

Capture and flocculation of toxic cyanobacteria by amphiphilic peptide dendrimers for mitigating harmful blooms

Heng Zheng, Pier-Luc Tremblay, Wang Chen, Qi Wang, Danni Hu, Yuanzheng Huang, Xiaoxuan Liu, Cheng-Cai Zhang, Ling Peng, Tian Zhang

▶ To cite this version:

Heng Zheng, Pier-Luc Tremblay, Wang Chen, Qi Wang, Danni Hu, et al.. Capture and flocculation of toxic cyanobacteria by amphiphilic peptide dendrimers for mitigating harmful blooms. Chemical Engineering Journal, 2024, 10.1016/j.cej.2024.151382. hal-04550900

HAL Id: hal-04550900 https://hal.science/hal-04550900v1

Submitted on 18 Apr 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Capture and flocculation of toxic cyanobacteria by amphiphilic peptide dendrimers
2	for mitigating harmful blooms
3	
4	Authors
5	Heng Zheng ^{ab#} , Pier-Luc Tremblay ^{bcd#} , Wang Chen ^d , Qi Wang ^c , Danni Hu ^c , Yuanzheng
6	Huang ^e , Xiaoxuan Liu ^e , Cheng-Cai Zhang ^{df} , Ling Peng ^{g*} , Tian Zhang ^{*abcd}
7	
8	[#] These authors contributed equally to this work.
9	
10	*Corresponding authors: tzhang@whut.edu.cn (T.Z.), ling.peng@univ-amu.fr (L.P.)
11	
12	Affiliations
13	^a School of Resources and Environmental Engineering, Wuhan University of
14	Technology, Wuhan 430070, PR China
15	^b Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya
16	572024, PR China
17	^c School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of
18	Technology, Wuhan 430070, PR China
19	^d Institut WUT-AMU, Wuhan University of Technology, Wuhan 430070, PR China
20	eState Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug
21	Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and
22	Biomaterials, China Pharmaceutical University, Nanjing, 210009, PR China
23	fState Key Laboratory of Freshwater Ecology and Biotechnology, Institute of
24	Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
25	^g Aix Marseille University, CNRS, Center Interdisciplinaire de Nanoscience de Marseille,
26	UMR 7325, Marseille, 13288, France
27	
28	
29	
30	
31	

- 32 Abstract
- 33

Harmful and toxic cyanobacterial blooms in freshwater constitute critical environmental 34 problems and are becoming more frequent as a consequence of global climate change. 35 One mitigation strategy is flocculation, which could be achieved with treatment by highly 36 37 efficient, non-toxic, and biodegradable agents. Here, we report two amphiphilic peptide 38 dendrimers (AmPDs), KK₂ and KK₂K₄, for the removal of the toxic and bloom-forming cyanobacterium *Microcystis aeruginosa* from freshwater. KK₂ and KK₂K₄ are composed 39 of a hydrophobic alkyl chain and a positively charged polylysine dendron of the first and 40 41 second generation, respectively. Owing to electrostatic interactions with the negatively charged cell surface of *M. aeruginosa*, KK_2 and KK_2K_4 could quickly capture the 42 cyanobacterial cell population via flocculation at very low concentrations. When 43 combined with the natural clay sepiolite, the two AmPDs were even more efficient in 44 promoting cell flocculation. The most performant system, with 3.0 mg/L KK₂K₄ and 45 sepiolite clay, could remove 97.1% of *M. aeruginosa* within 15 min by forming stable 46 flocs. Remarkably, such a system was able to trap toxin molecules released by 47 cyanobacterial cells, thus limiting its destructive impact on ecosystems. This study 48 49 demonstrates how self-assembling dendrimer materials can resolve cyanobacterial 50 blooms, providing an innovative solution to this environmental challenge.

51

52 Keywords

53 Cyanobacterial bloom, Toxin, Amphiphilic dendrimer, Flocculation, Sepiolite clay,

54 Negatively charged microbial surface

55

56 1. Introduction

Harmful algal blooms are a serious environmental, water quality, and public health issue 57 worldwide. Specifically, cyanobacterial bloom refers to the excessive growth of 58 photoautotrophic cyanobacteria, which form dense biomass and produce toxins, 59 60 contaminating water and causing adverse effects on human health or even death of 61 domestic and livestock animals [1,2]. In recent years, the frequency, timespan, and intensity of cyanobacterial blooms have increased because of anthropogenic activities [3-62 5]. This environmental situation is now a major concern for the usage, sustainability, and 63 64 safety of freshwater reserves with an important economic impact estimated to cost tens of billions of US dollars every year [6]. Industrial, agricultural, and domestic wastewater 65 discharges have led to water body eutrophication, which generates excellent nutritional 66 conditions for cyanobacterial proliferation [1,7]. In addition, many cyanobacteria species 67 prefer warmer temperatures and are benefitting from climate changes, which likely 68 69 increases the occurrence of harmful blooms [8]. 70

71 In particular, cyanobacterial blooms are associated with the production of a large amount 72 of toxins, posing a serious threat to public health. For example, one of the most 73 commonly observed harmful cyanobacteria, *Microcystis aeruginosa*, generates multiple 74 microcystin congeners (MCs) that are hepatic toxins and potentially carcinogenic for 75 humans and other living organisms [9,10]. Among the MCs, the microcystin-LR (MC-LR) is the most abundant and toxic [11]. MC-LR and other MCs are cyclic peptides made 76 77 by non-ribosomal peptide synthetases, which are relatively stable, and thus difficult to 78 remove from waterbodies affected by cyanobacterial proliferation. In view of the

negative impact of cyanobacterial blooms on ecosystems, human health, and the
economy, many studies have been undertaken to develop efficient and eco-friendly
mitigation strategies.

82

83 Methods to remediate cyanobacterial contaminations include physical, chemical, and 84 biological approaches. Physical strategies such as ultrasonic cracking and air flotation 85 devices are often costly, only applicable to small scale, and can increase the transient release of cyanotoxins [12,13]. Chemical approaches mainly employed oxidants, e.g. 86 copper sulfate, hydrogen peroxide, or diverse herbicides or photocatalysts [14,15]. Large 87 amounts are required to solve algal blooms, augmenting the risk that these molecules, 88 89 which are also toxic for non-target species, accumulate in the environment. In addition, such treatments often lead to cyanobacterial cell lysis, and thus increase the release of 90 cyanotoxins [16]. Lastly, biological methods exploit predator-prey relationships, 91 92 nutritional competition between cyanobacteria and harmless organisms, parasitism, or 93 virus infection [17,18]. However, these strategies are often considered too slow for the treatment of sudden cyanobacterial blooms [17,19]. Therefore, an alternative 94 95 methodology still needs to be developed for the efficient eradication of toxic 96 cyanobacteria.

97

98 One of the most cost-effective and convenient technologies for the removal of harmful 99 cyanobacteria from lakes and/or raw water supply is flocculation [20,21]. The floc-and-100 sink method aims at displacing cyanobacteria from the water column to the sediment, 101 thus limiting their negative impact [22,23]. However, conventional inorganic flocculants

102 such as metal salts and polyaluminium chloride are generally not suitable for large-scale 103 floc-and-sink removal of harmful algal blooms due to their toxicity for non-target species [20]. Organic flocculants, including chitosan, tannin, and cationic starch, have also 104 105 different shortcomings such as low efficiency and high cost [24,25]. Among extensively 106 studied flocculants, natural clays such as sepiolite are some of the few that have been 107 applied in situ for the treatment of algal blooms [26]. Clays are abundant and usually non-toxic, and their flocculation process prevents the release of toxins [27]. Still, their 108 overall efficiency is low, and their surface usually needs modifications with other 109 110 compounds to increase the electrostatic attraction of negatively charged cyanobacteria [28,29]. 111

112

Amphiphilic peptide dendrimers (AmPDs) developed in recent years are tunable organic 113 complex molecules made of hydrophobic alkyl chains and hydrophilic peptides [30]. 114 115 Until now, non-toxic, biocompatible, and biodegradable AmPDs have mainly been designed and explored for biomedical purposes [31]. For instance, they are employed for 116 bioimaging, drug delivery, as transfection vectors, or agents against pathogenic microbes 117 118 [32-35]. Outside of the biomedical field, applied research on AmPDs has not yet been 119 reported. We report here the use of AmPDs bearing a strong positively charged surface 120 for the removal of negatively charged microbes such as cyanobacteria for mitigating 121 cyanobacterial contaminations. Specifically in this study, two AmPDs, KK_2 and KK_2K_4 (Scheme 1), were evaluated for the flocculation and sinking of the toxic cyanobacterium 122 123 *M. aeruginosa*. KK_2 and KK_2K_4 are composed of a hydrophobic alkyl chain and a 124 positively charged poly(L-lysine) dendron of the first and second generation,

125	respectively. We assessed the cyanobacterial flocculation activity of KK_2 and KK_2K_4	
126	alone or in combination with sepiolite clay under different environmental conditions. We	
127	also examined the mechanisms involved in the capture by KK_2 and KK_2K_4 of M .	
128	aeruginosa cells. Our results showed that the AmPDs were highly efficient for the	
129	flocculation and removal of <i>M. aeruginosa</i> populations. In addition, AmPDs removed	
130	nitrogen nutrients central to the proliferation of cyanobacteria in freshwater. More	
131	importantly, the AmPDs, when combined with sepiolite, became even more active and	
132	rapidly captured toxic cyanobacteria without breaking them, thus avoiding a transient	
133	increase of MCs in water.	
134		

· · 1 m

1

1 ..

.. ..

C 1717

1 1717 17

1.4

135 **2. Experimental section**

. . .

136 **2.1.** Cultivation of *M. aeruginosa*

The model cyanobacterial strain M. aeruginosa PCC 7806 was obtained from the 137 Institute of Hydrobiology of the Chinese Academy of Sciences (Wuhan, China). Axenic 138 139 M. aeruginosa was grown at 30 °C with agitation at 150 rpm in BG-11 medium [36]. The microbial cultures were maintained under light at an intensity of 45 μ mol photons/m²/s 140 141 with a 12-h light/dark cycle. For flocculation experiments with the AmPDs and sepiolite, 142 *M. aeruginosa* was first cultivated until reaching the exponential phase. *M. aeruginosa* cell growth and density were monitored by both counting cells with a hemacytometer and 143 an Eclipse Ti2 inverted microscope (Nikon, Tokyo, Japan) and measuring the optical 144 density (OD) at 680 nm with a UV-Vis Evolution 220 spectrophotometer (Thermo Fisher 145 146 Scientific, Waltham, MA, USA).

147

149 2.2. Synthesis of KK₂ and KK₂K₄ nanoassemblies

For the synthesis of AmPDs, the hydrophilic and hydrophobic segments were prepared 150 151 separately and then conjugated via click chemistry as previously described [37]. Briefly, the hydrophobic portion consists of a double-tailed alkyl chain with azide groups, while 152 the hydrophilic part constitutes the dendritic peptide segment. The synthesis of the latter 153 began with propargylamine as the starting material and utilized Boc-protected lysine by 154 alternating coupling and deprotection steps. The two segments were joined together 155 156 through a copper-catalyzed click reaction between the alkyne and azide groups. Copper ions were chelated and subsequently removed with ammonium chloride followed by 157 deprotection to obtain the target products. After washing and further purification by 158 159 dialysis, the AmPDs were lyophilized. During the synthesis process, the structure of both KK_2 and KK_2K_4 and their intermediates were validated by ¹H nuclear magnetic resonance 160 spectroscopy as previously described [38]. The main difference between KK_2 and KK_2K_4 161 162 is that the former bears a simpler and smaller peptide dendron exhibiting four terminal amino groups, while the latter is a more complex and larger molecule with eight terminal 163 164 amino groups.

165

In our previous studies [37,38], both AmPDs were shown to readily form, in aqueous
environments, nanoassemblies with a positively charged surface (Scheme 1). To achieve
that here, lyophilized KK₂ and KK₂K₄ were suspended in a 10 mM sodium phosphate
buffer (pH 7.4) at a concentration of 50 mg/L followed by storage for at least 12 h at
4 °C. Transmission electron micrographs (TEM) of the AmPD nanoassemblies were

171	taken with a JEM-2100Plus system (JEOL, Tokyo, Japan) at an accelerating voltage of
172	200 kV. To start flocculation experiments, different volumes of these stock solutions were
173	mixed with <i>M. aeruginosa</i> cultures.
174	

175 **2.3. Flocculation experiments**

M. aeruginosa flocculation experiments were conducted with concentrations of KK₂ or
KK₂K₄ ranging from 0.0 to 7.0 mg/L. Where indicated, 50.0 to 325.0 mg/L of sepiolite
(Lingshou County Wancheng Mineral, Shijiazhuang, China) was also added. Sepiolite

179 particles were washed at least 3 times with deionized water before usage.

180

Standard flocculation tests were done in triplicate with 10-mL M. aeruginosa cultures at a 181 density of ca. 3.0×10^6 cells/mL, a temperature of 30 °C, and under visible light at an 182 intensity of 45 μ mol photons/m²/s. The cell density for this experiment was selected 183 184 because it is representative of cyanobacterial blooms in lake water [39]. Glass tubes 185 employed for the flocculation tests had a diameter of 16 mm and a height of 50 mm. Where indicated, the salinity of the cell culture was adjusted with 1.0 M NaCl while the 186 pH was adjusted with 0.1 M HCl or NaOH. Agitation was done at different speeds with a 187 MS-M-S10 magnetic stirrer (DLAB, Beijing, China). AmPDs with or without sepiolite 188 189 were first mixed with the cell culture at 600 rpm for 1 min. Where indicated, the initial 190 agitation speed was slower at 150 or 300 rpm, which had no significant impact on the flocculating performance of KK₂ and KK₂K₄ (Fig. S1). Next, the suspension was 191 192 maintained at 150 rpm for 14 min. The agitation was then completely stopped and the culture was left on a stand. The beginning of this step was considered as the time 0 of the 193

194	flocculation process. Subsequently, 1-mL samples were taken 2 cm below the surface of
195	the cell culture at different time points and the $OD_{680 nm}$ was measured with a UV-Vis
196	Evolution 220 spectrophotometer (Thermo Fisher Scientific). In addition, the turbidity of
197	samples was quantified in Formazin Turbidity Unit (FTU) by comparing it
198	spectrophotochemically with formazin standards as previously described [40]. Total
199	nitrogen and phosphorus were measured in the samples with the Chinese national
200	standard method GB/T 11894-1989 and GB/T 11893-1989. Lastly, to assess the flocs'
201	stability, the cell cultures were filtered after the different flocculation treatments with a 60
202	μm nylon membrane. The OD_{680 \ nm} of the filtrates was then measured. Here, it is
203	expected that flocs with sufficient cohesiveness and size will be retained by the filter
204	while flocs that are not cohesive will be broken by the physical barrier of the filter and
205	pass in the filtrates.

207 2.4. Characterization of the flocs and microcystin-LR quantification

208 Bright-field light micrographs of the flocs and other samples were taken at a

209 magnification of 100× with an Eclipse Ti2 inverted microscope (Nikon) as described

210 previously [41]. Scanning electron microscopy (SEM) analyses of *M. aeruginosa* flocs

211 were completed with a MIRA system (TESCAN, Brno, Czech Republic) at an

accelerating voltage of 15 kV and a sample preparation method reported earlier [42].

Briefly, the cyanobacteria flocs were fixed overnight at 4 °C with 2.5% glutaraldehyde.

After that, the samples were washed three times with a 10 mM sodium phosphate buffer

(pH 7.4). Next, the cells were dehydrated with an ethanol gradient of 30%, 50%, 70%,

85%, and 90%. In the final preparation step, samples were freeze-dried for 12 h beforebeing sputter-coated with gold for SEM observation.

219	The zeta potentials of the different flocculants and M. aeruginosa flocs were measured
220	with a Zetasizer Nano ZS analyzer (Malvern, Malvern, United Kingdom). The
221	concentration of extracellular MC-LR molecules released by <i>M. aeruginosa</i> in the growth
222	medium was measured with an ELISA kit (Institute of Hydrobiology of the Chinese
223	Academy of Sciences) as previously described [43] and a Multiskan FC multi-plate
224	reader (Thermo Fisher Scientific).
225	
226	2.5. Cyanobacterial cell viability
227	The viability of <i>M. aeruginosa</i> was evaluated by detecting the red autofluorescence of
228	chlorophyll (Chl) molecules as previously described [44,45]. The Chl content of
229	metabolically active cyanobacteria usually remains constant. Conversely, the death or
230	senescence of cyanobacteria is associated with a massive degradation of Chl molecules
231	[46]. Thus, cyanobacterial cells emitting a red fluorescence during this assay are
232	considered to be metabolically active and viable. Here, an untreated cyanobacterial
233	population as well as flocculation reactions at different time points were first vortexed for
234	30 s. 5 μ L of these preparations were deposited on microscope slides followed by
235	observation with an Eclipse Ti2 inverted microscope (Nikon) at a 540-580 nm excitation
236	wavelength, a 595 nm dichroic beam splitter, and a 600-660 nm emission wavelength
237	[46]. <i>M. aeruginosa</i> viability (V) after the different treatments was calculated with Eq. 1:
238	

239	$V(\%) = n_{Vf} / n_{Vi} \times 100$ Eq. 1
240	where n_{Vi} is the initial number of cells emitting red fluorescence before the flocculation
241	treatment and $n_{\rm Vf}$ is the final number of fluorescent cells after flocculation.
242	
243	2.6. Statistical analysis
244	Data are reported as means \pm standard deviation (n \geq 3). The Student's t-test was
245	employed to determine statistical significance between groups. * indicates p-values \leq
246	0.01.
247	
248	3. Results and discussion
249	3.1. Effective capture of <i>M. aeruginosa</i> by dendrimers via electrostatic interactions
250	Because of their positively charged surface, we expect that nanoassemblies of the AmPD
251	KK_2 and KK_2K_4 will form strong electrostatic interactions with negatively charged <i>M</i> .
252	aeruginosa (Scheme 1) [47]. This, in turn, should lead to cell aggregation and floc
253	formation. To evaluate this hypothesis, a M. aeruginosa population was exposed to
254	different concentrations of either KK2 or KK2K4 nanoassemblies exhibiting a diameter of
255	ca. 67-170 nm (Fig. S2). After 30 min at room temperature and circumneutral pH, KK ₂
256	at an optimal concentration of 6.0 mg/L removed 96.3 \pm 2.2% of cyanobacterial cells by
257	flocculation (Fig. 1ab). Under the same conditions, a lower KK ₂ K ₄ concentration of 5.0
258	mg/L removed 97.7 \pm 1.2% of cyanobacterial cells. The higher efficiency of KK_2K_4
259	nanoassemblies is likely related to its larger number of branches and surficial amino
260	groups, which increases the electrostatic attraction strength with M. aeruginosa cells.
261	Higher concentrations of 7.0 mg/L for KK_2 and 6.0 or 7.0 mg/L for KK_2K_4 resulted in a

small decline of flocculation efficiencies compared to when the optimal concentration of
either flocculant was added. It is possible that excessive AmPDs compromised the
structural cohesiveness of the flocs, leading to a partial release of cyanobacterial cells.

266 Time-course studies with either KK_2 or KK_2K_4 showed that the removal process of M. 267 *aeruginosa* cells was rapid and mostly happened within 5 min of exposure with $83.2 \pm$ 1.4% and 90.6 \pm 1.6% of flocculated cells, respectively, before reaching optimal values 268 after 30 min (Fig. 1c). In addition, a visual inspection indicated that the dense flocs 269 270 formed via cell aggregation using either KK_2 or KK_2K_4 sunk to the bottom of the test tubes (Fig. 1d). As reported in Table S1, when compared with other single inorganic and 271 organic materials developed for the flocculation and sinking of freshwater cyanobacteria, 272 both KK₂ and KK₂K₄ were often more efficient and faster at completing the removal of 273 *M. aeruginosa* from the water column while requiring a lesser amount of reagent. Besides 274 275 better performance, KK₂ and KK₂K₄ flocculants exhibit additional advantages. Their 276 structures can be customized precisely for the predictable tuning of their properties such as the strength of their interactions with microbes [35,48,49], offering advantages over 277 278 other materials evaluated for toxic cyanobacteria flocculation which are often ill-defined, complex, or unmodifiable. Thus, AmPDs have a large untapped potential for the future 279 improvement of their capacity to treat cyanobacterial blooms. Furthermore, KK2 and 280 281 KK₂K₄ are also biodegradable with good biocompatibility for eukaryotic cells [50,51]. This indicates that these flocculants are unlikely to accumulate in the environment and 282 283 exhibit adverse effects on the flora and fauna.

284

285 Next, light micrographs of *M. aeruginosa* exposed to KK_2 or KK_2K_4 were taken to visualize the formation of aggregates (Fig. 2). Untreated M. aeruginosa mostly appeared 286 as individual cells with their characteristic morphology and green color (Fig. 2a) [52]. 287 288 The addition of 2.0 mg/L KK_2 already caused a change in the cell aggregation with the formation of grapes comprising 2-3 microbes (Fig. 2b). When the optimal KK₂ 289 290 concentration of 6.0 mg/L was added, aggregates became more massive and included ca. 291 30 to 120 cells (Fig. 2d). A similar phenomenon was observed with KK₂K₄ where lower concentrations (1.0-3.0 mg/L) of the AmPD resulted in *M. aeruginosa* aggregates of 2 to 292 293 8 cells (Fig. 2ef). Cyanobacterial cells exposed to the optimal KK_2K_4 concentration of 5.0 mg/L assembled in groups of mostly 90-120 cells (Fig. 2g). 294

295

SEM micrographs confirmed the aggregation process. Untreated cells were mainly 296 individual spheres with shape irregularities distinctive of *M. aeruginosa* (Fig. 2h). In 297 298 comparison, cells exposed to an optimal concentration of KK₂ formed imbricated clusters 299 (Fig. 2i). Similarly, *M. aeruginosa* clumped with KK₂K₄ into flocs made of multiple cells 300 (Fig. 2j). The main reason behind this efficient flocculation process can be ascribed to the 301 positively charged KK_2 and KK_2K_4 nanoassemblies attracting the negatively charged 302 cyanobacterial cells into a cohesive multicellular structure. While the zeta potential of a 303 high-density *M. aeruginosa* preparation was -22.6 ± 0.4 mV, KK₂ and KK₂K₄ exhibited 304 surface charges of 23.9 ± 0.3 mV and 29.1 ± 0.2 mV, respectively (Fig. 2k). Exposing the cyanobacterial cells to KK_2 and KK_2K_4 resulted in flocs with weaker positive surface 305 306 charges of 2.8 ± 0.3 mV and 4.0 ± 0.2 mV, respectively. These results indicate that 307 AmPDs and *M. aeruginosa* nearly neutralized their respective surface charges by forming

strong electrostatic interactions, leading to cell aggregation. They also explain why
KK₂K₄ with its higher positive zeta potential is more efficient than KK₂ at removing the
toxic cyanobacteria from an aqueous solution.

311

312 **3.2.** Synergistic flocculation by dendrimers combined with sepiolite

Widely available clays such as sepiolite are often employed in situ for the flocculation of cyanobacterial bloom because of their abundance as well as low ecotoxicity (Table S2) [53-55]. However, natural clays have a low flocculating efficiency, which means that massive dosages are required, increasing expenses and possible undesired environmental impacts. Here, we assessed both KK₂ and KK₂K₄ in combination with sepiolite for the flocculation of *M. aeruginosa* (Fig. 3). In the first series of experiments, different

concentrations of KK₂ and KK₂K₄ were coupled with 200.0 mg/L sepiolite, respectively

320 (Fig. 3a). When compared to AmPDs alone, the addition of sepiolite had two beneficial

321 effects. First, lower concentrations of AmPDs were required to remove most *M*.

aeruginosa cells. 4.0 mg/L KK₂ and 3.0 mg/L KK₂K₄ with sepiolite were sufficient to

flocculate and sink 96.5 \pm 2.4% and 97.1 \pm 2.2% of the cyanobacterial cells, respectively.

324 Second, the removal process was twice faster and reached equilibrium after only 15 min

(Fig. 3b). In fact, $88.9 \pm 1.2\%$ and $89.9 \pm 2.0\%$ of *M. aeruginosa* cells have already been

removed after 5 min by KK₂ and KK₂K₄ with sepiolite, respectively. Subsequently,

327 optimal KK₂ and KK₂K₄ concentrations were mixed with different quantities of sepiolite

328 (Fig. 3c, Fig. S3). The sepiolite-only control (up to 325.0 mg/L) removed a negligible

fraction (below 10%) of the cyanobacterial cells, illustrating the inefficiency of

unmodified natural clays in the timeframe investigated. The highest flocculation

performance for both AmPDs was observed with sepiolite concentrations of 200.0-250.0
mg/L.

333

334	Light micrographs showed the flocculation of <i>M. aeruginosa</i> cells by KK ₂ or KK ₂ K ₄ with
335	sepiolite (Fig. 4). When compared to 4.0 mg/L KK_2 alone (Fig. 4a), the addition of low
336	concentrations of sepiolite (50.0-100.0 mg/L) already increased the size of the aggregates
337	(Fig. 4bc). On these micrographs, sepiolite appeared as spindle-like black mineral
338	structures. In the presence of 200.0 mg/L sepiolite and KK ₂ , <i>M. aeruginosa</i> aggregates
339	became massive with hundreds of cells (Fig. 4d). A similar effect was observed when 3.0
340	mg/L KK ₂ K ₄ was combined with the same concentration of sepiolite, resulting in the
341	formation of expanded flocs (Fig. 4h).

342

343 The SEM analysis confirmed that *M. aeruginosa* cells aggregated with sepiolite spindles 344 in complex cohesive networks maintained by the AmPDs (Fig. 4i-k). Measurements of 345 the zeta potentials of sepiolite, sepiolite in the presence of KK₂ or KK₂K₄, and sepiolite in the presence of *M. aeruginosa* cells with KK₂ or KK₂K₄ demonstrated the importance of 346 electrostatic interactions for the floc formation (Fig. 41). While sepiolite alone exhibited a 347 zeta potential of -23.2 ± 6.0 mV, the addition of KK₂ or KK₂K₄ resulted in modified clay 348 with a positive charge of 21.6 ± 0.2 mV and 26.2 ± 0.6 mV, respectively. These results 349 indicate that the AmPD nanoassemblies coated sepiolite particles, changing entirely their 350 351 surface charge. In the presence of *M. aeruginosa* cells, the positively charged surface of modified sepiolite was neutralized and the flocs had a slightly negative charge, 352 353 confirming that the cyanobacterial cells closely interacted with the AmPD coat of

sepiolite. Several reasons may explain why sepiolite improved the performance of the AmPDs for the capture and removal of *M. aeruginosa* cells from water. Sepiolite with its spindle shape has a significant specific surface area shown to range from 77 to $399 \text{ m}^2/\text{g}$ in the literature [56], and when coated with AmPD molecules, it will form bigger flocs with a greater number of *M. aeruginosa* cells that will settle faster to the bottom. Another possible factor to consider is that multiple coated sepiolite particles may form a matrix encasing toxic cyanobacterial cells and sinking them to the bottom.

361

362 The flocculation systems combining KK₂ or KK₂K₄ and sepiolite described in this proofof-concept study exhibited excellent performance compared to many other clay-based 363 materials (Table S2), but may still present a challenge for practical applications since a 364 relatively important concentration of sepiolite was required. This could lead to unwanted 365 sediment accumulation altering local ecosystems. Consequently, we aim in future 366 research to develop AmPD flocculating systems requiring less clay while maintaining 367 similar efficiency. This could be achieved, for instance, by coupling KK_2 and KK_2K_4 with 368 clay particles exhibiting different sizes, morphologies, and porosities. These factors, 369 370 especially a suitable clay particle size, have a major impact on the collision efficiency with microbial cells, and thus on the flocculation process [57]. 371

372

373 3.3. Dendrimer/sepiolite combination stabilized flocculation and obviated cell death

374 and microcystin release

Next, the impact of KK₂ and KK₂K₄ on the viability of *M. aeruginosa* cells was evaluated
by monitoring the intrinsic red fluorescence emitted by Chl molecules of intact

377	photosystems from active cells [41]. Among all the tested flocculation systems, KK ₂ , at a
378	concentration of 6.0 mg/L, did not impact much cell viability nor stimulate the release of
379	MC-LR, the most abundant and potent toxin generated by M. aeruginosa (Fig. 5ab) [1].
380	Conversely, KK_2K_4 at 5.0 mg/L considerably compromised the viability of <i>M</i> .
381	aeruginosa after 24 h (Fig. 5a, Fig. S4). At this time point, KK_2K_4 had killed $74.4 \pm 2.0\%$
382	of cyanobacterial cells from the initial cell suspension. A clear inconvenience of the
383	killing effect of KK_2K_4 was that it increased 1.7 times the extracellular concentration of
384	MC-LR compared to an untreated control (Fig. 5b) [58]. This is probably because
385	damaged cyanobacteria released the cyanotoxin upon the disruption of their cell
386	membranes. It should be mentioned that dendrimers with amino terminals and an overall
387	structure similar to KK ₂ K ₄ were recently reported to have strong antibacterial properties
388	against both Gram-positive and Gram-negative pathogenic bacteria [35,48]. These
389	molecules electrostatically interacted and accumulated around the bacterial cell wall
390	followed by membrane disruption and bacterial killing. At the concentration examined in
391	our study, this is possibly what happened with KK ₂ K ₄ .
392	

Surprisingly, the flocculation system combining 3.0 mg/L KK₂K₄ nanoassemblies and sepiolite behaved differently (Fig. 5ab). It did not induce the death of *M. aeruginosa* cells or the release of MC-LR, which is completely different from the treatment with KK₂K₄ alone. This divergence could be due to the lower concentration of KK₂K₄ used in the combination treatment, hence being less potent. It could also be related to strong electrostatic interactions between sepiolite and KK₂K₄, restraining AmPD molecules from penetrating the cell wall and disorganizing lipid bilayers. In addition, with KK₂K₄ and

sepiolite in combination, cyanobacterial cells remained settled to the bottom of the water
column with only a small increase in viability after 72 h (Fig. S5-S7). This indicates that
KK₂K₄ and sepiolite could maintain good control of the cyanobacterial population at least
for several days, and not just for a short period.

404

405 More remarkably, the KK_2K_4 with sepiolite system reduced 1.5 times the concentration of MC-LR in the water compared to an untreated control. MC-LR cyclic molecules have 406 two ionizable carboxyl groups not forming peptide bonds and thus are almost exclusively 407 408 negatively charged at pH higher than 7.0 [59]. Thus, the KK_2K_4 and sepiolite flocculation system, which exhibits a strong positive charge on its surface and does not compromise 409 410 the integrity of cyanobacterial cells, could also be suitable for the partial elimination of cyanotoxins exhibiting an overall negative charge. Besides MC-LR, M. aeruginosa 411 releases other MC congeners that are less toxic and abundant [60]. Further work is 412 required to determine the impact of KK₂ and KK₂K₄ with or without sepiolite on the faith 413 of these uncommon MC congeners. 414

415

It is also of note that KK₂K₄ with sepiolite generated highly stable flocs that were not prone to quick disassembling and the unwanted release of biomass (Fig. 5c). To investigate the floc cohesiveness, *M. aeruginosa* cell suspensions before and after treatment were filtered with a nylon membrane filter. KK₂K₄ with sepiolite was the most performant system with the removal of 96.3% of microbial particles from the aqueous solution by filtration. *M. aeruginosa* flocs formed with KK₂ or KK₂K₄ were slightly less recoverable. The flocculation assay showed that both AmPDs captured and sedimented at

423 least 95% of the cyanobacterial cell population (Fig. 1). Upon filtration, 74.6% and

424 83.7% of the flocculated biomass could be recovered when KK_2 or KK_2K_4 were

425 employed, respectively. This observation denotes that most flocs assembled via KK₂ or

426 KK_2K_4 can be separated from the aqueous solution with only a minority fraction either

427 too small to be filtered out or getting dismantled. KK₂ nanoassemblies with sepiolite was

428 the worst flocculation strategy for subsequent recovery by filtration with the majority of

429 flocculated/sedimented biomass remaining in the aqueous solution.

430

431 **3.4. Removal of total nitrogen by the dendrimers**

Cyanobacterial contaminations are directly caused by excessive nitrogen and phosphorus 432 inputs from human activities [1]. While removing cyanobacteria cells, some flocculants 433 can simultaneously adsorb nitrogen and/or phosphorus compounds [23,61]. Our results 434 indicated that KK₂ and KK₂K₄ with or without sepiolite removed large fractions of total 435 436 nitrogen, but had less impact on phosphorus (Fig. S8). For nitrogen, KK₂ was the most 437 efficient system after a 30-minute reaction with $92.9 \pm 1.9\%$ removed from the aqueous solution. In the case of phosphorus, only KK_2 with sepiolite adsorbed a small fraction of 438 439 $12.5 \pm 1.8\%$. KK₂ and KK₂K₄ are charged positively, and thus it is not surprising that 440 they adsorbed nitrate anions found in the cyanobacterial suspension. In this study, the 441 cyanobacterial suspensions contained ca. 11 times more nitrate than phosphate ions. 442 Abundant nitrate and cyanobacterial cells may outcompete phosphate for the adsorption sites on the surface of the AmPD molecules, possibly explaining why total phosphorus 443 444 remained unchanged in most cases. These observations demonstrate that all the AmPD-445 based systems evaluated can clean concomitantly the biological agent responsible for

446 cyanobacterial contamination as well as key nitrogen pollutants responsible for this447 harmful phenomenon.

448

449 **3.5.** Cyanobacterial flocculation was dependent on salinity and pH

450 The effect of different environmental conditions such as salinity and pH on the AmPD-451 driven flocculation process was then investigated (Fig. 6). The salinity of the aqueous solution contaminated with *M. aeruginosa* had an important impact on the efficiency of 452 the aggregation for both KK2 and KK2K4 with or without sepiolite (Fig. 6ab). For 453 454 instance, *M. aeruginosa* removal was reduced to only $48.3 \pm 2.9\%$ and $31.3 \pm 1.4\%$ with KK_2 and KK_2K_4 , respectively, when the NaCl concentration was 0.17 M compared to 455 456 media with null ionic strength (Fig. 6a). This is likely because ions from the salt interact with the surfaces of AmPDs as well as cyanobacterial cells, changing their electrical 457 charges and interfering with the formation of electrostatic interactions. An increase in 458 459 salinity is also known to affect the behavior of dendrimeric nanosystems in solution and modify their capacity to form nanoassemblies [62]. This could be another reason why a 460 high salt concentration impeded flocculation. The addition of sepiolite did not mitigate 461 462 most of the negative effects of augmented salinity. KK_2 and KK_2K_4 nanoassemblies with sepiolite removed only $41.1 \pm 0.7\%$ and $51.5 \pm 1.3\%$ of *M. aeruginosa* cells, respectively, 463 at the highest ionic strength evaluated (Fig. 6b). These observations indicate that the 464 465 AmPDs studied here are more suitable for treating freshwater contamination such as the ones involving *M. aeruginosa* and may not be as efficient for cyanobacterial proliferation 466 467 in saltier water.

468

469	The importance of the pH for the activity of both KK_2 and KK_2K_4 combined with or
470	without sepiolite was also investigated (Fig. 6cd). The proliferation of M. aeruginosa is
471	favored when the pH becomes basic [63]. In addition, during algal blooms, the
472	photosynthetic activity of cyanobacteria and other microalgae increases the pH between
473	8.0 to 9.5 [64,65]. Thus, the activity of both AmPDs was evaluated at pH values from 6.0
474	to 11.0 (Fig. 6c). Even up to a pH of 10.0, both KK_2 and KK_2K_4 maintained a
475	cyanobacterial removal activity above 85.0%. At pH 11.0, the capture capacity of <i>M</i> .
476	aeruginosa cells by both KK2 and KK2K4 collapsed. A similar pattern was observed with
477	AmPD-driven flocculation systems comprising sepiolite with cyanobacterial cell removal
478	remaining high until the pH was increased to 11.0 (Fig. 6d). In this condition, amino
479	groups at the surface of AmPDs likely lost their positive charge, which wiped out their
480	capacity to form electrostatic interactions with microbes. Nevertheless, at mild basic pHs
481	observed during cyanobacterial blooms, KK2 and KK2K4 exhibited strong activities for
482	flocculation induction.

484 **4.** Conclusions

In this proof-of-concept study, we demonstrated that AmPDs harboring positively

486 charged terminals can serve for environment engineering applications to mitigate water

487 bloom via flocculation and sinking of toxic cyanobacteria. Specifically, low

488 concentrations of KK₂ and KK₂K₄ complemented with or without sepiolite removed more

- than 95% of *M. aeruginosa* cells within 15 to 30 min. The best flocculating system
- 490 identified was the combination of KK₂K₄ and sepiolite clay, which quickly removed
- 491 97.1% of cyanobacterial cells and a significant fraction of MC-LR molecules from
- 492 freshwater by forming highly stable flocs. The AmPDs, which exhibit a strong surficial

493 positive charge, mainly captured the negatively charged cyanobacterial cells through 494 electrostatic interactions. The AmPD molecules were also able to concomitantly remove nitrogen nutrients central to the occurrence of cyanobacterial contaminations. Based on 495 496 their excellent performance, AmPDs could become a promising new category of materials for two different applications related to cyanobacterial contaminations: in-lake 497 bloom mitigation and water treatment for human utilization. Both purposes have different 498 499 requirements and additional work is necessary before concluding that AmPDs can be effectively implemented in the real world. This includes subsequent investigations that 500 501 will establish the long-term effectiveness and the technical, ecological, and economic feasibility of employing AmPD flocculating systems in complex freshwater environments 502 populated by different problematic cyanobacterial species with unique physiologies. We 503 504 are actively pursuing this research direction.

505

506 **Declaration of competing interest**

507 The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

509

- 510 Data availability
- 511 Data will be made available on request.

512

513

514

515

516	Ack	knowledgements	
517	This	This project was funded by the Hainan Yazhou Bay Science and Technology Bureau (No	
518	SKJ	SKJC-2020-01-004) and the National Natural Science Foundation of China (No	
519	422	42272355).	
520			
521	Арр	Appendix A. Supplementary data	
522			
523	Ref	erences	
524	[1]	J. Huisman, G.A. Codd, H.W. Paerl, B.W. Ibelings, J.M.H. Verspagen, P.M. Visser,	
525		Cyanobacterial blooms, Nat. Rev. Microbiol. 16 (2018) 471-483.	
526		https://doi.org/10.1038/s41579-018-0040-1.	
527	[2]	Y. Zhang, J.K. Whalen, C. Cai, K. Shan, H. Zhou, Harmful cyanobacteria-	
528		diatom/dinoflagellate blooms and their cyanotoxins in freshwaters: A nonnegligible	
529		chronic health and ecological hazard, Water Res. 233 (2023) 119807.	
530		https://doi.org/10.1016/j.watres.2023.119807.	
531	[3]	H.W. Paerl, Controlling cyanobacterial harmful blooms in freshwater ecosystems,	
532		Microb. Biotechnol. 10 (2017) 1106-1110. https://doi.org/10.1111/1751-	
533		7915.12725.	
534	[4]	H.W. Paerl, T.G. Otten, Harmful Cyanobacterial Blooms: Causes, Consequences,	
535		and Controls, Microb Ecol 65 (2013) 995-1010. https://doi.org/10.1007/s00248-	
536		012-0159-у.	

- 537 [5] A. Volk, J. Lee, Cyanobacterial blooms: A player in the freshwater environmental
- resistome with public health relevance?, Environ. Res. 216 (2023) 114612.
- 539 https://doi.org/10.1016/j.envres.2022.114612.
- 540 [6] J.C. Ho, A.M. Michalak, N. Pahlevan, Widespread global increase in intense lake
- 541 phytoplankton blooms since the 1980s, Nature 574 (2019) 667–670.
- 542 https://doi.org/10.1038/s41586-019-1648-7.
- 543 [7] S.-S. Lin, S.-L. Shen, A. Zhou, H.-M. Lyu, Assessment and management of lake
- eutrophication: A case study in Lake Erhai, China, Sci. Total Environ. 751 (2021)
- 545 141618. https://doi.org/10.1016/j.scitotenv.2020.141618.
- 546 [8] H.W. Paerl, J. Huisman, Blooms like it hot, Science 320 (2008) 57–58.
- 547 https://doi.org/10.1126/science.1155398.
- 548 [9] J. Merder, T. Harris, G. Zhao, D.M. Stasinopoulos, R.A. Rigby, A.M. Michalak,
- 549 Geographic redistribution of microcystin hotspots in response to climate warming,
- 550 Nat. Water 1 (2023) 844–854. https://doi.org/10.1038/s44221-023-00138-w.
- 551 [10] B. Li, J. Qi, F. Liu, R. Zhao, M. Arabi, A. Ostovan, J. Song, X. Wang, Z. Zhang, L.
- 552 Chen, Molecular imprinting-based indirect fluorescence detection strategy
- implemented on paper chip for non-fluorescent microcystin, Nat. Commun. 14
- 554 (2023) 6553. https://doi.org/10.1038/s41467-023-42244-z.
- 555 [11] Q. He, W. Wang, Q. Xu, Z. Liu, J. Teng, H. Yan, X. Liu, Microcystins in water:
- 556 Detection, microbial degradation strategies, and mechanisms, Int. J. Environ. Res.
- 557 Public Health 19 (2022) 13175. https://doi.org/10.3390/ijerph192013175.
- 558 [12] M.R. Teixeira, M.J. Rosa, Comparing dissolved air flotation and conventional
- sedimentation to remove cyanobacterial cells of *Microcystis aeruginosa*: Part I: The

- 560 key operating conditions, Sep. Purif. Technol. 52 (2006) 84–94.
- 561 https://doi.org/10.1016/j.seppur.2006.03.017.
- 562 [13] H. Xu, Z. Tang, Z. Liang, H. Chen, X. Dai, Neglected methane production and
- toxicity risk in low-frequency ultrasound for controlling harmful algal blooms,
- 564 Environ. Res. 232 (2023) 116422. https://doi.org/10.1016/j.envres.2023.116422.
- 565 [14] S. Sun, Q. Tang, H. Xu, Y. Gao, W. Zhang, L. Zhou, Y. Li, J. Wang, C. Song, A
- 566 comprehensive review on the photocatalytic inactivation of *Microcystis aeruginosa*:
- 567 Performance, development, and mechanisms, Chemosphere 312 (2023) 137239.
- 568 https://doi.org/10.1016/j.chemosphere.2022.137239.
- 569 [15] F.A. Kibuye, A. Zamyadi, E.C. Wert, A critical review on operation and
- 570 performance of source water control strategies for cyanobacterial blooms: Part I-
- chemical control methods, Harmful Algae 109 (2021) 102099.
- 572 https://doi.org/10.1016/j.hal.2021.102099.
- 573 [16] L. He, Z. Lin, Y. Wang, X. He, J. Zhou, M. Guan, J. Zhou, Facilitating harmful
- algae removal in fresh water via joint effects of multi-species algicidal bacteria, J.
- 575 Hazard. Mater. 403 (2021) 123662. https://doi.org/10.1016/j.jhazmat.2020.123662.
- 576 [17] L. Song, Y. Jia, B. Qin, R. Li, W.W. Carmichael, N. Gan, H. Xu, K. Shan, A.
- 577 Sukenik, Harmful cyanobacterial blooms: Biological traits, mechanisms, risks, and
- 578 control strategies, Annu. Rev. Environ. Resour. 48 (2023) 123–147.
- 579 https://doi.org/10.1146/annurev-environ-112320-081653.
- 580 [18] M. Pal, P.J. Yesankar, A. Dwivedi, A. Qureshi, Biotic control of harmful algal
- blooms (HABs): A brief review, J. Environ. Manage. 268 (2020) 110687.
- 582 https://doi.org/10.1016/j.jenvman.2020.110687.

583	[19]	G. Zeng, R. Zhang, D. Liang, F. Wang, Y. Han, Y. Luo, P. Gao, Q. Wang, Q.
584		Wang, C. Yu, L. Jin, D. Sun, Comparison of the advantages and disadvantages of
585		algae removal technology and its development status, Water 15 (2023) 1104.
586		https://doi.org/10.3390/w15061104.
587	[20]	J. Cui, X. Niu, D. Zhang, J. Ma, X. Zhu, X. Zheng, Z. Lin, M. Fu, The novel
588		chitosan-amphoteric starch dual flocculants for enhanced removal of Microcystis
589		aeruginosa and algal organic matter, Carbohydr. Polym. 304 (2023) 120474.
590		https://doi.org/10.1016/j.carbpol.2022.120474.
591	[21]	R.S. Arruda, N.P. Noyma, L. de Magalhães, M.C.B. Mesquita, É.C. de Almeida, E.
592		Pinto, M. Lürling, M.M. Marinho, 'Floc and Sink' technique removes cyanobacteria
593		and microcystins from tropical reservoir water, Toxins 13 (2021) 405.
594		https://doi.org/10.3390/toxins13060405.
595	[22]	D. de Lucena-Silva, J. Molozzi, J. dos S. Severiano, V. Becker, J.E. de Lucena
596		Barbosa, Removal efficiency of phosphorus, cyanobacteria and cyanotoxins by the
597		"flock & sink" mitigation technique in semi-arid eutrophic waters, Water Res. 159
598		(2019) 262–273. https://doi.org/10.1016/j.watres.2019.04.057.
599	[23]	N.P. Noyma, L. de Magalhães, L.L. Furtado, M. Mucci, F. van Oosterhout, V.L.M.
600		Huszar, M.M. Marinho, M. Lürling, Controlling cyanobacterial blooms through
601		effective flocculation and sedimentation with combined use of flocculants and
602		phosphorus adsorbing natural soil and modified clay, Water Res. 97 (2016) 26-38.
603		https://doi.org/10.1016/j.watres.2015.11.057.

- 604 [24] F.P. Camacho, V.S. Sousa, R. Bergamasco, M. Ribau Teixeira, The use of *Moringa*
- 605 *oleifera* as a natural coagulant in surface water treatment, Chem. Eng. J. 313 (2017)
- 606 226–237. https://doi.org/10.1016/j.cej.2016.12.031.
- 607 [25] Y. Yuan, H. Zhang, G. Pan, Flocculation of cyanobacterial cells using coal fly ash
- 608 modified chitosan, Water Res. 97 (2016) 11–18.
- 609 https://doi.org/10.1016/j.watres.2015.12.003.
- 610 [26] Z. Yu, X. Song, X. Cao, Y. Liu, Mitigation of harmful algal blooms using modified
- 611 clays: Theory, mechanisms, and applications, Harmful Algae 69 (2017) 48–64.
- 612 https://doi.org/10.1016/j.hal.2017.09.004.
- 613 [27] I. Gardi, Y.-G. Mishael, M. Lindahl, A.M. Muro-Pastor, T. Undabeytia,
- 614 Coagulation-flocculation of *Microcystis aeruginosa* by polymer-clay based
- 615 composites, J. Clean. Prod. 394 (2023) 136356.
- 616 https://doi.org/10.1016/j.jclepro.2023.136356.
- [28] J. Chen, G. Pan, Harmful algal blooms mitigation using clay/soil/sand modified
- 618 with xanthan and calcium hydroxide, J. Appl. Phycol. 24 (2012) 1183–1189.
- 619 https://doi.org/10.1007/s10811-011-9751-7.
- [29] G. Pan, H. Zou, H. Chen, X. Yuan, Removal of harmful cyanobacterial blooms in
- 621 Taihu Lake using local soils III. Factors affecting the removal efficiency and an *in*
- *situ* field experiment using chitosan-modified local soils, Environ. Pollut. 141
- 623 (2006) 206–212. https://doi.org/10.1016/j.envpol.2005.08.047.
- [30] R. Sapra, R.P. Verma, G.P. Maurya, S. Dhawan, J. Babu, V. Haridas, Designer
- peptide and protein dendrimers: A cross-sectional analysis, Chem. Rev. 119 (2019)
- 626 11391–11441. https://doi.org/10.1021/acs.chemrev.9b00153.

- [31] S. Mukherjee, S. Mukherjee, M.A.S. Abourehab, A. Sahebkar, P. Kesharwani,
- Exploring dendrimer-based drug delivery systems and their potential applications in
- 629 cancer immunotherapy, Eur. Polym. J. 177 (2022) 111471.
- 630 https://doi.org/10.1016/j.eurpolymj.2022.111471.
- [32] Z. Lyu, L. Ding, A. Tintaru, L. Peng, Self-Assembling supramolecular dendrimers
- 632 for Biomedical Applications: Lessons Learned from poly(amidoamine) dendrimers,
- 633 Acc. Chem. Res. 53 (2020) 2936–2949.
- 634 https://doi.org/10.1021/acs.accounts.0c00589.
- [33] J. Chen, D. Zhu, X. Liu, L. Peng, Amphiphilic dendrimer vectors for RNA delivery:
- 636 State-of-the-art and future perspective, Acc. Mater. Res. 3 (2022) 484–497.
- 637 https://doi.org/10.1021/accountsmr.1c00272.
- [34] X. Wang, M. Zhang, Y. Li, H. Cong, B. Yu, Y. Shen, Research status of dendrimer
- micelles in tumor therapy for drug delivery, Small 19 (2023) 2304006.
- 640 https://doi.org/10.1002/smll.202304006.
- [35] C. Galanakou, D. Dhumal, L. Peng, Amphiphilic dendrimers against antibiotic
- resistance: light at the end of the tunnel? Biomater. Sci. 11 (2023) 3379–3393.
- 643 https://doi.org/10.1039/D2BM01878K.
- [36] R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier, Generic
- assignments, strain histories and properties of pure cultures of cyanobacteria,
- 646 Microbiology 111 (1979) 1–61. https://doi.org/10.1099/00221287-111-1-1.
- [37] D. Zhu, H. Zhang, Y. Huang, B. Lian, C. Ma, L. Han, Y. Chen, S. Wu, N. Li, W.
- 648 Zhang, X. Liu, A Self-assembling amphiphilic peptide dendrimer-based drug

- delivery system for cancer therapy, Pharmaceutics 13 (2021) 1092.
- 650 https://doi.org/10.3390/pharmaceutics13071092.
- [38] C. Ma, D. Zhu, Y. Chen, Y. Dong, W. Lin, N. Li, W. Zhang, X. Liu, Amphiphilic
- peptide dendrimer-based nanovehicles for safe and effective siRNA delivery,
- 653 Biophys. Rep. 6 (2020) 278–289. https://doi.org/10.1007/s41048-020-00120-z.
- [39] J. Graham, K. Loftin, A. C. Ziegler, M. Meyer, Guidelines for design and sampling
- for cyanobacterial toxin and taste-and-odor studies in lakes and reservoirs. U.S.
- 656 Geological Survey Scientific Investigations Report 2008—5038, 2008.
- 657 https://doi.org/10.3133/SIR20085038
- [40] P. Li, L. Zhang, W. Wang, J. Su, L. Feng, Rapid catalytic microwave method to
- damage *Microcystis aeruginosa* with FeCl₃-loaded active carbon, Environ. Sci.

660 Technol. 45 (2011) 4521–4526. https://doi.org/10.1021/es200057g.

- [41] J. Xiao, Y. Chen, M. Xue, R. Ding, Y. Kang, P.-L. Tremblay, T. Zhang, Fast-
- growing cyanobacteria bio-embedded into bacterial cellulose for toxic metal
- bioremediation, Carbohydr. Polym. 295 (2022) 119881.
- 664 https://doi.org/10.1016/j.carbpol.2022.119881.
- [42] X. Zheng, X. Niu, D. Zhang, X. Ye, J. Ma, M. Lv, Z. Lin, Removal of *Microcystis*
- *aeruginosa* by natural pyrite-activated persulfate: Performance and the significance
- 667 of iron species, Chem. Eng. J. 428 (2022) 132565.
- 668 https://doi.org/10.1016/j.cej.2021.132565.
- [43] L.-M. Lei, Y.-S. Wu, N.-Q. Gan, L.-R. Song, An ELISA-like time-resolved
- fluorescence immunoassay for microcystin detection, Clin. Chim. Acta 348 (2004)
- 671 177–180. https://doi.org/10.1016/j.cccn.2004.05.019.

- [44] J. Yu, M. Liberton, P.F. Cliften, R.D. Head, J.M. Jacobs, R.D. Smith, D.W.
- 673 Koppenaal, J.J. Brand, H.B. Pakrasi, *Synechococcus elongatus* UTEX 2973, a fast
- 674 growing cyanobacterial chassis for biosynthesis using light and CO₂, Sci. Rep. 5
- 675 (2015) 8132. https://doi.org/10.1038/srep08132.
- [45] K. Schulze, D.A. López, U.M. Tillich, M. Frohme, A simple viability analysis for
- 677 unicellular cyanobacteria using a new autofluorescence assay, automated
- 678 microscopy, and ImageJ, BMC Biotechnol. 11 (2011) 118.
- 679 https://doi.org/10.1186/1472-6750-11-118.
- [46] E. Beck, R. Scheibe, Senescence and ageing in plants and cyanobacteria, Physiol.
- 681 Plant. 119 (2003) 1–4. https://doi.org/10.1034/j.1399-3054.2003.00140.x.
- [47] H. Pei, H. Xu, H. Xiao, J. Sun, W. Hu, X. Li, C. Ma, Y. Jin, Using a novel
- 683 hydrogen-terminated porous Si wafer to enhance *Microcystis aeruginosa* effective
- removal by chitosan at a low dosage, Colloids Surf. A Physicochem. Eng. Asp. 499

685 (2016) 88–96. https://doi.org/10.1016/j.colsurfa.2016.04.015.

- [48] D. Dhumal, B. Maron, E. Malach, Z. Lyu, L. Ding, D. Marson, E. Laurini, A.
- 687 Tintaru, B. Ralahy, S. Giorgio, S. Pricl, Z. Hayouka, L. Peng, Dynamic self-
- assembling supramolecular dendrimer nanosystems as potent antibacterial
- candidates against drug-resistant bacteria and biofilms, Nanoscale 14 (2022) 9286–
- 690 9296. https://doi.org/10.1039/D2NR02305A.
- [49] C.C. Lee, J.A. MacKay, J.M.J. Fréchet, F.C. Szoka, Designing dendrimers for
- biological applications, Nat. Biotechnol. 23 (2005) 1517–1526.
- 693 https://doi.org/10.1038/nbt1171.

- [50] Y. Dong, Y. Chen, D. Zhu, K. Shi, C. Ma, W. Zhang, P. Rocchi, L. Jiang, X. Liu,
- 695 Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors
- 696 for effective delivery of siRNA therapeutics in prostate cancer therapy, J. Control.

697 Release 322 (2020) 416–425. https://doi.org/10.1016/j.jconrel.2020.04.003.

- [51] X. Zhang, X. Xu, Y. Li, C. Hu, Z. Zhang, Z. Gu, Virion-like membrane-breaking
- 699 nanoparticles with tumor-activated cell-and-tissue dual-penetration conquer
- 700 impermeable cancer, Adv. Mater. 30 (2018) 1707240.
- 701 https://doi.org/10.1002/adma.201707240.
- 702 [52] Y. Guo, H. Meng, S. Zhao, Z. Wang, L. Zhu, D. Deng, J. Liu, H. He, W. Xie, G.
- Wang, L. Zhang, How does *Microcystis aeruginosa* respond to elevated
- temperature?, Sci. Total Environ. 889 (2023) 164277.
- 705 https://doi.org/10.1016/j.scitotenv.2023.164277.
- [53] J. Zhu, Z. Yu, L. He, Y. Jiang, X. Cao, X. Song, The molecular mechanisms and
- 707 environmental effects of modified clay control algal blooms in aquacultural water, J.
- 708 Environ. Manage. 337 (2023) 117715.
- 709 https://doi.org/10.1016/j.jenvman.2023.117715.
- 710 [54] A. Sukenik, Y. Viner-Mozzini, M. Tavassi, S. Nir, Removal of cyanobacteria and
- 711 cyanotoxins from lake water by composites of bentonite with micelles of the cation
- octadecyltrimethyl ammonium (ODTMA), Water Res. 120 (2017) 165–173.
- 713 https://doi.org/10.1016/j.watres.2017.04.075.
- [55] G. Pan, M.-M. Zhang, H. Chen, H. Zou, H. Yan, Removal of cyanobacterial blooms
- in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the
- 716 flocculation of *Microcystis aeruginosa* using commercially available clays and

- 717 minerals, Environ. Pollut. 141 (2006) 195–200.
- 718 https://doi.org/10.1016/j.envpol.2005.08.041.
- [56] M. Suárez, E. García-Romero, Variability of the surface properties of sepiolite,
- 720 Appl. Clay Sci. 67–68 (2012) 72–82. https://doi.org/10.1016/j.clay.2012.06.003.
- [57] M.Y. Han, W. Kim, A theoretical consideration of algae removal with clays,
- 722 Microchem. J. 68 (2001) 157–161. https://doi.org/10.1016/S0026-265X(00)00142-
- 723

9.

- [58] S. Zhang, X. Du, H. Liu, M.D. Losiewic, X. Chen, Y. Ma, R. Wang, Z. Tian, L. Shi,
- H. Guo, H. Zhang, The latest advances in the reproductive toxicity of microcystin-
- 726 LR, Environ. Res. 192 (2021) 110254.
- 727 https://doi.org/10.1016/j.envres.2020.110254.
- [59] J. Li, L. Cao, Y. Yuan, R. Wang, Y. Wen, J. Man, Comparative study for
- microcystin-LR sorption onto biochars produced from various plant- and animal-
- 730 wastes at different pyrolysis temperatures: Influencing mechanisms of biochar
- 731 properties, Bioresour. Technol. 247 (2018) 794–803.
- 732 https://doi.org/10.1016/j.biortech.2017.09.120.
- [60] C. Zhou, H. Chen, H. Zhao, Q. Wang, Microcystin biosynthesis and toxic effects,
 Algal Res. 55 (2021) 102277. https://doi.org/10.1016/j.algal.2021.102277.
- [61] L. Peng, L. Lei, L. Xiao, B. Han, Cyanobacterial removal by a red soil-based
- flocculant and its effect on zooplankton: an experiment with deep enclosures in a
- tropical reservoir in China, Environ. Sci. Pollut. Res. 26 (2019) 30663–30674.
- 738 https://doi.org/10.1007/s11356-018-2572-3.

- [62] J. Liu, C. Chen, T. Wei, O. Gayet, C. Loncle, L. Borge, N. Dusetti, X. Ma, D.
- 740 Marson, E. Laurini, S. Pricl, Z. Gu, J. Iovanna, L. Peng, X.-J. Liang, Dendrimeric
- nanosystem consistently circumvents heterogeneous drug response and resistance in
- pancreatic cancer, Exploration 1 (2021) 21–34.
- 743 https://doi.org/10.1002/EXP.20210003.
- [63] S. Wei, G. Zhuang, L. Cheng, S. Wang, The proliferation rule of *Microcystis*
- 745 *aeruginosa* under different initial pH conditions and its influence on the pH value of
- the environment, Environ. Sci. Pollut. Res. 29 (2022) 13835–13844.
- 747 https://doi.org/10.1007/s11356-021-16719-9.
- [64] C.A. Amorim, A. do N. Moura, Ecological impacts of freshwater algal blooms on
- water quality, plankton biodiversity, structure, and ecosystem functioning, Sci. Total
 Environ. 758 (2021) 143605. https://doi.org/10.1016/j.scitotenv.2020.143605.
- 751 [65] L.E. Krausfeldt, A.T. Farmer, H.F. Castro Gonzalez, B.N. Zepernick, S.R.
- 752 Campagna, S.W. Wilhelm, Urea is both a carbon and nitrogen source for
- 753 *Microcystis aeruginosa*: Tracking 13C incorporation at bloom pH conditions, Front.
- 754 Microbiol. 10 (2019) 1064. https://doi.org/10.3389/fmicb.2019.01064
- 755
- 756
- 757
- 758
- 759
- 760

- 762
- . . .
- 763

764	Figure legends

765	Scheme 1. Amphiphilic peptide dendrimers (AmPDs) and their use in the flocculation of
766	M. aeruginosa. Both the AmPDs, KK2 and KK2K4, form positively charged
767	nanoassemblies that will interact with the negatively charged surface of M. aeruginosa
768	cells, leading to microbial aggregation and the formation of dense flocs that will sink and
769	can be removed from the treated aqueous solution. In the presence of sepiolite clay,
770	AmPD-driven flocculation becomes more efficient. The AmPD nanoassemblies coat
771	sepiolite spindles, which quickly form flocs with cyanobacteria.
772	
773	Fig. 1. The removal of <i>M. aeruginosa</i> by AmPD nanoassemblies. (a) Removal of
774	cyanobacteria and (b) remaining turbidity after 30 min of flocculation treatment with
775	different concentrations of KK2 or KK2K4. (c) Time-course curves of cyanobacterial cell
776	removal with 6.0 mg/L KK ₂ or 5.0 mg/L KK ₂ K ₄ . (d) Digital images of untreated M .
777	aeruginosa or cultures treated with either KK ₂ or KK ₂ K ₄ . FTU: Formazin Turbidity Unit.
778	
779	Fig. 2. Light microscopy, SEM, and zeta potential analyses of <i>M. aeruginosa</i> aggregates
780	with the AmPDs KK ₂ and KK ₂ K ₄ . Light micrographs of (a) untreated <i>M. aeruginosa</i> and
781	M. aeruginosa treated with (b) 2.0, (c) 4.0, and (d) 6.0 mg/L KK ₂ or (e) 1.0, (f) 3.0, and
782	(g) 5.0 mg/L KK ₂ K ₄ . SEM micrographs of (h) untreated <i>M. aeruginosa</i> and <i>M</i> .
783	aeruginosa treated with (i) 6.0 mg/L KK ₂ or (j) 5.0 mg/L KK ₂ K ₄ nanoassemblies. (k)
784	Zeta potentials of cyanobacteria, AmPDs, and cyanobacteria with either one of the
785	AmPDs presented in a bar graph. MA: M. aeruginosa.
786	

787	Fig. 3. The flocculation of <i>M. aeruginosa</i> by AmPD nanoassemblies combined with
788	sepiolite. (a) Removal of cyanobacteria after 15 min of treatment with 200.0 mg/L
789	sepiolite and different concentrations of KK_2 or KK_2K_4 . (b) Time-course curves of
790	cyanobacterial cell removal with 200.0 mg/L sepiolite and either 4.0 mg/L KK ₂ or 3.0
791	mg/L KK ₂ K ₄ . (c) Removal of cyanobacteria with either 4.0 mg/L KK ₂ or 3.0 mg/L
792	KK ₂ K ₄ nanoassemblies and different concentrations of sepiolite clay from 0 to 325.0
793	mg/L. (d-g) Digital images of untreated M. aeruginosa or cultures treated with sepiolite
794	alone, and sepiolite with either KK2 or KK2K4. FTU: Formazin Turbidity Unit.
795	
796	Fig. 4. Light microscopy, SEM, and zeta potential analyses of <i>M. aeruginosa</i> aggregates
797	with AmPDs and sepiolite. Light micrographs of the cyanobacteria treated with (a) 4.0
798	mg/L KK ₂ only or KK ₂ with (b) 50.0, (c) 100.0, and (d) 200.0 mg/L sepiolite.
799	Micrographs of <i>M. aeruginosa</i> treated with (e) 3.0 mg/L KK ₂ K ₄ only or KK ₂ K ₄ with (f)
800	50.0, (g) 100.0, and (h) 200.0 mg/L sepiolite. Red arrows indicate sepiolite particles.
801	SEM micrographs of (i) untreated <i>M. aeruginosa</i> and <i>M. aeruginosa</i> treated with a
802	combination of (j) KK_2 and sepiolite or (k) KK_2K_4 and sepiolite. (l) Zeta potential bar
803	graph of sepiolite, AmPDs with sepiolite, and cyanobacteria with sepiolite in
804	combination with either one of the AmPDs. MA: M. aeruginosa, Sep.: sepiolite.
805	
806	Fig. 5. The impact of AmPDs and sepiolite on <i>M. aeruginosa</i> viability, extracellular MC-
807	LR concentration, and floc stability. (a) <i>M. aeruginosa</i> viability 0.5 h and 24 h after
808	different treatments. (b) Extracellular MC-LR concentrations at the end of the
809	flocculation processes with AmPDs and sepiolite. (c) Filtration evaluation of the integrity
810	of the different types of floc. Sep .: sepiolite.

- **Fig. 6.** Effect of salinity and pH on the AmPD-driven flocculation processes. The
- 813 flocculation of *M aeruginosa* by KK₂ or KK₂K₄ nanoassemblies at different salinity (a)
- 814 without and (b) with sepiolite, and at different pH (c) without and (d) with sepiolite.
- 815 FTU: Formazin Turbidity Unit.

Cyanobacteria removal (%) **D b**¹²⁰ 100 KK₂K₄ Turbidity (FTU) 80 60 40 -KK2 -KK₂K₄ 20 0 0 7 0 3 5 0 2 3 2 6 8 1 5 7 4 6 8 Concentration (mg/L) Concentration (mg/L) Cyanobacteria removal (%) **C** 8 6 8 8 0 d 200 Turbidity (FTU) – KK₂ (%) - KK₂K₄ (%) -KK₂ (FTU) KK2K4 (FTU) 0 0 + 20 10 30 40 KK₂ KK₂K₄ Control Time (min)

