insular biota to global changes with a 150 

non-exhaustive list of the characteristics contributing to each vulnerability component (i.e., 151 

exposure, sensitivity, and adaptive capacity). For example, insular syndrome traits, endemicity, 152 

and adaptive radiation are characteristics that increase the sensitivity of insular biota to global 153 

changes compared to mainland biota, whereas (i) a lack of functional redundancy, (ii) 154 

disharmonic taxonomic composition, and (iii) genetic vulnerability are characteristics that 155 

decrease adaptive capacity. B Percentage of island biota representation, taxonomic 156 

representation, and vulnerability components representation  in current climate change 157 

vulnerability assessments. The numbers are calculated from de los Ríos et al. (2018). 158 

 159 

Insular species have also evolved distinct, and unique ecological, physiological, behavioural, 160 

morphological, and life-history traits, a phenomenon commonly referred to as the ‘island 161 
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syndrome’ (Baeckens & Van Damme, 2020). These distinct and unique traits increase their 162 

sensitivity to current and future anthropogenic threats, including overharvesting, habitat loss, 163 

increased drought and invasive alien species (Rozzi et al., 2023; Zizka et al., 2022) (Figure 164 

1A). This phenomenon is for example associated with dioecy in plants, which makes them 165 

more likely to disappear if their mutualists’ species go extinct, presumably increasing their 166 

vulnerability to human-induced perturbations (Schrader et al., 2021). Reduced herbivory and 167 

predation pressure on islands leads to low levels of spinescence compared to their mainland 168 

counterparts, making island species more susceptible to the introduction of exotic herbivores 169 

(Burns, 2016; Clavero et al., 2009), unless they have coevolved with megafaunal herbivores 170 

(Barton et al., 2024). The loss of flight capacities renders insular birds unable to escape from 171 

anthropogenic threats (Sayol et al., 2021), making them more susceptible to extreme weather 172 

events, such as hurricanes, or gradual environmental change (e.g., progressive directional 173 

changes such as climate change) (Burns, 2019; Roff, 1990).  174 

Additionally, the intricate and often rugged topography of oceanic islands frequently leads to 175 

long-term isolations of populations, which may result in genetic drift and then inbreeding 176 

when population sizes are small (Frankham, 2002). Furthermore, island colonization within 177 

archipelagos and isolation by distance could also lead to high population structure between 178 

islands (Parmakelis et al., 2015; White & Searle, 2007). These populations are thus more 179 

prone to genetic diversity loss, which may result in fewer opportunities to adapt to changes. 180 

Although this does not necessarily increase their vulnerability per se, the loss of genetic 181 

diversity due to natural or anthropogenic disturbances, especially when exposed to 182 

disturbances over a short time period (Inamine et al., 2022), can cause a demographic or 183 

genetic collapse. Thus, losing an insular population can cause demographic and genetic loss, 184 

whereas it causes only demographic loss on the mainland. Because of that, the effective 185 
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conservation units on islands should be, in most cases, at the population level, rather than 186 

species level (e.g., (Melo & O’Ryan, 2007)).    187 

Besides population- and species-level characteristics, the composition of insular species’ 188 

assemblages harbours features that make them more vulnerable. One example is their 189 

disharmonic taxonomic composition, which refers to the systematic over- or under-190 

representation of certain taxonomic groups compared to mainland assemblages. Notable 191 

examples include the absence of several families of non-volant mammals on many isolated 192 

islands (Brace et al., 2015), and the over-representation of pteridophytes in island (Kreft et al., 193 

2010). The absence of certain functional groups on islands, although partially compensated by 194 

in-situ diversification and differentiation, allows new exotic species filling out vacant niches 195 

(Vitousek et al., 1997). These exotic species can exert a new role (e.g., predation, 196 

competition) unknown to the native community, which is evolutionarily naive and 197 

functionally unequipped to withstand these novel pressures. Additionally, species traits in 198 

island communities are often complementary rather than redundant, leading to communities 199 

with low functional redundancy (Harter et al., 2015; Whittaker et al., 2014). This makes them  200 

more sensitive to threats (McConkey & Drake, 2015) due to the lack of 'ecological insurance' 201 

to replace the missing functions (Loreau et al., 2021). 202 

State of the art of vulnerability assessments on insular biota 203 

Despite the inherent vulnerability of insular biota to global changes, most biodiversity 204 

vulnerability assessments have designed and focused on mainland systems. Climate change 205 

vulnerability assessments emerged in the 1990s to anticipate impacts and prepare appropriate 206 

responses (Foden et al., 2019; Solomon et al., 2007). Most definitions concur that a species’ 207 

vulnerability to a threat is determined by three components: exposure, sensitivity, and 208 

adaptive capacity (Butt et al., 2022; Foden et al., 2013, 2019). Using this definition, a recent 209 
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review showed that among the 741 studies assessing climate change vulnerability, the 210 

majority focused on mainland systems, with less than one third (n = 231) including islands (de 211 

los Ríos et al., 2018) (see Table S2 for examples) and only 136 studies associated with a 212 

specific insular country. Although this would be representative of the small land surface area 213 

occupied by islands (6.7%), it falls short in terms of biodiversity representativeness, as 214 

island’s biodiversity represents 20% of biodiversity worldwide, with 50% of threatened and 215 

75% of known extinctions (Fernández-Palacios, Otto, et al., 2021). These island vulnerability 216 

assessments are often geographically and taxonomically restricted towards high income 217 

countries (e.g., Australia, the UK, and the USA account for 60% of studies on insular biota) 218 

and plants (49% of studies) (Figure 1B), respectively. In addition, the large majority of 219 

vulnerability assessments do not consider the influence of multiple threats (but see Santos et 220 

al., 2021; Sousa et al., 2021; Ureta et al., 2022), which are likely to act together, interact with 221 

and be exacerbated by climate change (e.g., habitat loss, overexploitation, biological 222 

invasions), potentially leading to synergistic impacts (Leclerc et al., 2018). Note that these 223 

geographic, taxonomic, or conceptual biases occur in both mainland and insular assessments 224 

(see also (de los Ríos et al., 2018).  225 

Assuming that exposure is a suitable proxy for the impact of a particular threat, most 226 

vulnerability assessments focused on exposure alone, with less than 10% considering the three 227 

components of vulnerability (Butt et al., 2016; de los Ríos et al., 2018). This assumes that all 228 

species will have equal responses to a threat, which is highly unlikely. In fact, the likelihood 229 

of species being impacted by certain threats, either on the mainland or on islands, is 230 

modulated by their traits (Fromm & Meiri, 2021; Leclerc, Villéger, et al., 2020; Marino et al., 231 

2022; Soares et al., 2022). We argue that trait-based vulnerability assessments, when applied 232 

to a range of taxa and threats, can provide a useful approach for (i) developing a more 233 
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comprehensive index of vulnerability to threats, and (ii) informing effective management 234 

actions for conservation (Gallagher et al., 2021). 235 

Perspective 236 

We present a conceptual framework divided in five steps that provides a roadmap for 237 

vulnerability assessments of biota in insular systems, considering the three components of 238 

vulnerability (i.e., exposure, sensitivity, and adaptive capacity; Figure 2). Here, we refer to 239 

islands as insular systems that have a landmass smaller than Greenland (i.e., < 2.17 million 240 

km²) and are surrounded by sea water. We built upon previous work focused on taxonomic 241 

diversity in mainland ecosystems (Foden et al., 2013; Parravicini et al., 2014) to include in 242 

our framework various specific markers for each vulnerability component that are specifically 243 

tailored to the inherent characteristics of island biota, as well as multiple threats, taxa, and 244 

dimensions of diversity (i.e., taxonomic, functional and phylogenetic diversity). The 245 

development of this vulnerability framework tailored for island systems is part of a larger 246 

initiative to meet international policy targets that better integrate biodiversity threats and 247 

dimensions (Box 2).  248 

Step 1: Identify the scope and aim of the vulnerability of insular biota 249 

The first step is to define the scope of the vulnerability assessment in terms of spatial and 250 

temporal extent, relevant threats, and studied biota (taxonomic group, biological level, species 251 

biogeographical origin). This challenging task is pivotal for the assessment design, which in 252 

turn affects the final step of informing conservation actions (Step 5). For example, broad-scale 253 

assessments (e.g., at the global extent or among several archipelagos) contribute to strategic 254 

planning and to establish a common baseline of vulnerability information (e.g., IPBES 255 

assessments), while local-scale assessments (e.g., within archipelagos or group of islands) are 256 

appropriate for informing site-level management decisions. 257 
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For instance, a vulnerability assessment could be conducted at the spatial extent of a national 258 

park, within an island of a few hectares only, with a restricted set of species (e.g., Harper et 259 

al., (2022), 24 ha in South Africa, 18 amphibian and 41 reptile species). This can inform 260 

management priorities at the landscape scale, such as defining park- use zones to help allocate 261 

restricted areas acting as corridors for species migration, or creating habitat conditions for 262 

breeding (Harper et al., 2022). At this level, an explicit treatment of population genetics 263 

and/or population viability analyses could also be conducted, this may become more feasible 264 

in the future with the emergence of macrogenetics studies (Leigh et al., 2021). In parallel, 265 

studies focusing on the global extent are key to assess vulnerability metrics, identify 266 

geographical shortfalls in data coverage, and support the implementation of conservation 267 

policies to mitigate biodiversity losses. Note that in all cases, it is important to control by 268 

island area or species richness, to avoid biases towards larger islands when calculating 269 

vulnerability metrics. Finally, even if vulnerability assessment are conducted at the global 270 

scale, special attention should be paid to endemic species or insular populations, since island 271 

biodiversity conservation operates at the population level.  272 

 273 
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 274 

Figure 2: Conceptual framework for assessing the vulnerability of island biodiversity to 275 

global changes. The framework consists of five steps and can be iteratively applied (see 276 

circular arrow). Markers in bold font represent the markers specifically designed for insular 277 

biota.   278 

Step 2: Determine the markers of exposure, sensitivity, and adaptive capacity 279 

There are many different relevant markers associated with species’ vulnerability to threats. 280 

Those markers may vary in type (e.g., ecological or demographic) and organisation level (e.g., 281 

population, species, community, or ecosystem). One can review the scientific literature and 282 
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elicit expert opinion to identify and collect relevant markers for each component of 283 

vulnerability based on the scope and purpose of the assessment. For instance, assessing the 284 

vulnerability of terrestrial species to land-use change and climate change requires markers of 285 

exposure to climate change (e.g., change in precipitation regimes, sea-level rise) and land-use 286 

change (e.g., urbanization rates, forest conversion into agriculture, infrastructure 287 

development, shift from agriculture to tourism) (e.g., Bellard, Leclerc, & Courchamp, (2015); 288 

Bellard, Leclerc, Hoffmann, et al., (2015). Moreover, it is necessary to list the biological traits 289 

related to the sensitivity and adaptive capacity of the studied insular species to the above-290 

listed threats (Figure 2 and Table S1 for examples of exposure, sensitivity, and adaptive 291 

capacity markers). Markers of exposure can be linked to the focal threat(s) or general global 292 

changes, and multiple markers should be used to capture the multiple dimensions of changes 293 

(e.g., temperature change, heat waves, droughts).  294 

Species’ sensitivity is determined by their intrinsic traits (e.g., climatic niche breadth, habitat 295 

specialization, diet breadth, body size, etc.). Despite the increasing availability of traits for 296 

birds, mammals, reptiles, and plants (Díaz et al., 2022; Faurby et al., 2018; Soria et al., 2021; 297 

Tobias et al., 2021), trait-based approaches have been barely applied to date. Some sensitivity 298 

traits might be specific to a given threat (e.g., temperature tolerance), while others are general 299 

and encompass sensitivity to different threats (e.g., body size, dependence on interspecific 300 

interactions). Note that for both sensitivity and adaptive capacity, a long list of markers is 301 

applicable at either the population or species level (see (Thurman et al., 2020) for a list and 302 

Table S1). However, markers applicable at the community level, such as functional or 303 

phylogenetic diversity, could also be included (Table 1 for example). Using extinctions 304 

scenarios for threatened species, we can also establish which islands are more likely to lose a 305 

significant share of their functional and phylogenetic diversity (richness, redundancy, 306 
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originality, uniqueness) (Bellard et al., 2021; Llorente-Culebras et al., 2024). Those analyses 307 

could help identify islands that are more likely to be sensitive at the community level.  308 

Adaptive capacity refers to the ability of insular biota to respond to stressors, caused by 309 

multiple threats or novel conditions, by either persisting in situ or by shifting in space or time 310 

(following (Thurman et al., 2020)). Acclimation, behavioural change, phenotypic plasticity 311 

and evolutionary adaptation may all contribute to adaptive capacity (Foden et al., 2018; 312 

Royer-Tardif et al., 2021). For mobile animals, especially the most vagile organisms, markers 313 

of adaptive capacity can incorporate traits linked to movement or mobility (e.g., migration 314 

frequency and distance, site fidelity) (Butt et al., 2022; Thurman et al., 2020). Note that for 315 

plants and sessile organisms in general, adaptive capacity mostly refers to their capacity to 316 

persist in situ with mating system and fecundity as strong markers (Thurman et al., 2020). 317 

Finally, adaptive capacity of insular biota can also be modulated by extrinsic factors, such as 318 

habitat quality, habitat availability, habitat connectivity and level of protection, factors which 319 

could therefore be included in the measure of adaptive capacity at the system level (i.e., 320 

island, archipelago). 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 
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Table 1: Proposed functional-based and phylogeny-based metrics that could be used as 329 

markers at the community level in vulnerability assessments. 330 

 331 

 332 

Step 3: Compute measures of vulnerability and its components  333 

Once all the markers of the three components of vulnerability are collected, the next step is to 334 

combine them all into a composite vulnerability measure. However, aggregating multiple 335 

 Functional-based markers Phylogeny-based markers 

Sensitivity Functional rarity Phylogenetic endemism 

Definition - Functional rarity, expressed 

at the species level, is the combination 

of the functional 

distinctiveness/uniqueness (based on 

traits), the scarcity and the geographic 

restrictedness of a species (Violle et al., 

2017).  

Definition - Phylogenetic endemism is the 

spatial restriction of the phylogenetic 

diversity of a community (Rosauer et al., 

2009). This is a relative measure of 

endemism that represents the degree to 

which lineages or branches of the tree of 

life are spatially restricted.  

Rationale - Given that functionally rare 

species can play a critical role in 

ecosystem functioning, and because 

rarity is linked to species’ sensitivity 

(Davies et al., 2004; Loiseau et al., 2020), 

areas with a high proportion of 

functionally rare species are particularly 

susceptible to threats. 

Rationale - Areas with high phylogenetic 

endemism are characterized by the 

presence of species that have diversified 

and evolved in response to specific 

environmental conditions within a 

particular location. Among the drivers 

shaping phylogenetic endemism, climate 

plays a significant role (Guo et al., 2023), 

implying that changes in climate 

conditions may disproportionately affect 

these species, potentially leading to their 

decline or extinction. 

Adaptive 

capacity 

Functional redundancy Phylogenetic distinctiveness 

Definition - Functional redundancy of a 

given community reflects the tendency 

for the constituent species to perform 

similar functions (Mouillot et al., 2014). 

Definition - Phylogenetic distinctiveness 

reflects the degree of isolation of a species 

or a group of species within a phylogenetic 

tree (Pavoine & Ricotta, 2021). 

Rationale - Functional redundancy has 

been theoretically and empirically linked 

to the concepts of resistance and 

resilience of ecosystem functioning to 

species loss (Biggs et al., 2020) via the 

insurance hypothesis (McCann, 2000). 

Hence, more functionally redundant 

systems should show greater resilience to 

perturbations (Mouillot et al., 2014) 

become role of extinction species can be 

fulfilled by functionally close species. 

This indirectly reflects the ability of the 

system to adapt to disturbances. 

Rationale - Evolutionarily distinct species 

or group of species represent uniquely 

divergent genomes (Warren et al., 2008). 

Consequently, sets of evolutionarily 

distinct species are expected to encompass 

a large proportion of the parental clade’s 

total phylogenetic diversity, which may 

play a crucial role in ensuring long-term 

stability and resilience (Cadotte et al., 

2012). This implies that communities 

exhibiting higher phylogenetic 

distinctiveness are more likely to harbor 

increased evolutionary potential, enabling 

them to adapt. 
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markers into a single value for each of the three vulnerability components is challenging. A 336 

recent review showed that most assessments use arithmetic mean for the aggregation  337 

(Tonmoy et al., 2014). In the case of quantitative markers, as here, one possibility is to 338 

normalise each marker to a 0-1 range. This transformation, which can be done with multiple 339 

methods (e.g. Leclerc et al.2020), creates unitless metrics with equal weight. Then the 340 

markers of each component (i.e., exposure, sensitivity, and adaptive capacity) can be summed 341 

and re-scaled to obtain normalized values of exposure, sensitivity, and adaptive capacity. This 342 

technique has the advantage of clearly identifying which components drive vulnerability, by 343 

ensuring that all markers are weighted equally, and can thus effectively guide the 344 

implementation of conservation actions at the island level. The different markers could also 345 

be weighted differently to put more emphasis on specific markers depending on the current 346 

level of island protection policy or biodiversity richness occurring on each island. Finally, 347 

when all the data has been aggregated, most of the current approaches are criteria-based, 348 

classifying biota into categories of vulnerability from low to high by summing up the different 349 

components of vulnerability (hereby referred to as qualitative or semi-quantitative 350 

frameworks). To avoid arbitrary thresholds, we propose a quantitative framework using 351 

multicriteria decision analysis (Leclerc , et al., 2020; Parravicini et al., 2014) that provides 352 

continuous vulnerability values and a relative ranking of islands or archipelagos. This method 353 

ranks alternatives according to their distance to positive (i.e., minimal vulnerability, with low 354 

exposure and sensitivity, and high adaptive capacity) and negative ideal solutions (see 355 

(Leclerc, Courchamp, et al., 2020) for details). Note that alternative approaches exist for 356 

combining the three vulnerability components such as additive effect between components 357 

(Nyboer et al., 2021) or interacting effect between exposure and sensitivity for instance (Silva 358 

Rocha et al., 2024). In any case, we recommend carrying out robustness analyses to explore 359 

the uncertainty potentially introduced by the aggregation and weighting methods.  360 
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Step 4: From uncertainty assessments to the improvement of vulnerability assessments and 361 

policy recommendations 362 

The outcomes of vulnerability assessments can be affected by several factors, including 363 

missing data, variation of underlying traits, aggregation techniques, and, in the case of future-364 

looking assessments, by uncertainties about the future trajectories of anthropogenic threats. 365 

Techniques to estimate uncertainty from missing trait data (e.g., Hossain et al., (2019)) as well 366 

as uncertainty in modelling the future of biodiversity (e.g., Thuiller et al., (2019)) are readily 367 

available. In addition, we recommended carrying out robustness analyses to assess the impact 368 

of including or excluding specific markers from the calculation, by rerunning the vulnerability 369 

assessment but without the focal marker. Robustness analyses could also be used to explore 370 

the effects of alternative aggregation or standardisation techniques (Tonmoy et al., (2014), see 371 

also Boyce et al., (2022)). We also recommended to validate the outcome of the vulnerability 372 

assessments with data from another temporal period (e.g., by comparing with past data), or by 373 

comparing with other islands with documented vulnerability or other metrics of vulnerability 374 

(e.g., IUCN Red List of species, Living Planet Index). In this context, it is crucial to both 375 

estimate the uncertainty and communicate it. This can be achieved by, for example,  mapping 376 

the variance of the estimated vulnerability metric or using maps of ignorance (e.g., (Rocchini 377 

et al., 2011; Tessarolo et al. 2021)). These uncertainty evaluations will help to identify future 378 

research priorities, but also to build authority and increase the relevance of the vulnerability 379 

assessments for policy makers, as it is the case for the climate and biodiversity assessments of 380 

the IPCC and IPBES, respectively (Joyce et al., 2011; Vadrot, 2020). We also advocate for 381 

the integration of interactive interfaces with options to select threats, markers, taxa, or 382 

ecosystems of interest, as well as different narratives trajectories, which may complement the 383 

scientific message, which is particularly helpful for simplifying multidimensional information 384 

(McInerny et al., 2014). Finally, we recommend conducting an iteration and review step as an 385 



19 
 

opportunity to adjust and update the vulnerability framework with new ecological data, such 386 

as the IUCN perform periodic Red List (re-)assessments as new information becomes 387 

available (Henry et al., 2024). 388 

Step 5: From vulnerability assessments to policy relevant conservation actions 389 

The vulnerability framework developed here could be used to increase the fundamental 390 

knowledge on biodiversity vulnerability (Step 1-4) and to guide the implementation of 391 

biodiversity conservation policies (Step 5, Box 2). For instance, one of the targets of the KM-392 

GBF is to minimize the impact of climate change on biodiversity through (among others) 393 

mitigation, adaptation and risk disaster reduction actions. Such aims require to use different 394 

markers of adaptive capacity through multiple plausible scenarios (e.g., protected areas, 395 

habitat intactness) to inform on how different management actions can impact the overall 396 

vulnerability. Vulnerability assessments can help target the control and eradication of invasive 397 

alien species in conservation priority sites such as islands (Target 6), but also identifying the 398 

sites that need to be under protection (Target 3) to conserve biodiversity. Effective 399 

conservation practice relies on understanding biodiversity’s vulnerability through multiple 400 

lenses. Where the exposure component is common across species (e.g., inundation, invasive 401 

alien species), the threat itself may be managed through dedicated programs, like mangrove 402 

rehabilitation or invasive alien species control (Jones et al., 2016). Finally, beyond its use in 403 

current policies, our vulnerability framework could be useful in drafting new policies. Indeed, 404 

to set relevant targets in the new policies being drafted (e.g., by [year], reduce by [number] % 405 

the number of species threatened by [threat]), policy makers need to know (i) what is the 406 

current situation and (ii) what could be the future situation under different scenarios. Our 407 

vulnerability framework may provide both, and can contribute to the setting of policy targets 408 

that are simultaneously ambitious and reachable for insular biodiversity. 409 

 410 
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Concluding remarks  411 

Given the proliferation of multiple threats that islands are facing, efforts must be made to 412 

study island biota in the light of global changes, and thus to embrace the whole of 413 

biodiversity, mainland and insular, in current vulnerability assessments in international arenas 414 

such as the IPCC or IPBES. Our comprehensive and detailed framework lays the foundations 415 

to understand and predict island biodiversity vulnerability to global changes. Yet, the 416 

outcomes of vulnerability assessments will be challenged by missing data and, in the case of 417 

future assessments, by uncertainties about the future trajectories of anthropogenic threats. In 418 

this context, it is crucial to both estimate and communicate uncertainty  (e.g., (Hossain et al., 419 

2019; Rocchini et al., 2011; Tessarolo et al., 2021; Thuiller et al., 2019)), which will 420 

ultimately help to protect biodiversity with more robust information.  421 

 422 

 423 

Glossary: 424 

Adaptive capacity: the ability of a population or species or community to adapt to changing 425 

conditions; this may be via ecological (i.e., physiological and/or behavioural plasticity) or 426 

evolutionary adaptation (i.e., through natural selection acting on traits).  427 

 428 

Adaptive radiation: the rapid diversification of a single evolutionary lineage into multiple 429 

ecologically or morphologically distinct species. 430 

Exposure: the extent to which each population or species’ or a community physical 431 

environment changes due to global threats (Foden et al., 2013). It includes the intensity, 432 

magnitude and frequency of the threat(s).  433 

 434 

Sensitivity: the intrinsic capacity of population or species or community to cope with threats, 435 

based on their life-history, ecology, morphology, or behaviour. 436 

 437 

Threat: external factor that has the potential to impact the viability, abundance, distribution, 438 

or behaviour of a population, species, or community.  439 

 440 

Vulnerability: susceptibility of a system/species to a negative impact following exposure to a 441 

threat 442 

 443 
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 444 

Box 1 | The case of the Hawaiian honeycreepers 445 

The Hawaiian Islands constitute an archipelago of eight larger and numerous smaller volcanic 446 

islands in the North Pacific Ocean, in total about 16,644 km2 in size, and about 3,200 km from 447 

the nearest mainland. The islands in the northwest are older and typically smaller, due to 448 

progressive erosion, while the islands in the southeast are larger and still volcanically active. 449 

Thanks to the archipelago’s extreme isolation and the islands’ variation in size and 450 

environmental conditions, Hawaii has been a hotspot of speciation and adaptive radiation 451 

(Baldwin & Sanderson, 1998; Lerner et al., 2011; Price, 2004). The Hawaiian honeycreepers 452 

(Fringillidae: Drepanidinae) represent one of the most iconic examples of adaptive radiation, 453 

which has resulted in a striking variation in bill morphology (Lerner et al., 2011). This strong 454 

adaptive radiation, however, has also led to species with highly restricted ranges and naturally 455 

small population sizes. Hence, little is needed to push these species over the brink of 456 

extinction and, to date, at least 36 of the 59 known species of honeycreepers are extinct 457 

(Figure 3a). Extinction has been non-random with respect to the functional trait space of the 458 

species, with extinct species generally larger in size (Figure 3b). The main drivers of past 459 

extinction, as well as current threats to the species, are the introduction of invasive alien 460 

species and the loss of habitat due to conversion to agricultural land. Invasive species include 461 

predators of birds and eggs (rats, cats, dogs), herbivores that modify the habitat (for example, 462 

the extinction of Laysan Honeycreeper Himatione fraithii is ascribed to the introduction of 463 

rabbits, which eliminated virtually all vegetation cover from the Laysan islands), and vector 464 

species of infectious diseases, such as avian malaria (Benning et al., 2002). Habitat loss began 465 

with Polynesian colonists, who cleared much of the low-elevation and seasonally dry forest 466 

for agricultural purposes, and was continued by later European colonists, who additionally 467 

converted high-elevation forests for pasturage (Riper & Scott, 2017). Climatic factors 468 

contributed little to past extinctions but are a progressive threat to extant species, especially 469 
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because it may lead to an upslope shift of infectious diseases (notably avian malaria) 470 

(Benning et al., 2002).   471 

Figure 3: Conservation status, threats, and morphospace of Hawaiian Honeycreepers. 472 

(a) IUCN Red List threat status of 59 known species of honeycreeper (LC: least concern, NT: 473 

near threatened, VU: vulnerable, EN: endangered, CR: critically endangered, EX: extinct) and 474 

prevalence of threats among the 23 extant species (IAS: invasive alien species, HL: habitat 475 

loss, CC: climate change and extreme events, OE: over-exploitation, Po: pollution) (b) The 476 

morphospace compared between 19 extant honeycreepers (dark grey polygon), 54 extant and 477 

extinct honeycreepers (medium grey polygon), and 5,974 extant passerine birds globally (light 478 

grey polygon). The morphospaces for the extant species were obtained through a principal 479 

component analysis (PCA) based on the eight morphological traits available in AVONET 480 

(Tobias et al., 2021), namely bill length from tip to skull along the culmen, bill length to 481 

nostrils, bill width and depth to nostrils, tarsal, wing and tail length, and Kipp’s distance. The 482 

same eight traits for the extinct honeycreepers were taken from (Matthews et al., 2023). The 483 

first two principal components explain 80% of the total morphological variance and are 484 

primarily associated with body size (PC1) and tarsus length versus Kipp’s distance (PC2), 485 

respectively. The list of species was obtained from (Matthews et al., 2023; Ricklefs, 2017) 486 

and the IUCN Red List of Threatened Species v2023-1. Species names were harmonized and 487 

duplicates removed based on the taxonomic backbone used by the IUCN. 488 
 489 

 490 

  491 
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Box 2 | A novel vulnerability framework fit for multiple policies 492 

This novel vulnerability framework proposed for insular biodiversity is particularly relevant 493 

to inform various vulnerability policies (in orange) and biodiversity policies (in green) at both 494 

international and supranational levels such as the European Union (EU).  495 

First, by quantifying the three components of island vulnerability, our framework can directly 496 

feed the currently missing biodiversity component of the Multidimensional Vulnerability 497 

Index (MVI). The MVI is developed by the Small Island Developing States (SIDS; 498 

https://www.un.org/ohrlls/mvi/) with the United Nations to characterise the financing help for 499 

sustainable development needed in the face of global changes (1). The SIDS is a political 500 

coalition of 39 low-lying islands that are united by the threat posed by climate change to their 501 

survival. In climate change negotiations, they are a loud and powerful voice for upscaling 502 

climate action since they are disproportionally affected by climate change consequences. To 503 

understand and respond, several assessments of these islands’ climate change vulnerability 504 

have been carried out (e.g., (UN High Level Panel, 2022; UNFCCC, 2007)), but none 505 

includes more than a broad mention of biodiversity impacts. A scientifically rigorous 506 

assessment of climate change vulnerability of island biodiversity is, therefore, both extremely 507 

important and critically urgent. Our framework can also help EU Member States, which are 508 

required to report to the European Commission on their disaster risk management activities, to 509 

identify which components of vulnerability they can act on (2). The risk of biodiversity loss 510 

has been recently included in the Recommendations for National Risk Assessment for 511 

Disaster Risk Management in the EU (Poljansek et al., 2021), but it does not cover 512 

specifically insular biodiversity. In that context, our framework can provide a real additional 513 

value for the EU Member States with insular territories. Our framework can also further help 514 

identifying whether mitigation strategies for islands to reach Target 8 of the Kunming-515 
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Montreal Global Biodiversity Framework (hereafter, GBF) should focus on limiting 516 

territories’ exposure or promoting the adaptive capacity of insular biota (3). 517 

Second, our framework can help EU Member States with insular territories to identify and 518 

prioritise which species, sites and threats they should use to best mitigate their vulnerability in 519 

the context of their National Risk Assessment (4). Such actions can also contribute to (i) 520 

identifying the species, sites and to focus the management measures to reach Target 4 of the 521 

GBF (5), (ii) determining the most vulnerable islands to invasive alien species to reach Target 522 

6 of the GBF (6), and helping EU Member States with insular territories to identify species 523 

threatened by invasive alien species on which to focus conservation actions to reach Target 12 524 

of the EU Biodiversity Strategy for 2030 (EU BDS, (7)).  525 

Finally, by providing multiple scenarios of threats trajectories and a list of priority islands for 526 

conservation action, our framework can contribute to document the risk of biodiversity loss 527 

under different conservation scenarios to EU Member States with insular territories (8). The 528 

vulnerability framework could contribute to identifying priority islands for restoration (target 529 

2 of the GBF and target 4 of the EU BDS (9)) and for protection (target 3 of the GBF and 530 

target 1 of the EU BDS (10)), as well as in determining which invasive alien species should 531 

be eradicated or controlled (target 6 of the GBF (11)). 532 

      533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

This figure emphasizes some possible outcomes of the vulnerability framework and how they 541 

are linked (arrows) to the vulnerability (in orange) and biodiversity policies (in green). Each 542 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52020DC0380
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circled number represents a concrete example of how our vulnerability framework can 543 

support  existing policies, and all those examples are detailed in the box.  544 

 545 

 546 
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Supplementary appendix 1 : 958 

 Islands as past, current, and future epicentres of extinctions: The IUCN Red List 959 

documented nearly 1,000 species as globally extinct or extinct in the wild (IUCN Red list 960 

access 04/07/2023). Among the documented extinctions, the overwhelming majority occurred 961 

on oceanic or continental islands. Extinction hotspots are located in the Oceanic realm, 962 

followed by the Afrotropical realm (e.g., Madagascar) and the Nearctic. Among reported 963 

extinctions in the IUCN Red List, the large majority are represented by animal species 964 

(>80%), followed by plants. Most of these species have gone extinct because of invasive alien 965 

species, but a large number have also concurrently been harmed by wildlife exploitation 966 

and/or land use change due to cultivation (Leclerc et al., 2018; Maxwell et al., 2016). In fact, 967 

extinct species within insular regions have faced, on average, four threats within the IUCN 968 

threat classification scheme (i.e., biological invasions, wildlife exploitation, cultivation, and 969 

habitat modifications), and the exposure to threats for birds, mammals, amphibians, reptiles, 970 

freshwater fish, plants, arthropods, and gastropods continue to increase, with an average of ten 971 

threats being faced by threatened species (Leclerc et al., 2018).  972 

Moreover, islands makes a disproportionate contribution to global biodiversity in relation to 973 

their surface area, especially regarding the percentage of threatened species (Fernández-974 

Palacios, Kreft, et al., 2021), the risk for future extinctions is thus high. The first extinction 975 

due to climate change already occurred on an island near Papua New Guinea (Fulton, 2017). 976 

In 2016, Melomys rubicola (also called the Bramble Cay melomys) became the very first 977 

documented extinction due to climate change (Waller et al., 2017). This small rodent was 978 

endemic to the low-island of Bramble Cay in Australia and was periodically recorded from 979 
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1978 to 2009. Seven years after its last observation in the field and numerous efforts to trap 980 

the species in the years after, the species was officially declared extinct. Although only 981 

symbolic, compared to a thousand species already extinct since 1500, this is one of the first 982 

documented victims of climate change as a major factor of near-future extinctions in our 983 

contemporary history. Unfortunately, under future climate change, we can expect that islands 984 

will continue to contribute disproportionately to the loss of biodiversity, given that the 985 

overwhelming majority of critically endangered species are endemic to island systems, and 986 

their inherent characteristics make them extremely vulnerable to global change drivers 987 

 988 

Table S1: Traits and characteristics from population to the community that may be included in 989 

the island biota vulnerability framework (IBVF) with examples of sources where to calculate 990 

or when directly available.  991 

 992 

 Traits Level Availability 

Population dynamic 

Growth rate population 

Living planet database 

(vertebrates), FishGlob 

(fishes), German vegetation 

(plants) 

Population size population 
CoralTraits (corals), 

BIOTime (multiple taxa) 

Reproduction 

 

Reproductive strategies species 

GIFT (plants), 

COMPADRE, GARD 

(reptiles) 

Mating system species  

Clutch size species 

GARD (reptiles), 

AmphiBio (amphibians), 

COMBINE (mammals), 

AVONET (birds) 

Fecundity species 
GARD (reptiles), 

AmphiBio (amphibians) 

Temperature-dependent sex 

determination 
species  

Generation time species 

Amniote (vertebrates), 

CoralTraits (corals), 

COMPADRE (plants) 

Parental care (time) species Amniote (vertebrates) 

Life-history 

 

 

 

Life-cycle  species 
 TRY (plants), GIFT 

(plants) 

Life stage population 

FishBase (fishes), 

CoralTraits (corals), 

Amphibio (amphibians) 

Dependence on intraspecific 

interactions 
species CoralTraits (corals) 

Body dimension (mass/size?) species 
Amniote (vertebrates), TRY 

(Plants), GIFT (plants), 
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COMBINE (mammals), 

AVONET (birds).   

Clonality species 
GIFT (plants), 

COMPADRE (plants) 

Acclimatation or 

evolution 

Phenotypic plasticity population Noble et al 2018 (reptiles) 

Genetic diversity population 
Miraldo et al. 2016 

(mammals) 

Life span species AmphiBio (amphibians),  

Ecological 

characteristics 

 

Climatic niche breadth species 
GARD (reptiles), GBIF 

(plants), BIEN (plants) 

Endemicity  species 

Global Species Database 

(vertebrates, invertebrates, 

plants) 

Habitat specialization species IUCN 

Habitat condition species IUCN 

Diet breadth species 
GARD (reptiles), 

AmphiBio (amphibians),  

Nocturnality species 
GARD (reptiles), Amphibio 

(amphibians) 

Dependence on water for 

reproduction, foraging, shelter 
species Amphibio (amphibians) 

Competitive ability species  

Movement and mobility 

 

 

Dispersal capacity species 
AVONET (birds), TRY 

(plants), GIFT (plants) 

Site fidelity species  

Migration frequency and 

distance 
species AVONET (birds) 

Flight efficiency species AVONET (birds) 

Number of insular populations population  

Home range population HomeRange (mammals) 

Distribution 

 

Geographic rarity population  

Low local abundance island level  

Range size population IUCN 

Community properties 

Level of disharmony community  

Functional redundancy community TRY and GIFT(plants) 

Phylogenetic diversity  community GIFT, WCVP (plants) 

Richness community GIFT, WCVP (plants) 

Intactness  ecosystem  

Phylogenetic endemism community 

Vertlife (vertebrates), 

PhylomeDB (plants), GIFT, 

WCVP (plants) 

Inherent vulnerability 

Behaviour (aggressiveness) species  

Dwarfism-gigantism species 

 Meiri et al 2008 

(mammals), Meiri 2007 

(reptiles), Benítez-López et 

al. 2021, Rozzi et al. 2023 

GIFT (plants) 

Vulnerability to diseases species GABiP (amphibians) 

Tolerance to drought  

try-db.org (plants), Le 

Galliard et al. 2021 

(reptiles) 

Tolerance to fire species try-db.org (plants) 

Endemism community GIFT and WCVP (plants) 
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Table S2: An overview of studies assessing the vulnerability of species to climate change. This 1051 

is a non-exhaustive summary that focuses on studies that have been conducted recently, use 1052 

trait-based approaches, and include a full assessment of vulnerability with exposure, sensitivity, 1053 

and adaptive capacity markers.  1054 
 1055 

Study Ecosystems 
Spatial 

coverage 
Taxa n Main findings 

(Barry et al., 2023) Freshwater Ireland Fish 32 

All species were vulnerable to some effect of 

climate change with cold water species more 

vulnerable to climate change than warm water 

species. 

(Boyce et al., 2022) Marine Global 

Multiple groups 

(animals, plants, 

chromists, 

protozoans, and 

bacteria) 

24,975 

Almost 90% of all species are at high or critical 

risk under high emissions, with exploited 

species in low-income countries with heavy 

dependence on fisheries at greatest risk. 

(Nyboer et al., 2021) 
Freshwater / 

Marine 
Global Fish 415 

Over 20% of recreationally fishes are vulnerable 

under a high emission scenario, with 72% of 

vulnerable freshwater fish and 33% of 

vulnerable diadromous fish being without 

conservation effort, compared to only 19% for 

vulnerable marine species. 

(Vaz-Canosa et al., 2023) Terrestrial Uruguay 
Amphibians 

Reptiles 
112 

14.6% of amphibians and 10.9% of reptiles 

were identified as highly vulnerable to climate 

change. 

(Bueno-Pardo et al., 2021) Marine Portugal 
Fish 

Invertebrates 
74 

Under the RCP 8.5 scenario, only two species 

were classified as at very high vulnerability. 

Overall vulnerability scores were low, likely 

due to the high adaptive capacity of species 

from temperate ecosystems. 

(Leclerc, Courchamp, et 

al., 2020) 

Terrestrial – 

insular 
Global Mammals 873 

All islands have some degree of vulnerability to 

future climate change, especially those in the 

Pacific Ocean. Among endemic mammals, 
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those with long generation times and high food 

specialization are predicted to be most 

vulnerable to climate change. 

(Ramírez-Bautista et al., 

2020) 
Terrestrial 
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Mexico 
Rodents 55 

Under the higher impact (MPI-RCP 8.5) climate 

scenarios, some level of threat was predicted for 

all species assessed, with 4 species predicted to 

be highly vulnerable. 
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