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1. Foreword

Disclaimer: What follows are my informal notes in French, translated into rough
English, taken on the fly and reformatted with few personal comments ("NDJE" or dedica-
ted sections). It is clear that errors may have crept in, and I apologize in advance for them.
You can use the email address provided on the cover page to send me any corrections. I
wish you a pleasant read.

Please note that the Collège de France website has been redesigned. You can find
all the course videos, seminars, as well as course notes not only for this year but also for
previous years 1.

I would like to thank the entire Collège de France team for producing and editing
the videos, without which the preparation of these notes would have been less convenient.

Also, note that S. Mallat 2 provides open access to chapters of his book "A Wavelet
Tour of Signal Processing", 3rd edition, as well as other materials on his ENS website.

This year, 2023, marks the sixth year of S. Mallat’s Data Science chair, with the
theme: Modeling, Information, and Statistical Physics.

As part of this year, two books are recommended: "Elements of Information Theory"
by Thomas Cover and Joy Thomas 3, and "Information, Physics and Computation" by
Marc Mézard and Andrea Montanari 4.

NDJE. I would like to mention that I have set up a GitHub repository for some digital
applications illustrating the course. https://colab.research.google.com/github/ jecampagne/
cours_mallat_cdf . For 2023, the notebooks can be executed directly on Google Colab. The
migration of the 2022 notebooks is also planned.

1. https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/
events

2. https://www.di.ens.fr/~mallat/CoursCollege.html
3. https://ia801400.us.archive.org/30/items/ElementsOfInformationTheory2ndEd/Wiley_-_2006_

-_Elements_of_Information_Theory_2nd_Ed.pdf
4. https://cds.cern.ch/record/1166773/files/9780198570837_TOC.pdf

https://colab.research.google.com/github/jecampagne/cours_mallat_cdf
https://colab.research.google.com/github/jecampagne/cours_mallat_cdf
https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.di.ens.fr/~mallat/CoursCollege.html
https://ia801400.us.archive.org/30/items/ElementsOfInformationTheory2ndEd/Wiley_-_2006_-_Elements_of_Information_Theory_2nd_Ed.pdf
https://ia801400.us.archive.org/30/items/ElementsOfInformationTheory2ndEd/Wiley_-_2006_-_Elements_of_Information_Theory_2nd_Ed.pdf
https://cds.cern.ch/record/1166773/files/9780198570837_TOC.pdf
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2. Lecture 18 Jan.

2.1 Introduction

This year’s course, as Stéphane Mallat tells us, will revolve around three words: the
concept of High-Dimensional Data models (x ∈ Rd), the theory of Information, which
was already at the heart of the 2022 course, and finally, Statistical Physics, which will be
our focus this year. The guiding question for our journey is as follows: how to think about
problems and model data in high dimensions? In fact, thinking in high dimensions is not
intuitive, and this is where Statistical Physics will help us.

Regarding "data," we will be interested in image processing, sound, text, physi-
cal measurements, chemistry, and more. Concerning "applications," once we have a data
model, we can perform parameter inference, denoise data, solve inverse problems, and
consider classification/regression problems. These concepts have already been addressed
in previous years. The novelty will be the perspective considered, with underlying concepts
of Statistical Physics to construct a model and observe its consequences.

2.2 Statistical Physics: Why?

Let’s recall that for about a century, Statistical Physics was the only science dealing
with high dimensions before the advent of today’s understanding of machine learning.
It’s worth noting that in 1901, Josiah Willard Gibbs (1839-1903) wrote a book 5 that
established a strong connection between Statistical Mechanics and Thermodynamics. He
generalized the statistical interpretation of the entropy of a system. This entropy is at
the heart of Shannon’s theory developed in the 1940s and studied in 2022.

By definition, a mole of something contains 6×1023 entities (cf. Avogadro’s number),
which sets the dimension 6 of the system to d. We are clearly in the realm of high dimen-
sion. In order to understand macroscopic phenomena studied in Physics, several concepts
have been developed over time, such as energy, which can be conserved, the notions of

5. J. W. Gibbs, Elementary Principles in Statistical Mechanics developed with especial reference to the
Rational Foundation of Thermodynamics, Yale Univ., published in March 1902.

6. NDJE. In the classical sense, the phase space has a dimension of 6d in this case.
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Figure 1 – Different concepts covered in the 2023 course.

forces applied to the system, the concept of equilibrium, and with Statistical Physics
comes the concept of probability, and above all, the concept of entropy. Furthermore,
with the theories underlying the Standard Model of Particle Physics and Cosmology, but
also related to Statistical Physics of Phase Transitions, central concepts like symmetries,
interactions, and scales emerge.

The idea is to demonstrate that the concepts derived in the field of Statistical
Physics will naturally appear in Machine Learning, where data modeling also plays a
central role. In this context, the Information Theory will serve as a mediator, according to
Stéphane Mallat’s formula. First and foremost, it provides a mathematical perspective on
the aforementioned concepts, meaning it abstracts these notions from the context in which
they originally appeared. Naturally, we encounter entropy associated with probabilities,
but also typical sets with applications in coding, and transmissions (see the 2022 course).
Thus, the concepts covered in the 2023 course are schematically represented in Figure 1.
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2.3 Statistical Physics Perspective (Brief)

Let’s say, in broad strokes, that until the end of the 19th century, fields in Physics
such as Solid Mechanics, Continuum Mechanics, Electromagnetism, Optics, Thermody-
namics, Chemistry, dealt with macroscopic properties, each with its set of laws and fun-
damental principles. At the end of the 19th and the beginning of the 20th century, there
was a shift in perspective with the advent of Statistical Mechanics (which later became
Statistical Physics). It can be said that this began with the assumption that macroscopic
properties are, in fact, the result of microscopic-scale collisions between components (e.g.,
atoms, particles). Even though experimental evidence was lacking at the time, J. Clerk
Maxwell (1831-79) developed the theory of velocity distribution in gases, which was gene-
ralized in 1896 by Ludwig Boltzmann (1844-1906), who interpreted entropy 7 according
to the famous formula "S = k log W," which he had engraved on his tombstone. As pre-
viously mentioned, J. W. Gibbs established a bridge between Statistical Mechanics and
Thermodynamics in 1901.

In doing so, all the aforementioned disciplinary fields were reorganized along a scale
axis ranging from the size of elementary particles (1 fermi, 10−15m), the size of atoms (1
angstrom, 10−10m), to astrophysical scales (1 light-year, 1016m), and cosmological scales
(Gly), passing through "human" scales. The variables/quantities describing phenomena
in Solid Mechanics, Chemistry, and so on are, from a mathematical point of view, quite
similar. The problem arises when trying to deduce properties at macroscopic scales from
well-established microscopic equations, whether in classical physics (Newton, Maxwell,
etc.) or quantum mechanics (Schrödinger, Dirac, etc.).

The main idea of Maxwell, Boltzmann, and Gibbs is that it is probably futile to
study the evolution of a particular system with N molecules, especially in the context of
Hamiltonian Mechanics. Instead, it is more fruitful to study an ensemble of systems to
establish the laws characterizing them, initially at thermodynamic equilibrium. This leads
to the introduction of statistical methods in system analysis. The non-obvious point that
Gibbs eventually demonstrated is that the quantities and functions developed in Ther-
modynamics have counterparts in this statistical framework, which, in turn, enriches the
description (e.g., the chemical potential introduced by Gibbs). It is remarkable that the re-
sults of Quantum Mechanics did not disrupt this theoretical framework, and the statistics

7. The first concept of entropy (1854) was proposed by Rudolf Clausius (1822-88).
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of indistinguishable particles of Bose-Einstein (1924-25) and Fermi-Dirac (1926) naturally
found their place. Statistical Physics can explain the emergence of phase transitions.

So, Statistical Physics enables us to understand how properties emerge when tran-
sitioning from the microscopic to the macroscopic scale. This evolution is very similar
to what we observe in Data Science. Let’s also say, in broad terms, that until around
2015, there were distinct fields such as Computer Vision (imaging), Sound (with subfields
like speech, music, etc.), Text and Language analysis, and others like Medical Imaging
or even the analysis of physical data, etc. There was the underlying theory of Signal
Processing, but the data types and algorithms were different, and, therefore, the research
communities were largely separated. However, as we now know, deep neural networks have
changed all of these disciplines, to the chagrin of various experts as their knowledge has
been challenged or sidelined by Machine Learning users. Certainly, this was disheartening
for some, but it must be recognized that over the past decade, which can be described as
the "pioneers’ era," a structure of cascade networks of convolution-pooling-non-linearity
has emerged, as schematically shown in Figure 2, which functions universally across all of
these fields. Note that at the input of the neural network, convolutional filters scan small
scales of the image 8, and as we go deeper into the network, the filters cover increasingly
larger areas to ultimately provide global information, e.g., dog/cat categories, the next
word in a text, etc. So, we are transitioning from the microscopic to the macroscopic.
Similar to Physics, a new axis of organization has emerged, covering all disciplines with
the notion of multi-scales, which are very complex due to non-linearities.

Over the past decade, increasingly complex network architectures have emerged
with even better successes, and yet there is not much mathematical theory explaining
these successes. This is the major difference from Statistical Physics, which, developed
over a century, provides a solid theoretical foundation. While it is not surprising that
the concepts it has developed can be useful in Machine Learning, it will not be a matter
of creating "Applied Statistical Physics." Indeed, deep neural networks are capable of
solving much more sophisticated problems than those studied in Statistical Physics,
but the latter can serve as a conceptual guide, as we will see this year, with the goal of
understanding and establishing a theory of neural networks.

8. We illustrate this with images for illustration purposes, but the schema can be extended to other
data types.
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Figure 2 – Schematic of a typical deep convolutional neural network.

2.4 Concepts in Statistical Physics

How have the concepts of Statistical Physics emerged over time? Of course, it’s
impossible to be exhaustive in this historical quest, and in fact, completeness might cloud
the message. So, what follows is a perspective that serves as a guide. With that said, we
can start the theoretical process with Thermodynamics and its two Principles 9.

The first Principle states that for a system in equilibrium, during a transformation,
we can define a function (internal energy) with three properties: the state function de-
pends only on the initial and final states of the transformation, it is extensive, and it is
conserved for an isolated system. The conservation of energy is, in fact, a consequence
of the invariance of the laws of Physics with respect to time. It’s worth noting that this
relationship between conservation and invariance is an extremely important and funda-
mentally critical pair, serving as the basis for creating models in Particle Physics and
Gravitation. This relationship is famously encapsulated in Emmy Noether’s (1882-1935)
theorem.

The second Principle, which has been reinterpreted multiple times, and whose origin
is the Carnot Principle (established in 1824 by Nicolas Léonard Sadi Carnot, 1796-1832),
deals with the notion of irreversibility by stating "that during a transformation, there is
a part of the energy that is irreversibly lost as heat." This notion has been connected to
that of entropy (see Sec. 2.3) by formulating the Principle that: "every transformation

9. NDJE. especially at the time of their development, the term Principle should be understood as a
way to organize knowledge.
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of a thermodynamic system takes place with an increase in the overall entropy, including
the entropy of the system and the external surroundings. This is referred to as entropy
creation." It is remarkable that there was a gap of about twenty years between the works
of R. Clausius (1854) and those of L. Boltzmann (1872) that established the theoretical
framework underlying this concept of irreversibility. From a practical standpoint, in the
rest of the course, we will denote entropy as H, in accordance with Claude Shannon’s
notation 10. Clausius’ Principle can be formalized in the following inequality, where δQ is
the heat change, T is temperature, and δH is the entropy change:

δHsystem ≥
δQexchanged

T
(1)

However, this relationship, although established experimentally by Clausius, did not ori-
ginate from a mathematical theory per se. In a sense, in Thermodynamics, we would be
in a situation similar to the current state with neural networks if L. Boltzmann and J.
W. Gibbs hadn’t intervened.

L. Boltzmann would establish the concept of entropy, as mentioned earlier, by
building upon J. C. Maxwell’s work on the kinetics of gases, now called the Maxwell-
Boltzmann theory. It was Maxwell who introduced probabilities into this domain 11, and
Boltzmann provided a demonstration of the uniqueness of the Maxwell distribution for
gases without ensemble organization (perfect) 12. Even if L. Brillouin is sceptical about the
validity of the demonstration although he recognises the significance of Boltzmann’s H
function 13. So, the distribution of the position ri of a molecule i in the gas, depending on its
velocity vi, evolves in time p(ri, vi, t) according to a differential equation (Boltzmann Equa-

10. NDJE. for the curious, here is the original text of Boltzmann’s lectures, translated into French and
prefaced by Léon Brillouin: https://gallica.bnf.fr/ark:/12148/bpt6k98134700/f1.item.texteImage; Boltz-
mann uses the letter H, and it represents the negative of entropy; H in thermodynamics is the notation
for enthalpy, and in mechanics, H can also be the notation for the system’s Hamiltonian, so be cautious
of the context.

11. See Robert E. Robson et al 2017 Eur. J. Phys. 38 065103: Great moments in kinetic theory: 150
years of Maxwell’s (other) equations. https://iopscience.iop.org/article/10.1088/1361-6404/aa87d4/pdf

12. molar-ungeordnet
13. Here is an extract from the afterword of the original text mentioned in footnote Page 12): "... Apart

from the fact that I am concerned about the legitimacy of the division adopted for all space, which is
infinite here, I see no reason to propose a law of probability for the speed of an isolated molecule. Let us
move on, and adopt Boltzmann’s proposal: in this order of ideas, Maxwell’s velocity distribution would be
the most probable, because it contains the greatest possible number of permutations..."

https://gallica.bnf.fr/ark:/12148/bpt6k98134700/f1.item.texteImage
https://iopscience.iop.org/article/10.1088/1361-6404/aa87d4/pdf
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tion) that reaches a stationary equilibrium, and the function 14 H = −∑i

∫
v pi log pidvi

will depend on the number of possible system configurations (W ) and yields the following
proportional relationship 15:

H = kB logW (2)

(NDJE. kB is a modern notation for Boltzmann’s constant). In essence, Boltzmann tells us
that the system will evolve to a state where all configurations (microstates) are equivalent,
which is established by the Fundamental Principle of Equiprobability. These sets of
configurations (micro-canonical) correspond, as we will see later, to a certain type of data
models where probability is completely uniform, and as the system is isolated, its energy
is fixed (a constant). Irreversibility is understood as the evolution of entropy that only
increases over time.

The problem with the equiprobability postulate is that in general, the system in
question is rarely completely isolated. Therefore, the "universe" consists of the system
plus its environment. This is why Gibbs studies systems in the presence of reservoirs,
which leads him to revisit the concept of entropy. He deepens the relationship between
probability and entropy, where H = −∑c pc log pc (here with discrete states of configura-
tions), and the concept of micro-canonical and macro-canonical ensembles. We’ve seen
that for a micro-canonical system, the energy is constant, while for a macro-canonical
system, the energy fluctuates, and only the average is constant. The reservoir (much lar-
ger) serves to fix parameters like temperature. With Gibbs’ developments, notions such
as the Legendre transformation, dual variables (temperature-energy, pressure-volume,
etc.) emerge. Gibbs’ tool is the partition function Z, from which he retrieves the laws of
Thermodynamics.

With the concepts of micro/macro-canonical ensembles in learning, two different
types of data models correspond (we will revisit this) as long as the system’s dimension
d is finite (i.e., a finite number of atoms/molecules/entities), but they become equivalent
in the thermodynamic limit, i.e., when d → ∞. So, while numerically the two mode-
ling approaches yield equivalent results, the algorithms differ, as in the example of data
generation.

14. NDJE. here is the "modern" sign of entropy.
15. The original expression by Boltzmann considers his function −H from his theorem H. It was

Max Planck who wrote the formula S = kB log W in a 1923 lecture on the theory of thermal radiation
(Wärmestrahlung).
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2.5 A Brief Historical Detour

NDJE. What follows is, of course, a partial version, and it’s impossible to be ex-
haustive in this course. I’ve added some personal remarks to the presented timeline by S.
Mallat, hoping the reader won’t take offense.

It’s worth noting that the viewpoints of Boltzmann and Gibbs at the end of the
19th century were based on the existence of elementary particles, without any irrefu-
table experimental proof to support this hypothesis. Furthermore, other equally famous
physicists advocated for continuous matter, such as Marcelin Berthelot (1827-1907) 16.
However, as we know, the evidence would emerge at the turn of the 20th century. We
can briefly mention the following sequence of events. Wilhelm Röntgen discovered X-rays
in 1895 (Nobel Prize in Physics in 1901), then Max von Laue (1879-1960) discovered in
1912 that X-rays were diffracted by crystals (Nobel Prize in Physics in 1914), giving the
first glimpse of the "atomic" nature of matter. Finally, in 1909, Hans Geiger (1882-1945),
Ernest Marsden (1889-1970), and Ernest Rutherford (1871-1937) (Nobel Prize in Chemis-
try in 1908) experimentally established the planetary model of the atom with a central
positive charge, refuting J.J. Thomson’s (1856-1940) model of a diffuse positive charge.
This provided clear confirmation of the corpuscular nature of matter at various scales:
the atom and the nucleus.

In doing so, physicist John William Strutt Rayleigh 17 (1842-1919), associated with
the mathematician physicist James Jeans (1877-1946), used Statistical Mechanics in 1900
to establish the law, known as the Rayleigh-Jeans law, which expresses the distribution of
energy radiated by the black body as a function of wavelength, valid for long wavelengths.
Max Planck 18 (1858-1947) would complement it in the same year using the hypothesis
of quanta (Nobel Prize in Physics in 1918).

On the side of Statistical Physics at the time of Gibbs, there remained the mys-

16. This had unfortunate consequences for the development of French Chemistry; see the article on
https://www.universalis.fr/encyclopedie/theorie-atomique/2-la-resistance-de-berthelot/ in the Universa-
lis Encyclopedia.

17. He received the Nobel Prize in Physics in 1904 for studies on gases leading to the discovery of Argon,
work conducted jointly with William Ramsay (1852-1916), who received the Nobel Prize in Chemistry in
the same year for the discovery of Argon.

18. Initially, Planck favored a continuous matter, rejecting statistical theory, but he realized the evidence
and adopted the atomistic viewpoint following experimental results.

https://www.universalis.fr/encyclopedie/theorie-atomique/2-la-resistance-de-berthelot/
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tery of describing changes of states or phase transitions (solid/liquid/gas transitions,
ferro/paramagnetism changes, quantum condensation, etc.) when crossing temperature
thresholds within this theoretical framework. The postulates of the theory might not
have been right... Note, by the way, that whether it’s the partition function Z or Gibbs’
free energy, they are both analytical functions of temperature. So why should there be
singularities? It took the work of Hendrick Kramers (1894-1952) and Gregory Wannier
(1911-83), and finally Lars Onsager (1903-76) and Bruria Kaufman (1918-2010) to show
that phase transitions manifest within Gibbs’ Statistical Mechanics framework, which
was a decisive turning point. The problem Onsager exactly solved in 1944 is the now
famous 2D Ising model: this model of interacting spins was introduced by Wilhelm Lenz
(1888-1957) in 1920, and his student Ernest Ising (1900-98) had solved it in 1D only and
couldn’t find a phase transition. Onsager’s exact solution clarified its meaning and initia-
ted the study of critical exponents and the development of the Renormalization Group
Equation (RGE) in Statistical Mechanics. It’s worth noting that mathematician Hugo
Duminil-Copin (1985-) was awarded the Fields Medal in 2022 for his work, among others,
on the 3D and 4D Ising model 19, and Giorgio Parisi 20 (1948-) received the Nobel Prize
in Physics in 2021 for his work on disordered systems and the study of replica symmetry
breaking. So, research in Statistical Physics is still very active.

What’s particularly interesting from a historical perspective is that Statistical Phy-
sics and Particle Physics have exchanged many concepts. The "Higgs" mechanism of 1964 21

is an example where Higgs (Particle Physics) uses the spontaneous breaking of the scalar
boson of Brout-Englert (Statistical Physics) to give mass to the W and Z bosons, media-
tors of the weak interaction. The RGE was initiated in Field Theory in Particle Physics in
1954 by Murray Gell-Mann (1929-2019) and Francis E. Low (1921-2007) in the framework
of Quantum Electrodynamics (QED), then it was generalized by Curtis Callan and Kurt
Symanzik (1923-83) with the establishment of the Callan–Symanzik equations in 1970.

19. See https://www.insmi.cnrs.fr/fr/cnrsinfo/les-travaux-dhugo-duminil-copin
20. He is also known in Particle Physics for establishing, in 1977 with Guido Altarelli, the equations

named after them for the evolution of parton densities with energy scale in QCD, subsequently referred
to as DGLAP equations, recognizing the earlier work of Dokshitzer, Gribov, and Lipatov.

21. More precisely, the Brout–Englert–Higgs–Guralnik–Hagen–Kibble mechanism, named after Peter
Ware Higgs (1929-), Robert Brout (1928-2011), François, Baron Englert (1932-), Gerald Guralnik (1936-
2014), Carl Richard Hagen (1937-), and Thomas Walter Bannerman Kibble (1932-2016). Higgs and
Englert received the Nobel Prize in Physics in 2013 after the discovery of the Higgs boson at CERN by
the teams of the Atlas and CMS experiments.

https://www.insmi.cnrs.fr/fr/cnrsinfo/les-travaux-dhugo-duminil-copin
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Developments on phase transitions date back to Leo Philip Kadanoff (1937-) and Ken-
neth G. Wilson’s (1936-2013) Ph.D. thesis, obtained under the supervision of Gell-Mann
in 1961. Wilson bridged the gap with developments in Field Theory and developed the
theory of critical exponents in relation to phase transitions, which became a prominent
theme in the field in the 1970s, like the famous "Les Houches Session XXVIII (1975):
Methods in Field Theory" with exceptional contributions.

The key point with the work of Kadanoff-Wilson is that probability laws become
scale-invariant during phase changes 22 (e.g., liquid/gas, ferro/para). This point will be
of particular interest to us in understanding neural networks.

Now, despite all these very impressive developments, the understanding of a pheno-
menon like turbulence, which at first glance seems simple, remains in its infancy, despite
Kolmogorov’s theory. On the other hand, with neural networks, we are tackling much
more complex problems, such as face generation. So, it seems that Statistical Physics has
remained with much simpler phenomena, but when one takes a step, we understand the
"why" and "how," while in Machine Learning, it feels like we’re skipping steps.

2.6 The Classical View of Modeling

The subject of data modeling is a distinct field within Probability and Statistics,
and as such, many models have been proposed. The first idea that comes to mind when
approaching an image or a sound (a signal x in general) and observing that there is
clearly structure is that the signal x is not an arbitrary point in Rd (d being the number
of variables, e.g., the number of pixels). Thus, the number of degrees of freedom m is a
priori much smaller than d (i.e., m ≪ d), and we will model a signal as an element of
a surface/manifold S ⊂ Rd (Fig. 3). These models are of a deterministic type, where
the geometry can be illustrated by giving a Riemannian structure to the manifold and
studying tangent planes, thus defining a locally parameterized map with variables s, such
that the signal x is represented as x = g(s). What needs to be stated clearly is that this
viewpoint simply does not work in high dimensions. Firstly, even if m≪ d, it still holds
that m is large 23, for example, if we compress an image with 106 pixels, we achieve a

22. NDJE. the other essential points are the notions of order and symmetry.
23. The "large" dimension can start as soon as m = 103.
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10-fold reduction without significantly degrading the image, but this is only a minimal
reduction in dimensionality. However, if m is the dimension of the manifold, based on
an argument developed in the 2018-19 courses, in order to estimate the geometry of the
manifold, we need to sample it, and in the simple case of regular sampling of [0, 1]m with
a spacing of 1/10 between points, we would need 10m points. So, with m = 105, we far
exceed the estimated number of atoms in the Universe, which is around 1082, in other
words, we are faced with the curse of high dimension. Therefore, we cannot precisely
estimate the geometry of the manifold, which means that in this context, we cannot use
all the tools of differential geometry.

Another viewpoint is to take a probabilistic approach, where x becomes the realiza-
tion of a random vector that will have a certain distribution dµ(x), which we will assume
to be smooth with respect to the Lebesgue measure. Thus, it will have a probability den-
sity p(x) such that p(x)dx = dµ(x), and the challenge is to find p(x) that describes the
data. With Information Theory 24, this type of modeling is much richer in high dimen-
sions, and in a certain sense, we can think of the manifold S as a form of fuzzy geometry.
Concentration theorems provide access to regions where the data have a probability of 1
to be found. By doing so, we have much more flexible mathematical tools at our disposal.

If we briefly return to Statistical Physics and wonder why there was so much resis-
tance to the ideas of Boltzmann and Gibbs, it’s necessary to realize that it might have
seemed shocking to those immersed in Hamiltonian formalism that deterministic laws
were the result of stochastic processes described by the Statistical Mechanics forma-
lism (even without delving into the quantum realm). Of course, the result of the law of
large numbers for particles provides the solution to recover laws interpreted as determinis-
tic. However, such an approach will work on the condition that non-uniform probability
laws p(x) will become uniform when the dimensionality d of the problem tends to infinity.
Thus, by analogy with the thermodynamic limit, we will find phenomena of concentra-
tion around manifolds of uniform probabilities.

24. NDJE. The reader can refer to the 2022 course for more details.
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Figure 3 – An image, a sound, etc., having structure, can possibly be an element of a
surface in Rd, with a much smaller number of degrees of freedom.

2.7 Example of Gaussians

2.7.1 The Case of Variables with Equal Variance

In this example of a Gaussian distribution, we will provide an overview of the issue
that we will delve deeper into in the non-Gaussian case. That being said, the Gaussian
case is not just a textbook example; it is very important because of the central limit
theorem. So, let’s assume that x has d variables x = {xi}i≤d, and that the variables xi are
independently and identically distributed (iid hereafter) with a Gaussian distribution
N (µ, σ2). Thus,

p(x) =
∏
i≤d

p(xi) = 1
(2πσ2)d/2 exp

(
−1

2
∑

i

(
xi − µ
σ

)2
)

(3)

The probability is maximized when all components xi are equal to µ. Now, where does
a realization of x lie? The result is not intuitive, but x will be found on a quasi-sphere
defined by

∥x− µ∥2 = dσ2 (4)
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"Quasi" because the thickness ε of the sphere is very small, as we will see. By the way,
the argument of the exponential is called the energy 25:

U(x) = 1
2
∑

i

(
xi − µ
σ

)2
(5)

It is always positive and equals 0 for the most probable state. The proportionality constant
is denoted as Z−1 so that

p(x) = Z−1e−U(x) (6)

Considering the following sum

Sd(x) = 1
d

d∑
i=1

(
xi − µ
σ

)2
(7)

since we are dealing with a sum of independent variables 26,

Ex∼p(x)[Sd] = Ez∼N (µ,σ2)

[(
z − µ
σ

)2
]

= 1 (8)

while
V[Sd] = 1

d2 (d× 2) = 2
d

(9)

so the variance tends to 0 for large dimensions. We indeed have a concentration pheno-
menon, which means that the probabilistic model is very close to a deterministic model
because the surface is quasi-zero in thickness, but not negligible, and this is precisely
an example of a microcanonical ensemble in Statistical Physics.

2.7.2 The General Gaussian Case with Covariance

In this model, the probability 27 p(x) is defined according to the following expression:

p(x) = N (µ,C) = Z−1 exp
(
−1

2(x− µ)TC−1(x− µ)
)
, Z = (2π)d/2| det(C)|1/2 (10)

25. NDJE. From a notation perspective, E(x) could have been confused with the expected value that
we will use extensively, but on the other hand, U is often used in physics for internal energy.

26. ((z − µ)/σ)2 with z ∼ N (µ, σ2) follows a χ2 distribution with 1 degree of freedom, with a mean of
1 and variance of 2.

27. The term "density" is usually omitted...
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where C is the covariance matrix of the variables {xi}i≤d. C is diagonalizable with positive
eigenvalues diag(σ2

1, . . . , σ
2
d), and it introduces "normalized" variables {zi}i≤d that are the

principal axes of a d-dimensional ellipsoid. Thus, the transition from x to z allows us to
rewrite p(x) as follows:

p(z) = Z−1 exp
(
−1

2
∑

i

(
zi

σi

)2
)
, Z = (2π)d/2∏

i

σi (11)

It is not very difficult to generalize the previous case (cf. the d variables (zi/σi)2 with
zi ∼ N (0, σ2

i ) follow a χ2 distribution with 1 degree of freedom), and we realize that the
data will concentrate on ellipsoidal shells centered on µ and whose extensions along the
principal axes are given by the values of σi and whose thickness will decrease as 1/d.

Now, this covariance model allows selecting the most relevant components by taking
only those with a value of σi above a certain threshold ε (cf. principal component analysis,
PCA). Thus, we can perform dimensionality reduction, and similarly, we will find that
the probability of being on these ellipsoidal shells will be uniform.

The previous observations of concentration and uniformity of probability on "typical"
sets are at the heart of Information Theory, and the reason why entropy plays such a
fundamental role in understanding these high-dimensional phenomena.

2.8 The Perspective of Information Theory in Non-Gaussian Cases

If we generalize to a non-Gaussian case, while preserving the fundamental assump-
tion of iid, we have a convergence in probability (law of large numbers) such that

−1
d

log p(x1, x2, . . . , xd) = −1
d

∑
i

log p(xi) −−−→
d→∞

Ex∼p(x)[− log p(x)] = H̄ (12)

where we denote 28 H̄ as the entropy density associated with the distribution p(x) (here,
for one of the d components, meaning d × H̄ is the total entropy associated with the
system of d iid components, with d playing a role similar to the number N of particles in

28. NDJE. I’m trying to maintain consistent notation with the 2022 course, but there may be variations.
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a thermodynamic system; in other words, entropy is an extensive variable). Thus,

∀ε > 0 lim
n→∞

P
(∣∣∣∣−1

d
log p(x1, x2, . . . , xd)− H̄

∣∣∣∣ ≤ ε
)

= 1 (13)

We come to the idea of the surface S defined by an implicit equation f(x) = 0, where we
would take

f(x) =
∣∣∣∣−1
d

log p(x1, x2, . . . , xd)− H̄
∣∣∣∣ (14)

It’s not strictly exact that f(x) is zero because there is a thickness ε, but we rediscover
the idea of the concentration of − log p toward entropy, which will lead to a concentration
of data on a surface, and we will see that the probability is uniform on it. This is the
perspective developed 29 in 1948 by Claude Shannon (1916-2001), which gives rise to the
notion of typical sets that we will encounter this year.

Thus, the following concepts emerge:
• the energy E(x), which is very similar (up to a constant logZ) to − log p(x);

• the entropy H, which is nothing but the expectation E[− log p(x)], which will allow us
to understand the complexity of the system (similar to the number of configurations
in the style of Boltzmann).

In conclusion, these tools from Statistical Physics and Information Theory allow us to
think about high dimensionality. However, the major challenge is to construct p(x), in
other words, to design models that apply to data that are mostly non-Gaussian. In the
case of Physics (ideal gas/Ising model), we have models of fairly local interactions between
particles/spins, which is absolutely not the case in Data Science where we lack a model.
Indeed, what could be the underlying model for images of dogs/cats? That is the question,
one might say.

2.9 Stationary Ergodic Non-Gaussian Models

In the following, we will focus on stationary and ergodic models 30. Ergodicity states
that the average value of a quantity calculated statistically (mathematically accessible) is
equal to the average of a very large number of measurements taken over time (accessible

29. 2022 course
30. Hypothesis formulated by Boltzmann in 1871
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Figure 4 – Example of a simulation of 2D turbulent flow (left) and the realization
(right) of a Gaussian model that simplifies the problem by considering only the second-
order moments of the left distribution, i.e., the covariance matrix.

through experimentation). In the Gaussian case, as we will see, these two assumptions
imply that phenomena occurring on two distinct scales are independent. However, in
the non-Gaussian case, we observe the emergence of structure (texture, vortex) because
phenomena occurring on two distinct scales are not independent. It’s this notion of
dependence that we need to understand in order to construct non-Gaussian models.

2.9.1 Turbulence and the Ising Model

To understand non-Gaussianity, S. Mallat provides some images that I’ll reproduce
here. For example, in Figure 4, we can distinguish the vortices in turbulent fluid on the
left. The Gaussian model (on the right), which considers only second-order moments
(i.e., the covariance matrix), not only fails to reproduce this structure but is also much
more disordered. This disorder reflects higher entropy. So, the challenge in Statistical
Physics was to find non-Gaussian models to account for this structure. However, it must
be acknowledged that this has not been successful until very recently.

A numerical model that illustrates the properties of the ferro/paramagnetic phase
transition is the Ising model. Briefly, the system consists of N spins σ with two com-
ponents {−1,+1} placed at the nodes of a lattice (e.g., square lattice). If two spins are
neighbors, they experience an interaction with a coupling constant J . To simplify, we
define a symmetric interaction matrix Jij with non-zero elements (equal to J , taken as
positive here) for only nearest neighbor pairs (i, j). Additionally, the system is placed in
an external field H that is assumed to be homogeneous. Thus, each spin is influenced not
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only by H but also by the collective action of the other spins in the lattice.

The energy of the system is then given by the expression 31

U(σ, J) = −1
2
∑

(i,j)nn

Jijσiσj − h
∑

i

σi σ ∈ {−1,+1}N (15)

We then define the average magnetization of a configuration "c" of spins as

Sc(N, h) = 1
N

N∑
i=1

σi (16)

Note that if h = 0, there is a system symmetry, meaning that the energy is conserved
when all spins are reversed. The system at equilibrium adopts a configuration of minimum
energy, with all spins either oriented as +1 or all oriented as −1 (Sc(N, h = 0) = ±1).
If h is very strong, then the minimum energy configuration is governed by the second
term, and the spin configuration is obtained by orienting all spins in the same direction
as the local field. In this case, there is a forced magnetization of the system. The external
field sets a direction, and we can choose it as the axis for evaluating spins, so h > 0 by
convention. Symmetry is broken, and Sc(N, h≫ 1) = +1.

Now, let’s put the system in contact with a reservoir that sets the temperature
T . Intuitively, at high temperature, thermal agitation randomizes the orientation of spins
even with h ̸= 0, and there is no persistent magnetization. There is a competition between
temperature (disorder) and external field (order). But what about the quantity:

lim
h→0

lim
N→∞

Sc(h,N) = M0 (17)

called spontaneous magnetization? That is, what happens in the thermodynamic limit
when the external field is turned off 32? The answer depends on the temperature: if it is
below a critical temperature T < Tc, then there is a nonzero spontaneous magnetization
(Fig. 5). Furthermore, we observe that there are large regions where spins have the same
orientation. At absolute zero temperature, we end up with the configuration where all
spins are aligned in the same direction.

31. Note that if H is inhomogeneous, the family of Ising models is known as Hopfield networks or
Boltzmann machines in the neural network community.

32. Note that I leave it to you to guess the answer if we reverse the two limits.
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Figure 5 – (Top): Spontaneous magnetization M0 in the case of an Ising model as a
function of temperature. Example of a simulated configuration of a spin lattice (Ising
here, where spins take continuous values) in contact with a reservoir at a temperature
above the critical temperature (left view) or below it (right view). We can appreciate the
change in structure that occurs during the phase transition.

This is the entire study of phase transitions that can be studied with this iconic
model. In particular, how do long-range correlations emerge in the lattice when inter-
actions are only between nearest neighbors (local interactions)? Once this problem was
understood by Statistical Physics (>1950), attempts were made to apply it to turbulence.
Unfortunately, it was a failure again. That is, in trying to build local interactions, we
couldn’t understand the emergence of the structures in Figure 4.

2.9.2 Sound Frame Generation

NDJE. S. Mallat plays sound frames, so I encourage you to listen to them (again)
in the course video around 1:14:00 from the beginning. Also, to understand the concepts
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Figure 6 – Time-Frequency representation of four music sequences.

of Time-Frequency representations, I recommend referring to the 2020 course on the Fou-
rier Transform (especially windowed) and the Wavelet Transform, whose decomposition
algorithm is detailed in the 2021 course.

In Figure 6, we have the Time-Frequency representation of four music sequences:
continuous note, "attack," "tremolo," "vibrato." We can distinctly see the differences in
these four frames not only in the fundamental frequency but also in the harmonics. Once
we understand how such representations are constructed, Figure 7 presents three repre-
sentations of an "applause": the original sound (left view) exhibits both frequency and
temporal structures; in the middle view, generation by a Gaussian model that only pre-
serves the original energy at all scales/frequencies (there are no transient phenomena or
correlations between scales as seen in the original sound); finally, on the right view, ge-
neration by a more realistic model that takes into account correlations between scales.
While not perfect, this model is much more realistic. We will see how to construct such
models and why nonlinearities (e.g., ReLU) are fundamental.

2.9.3 Other Examples

Then, once we understand how to model non-local interactions with correlations bet-
ween scales, we can, for example, generate images of non-Gaussian fields as illustrated in
Figure 8. We can also perform component separation, for example, separating in an image
constructed from photons collected by the Planck satellite from the celestial vault, the
Gaussian part arising from the cosmic microwave background, and the non-Gaussian part
consisting of what is called foregrounds (e.g., emission from intergalactic dust) (Fig. 9).
This will be the subject of E. Allys’ seminar.
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Figure 7 – Time-Frequency representations of applause: the original sound on the left;
in the middle, generation by a Gaussian model that preserves only the original energy at
all scales/frequencies; on the right, generation by a more realistic model that considers
correlations between scales.

Figure 8 – Example of generating non-Gaussian fields using wavelet models: turbulence,
cosmic web, etc.
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Figure 9 – Example of separating Gaussian/non-Gaussian components applied to cos-
mology.

On the other hand, we won’t cover this year, according to S. Mallat, non-stationary
and non-ergodic models like generating images of faces or spoken sentences. Neural net-
works can do this, but the mathematics are more complicated.

2.10 Course Outline 33 for 2023

• We will begin with a brief introduction to modeling, revisiting the curse of dimen-
sionality and introducing Markov fields and maximum entropy models.

• Next, we will review the perspective of Statistical Physics: the Micro-canonical mo-
dels, where we will explore the connection between energy, entropy, and temperature,
as well as the concept of thermodynamic equilibrium.

• Building on these ideas from Statistical Physics, we will consider the viewpoint of
Information Theory to highlight correspondences. In doing so, we will revisit the
concept of entropy in relation to probabilities and delve into the notions of differential
entropy and conditional/relative entropy and the "distance" of Kullback-Leibler, as
well as entropy density.

33. NDJE. Keep handy the lecture notes from 2020, 2021, and 2022.
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• To understand the notion of equilibrium, we will use Markov chains, which will
provide us access to two things: firstly, we will grasp entropy in cases where there is
a form of dependence, and secondly, how the evolution towards equilibrium occurs,
including the Second Law of Thermodynamics, which we will demonstrate under
the Markovian assumption. We will also explore how to sample distributions using
Monte Carlo algorithms with Markov chains (MCMC), which are highly important
in practice.
• We will then return to the notion of modeling through Maximum Entropy Models.

This will include the concept of duality in convex problems (Legendre transforma-
tion), Macro-canonical models, among others.
• Finally, we will delve into non-Gaussian models with a focus on Harmonic Analy-

sis. We will explore the Fourier Transform (stationary processes that allow us to
diagonalize the covariance), the Wavelet Transform (multiscale analysis), and all
non-linear interactions.

3. Lecture 25 Jan.

During this session, we will first and foremost address the question of how to estimate
a model in high dimensions? We will then explore strategies to overcome the curse of
dimensionality. Secondly, we will examine the same problem in the context of Statistical
Physics.

Recall that the challenge is to estimate a probability p(x) where x ∈ Rd with d≫ 1
(typically d ∼ 105 − 106).

To set the framework for the example we are going to study, let’s consider x ∈
{−1,+1}d, which can, for example, model the result of a binary questionnaire (Yes/No)
for a medical diagnosis, or the values of d spins in an Ising model.

The set F of probabilities p(x) is such that

F =

p : {−1,+1}d = Ed → [0, 1], such that
∑

xi∈Ed

p(xi) = 1

 (18)

We can then pose the following problems:
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— Firstly, we need to restrict our search to subclasses of F because without prior
information, we will encounter difficulties. Thus, we will need to engage in modeling,
which is often parameterized.

— Once we have defined the subclass C ⊂ F , we will address the problem of estimating
the model parameters, i.e., the learning problem.

— We will explore inference problems, such as calculating marginal probabilities (e.g.,
what is the diagnosis for a particular illness), which requires high-dimensional inte-
gration.

— Finally, we may want to generate new typical data once we know p(x), which is a
sampling problem.

3.1 Frequentist Approach

Let’s assume that we have samples, and we can estimate probabilities using histo-
grams. Let Ed be the set of possibilities for a system with d variables, each of which is
binary, i.e., y ∈ {−1,+1}, then

Ed = {y1, y2, . . . , yK} , K = 2d (19)

And we want to estimate p(x = yk) denoted as θk, so we have K parameters. What we
know is that

K∑
k=1

θk = 1 (20)

From a geometric point of view, the sought-after K-tuple is located on the "simplex"
(Fig. 10). We have at our disposal n data/samples 34 {xi}i≤n.

By hypothesis, the data are iid (independently and identically distributed) according
to the density p(x) we are looking for; they are examples of a random vector. The estimator
θ̂k of θk is given by 35

θ̂k = 1
n

n∑
i=1

1{xi=yk} (21)

This is the k-th bin of the histogram, also known as the empirical distribution.
34. NDJE. The superscript i indicates the i-th data point, knowing that it is a vector with d components.
35. 1A is the indicator function of the set A.
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Figure 10 – Location of solutions ∑k θk = 1 (here in the case of 3 parameters).

Since the xi are random variables, we can study the following random variable

zk = 1{xi=yk} (22)

which can take values 0 or 1. In other words, each zk is a Bernoulli variable. Thus, the
expectation of zk is given by

E[zk] = θk (23)

(indeed, it is the expectation of the "1’s"), and its variance is

V[zk] = θk(1− θk) (24)

Now, regarding the estimator θ̂k, we can also calculate its mean and variance, yiel-
ding:

E[θ̂k] = θk V[θ̂k] = E[|θ̂k − θk|2] = θk(1− θk)
n

(25)

It is unbiased, and the variance decreases with n. However, what interests us is
whether we are estimating the probability p(x) correctly. So, if we denote Θ = (θk)k≤K
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(the same for Θ̂), we need to estimate the properties of the normalized vector:

E[∥Θ− Θ̂∥2]
∥Θ∥2 =

∑
k E[|θk − θ̂k|2]
∥Θ∥2 =

∑
k θk(1− θk)
n∥Θ∥2 = 1− ∥Θ∥2

n∥Θ∥2 (26)

So, the question now is, if we randomly select a Θ on the simplex (Fig. 10), what
is the average error? In high dimensions, the average location of Θ is at the center of the
simplex, meaning that for all k, θk = 1/K, which gives ∥Θ∥2 = K/K2 = 1/K. Hence,

E[∥Θ− Θ̂∥2]
∥Θ∥2 ≈ K

n
= number of parameters

number of examples (27)

Now, if we want a good estimate, it means that the number of examples must be
large according to the scaling law

n≫ 2d (28)

What does this mean when d = 106! Even with d = 100, it is clear that we face the
problem of the curse of dimensionality. Conclusion: the frequentist approach does not
work in high dimensions.

We need to realize this fact because it is common practice to use this approach
by histogramming the data to obtain "experimental probabilities". Therefore, in the case
of high dimensionality, we must go against this "intuition". Fortunately, there is ano-
ther perspective, namely the Bayesian approach 36, which considers probabilities from
the perspective of measuring uncertainty or representing partial information.

3.2 Bayesian Approach, Local Markov Model

This is the dominant viewpoint in high dimensions. We will build the model based
on the known dependencies between variables and attempt to represent the uncertainty
about the underlying process that generated the available data.

That being said, if we have two random variables, the joint probability can be

36. NDJE. see also Section 2.2 of the 2022 course



32

decomposed as follows, following the idea of Bayes:

p(x1, x2) = p(x1)p(x2|x1) (29)

This generalizes for d variables as follows:

p(x1, . . . , xd) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xd|x1, . . . , xd−1)

= p(x1)
d∏

t=2
p(xt|x1, . . . , xt−1) (30)

For now, we don’t see any gain in making this decomposition. Where we gain is if we can
eliminate variables in the set (x1, . . . , xt−1) when conditioning on xt. This is the concept
of conditional independence, which is fundamental in the process of dimensionality re-
duction, to break the curse mentioned in the previous section. A notation point:

p(x3|x1, x2) = p(x3|x2)⇔ x2 ⊥ x3|x1 (31)

If we can identify such sources of independence that allow such reductions by removing
enough variables, then each conditional probability is a more accessible low-dimensional
problem.

Let’s examine an "extreme" example of this kind of independence, namely Markov
chains. In this case, there is no memory, which translates to

p(xt|x1, . . . , xt−1) = p(xt|xt−1) (32)

and thus
p(x) = p(x1)

d∏
t=2

p(xt|xt−1) (33)

The conditional probabilities (- of transition) are functions of two variables. If, in addition,
we are in a stationary regime, these are all identical. Therefore, in this case, the problem
is relatively easy, but it is a very specific case.

More generally, graphical models are models in which conditional dependencies
between variables are organized according to a graph. This is a form of topology given a
priori on the data. An example is the Ising model, where only interactions between nearest



33

neighbors are considered. In a somewhat more general sense, however, the (conditional)
dependencies will be local:

p(xi|xj ̸=i) = p(xi|xj for j ∈ Ci) (34)

where Ci are neighborhoods of i. The number of variables that will ultimately intervene
in the product of conditional probabilities will directly depend on the number of elements
in the neighborhoods. We have the Hammersle-Clifford theorem, which tells us that

p(x) =
d∏

i=1
ψ(xi, i ∈ Ci) (35)

This is just another way to write conditional probabilities (Eq. 30) by restricting to the
neighborhoods to consider. If |Ci| ≪ d, and if there is an invariance in the network, then
we can overcome the curse of dimensionality.

However, let’s examine the following problem: for example, in an image of the room
around you where you might be tempted to take |Ci| = 8 (8 pixels surrounding each pixel),
how do you account for large-scale structure such as the fact that there are very distant
pixels that belong to the borders of objects and are therefore correlated? So, this type of
modeling works only in certain situations.

On the other hand, in physics/chemistry, we can consider only local interactions at
the microscopic level in a first approximation. For example, in a molecule with covalent
chemical bonds σ, or ionic bonds in a crystal. But to refine the model, long-range inter-
actions must be taken into account, such as Van der Waals dipole-dipole forces in 1/r7,
covalent chemical bonds π, or hydrogen bonds.

What can help us is hierarchical modeling in the intensity of different interactions.
In this context, the Markov chain model can serve as the basic model for the most intense
local interactions, which can be refined by adding weaker interactions. What we notice
in this progression is that the intuition of physics (the notion of multi-scale) seems very
natural.
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3.3 Maximum Entropy Models

If in the previous section dimensionality reduction is achieved by considering only
local structures of the system, we will proceed quite differently by considering global
measures only. This strategy is at the heart of Statistical Physics: we will describe the
probability distribution in terms of macroscopic quantities. Formally, we will look at
moments of the probability distribution:

µk = Ex∼p(x)[ϕk(x)] =
∫
Rd
ϕk(x)p(x)dx (36)

Note, by the way, that integration takes place in (very) high dimensions. For example,
if ϕk(x) = xk (the k-th coordinate of x), µk = E[xk]. In the stationary case, there is
invariance µk = µ, and by integrating over all variables, we have a global measure. Another
example: ϕk(x) = xixi−k (imagine pixels taken two by two, but all the selected pairs are
formed by pixels that are a distance k apart), in the stationary case, E[ϕk(x)] = f(k),
which means that the function f does not depend on i. Of course, you can take much
more complex functions. From these moments, how do we obtain p(x)?

Of course, in general, it is not enough to have one or two moments to determine
a distribution, but we can ask what is the smoothest distribution that reproduces the
given moments? In this context, the question is what is the regularity indicator that will
guide us. The answer is entropy H[p], defined as

H[p] = −
∫
Rd
p(x) log p(x)dx = E[− log p(x)] (37)

So, we need to find a distribution p(x) that satisfies constraints both given by the mo-
ments (µk)k≤K and by the quality of maximum regularity/entropy. The parameters of the
probability density model pθ are the (µk)k≤K , so we are looking for

pθ, such that ∀kEpθ
[ϕk] = µk, and max

pθ
(H[pθ]) (38)

We will see in more detail in the course that the solution to this convex optimization
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problem can be expressed as

pθ(x) = Z−1 exp
(
−

K∑
k=1

θkϕk(x)
)
⇔ − log pθ(x) = logZ +

K∑
k=1

θkϕk(x) (39)

with the θk as Lagrange multipliers 37 associated with the constraints. Zθ is the (re)normalization
constant 38 so that the integral of pθ equals 1, which can be written as (Θ = (θk)k≤K ,
Φ(x) = (ϕk(x))k≤K) 39

Zθ =
∫
Rd
e−ΘT Φ(x)dx (40)

From this modeling, we can make some remarks:

— We have two ways to represent the probability density: either on one side the mo-
ments (µk)k≤K , or on the other side the parameters (θk)k≤K ;

— We can view the dot product ΘT Φ(x) as an energy 40 U(x). Now, by taking the
expectation of the right-hand side of Eq. 39, we get

H[pθ] = Ex∼pθ
[logZ] + Ex∼pθ

[Uθ(x)] = logZ + Ūθ = −Fθ + Ūθ (41)

where we have introduced the entropy H[pθ], the free energy Fθ, and the average
internal energy Ūθ of the system. This is a relation that we will find in Statistical
Physics 41. This relation can be written as

Ūθ = H[pθ] + Fθ (42)

In thermodynamics, free energy F = − logZ, one of the tools introduced by Gibbs,
depends, for example, on temperature, the number of particles, volume, generalized
variables associated with forces, and by differentiation, it allows you to find the
average energy, average pressure, average force acting on the system, and so on.
Here, we see the statistical view of these concepts.

37. NDJE. See also Sec. 8.3 of the 2018 course.
38. NDJE. In Statistical Physics, this is the Gibbs partition function.
39. NDJE. In machine learning, the vector Φ is often called the feature vector.
40. NDJE. From a notation perspective, E(x) could have been confused with expectation, and U is

used in thermodynamics for internal energy.
41. NDJE. The equation in thermodynamics involves temperature as a parameter, like TS = Ū − F .



36

3.4 Inference and Applications of Probabilistic Models

3.4.1 Inverse Problems

Once we have a probabilistic model, we can address all classical data analysis pro-
blems. The first type of problem concerns data/measurements x obtained (1) from a
signal y, transformed for example by a linear operator K assumed for simplicity, and (2)
contaminated by noise (η is a random variable). Thus, we have the following relationship
between x and y:

x = Ky + η (43)

For example, suppose we take images with a CCD sensor-equipped camera, where each
pixel, made up of a silicon photodiode, produces an electrical signal (macroscopic value)
proportional to the energy deposited by photons (at the microscopic level) during a clock
cycle. The goal then is to recover y from x to obtain, for example, higher-resolution images
from local averages. Another example in medical imaging: using X-rays in radiography
taken at different angles, we obtain projections of the material-radiation interaction (x), in
this case,K is the Radon transform 42, which needs to be inverted to obtain 3D information
about the scattering centers in the human body (y). One more example in geophysics:
after an explosion in a medium, we collect measurements on the surface (x), and we would
like to recover all rock densities in the medium (y) traversed by seismic waves. These are
inverse problems that cover a wide range of disciplines.

Let ŷ be the estimator of y, we can say that

ŷ = argmax
y

p(y|x) (44)

This is called the maximum a posteriori, also known as MAP, which is the result of a
typically Bayesian approach (a posteriori because we need to obtain the possibly para-
meterized probability first). Using Bayes’ formula:

p(y|x) = p(x|y)p(y)
p(x) (45)

42. Johann Karl August Radon (1887-1956)
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where it is customary to call 43 p(x|y) the likelihood, p(y) the prior on y, and p(x) the
evidence of the measurements x. Thus, we can write

ŷ = argmax
y

[p(x|y)p(y)] = argmax
y

[log p(x|y) + log p(y)] (46)

So, we need to be able to estimate both log p(x|y) (log-likelihood) and log p(y).

If we assume that the noise is white Gaussian with variance σ2 (η ∼ N (0, σ2)), then
it is straightforward to conclude that

x−Ky ∼ exp
(
−∥x−Ky∥

2

2σ2

)
⇒ log p(x|y) = −∥x−Ky∥

2

2σ2 + const (47)

What about the term log p(y)? It involves constructing a model for the data y. This
is where modeling the data, as described in the previous paragraphs, helps in solving
the problem (note that optimization is still required to obtain the maximum). With this
methodology, we can tackle many physics problems, for example, where the assumption
of Gaussian noise in measurements can be a good first approach.

3.4.2 Classification/Regression

We can also address classification/regression problems, where y is the sought-after
class given x the signal. The Bayes classifier is again

ŷ = argmax
y

p(y|x) = argmax
y

log p(x|y) = argmax
y

[log p(x|y) + log p(y)] (48)

However, what is "easy" in this case is obtaining log p(y). Why? In fact, we can use a
frequentist approach to a priori obtain the probabilities of each class from the available
database (e.g., ImageNet). On the other hand, what is difficult is estimating p(x|y), such
as what is p(x) (x being the pixels of an image) when we only have images of the "dog"
class? Again, this is where modeling the probability p(x|y) helps us solve this problem,
but you need to have the right model!

43. NDJE. Often, we are dealing with measurements x and parameters θ instead of y, and in this
context, the prior is the information we have a priori about these parameters, and p(θ|x) is the a posteriori
knowledge about θ once the information contained in the measurements x is taken into account.



38

Figure 11 – Schematic of linear classification. The representation Φ(x) is either obtained
a priori or learned, for example, by a neural network.

What is often used is a representation Φ(x) = {ϕ(x)k}k≤K (feature characteristics)
of the data that is relevant, followed by linear classification 44, also called logistic regression
(Fig. 11):

log p(x|y) =
K∑

k=1
θk(y)ϕ(x)k + b = ΘT (y)Φ(x) + b (49)

which is identical to the expression in Eq. 39. So, underlying this, if you have moments
µk such that

µk = Ex∼p(x|y)[ϕk(x)] (50)

then you would have a complete characterization of p(x|y) (the θk would be the Lagrange
multipliers).

So, using a linear classifier is a way of saying that you have found a data repre-
sentation that characterizes p(x|y). Typically, Φ(x) is either obtained based on a priori
arguments (e.g., symmetries/invariances, kernel methods, etc.) or through the learning of
a neural network, which may involve convolutional filters, for example.

Thus, the common theme in many problems is the determination of probability
distributions in high dimensions. Let’s see how this relates to Statistical Physics. This
will give us an intuitive foundation for concepts like energy, entropy, etc.

44. NDJE. See Sec. 7.3.3 of the 2019 course, Sec. 5.2 of the 2020 course.



39

3.5 Statistical Physics: The First Two Principles

We will explore the two principles of Thermodynamics that involve the concepts of
energy and entropy.

Regarding energy, it can be considered as a quantity transferred to a system (or
internal to it) in the form of heat, work, or interaction. We can consider kinetic energy
related to motion, various types of potential energy (derived from potentials, such as
electric, magnetic, gravitational...) which are stored in some way, and also mass energy
in relativity. The first principle is a conservation principle, which states:

First Principle: During any transformation of a closed system, the change in its
energy is equal to the amount of energy exchanged with the external environment
through heat and mechanical work transfer:

∆U = ∆Q+W (51)

Consequently, if we consider the total energy of the system and its surroundings, it
remains conserved. Similarly, if the system is isolated (no exchange), its energy remains
constant. For an isolated system, exchanges can occur between different types of energy
(e.g., kinetic-potential), which can be expressed as:

∆Ec + ∆Ep = ∆U = 0 (52)

The connection to what we discussed in the previous sections is due to Maxwell
and Boltzmann in the case of studying the kinetics of gases, a perfect gas of n particles
much smaller in size compared to their mean free path. What Boltzmann demonstrates
(his theorem H) is that the distribution of velocities over time tends toward a stationary
distribution given by the Maxwell distribution. What is initially curious (and perhaps
shocking) is that the laws of collisions considered as elastic 45 are reversible. However,
irrespective of the initial distribution of velocities, we inevitably end up with convergence
toward the Maxwell distribution. In other words, we have a macroscopic irreversible
process produced by underlying microscopic reversible processes: how is this possible?

45. NDJE. Like billiard ball collisions, as opposed to inelastic collisions like a ball falling into sand.
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In fact, the creation of entropy results from the sensitivity of collisions between two
particles, which, given their small sizes, can abruptly induce changes in direction (a form
of chaos). This is a point that has raised a lot of discussion.

3.5.1 Entropy and Irreversibility

The concept of irreversibility arises from the idea that certain physical processes
prevent systems from returning to their initial states. For example, typical cases include
the propagation of heat and, more generally, diffusion processes (microscopic scale), as
well as convection (macroscopic scale). S. Carnot (1824), followed by R. Clausius (1854)
and L. Boltzmann (1872), establish the framework of the second law of thermodynamics:

Second Principle: Every transformation of a thermodynamic system occurs with an
increase in the total entropy, which includes the entropy of the system and the external
environment. This is referred to as the creation of entropy.

∆Htot. = ∆Hsyst. + ∆Hext. = Hcreated ≥ 0 (53)

(NDJE. The system may structure itself during a transformation, and thus Hsyst.

can be negative, but this is at the expense of the disorder induced in the surroundings.
For example, the process of vapor condensation into a liquid releases heat.) The entropy
of the system, during a transformation at a constant temperature Text. set by the external
environment, can also be expressed as:

∆Hsyst. = Hcreated −∆Hext. ≥ −∆Hext. ⇒ ∆Hsyst. ≥
Qext.→syst.

Text.

(54)

Here, Qext.→syst. is the heat exchange transferred to the system from the surroun-
dings. Reversible exchanges are characterized by equality, while irreversible exchanges
result in a strict inequality (Carnot’s result). Furthermore, at the equilibrium state,
where there is no more creation of entropy (Hcreated = 0), entropy is at its maximum. We
won’t delve into all the consequences of this principle, whether from an applied perspec-
tive (e.g., thermal engines, Carnot cycle, chemical reactions, etc.) or from a philosophical
standpoint (e.g., the concept of the arrow of time).
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We will see that the probability distribution is stationary, meaning it no longer
depends on time, and all microstates accessible to the system are equiprobable. Under
these conditions, if we denote Ω as the set of accessible possible configurations for the
system, then:

P (c ∈ Ω) = 1
|Ω| , H = k log |Ω| (Boltzmann) (55)

We will revisit these concepts in the upcoming sessions.

4. Lecture 1er Feb.

During this session, we will study probabilistic entropy in both Statistical Physics
and Information Theory (See also the 2022 course). First, from Ludwig Boltzmann’s pers-
pective, entropy is related to the number of accessible states of a system (at equilibrium).
We will then see how pressure, temperature appear as macroscopic quantities defined from
entropy variations. Then, Claude Shannon’s perspective (1916-2001) will provide us with
a much more generic view of entropy, where it becomes a purely mathematical concept,
entirely related to probability distributions (independently of the context in which they
are employed), and it specifies phenomena of concentration on typical sets. Underlying
these typical sets, we find the structure of microcanonical ensembles of Boltzmann. Fur-
thermore, the notion of concentration will provide us with a framework for the intuition
that data (e.g., images) aggregates on manifolds. In another session, we will see that if
the temporal evolution of distributions is described by a Markov chain, it gives us the
second law of thermodynamics, in which entropy inexorably increases (with a condition).
Thus, physical properties, elevated to the level of principles in the manner of postulates,
somehow emerge from mathematical properties.
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4.1 Boltzmann’s Perspective: Microcanonical Ensemble

4.1.1 Maximum Entropy, Equiprobability of Microstates

We will consider a system at equilibrium, in which we fix the following state va-
riables as constants: volume V, the number of particles noted as d in this course, and the
(internal) energy U. We then consider the concept of a microstate, which consists of all
the coordinates and moments that go into the description of the system’s Hamiltonian
in classical mechanics. In quantum mechanics 46, states have quantized energies, but the
philosophy remains unchanged. The set of microstates or configurations is denoted as Ω,
and |Ω| is its cardinality.

NDJE. |Ω| is the number of configurations that give rise to systems that are cer-
tainly different but have energies within the interval [U,U + δU ]. It is also called the
thermodynamic weight. To give you an idea, it is given by the expressions

|Ω(U, d, V )| = 1∏
i h3NiNi!

∫
U≤H ≤U+δU

dΓ (classical) (56)

=
∑

U≤Uc≤U+δU

1 (quantum) (57)

with dΓ being the element of the classical phase space of degrees of freedom ∏
i d

3qid
3pi

(H the system’s Hamiltonian), and Uc a quantum Hamiltonian eigenvalue.

The second law of Thermodynamics tells us that at equilibrium, the probability of
each microstate is a constant with a value of P = 1/|Ω|. This is what we call the fundamen-
tal principle of equiprobability. L. Boltzmann then defines entropy as follows (Note that
the Boltzmann constant k, sometimes noted as kB, is equal to kB = 1,380 649× 10−23 J ·K−1,
and it is exact and defines the Kelvin.):

H(U, d, V ) = k log |Ω(U, d, V )| = −k logP (Boltzmann) (58)

How does L. Boltzmann elaborate on this definition? Indeed, the connection with the

46. NDJE. Ludwig Boltzmann had no idea that such a theory would be developed about twenty years
after his death.
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definition that gives the expression of entropy as follows:

H(U, d, V ) = −k
∑
c∈Ω

pc log pc (Gibbs) (59)

that is, a formulation more related to probabilities, was made by J. W. Gibbs in 1901.
In fact, if we define for any probability distribution (here we consider discrete states to
simplify notations), we have

Theorem 1 Uniformity of the microcanonical probability distribution, maximum
entropy

∑
c∈Ω

pc = 1, H[p] = −
∑
c∈Ω

pc log pc =⇒ max
p

H[p] = log |Ω| (60)

Proof 1.
We use the technique of Lagrange multipliers 47 to which we will return. Thus, we can
minimise −H[p] by studying the saddle point of the function

L ({pc}, λ) =
∑
c∈Ω

pc log pc + λ(
∑
c∈Ω

pc − 1) (61)

So ∀i
∂L

∂pi

= log pi + 1 + λ = 0 (62)

so log pi is a constant, so is pi, and using the constraint on the sum of pi, we conclude
that

∀c ∈ Ω, pc = 1
|Ω| =⇒ H[p] = − log |Ω| (63)

■

Therefore, the idea of a uniform distribution in the configuration space corresponds
well to the principle of maximum entropy.

47. See also Sec. 8.3 of the 2018 Course.
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Figure 12 – Diagram of two weakly interacting subsystems.

4.1.2 Thermodynamic Equilibrium

If the probability distribution is independent of time, the system is in equilibrium,
which in itself can be considered a definition of the equilibrium concept. There is another
definition, and thus we have the following equivalent definitions:

Definition 1 (Equilibrium of a System)
A system is in equilibrium

a) if the probability distribution of microstates is independent of time;

b) or if we consider subsystems of a sufficiently large size to associate them with
state variables, then they are themselves in equilibrium.

Let’s examine definition (b) where we consider two subsystems of an isolated system,
identified by the triplets of state values (U1, V1, d1) and (U2, V2, d2) (Fig. 12). We also
assume that the two systems are weakly coupled, meaning that the interactions at the
exchange surface are short-ranged and negligible compared to the interactions between
particles inside the two systems. Moreover, the statistical fluctuations of the state variables
due to exchanges are negligible. The isolation hypothesis indicates that the variables
(V, d, U)

V = V1 + V2 d = d1 + d2 U = U1 + U2 (64)
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are constants. The number of configurations |Ω| of the system composed of the two sub-
systems i = {1, 2}, under the weak coupling assumption involving independence, is given
by the relation

|Ω1+2(V, d, U)| =
∏

i

|Ω(Vi, di, Ui)| (65)

Thus, the entropy of the overall system H1+2 is nothing but the sum of the entropies of
the two subsystems, i.e.,

H1+2 = H1 + H2 (entropy additivity) (66)

At equilibrium of the overall system, entropy is constant, so dH1+2 = 0.

Let’s examine the case where {Vi, di}i = cte, then

dH1+2 =
∑

i=1,2

(
∂Hi

∂Ui

)
Vi,di

dUi (67)

Moreover, dU = 0 indicates that dU1 = −dU2, hence(
∂H1

∂U1

)
V1,d1

=
(
∂H2

∂U2

)
V2,d2

(68)

Now, the temperature of a system at equilibrium is related to entropy as follows

1
T

=
(
∂H
∂U

)
x

(69)

where x denotes the set of variables other than U (here, V and d). Therefore, at equili-
brium, we have

T1 = T2 (equilibrium) (70)

thus the temperatures of all sub-states are identical.

Furthermore, at equilibrium of the total system, with entropy H1+2 being maximal,
we have (

∂2H
∂U2

)
X

≤ 0 =⇒
(
∂T

∂U

)
X

≥ 0 (71)
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thus at equilibrium, the temperature of a subsystem increases with its internal energy.
Thus, T1(U1, X1 = cte) and T2(U2, X2 = cte) = T2(U − U1, , X2 = cte) evolve in opposite
directions as U1 changes: if U1 increases due to a transfer from 2 → 1, then T1 increases
and T2 decreases, tending to decrease the transfer (if U1 decreases, we can reason about
U2 increasing). Therefore, the transfer of energy tends to homogenize the temperatures
of the two subsystems, which is also a classical result in thermodynamics.

4.1.3 Free Energy: Variable Volume

Let’s relax the assumption that the volumes (Vi)i are constant while keeping the
variables xi other than energies and volumes constant. However, the global system is
isolated and therefore maintains its variables (U, d, V ) constant. Consequently, the total
differentials of the respective entropies of the two subsystems can be written as

∀i, dHi =
(
∂Hi

∂Ui

)
Vi,xi

dUi +
(
∂Hi

∂Vi

)
Ui,xi

dVi (72)

But dV1 = −dV2 and dU1 = −dU2, and at equilibrium dH1 + dH2 = 0, so we can deduce
that (

∂H1

∂U1

)
V1,x1

=
(
∂H2

∂U2

)
V2,x2

(
∂H1

∂V1

)
U1,x1

=
(
∂H2

∂V2

)
U2,x2

(73)

The first relation reaffirms that the temperatures of the two subsystems are equal (T1 =
T2). Using the definition of pressure P as follows

P = T

(
∂H
∂V

)
U,x

(74)

with x as the other variables, the second relation results in equality of pressures at
equilibrium

P1 = P2 (equilibrium) (75)

Note that pressure is an extensive variable like mass, the number of particles, and energy,
while temperature is an intensive variable like mass density and concentrations. The
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equality of pressures implies that at the interface between the two subsystems, there is
no work done by any force.

In general, at equilibrium with P and T fixed, the change in entropy is given by

dH = 1
T
dU + P

T
dV (76)

Thus, the change in entropy has two contributions (in our case), one related to the
change in internal energy, and the other related to the change in another quantity, here
the volume, and the coefficient of variation defines an associated variable, in this case,
pressure, normalized by temperature. This second contribution is nothing but the opposite
of external work 48 on the system, Wext. This should be related to Equation 41, where in
this case, we would identify the free energy as the contribution of external work associated
with volume change. These two components of entropy variations show a general character:

• one component that in thermodynamics is related to internal energy, which at the
microscopic level can be represented as the kinetic agitation of particles, and in
probability is represented as Uθ(x) = ΘT Φ(x);

• and a contribution that appears in thermodynamics as external work, and in pro-
bability appears through the (re)normalization constant, i.e., Fθ = − logZθ.

Hence, a kind of analogy:

Thermo. Stat.

Internal energy (kinetic) Uθ = ΘT Φ(x)

Free energy (external work) Fθ = − logZθ

1/T , P/T , ... Lagrange multipliers

What must be retained is that entropy is the central function, and its maximization des-
cribes the system in equilibrium. The question that will occupy us is to understand why
this notion emerges, where does it come from? There is something fundamental under-
lying it: macroscopic fluctuations of state variables can be neglected and will converge to

48. NDJE. the pressure force is directed outward if P is its internal pressure.
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constants, and this is done through the law of large numbers that gives the phenomenon
of concentration, but at its core, there is the notion of independence (or at least weak
correlation).

4.2 Information and Coding

4.2.1 The Law of Large Numbers

Let Ad be a random variable that depends on d, the number of observations, such
that Ad −−−→

d→∞
A. Then the convergence in probability tells us that

(
∀ε > 0, lim

d→∞
P [|Ad − A| ≤ ε] = 1

)
⇔
(
Ad

prob.−−−→
d→∞

A
)

(77)

In a way, this tells us that it is rare for Ad to deviate from its limit value A.

Now, here is the theorem in the case where the random variable, denoted X̄d, is the
sample mean of d i.i.d. random variables:

Theorem 2 (Weak Law of Large Numbers)
Let (Xi)i≤d be i.i.d. random variables, and E[Xi] = µ < ∞. If X̄d = 1

d

∑d
i=1 Xi,

then we have a convergence in probability

X̄d
prob.−−−→
d→∞

µ (78)

The proof can be found in Section 3.3 of the 2022 course, based on Bienaymé-Chebyshev’s
inequality in the case where E[X2

i ] <∞.

So we have a concentration phenomenon when dealing with i.i.d. variables. But why
does entropy come into play? For that, we need to refer to Claude Shannon’s 1948 paper
titled "A Mathematical Theory of Communication" 49.

49. C. E. Shannon, The Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October.
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf.

https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
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4.2.2 Independence and Concentration (Discrete Case)

When considering Information Theory, there are two perspectives, as S. Mallat ex-
plains: a probabilistic view, which is likely the most effective, but one can also have a
deterministic view of coding by adopting Kolmogorov’s viewpoint 50. Kolmogorov defines
the quantity of information through the size of the algorithm, executed on a Turing ma-
chine, capable of reproducing a sequence 51. These two notions are equivalent, primarily
due to concentration phenomena. However, performing calculations following Kolmogo-
rov’s approach can be very challenging, while Shannon’s perspective is well-suited for such
calculations.

Let {yk}k≤K be an alphabet with K symbols denoted asA. Let (Xi)i be i.i.d. random
variables taking their values in A, then we have:

∀i, P(Xi = yk) = p(yk) (79)

where entropy is defined as:

H = −
∑

yk∈Ω
p(yk) log p(yk) (80)

Since the probabilities p(yk) ∈ [0, 1], and entropy is maximal when all probabilities p(yk)
are equal to 1/|Ω| = 1/K, we can write:

0 ≤ H ≤ logK (81)

Now, consider the case where p(yk) = 1 for k = k0 and 0 if k ̸= k0. In this case, the
entropy is zero (H = 0). On the other hand, if ∀k, p(yk) = 1/K, then H = logK. It’s
evident that entropy is related to the concept of uncertainty: there is no uncertainty
in the first case because all random variables Xi take the value yk0 , while uncertainty is
maximal in the second case (Fig. 13).

Let’s examine the joint probability of events when drawing the Xi. Since these
50. NDJE. Andrey N. Kolmogorov, starting in 1933 following the work of Emile Borel (1871-1956) and

Henri Lebesgue (1875-1941), developed the theory of probability and established a connection between
measure and the probability of composite events.

51. For example, π has information in the sense of Kolmogorov because it is defined through a power
series that can be encoded and executed on a computer.
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Figure 13 – Two extreme scenarios of probability distributions illustrating the measu-
rement of uncertainty by the value of entropy.

variables are i.i.d., for one draw:

P(X1 = x1, X2 = x2, . . . , Xd = xd) =
d∏

i=1
P(Xi = xi) (82)

Note that here we obtain one number. However, if we perform multiple draws, P(X1, X2, . . . , Xd)
itself becomes a random variable. Nevertheless, independence gives us the same decom-
position:

P(X1, X2, . . . , Xd) =
d∏

i=1
P(Xi) (83)

Thus, by applying the law of large numbers:

−1
d

logP(X1, X2, . . . , Xd) = 1
d

d∑
i=1

(− logP(Xi))
prob.−−−→
d→∞

E[− logP(Xi)] = H[X] (84)

(NDJE. we use H[X] to signify that it’s the entropy of any random variable Xi.) The-
refore, entropy naturally emerges when dealing with independent events. Consider the
following corollary:

Theorem 3 If the (Xi) are i.i.d. with distribution P(X), taking values in A =
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{yk}k≤K associated with probabilities p(yk), then

−1
d

logP(X1, X2, . . . , Xd) prob.−−−→
d→∞

H[X] = −
K∑

k=1
p(yk) log p(yk) (85)

We can rewrite the convergence in probability as:

∀ε > 0, lim
d→∞

P
[∣∣∣∣−1

d
logP(X1, X2, . . . , Xd)−H[X]

∣∣∣∣ ≤ ε
]

= 1 (86)

This tells us that for a sufficiently large d,

P


∣∣∣∣∣∣∣∣∣∣
−1
d

logP(X1, X2, . . . , Xd)︸ ︷︷ ︸
f({Xi}i≤d)

−H[X]

∣∣∣∣∣∣∣∣∣∣
≤ ε

 ≥ 1− ε (87)

This means that the function with d variables f({Xi}i≤d) will concentrate on a surface
defined by the equation

f({Xi}i≤d) ≈ H[X] (88)

with a small thickness ε. We can see a parallel with the intuition that images of dogs/cats
aggregate on a surface in Rd. To delve further, Claude Shannon developed the concept of
a typical set.

4.2.3 Typical Set

Based on the above, we can focus on observations that will indeed (for a fixed ε)
have an expectation that is within a distance ε from the entropy. Noting {Xi}1≤i≤d = {x},
consider the set 52:

T ε
d =

{
{x} ∈ Ad,

∣∣∣∣−1
d

logP({x})−H[X]
∣∣∣∣ ≤ ε

}
(89)

52. NDJE. From a notation perspective, there might be confusion between the variable d used previously
in the course and n which is generally used in this context and in the 2022 course, for example.



52

Note that the membership condition for T ε
d can be expressed as (taking logarithms

in base 2):

2−d(H[X]+ε) ≤ P({x}) ≤ 2−d(H[X]−ε) (90)

This means that up to a non-negligible ε (which governs the convergence of concen-
tration), the probability P({x}) is a constant given by:

P({x}) ≈ 2−dH[X] (91)

This indicates that within the typical set, probabilities are almost uniform. Note
that due to the additivity of entropy H[{x}] = dH[X], which helps understand the scaling.

Moreover, we have the following properties. Firstly, for any ε > 0, and d large enough
as per Eq. 87:

P[{x} ∈ T ε
d ] ≥ 1− ε (92)

That is to say, almost all realizations will belong to T ε
d , hence the term "typical

set." Secondly, the cardinality of the typical set satisfies 53:

(1− ε)2d(H[X]−ε) ≤ |T ε
d | ≤ 2d(H[X]+ε) (93)

This leads to a relation:

P({x}) ≈ 1
|T ε

d |
(94)

This relation echoes a similar one in Statistical Physics (Th. 1), establishing a close
relationship between the microcanonical ensemble Ω and the typical set T ε

d . The re-
lationships Eqs. 92, 93 form the basis of the famous fundamental principle of equipro-
bability, defined as a consequence of a probability concentration phenomenon for typi-
cal sets (asymptotic equipartition theorem). Entropy provides the number of possible

53. NDJE. The proof can be found in the 2022 course Sec. 6.4.
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Figure 14 – Illustration of a typical set.

states/configurations that have a non-negligible probability, even if it can be very low
(NDJE. |Ω| can be very, very large).

4.2.4 Coding (Typical)

Another concept that we revisit this year concerns coding, and how does entropy
serve us in this context? Let X ∈ Ad, it can either be in the typical set T ε

d with a "high"
probability or outside it with a much lower probability (Fig. 14). So, we can think of the
following code (called the typical code):

— Either 1 bit that codes whether X ∈ T ε
d or X ̸∈ T ε

d ;

— If X ∈ T ε
d , then it can be anywhere, so the code must identify all members of the

set. Its length is thus ℓ(X) = ⌈log2 |T ε
d |⌉ = ⌈d(H[X] + ε)⌉;

— Or X ̸∈ T ε
d , and we assume that each of the d components takes values in A of size

K, so we need a code of length ℓ(X) =
⌈
log2 |Ad|

⌉
= ⌈d log2 K⌉.

In a way, the idea is to use shorter codes when the probability is high and longer
codes when the probability is low.

What we will optimize is the average number of bits. Hence the following theo-
rem:
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Theorem 4 (Shannon’s Bound)
The average number of bits per component of X ∈ Ad from a typical code is such
that:

R = 1
d

∑
X∈Ad

ℓ(X)P(X) ≤ H[X] + Cε (95)

Proof 4. For any X, if we decompose membership in the typical set T ε
d or not, we have:

R = 1
d

∑
X∈T ε

d

ℓ(X)P(X) + 1
d

∑
X ̸∈T ε

d

ℓ(X)P(X)

= 1
d

(⌈d(H[X] + ε)⌉+ 1)
 ∑

X∈T ε
d

P(X)
+ 1

d
(⌈d log2 K⌉+ 1)

 ∑
X ̸∈T ε

d

P(X)
 (96)

Now, ∑X∈T ε
d
P(X) ≤ 1 and ∑X ̸∈T ε

d
P(X) ≤ ε, and also ⌈x⌉ = ⌊x⌋+ 1 ≤ x+ 1, so:

R ≤ 1
d

(d(H[X] + ε) + 2) + 1
d

(d log2 K + 2)ε ≤ H[X] + εC ′ + 2
d

(97)

which, for sufficiently large d, provides the result 54. ■

So, the average number of bits per symbol from the typical code is on the order of the

entropy of the probability distribution of each symbol. In fact, we have an upper bound,
and the question that arises is whether we can do better? The hope is to find sets that
are more efficient than typical sets because, otherwise, Shannon’s coding is the best we
can do.

So, can we find such more efficient sets, or in other words, sets that concentrate
even more probability on a smaller number of events than what is given by entropy?

Theorem 5 (Optimality of Typical Sets)
Let X = (x1, . . . , xd) where the xi are iid random variables with distribution p(x)

54. NDJE. There was a minor error in the 2022 course’s proof, which didn’t affect the conclusion, but
I’m correcting it this year.
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(e.g., the values of xi belong to A of size K). Let Bd
δ be the smallest set such that:

P(X ∈ Bd
δ ) ≥ 1− δ (98)

then, for all δ, δ′ > 0:

P(X ∈ Bd
δ ) ≥ 1− δ ⇒ 1

d
log2 |Bd

δ | ≥ H[X]− δ′ (99)

The proof given in the 2022 course Sec. 6.6 involves the analysis of the intersection between
Bd

δ and T ε
d . It shows that both sets have identical sizes (the intersection probability is

nearly 1). So, the minimum-sized set that concentrates the observations is indeed the
set whose size is given by entropy, namely the typical set. Therefore, we cannot find a
code that surpasses the typical code, and the bound given by Theorem 4 is optimal. At
the core of this reasoning, we have the law of large numbers, which gives us relation 84,
which is itself the result of the independence of the Xi.

Now, the typical code is not practical because one needs to know whether an element
belongs to the typical set or not. We had seen in the 2022 course instantaneous entropy
codes (Shannon, Huffman) 55. What will occupy us more this year is extending these
results to the continuous case, i.e., when the xi take values in R and not in a discrete
alphabet (NDJE. pixel intensities of an image, or sound samples are generally digitized,
but we can imagine that the quantization step is much smaller than the dynamic range).

5. Lecture 8 Feb.

Recall what we have seen; entropy is a mathematical concept that has transcended
its original domain (as in Statistical Physics) thanks to the work of Cl. Shannon, who
made it an intrinsic property of probabilities. Especially in high dimensions, it helps
us understand concentration phenomena, which are deeply connected to the concept
of statistical independence. However, we need to delve into cases more relevant to real-
world data, where structure exists as soon as we start observing images of objects/scenes,

55. See also some implementations here https://github.com/jecampagne/cours_mallat_cdf/tree/
main/cours2022

https://github.com/jecampagne/cours_mallat_cdf/tree/main/cours2022
https://github.com/jecampagne/cours_mallat_cdf/tree/main/cours2022
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music/speech waveforms, text, and so on. Thus, we will explore how the notion of entropy
from the previous sections can generalize in the case of non-independent variables and
whether there are still concentration phenomena. We will see that this is indeed the case,
provided additional assumptions of stationarity and ergodicity. The temporal evolution
of entropy will be considered in the Markovian framework.

5.1 Differential Entropy

In the previous session, we discussed entropy in the case of variables taking values in
a discrete alphabet. It generalizes to the case of continuous values. Consider the following
definition 56:

Definition 2 (Differential Entropy)
Let X be a random variable with probability density with respect to Lebesgue measure
dx, denoted as p(x) (x ∈ R or Rn). The differential entropy is then defined as:

Hd = Ex∼p(x)[− log p(x)] = −
∫
Rn
p(x) log p(x) dx (100)

Unlike its "discrete" counterpart, differential entropy is not necessarily positive. A
classic example is considering a 1D uniform distribution, x ∼ U [0, a], where the differential
entropy is Hd = log a, which becomes negative when a < 1.

Another more interesting example is that of Gaussian distributions:

X ∼ N (µ, σ2)⇒ Hd = 1
2 + 1

2 log
(
2πσ2

)
= 1

2 log(2πe) + log σ (101)

So, when σ ≪ 1, Hd ≪ 0. Note that the "log σ" term reflects a general aspect of the
role of a scale factor, as:

∀α > 0, Hd(αX) = Hd(X) + logα (102)

56. NDJE. I opt for the change of notation introduced by S. Mallat from d to n for the dimension of
space, knowing that d here pertains to differential. Also, this way, we keep the notations from the 2022
Course.
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This follows from the fact that 1
α
p( x

α
) = p(x). Increasing the variance increases un-

certainty about the variable, thus increasing entropy. Note that the measurement interval
defines the relativity aspect of entropy’s definition.

Now, armed with this new tool, we will revisit the properties seen in the discrete
case.

5.2 Asymptotic Equipartition in the Continuous Case, Typical Sets

If we return to the case of independent random variables, we have the following
theorem, which can be related to Th. 3 seen in the "discrete" case:

Theorem 6 If the (Xi)i≤n are n iid random variables taking their values in R
(∀i,Xi ∼ p), then

− 1
n

log p(x1, . . . , xn) = − 1
n

n∑
i=1

log p(xi)
prob.−−−→
n→∞

Hd(x) = Ex∼p(x)[− log p(x)]

= −
∫
R
p(x) log p(x)dx (103)

Therefore,

∀ε ≥ 0, P
(∣∣∣∣− 1

n
log p(x1, . . . , xn)−Hd(x)

∣∣∣∣ ≤ ε
)
≥ 1− ε (104)

This property naturally leads us to the definition of typical sets, which is identical to the
discrete case (Sec. 4.2.3):

T ε
n =

{
{X} ∈ Rn,

∣∣∣∣−1
d

log p({X})−Hd(x)
∣∣∣∣ ≤ ε

}
(105)

So, we are almost certain that {X} is an element of the typical set:

P({X} ∈ T ε
n) ≥ 1− ε (106)

and we will rediscover the two properties seen in the discrete case.
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Firstly, the expression 105 tells us that

2−n(Hd(x)+ε) ≤ p({X}) ≤ 2−n(Hd(x)−ε) (107)

which provides uniformity of probability over the typical set up to ε.

Additionally, the size of the typical set, which cannot be defined by counting its
elements, has the following property:

Theorem 7 (Typical Set Volume)
Let the volume of a set Ω be relative to the Lebesgue measure:

V (Ω) :=
∫

Ω
dx

For sufficiently large n,

(1− ε)2n(Hd(x)−ε) ≤ V (T ε
n) ≤ 2n(Hd(x)+ε) (108)

Proof 7.

First,

1 = P({X} ∈ Rn) ≥ P({X} ∈ T ε
n) =

∫
T ε

n

p(x)dx ≥ 2−n(Hd(x)+ε)
∫

T ε
n

dx (109)

so,
V (T ε

n) ≤ 2n(Hd(x)+ε) (110)

Secondly,

1− ε ≤ P({X} ∈ T ε
n) =

∫
T ε

n

p(x)dx ≤ 2−n(Hd)(x)−ε
∫

T ε
n

dx (111)

so,
V (T ε

n) ≥ (1− ε)2n(Hd(x)−ε) (112)

■

It is also found that, approximately, the probability within a typical set is inversely pro-
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portional to its size:
P({X} ∈ T ε

n) ≈ 1
V (T ε

n) (113)

What we need to remember is that everything is based on the property of convergence
in probability, which is itself based on the independence of the random variables (Xi).
We are certain that data in high dimensions will end up in T ε

n with uniform probability
governed by the differential entropy. This outlines the support of deterministic intuition
in a probabilistic approach. Another result, which we won’t prove, is that you can’t do
better in this independence of variables framework.

As mentioned before, we need to move beyond this framework because most of the
time, data interacts. For instance, consider the pixels in an image of an object (vase,
table, etc.): the contour of this object necessarily connects several pixels, possibly on
a large scale, and to recognize this object among a scene, you must account for these
connections/interactions. This is where things become more subtle. Let’s keep in mind that
entropy is a measure of uncertainty about the sequence of n random variables (x1, . . . , xn).
If there are dependencies between these variables, they are not all independent, and there
is redundancy, which means less uncertainty, so entropy must decrease, resulting in a
smaller size for typical sets. This is a good thing, especially for coding purposes 57. So,
let’s delve into the concept of dependency.

5.3 Dependency and Entropy (Joint, Conditional, Relative)

We will use conditional probabilities to define an entropy. The discrete case 58 will
provide us with a framework to become familiar while allowing us to handle positive entro-
pies. The continuous framework requires finding the right definition using the Kullback-
Leibler divergence.

57. In a side note, S. Mallat tells us that although you can’t code a real number with a finite number of
bits, if you accept a small quantization error, you can proceed as in the discrete case. These are problems
of Sphere packing. You can refer to the 2022 Course, Sec. 8. NDJE. In this Sphere packing theme, it’s
worth mentioning that a Fields Medal in 2022 was awarded to Ukrainian-born mathematician Maryna
Viazovska: "[She] is awarded the Fields Medal 2022 for the proof that the E8 lattice provides the densest
packing of identical spheres in 8 dimensions, and further contributions to related extremal problems and
interpolation problems in Fourier analysis."

58. NDJE. See the 2022 course (Sec. 6.2)
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Definition 3 The joint entropy of two random variables X and Y with values in an
alphabet A is defined as:

H(X, Y ) := −E(x,y)∼p[log p(X, Y )] = −
∑
k,k′

p(X = ak, Y = ak′) log p(X = ak, Y = ak′)

(114)
and the conditional entropy is defined as:

H(Y |X) :=
∑

k

p(X = ak)H(Y |X = ak)

= −
∑
k,k′

p(X = ak, Y = ak′) log p(Y = ak′|X = ak)

= −E(x,y)∼p[log(Y |X)] (115)

A property connects these two entropies:

Property 1
H(X, Y ) = H(X) + H(Y |X) (116)

If the variables are independent, we then recover the additivity law of entropies. The
proof (Course 2022 Sec. 6.2) relies on the conditional probability form of Bayes’ theorem.
Indeed 59,

H(X, Y )−H(X) = −
∑
x,y

p(x, y) log p(x, y) +
∑

x

p(x) log p(x)

= −
∑
x,y

p(x, y) log p(x, y) +
∑

x

(∑
y

p(x, y)
)

log p(x)

= −
∑
x,y

p(x, y) log p(x, y)
p(x) = −

∑
x,y

p(x, y) log p(y|x)

= H(Y |X) (117)

Let’s now introduce the relative entropy, also known as the Kullback-Leibler diver-
gence 60. It is widely used in probability to measure the suitability between two distribu-

59. To simplify notation, p(x, y) = p(X = x, Y = y), the same applies to p(x) and p(y|x).
60. See also the 2019 course (Sec. 7.2.3)
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tions, hence its misleading name as the Kullback-Leibler distance (it is not symmetric).

Definition 4 (Kullback-Leibler)
If the support a of q includes the support of p, then

DKL(p∥q) :=
∫
Rn
p(x) log p(x)

q(x)dx = EX∼p

[
log p(X)

q(X)

]
(118)

The integral can be transformed into a sum if necessary.
a. By convention, we set 0 log 0 = 0 and 0 log(0/0) = 0.

We can view DKL(p∥q) as a measure of coding inefficiency. The size of the optimal
code for (x1, . . . , xn) is on the order of the entropy of the probability associated with xi.
For example, if this is p, the average code size is on the order of Ep[− log p]. But if we
make a mistake 61, thinking that x ∼ q, then we obtain an average size of Ep[− log q] (cf.
x is always drawn according to unknown p). Therefore, the difference between the two
sizes is nothing other than DKL(p∥q).

The important properties of DKL(p∥q) are as follows:

• DKL(p∥q) ̸= DKL(q∥p), which comes from the very definition showing that it is not
a distance;

• DKL(p∥q) ≥ 0, and DKL(p∥q) = 0⇔ p = q.

To prove the second property, we can use the following theorem:

Theorem 8 (Jensen’s Inequality)
Let f be a convex function in one dimension (second derivative positive or non-

negative). Then, for any random variable X,

E[f(X)] ≥ f(E[X]) (119)

and if f is strictly convex (second derivative strictly positive), we have equality if

61. This is a common case because we model data without being certain that the model reflects reality.
It is indeed a philosophical debate but not only that.
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Figure 15 – Schematic of entropy H(X) and H(Y ), conditional entropy H(Y |X), mutual
information, and joint entropy.

and only if the only value taken by X is E[X].

Thus, since the function log is strictly concave, and therefore − log is strictly convex,
we have:

DKL(p∥q) = −
∫
p(x) log q(x)

p(x)dx

= Ep

[
− log q(x)

p(x)

]
≥ − logEp

[
q(x)
p(x)

]
= − log(1) = 0 (120)

The strict concavity of the logarithm tells us that the inequality above becomes equality if
and only if p(x)/q(x) takes a unique value. Let c be this value, since

∫
p(x)dx =

∫
q(x)dx =

1 then c = 1, and thus we have the second result of the theorem 62. To understand
dependence, let’s use the concept of mutual information. But before that, we can prove
the following proposition:

Property 2
H(X|Y ) ≤ H(X) (121)

In other words, conditioning reduces uncertainty.

62. NDJE. We could also have used the fact that for all x > 0, − log x ≥ 1 − x, with equality being
true if and only if x = 1.
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This can be proven as follows:

∆ = H(X)−H(X|Y ) = H(X) + H(Y )−H(X, Y )
=
∑
x,y

p(x, y) log p(x, y)−
∑

x

p(x) log p(x)−
∑

y

p(y) log p(y)

=
∑
x,y

[p(x, y) log p(x, y)− p(x, y) log p(x)− p(x, y) log p(y)]

=
∑
x,y

p(x, y) log p(x, y)
p(x)p(y) = DKL(p(x, y)∥p(x)p(y)) ≥ 0 (122)

In passing, we can see that equality prevails if the random variables X and Y are in-
dependent. From there, it becomes natural to define mutual information (Shannon) as
follows:

Definition 5 (Mutual Information)
Let two random variables X and Y have a joint probability of p(x, y) and marginals
p(x), p(y). The mutual information is the following quantity:

I(X, Y ) := D(p(x, y)∥p(x)p(y)) = H(X) + H(Y )−H(X, Y ) ≥ 0 (123)

If there is conditioning, entropy is reduced, which is reflected in I(X, Y ) > 0, quantifying
to some extent the action brought by knowing one variable on another.

A brief summary of these concepts in the form of a diagram is provided in Figure 15.
Now, we can tackle the problem of entropy calculation in high dimensions when variables
have interdependencies.

5.4 Equipartition with Dependence

5.4.1 Average Entropy, Entropy Rate

When we are in dimension n, the definition of entropy itself is not problematic. Let
there be n random variables {X}n = (X1, . . . , Xn) (here taking values in an alphabet):

H({X}n) = −E{X}n∼p[log p({X}n)] (124)
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The point of interest is how this behaves as n tends towards infinity. We have the intuition
from statistical physics where entropy is an extensive variable that grows with the number
of particles. Therefore, by studying the average of H({X}), we might expect a constant.

Definition 6 entropy rate
The entropy rate (entropy rate) is called the limit, if it exists, as follows:

H(χ) := lim
n→∞

1
n
H({X}n) (125)

It is the average entropy per element/symbol.

In the independent case, by the additivity of entropy:

1
n
H({X}n) = 1

n

n∑
i=1

H(Xi) (126)

Does the limit exist? If they have the same law, then the limit exists and gives us
asymptotic equipartition. But otherwise, there is no reason for the limit to exist a priori.
Take the case where each Xi is a Bernoulli variable with probability ai for 1 (ai different
from one Xi to another).

H[B(a)] = −a log(a)− (1− a) log(1− a) =

0 a = 1
1 a = 1/2

(127)

We can then construct a series of Xi for which the average oscillates in [0, 1] without
obtaining a limit 63.

That being said, except in the case where all variables Xi are independent, conver-
gence will appear in the context of stationary processes. This assumption is not restrictive;
on the contrary, if we take an image with a CCD camera, the distribution law of the n
random variables consisting of the intensities of the n pixels is roughly the same whether
we point the camera here or there (cf. image and translated image). If we pixelate an

63. NDJE. One attempt might be, for example, since we can make H[Xi] ∈ {0, 1}, the current averages
are elements of [0, 1]. Then, we can consider the value of the average at step k; then complete the sequence
of Xi (i > k) with 1’s to get as close as we want to 1 (from below), then complete the series with 0’s to
get as close as we want to 0 (from above), and so on.
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entire scene and extract batches of n pixels translated relative to each other, then the
assumption tells us that p(X1, . . . , Xn) = p(X1+t, . . . , Xn+t). Of course, this assumption
is false as soon as we perform operations like centering images of faces, numbers, galaxies,
etc. So be cautious, but the assumption of stationarity related to translation invariance
remains well satisfied in practice.

Let’s go into detail and start by specifying stationarity.

Definition 7 stationarity
A random process is said to be stationary if and only if the joint probability of any
sequence X1, X2, . . . , Xn is translation-invariant:

∀(n, k) ∀(x1, . . . , xn), p(X1 = x1, X2 = x2, . . . , Xn = xn)
= p(X1+k = x1, X2+k = x2, . . . , Xn+k = xn) (128)

In particular:
∀k, p(X1 = x1) = p(X1+k = x1) (129)

This means that the distribution of X1 is the same as any other variable Xj, ensuring
the convergence of the average entropies of the Xi and hence the existence of H(χ).
Similarly,

p(X1 = x1|X2 = x2) = p(X1 = x1, X2 = x2)
p(X2 = x2)

= p(X1+k = x1, X2+k = x2)
p(X2+k = x2)

= p(X1+k = x1|X2+k = x2) (130)

This can be generalized to conditional probabilities p(Xn|X1, . . . , Xn−1), for example.

As a small example, where the Xi take values in an alphabet of K symbols with
uniform probability 1/K, the stationarity assumption gives us H(χ) = logK. However,
in a language like French, letter frequencies are not uniform, and the probability of two
consecutive letters is not equal to the product of the probabilities of each. So... it’s a
different context. However, we will define another average that is more manageable than
this average entropy.
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5.4.2 Average Conditional Entropy, Another Entropy Rate

If we have a sequence of random variables X1, . . . , Xn and we want to code it, one
method is to do it iteratively: we start by coding X1, then we code X2 knowing X1,
then X3 knowing X2, X1, and so on. Conditional entropy H(Xn|X1, . . . , Xn−1) involves
conditional probability. The question is whether, as n tends to infinity, this conditional
entropy converges to a limit. It will then be the additional information that variable
Xn provides compared to all the information already collected with the previous n − 1
variables.

Theorem 9 In the case of a stationary process, firstly H(χ) exists, and secondly:

H′(χ) := lim
n→∞

H(Xn|X1, . . . , Xn−1) = H(χ) (131)

Proof 9. The proof starts by noting that:

H(Xn|X1, . . . , Xn−1) ≤ H(Xn−1|X1, . . . , Xn−2) (132)

Indeed:

H(Xn|X1, . . . , Xn−1) ≤ H(Xn|X2, . . . , Xn−1) (Eq. 121)
≤ H(Xn−1|X1, . . . , Xn−2) (Def. 7) (133)

Therefore, we have a sequence of positive values (discrete case) that decrease, so there is
convergence, and H′(χ) exists. Next:

1
n
H(X1, . . . , Xn) = 1

n

n∑
i=1

H(Xi|X1 . . . , Xi−1) (134)

which we obtain by iterating Eq. 116. If we take the average, the left-hand side tends to
H(χ). For the right-hand side, we can use Cesàro’s theorem:

Theorem 10 (Cesàro’s sum)
Let (ai)i>0 be a sequence of numbers (R or even C). If the sequence converges to µ,
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then the sequence of averages with general term:

bn = 1
n

n∑
i=1

ai (135)

also converges, and its limit is µ.

Proof 10. The proof is as follows. First, the convergence of the sequence (ai) allows us
to say that for all ε ≥ 0, there exists Nε such that for all i ≥ Nε, we have |ai − µ| ≤ ε.
Now consider n > Nε:

|bn − µ| =
∣∣∣∣∣ 1n

n∑
i=1

(ai − µ)
∣∣∣∣∣ =

∣∣∣∣∣∣ 1n
Nε−1∑
i=1

(ai − µ) + 1
n

n∑
Nε

(ai − µ)

∣∣∣∣∣∣
≤
∣∣∣∣∣ 1n

Nε∑
i=1

(ai − µ)
∣∣∣∣∣+

∣∣∣∣∣∣ 1n
n∑

i=Nε+1
(ai − µ)

∣∣∣∣∣∣
≤
∣∣∣∣∣ 1n

Nε∑
i=1

(ai − µ)
∣∣∣∣∣+ 1

n

n∑
i=Nε+1

|ai − µ|

≤ 1
n

∣∣∣∣∣
Nε∑
i=1

(ai − µ)
∣∣∣∣∣+ n−Nε

n
ε︸ ︷︷ ︸

≤ε

(136)

The sum in the first term on the right does not depend on n, so there exists a N ′ε ≥ Nε

such that for all n ≥ N ′ε
1
n

∣∣∣∣∣
Nε∑
i=1

(ai − µ)
∣∣∣∣∣ ≤ ε

Therefore, for all n ≥ N ′ε, |bn − µ| ≤ 2ε, which gives us limn→∞ bn = µ (note that we can
make the inequality bound ε instead of 2ε). ■

So we can conclude that the right-hand side of Eq. 134 converges to H′(χ), and thus
we conclude that:

H(χ) = H′(χ)

■

We will see how these results give us access to an equipartition theorem; in particular,
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we will need to add an ergodicity assumption.

5.5 NDJE. A Brief Guide in the Continuous Setting

Here, I compile some definitions and relationships in the case of random variables
taking values in R. In the context of differential entropy, we introduced the following:

Hd(X) = −
∫
p(x) log p(x)dx differential entropy (137)

Hd(X, Y ) = −
∫∫

p(x, y) log p(x, y)dxdy joint differential entropy (138)

Hd(X|Y ) = −
∫∫

p(x, y) log p(x|y)dxdy conditional differential entropy (139)

I(X, Y ) = DKL(p(x, y)∥p(x)p(y)) ≥ 0 mutual information (140)

with the following relationships:

Hd(X, Y ) = Hd(X|Y ) + Hd(Y ) = Hd(Y |X) + Hd(X) (141)
Hd(X|Y ) ≤ Hd(X) (142)
I(X, Y ) = Hd(X) + Hd(Y )−Hd(X, Y ) (143)

Most of these relationships have been proven in the case of random variables with values
in a discrete alphabet but are also valid in the continuous case.

Similarly, for X = (X1, . . . , Xn), we have the following relationships:

Hd(X + c) = Hd(X) ∀c ∈ R (144)
Hd(αX) = Hd(X) + log |α| ∀α ̸= 0 (145)
Hd(AX) = Hd(X) + log | det A| ∀A ∈ GLn(R) (146)

6. Lecture 15 Feb.

NDJE. I’d like to mention that I’ve set up a GitHub repository for some numeri-
cal applications illustrating the course. You can access it at https://colab.research.google.

https://colab.research.google.com/github/jecampagne/cours_mallat_cdf
https://colab.research.google.com/github/jecampagne/cours_mallat_cdf
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com/github/ jecampagne/cours_mallat_cdf . For 2023, the notebooks can be directly exe-
cuted on Google Colab. The migration of notebooks from 2022 is also planned.

Continuing from the previous section, we will explore more complex systems where
variables exhibit interdependencies. It’s important to note that this scenario is highly
relevant when dealing with structured data. The key concept to keep in mind is that of
the entropy rate (Definition 6), first defined as the limit for n→∞ of the average joint
entropy of n random variables taking their values in χ (e.g., n pixels of an image or n
samples of a sound waveform). As we’ve seen, for stationary processes, it can also be
defined as the limit of a sequence of conditional entropies through Theorem 9.

We will investigate the implications for coding and data concentration phenomena
within a typical set. However, the stationarity assumption will need to be supplemented by
ergodicity, leading us to delve into the important Shannon–McMillan–Breiman theorem,
which provides insights into the concentration and uniformity of probabilities over typical
sets whose characteristics are specified by entropy. In practice, we will study the significant
example of Markov chains, which are typical of a physical system where time is discretized,
and the state at time t is entirely specified by memoryless variables. We will then explore
how the concept of irreversibility emerges in this context and how entropy increases over
time, constituting the second law of thermodynamics.

6.1 Asymptotic Equipartition with Dependence: The Condition

In the independent case (Sec. 4.2.2), the joint probability P(X1, . . . , Xn) is a product,
so the logarithm is a sum of n terms, and the average converges to the expected value of
the logarithm of the probability, leading to concentration and the natural emergence of
entropy in this case (Th. 3 (discrete case), 6 (continuous case)). Now, let’s see how these
concepts appear in the case of dependence.

It is still possible to write

P(X1, . . . , Xn) = P(X1)P(X2|X1) . . .P(Xn|X1, . . . , Xn−1) (147)

https://colab.research.google.com/github/jecampagne/cours_mallat_cdf
https://colab.research.google.com/github/jecampagne/cours_mallat_cdf
https://colab.research.google.com/github/jecampagne/cours_mallat_cdf
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and therefore

− 1
n

logP(X1, . . . , Xn) = − 1
n

n∑
i=1

logP(Xi|X1, . . . , Xi−1) (148)

It’s clear that conditional entropy (Def. 3) 64 will appear in the right-hand side.

Let’s imagine for a moment that we are in a situation where

− 1
n

logP(X1, . . . , Xn) prob.−−−→
n→∞

H(χ) (149)

then using reasoning developed, for example, in the continuous case (Sec. 5.2), we can
define the typical set T ε

n whose volume/size is of the order of V (T ε
n) ≈ 2nH(χ), and the

probability that data belongs to this set is quasi-uniform with a value of p({X}) ≈
1/V (T ε

n). In this case, we indeed have a data concentration phenomenon within a typical
set with quasi-uniform probability. This has immediate consequences, for example, in
coding, as the average number of bits required per symbol is on the order of H(χ), even
in the presence of dependencies.

So, the emergence of the concentration phenomenon and its consequences are
much more general than in the case of independence of random variables, but it is
still necessary to ensure convergence as n → ∞. One should envision this asymptotic
convergence, for example, as if we had a single image but with the number of pixels
tending towards infinity.

6.2 Ergodicity, Birkhoff’s Theorem

At some point, we’ll return to some basic notions to introduce the concept of ergo-
dicity (often referred to as the ergodic hypothesis), first introduced by L. Boltzmann in
1871 for his kinetic theory of gases. We define a probability space by a triplet (Ω,B,P),
with Ω being the universe, B the set of measurable sets (sigma-algebra) relative to the
probability measure P . A random variable X is then a (measurable) function from Ω to
χ a measurable space. The probability associated with X, denoted as PX , is defined in
such a way that the probability that the random variable takes values in B ⊂ χ is the

64. or its differential counterpart Sec. 5.5.
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Figure 16 – Diagram illustrating the definition of a random variable.

probability of the set X−1(B) (Fig. 16)

PX(B) = P(X−1(B)) = P({ω ∈ Ω, x = X(ω) ∈ B}) (150)

To this framework, we add the stationarity hypothesis (Def. 7), meaning that if we take a
collection of random variables, they are all of the same distribution, and joint probabilities
are translation-invariant. Here, this translates to: for any A ∈ B,

P(T−1(A)) = P(A) (stationarity) (151)

(NDJE. one can think of T as a time translation). Now, to this, the ergodicity hypothesis
adds

for any A ∈ B such that T−1(A) = A⇔

either P(A) = 0
or P(A) = 1

(ergodicity) (152)

This ergodicity hypothesis tells us that if we apply the transformation T iteratively, we
effectively cover the entire set, and we cannot be trapped in a subpart of the set. In fact,
if we have a system with 2 subsystems invariant under T , the ergodic hypothesis forces
one of the two subsystems to have measure zero; we can almost never be trapped in that
one, and we live in the other subsystem. In a sense, in this subsystem with measure 1, we
have a mixing notion. Note that if we have a transformation that does not preserve the
measure, these notions do not apply.
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Figure 17 – Diagram illustrating the process of ergodic averaging.

The two properties of stationarity and ergodicity yield the following theorem 65:

Theorem 11 (Birkhoff)

1
n

n∑
i=1

X(T i(ω)) p.s−−−→
n→∞

E[X] =
∫

Ω
X(ω)dP(ω) (153)

where p.s (almost surely) means with probability 1 a.
a. P({ω ∈ Ω : limn→∞ Xn(ω) = X(ω)}) = 1

We understand that when we iterate T , we traverse the space of points in the Ω space,
which, by action of X, traverses the χ space (Fig. 17). The ergodicity hypothesis then
tells us that the empirical average of the values of X calculated on transformed points
converges to the expectation of X with respect to the measure P.

So, if we define the following:

Definition 8 Let T be an ergodic transformation, we say that the random variables
(X1, . . . , Xn) such that Xi = X ◦ T i form an ergodic process.

then Birkhoff’s Theorem simply gives us the p.s convergence of the empirical average

(X1, . . . , Xn) ergodic ⇒ 1
n

n∑
i=1

Xi
p.s−−−→

n→∞
E[X] (154)

65. George David Birkhoff (1884-1944)
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Figure 18 – Calculation of the average dwell time in A ⊂ Ω.

A particular case is the dwell time in a set A ⊂ Ω. For this, we note 1A as the
indicator of A, and let’s examine what the average of values 1A(T k(ω)) yields (Fig. 18).
Birkhoff’s Theorem then gives us (P(Ω) = 1 here)

1
n

n∑
k=1

1A(T k(ω)) p.s−−−→
n→∞

E(1A) =
∫

Ω
1A(ω)dP(ω) = P(A) (dwell time) (155)

Therefore, the average number of returns to the set A by applying the ergodic transfor-
mation T gives us the probability of being in A, i.e., its measure relative to the probability
distribution, in a sense, its size with respect to this measure.

This fundamental property of convergence of sums to expectations is found in phy-
sical processes.

6.3 Shannon–McMillan–Breiman Theorem

To return to our initial problem of convergence Eq. 149, suppose that the variables
(X1, . . . , Xn) form an ergodic process (Def. 8). Certainly, the logarithm of the conditional
probability P(Xi|X1 . . . , Xi−1) is a random variable, but we have a boundary problem
due to Xi, which prevents us from operating a translation on the indices (cf. stationarity
hypothesis). If Xi depended only on Xi−ℓ . . . , Xi−1 (i > ℓ), we could attempt a translation,
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and with the help of ergodicity, we could then have the p.s convergence, hence probability
convergence. Here is the theorem that ensures the appearance of concentration phenomena
on typical sets:

Theorem 12 (Shannon–McMillan–Breiman) Let (X1, . . . , Xn) be a stationary and
ergodic process with probability P

− 1
n

logP(X1, . . . , Xn) p.s−−−→
n→∞

H(χ) (156)

Proof 12. We will outline the main steps of the proof. If we return to the decomposition
of the joint probability

− 1
n

logP(X1, . . . , Xn) = − 1
n

n∑
i=1

logP(Xi|X1, . . . , Xi−1) (157)

we need to study the generic term of the sum on the right-hand side. The associated
conditional entropy, namely its expectation, that is ({X} = (X1, . . . , Xn))

H(Xi|Xi−1, . . . , X1) = E{X}∼P({X})[− logP(Xi|Xi−1, . . . , X1)] (158)

can be bounded by recalling that entropy increases (decreases) if we decrease (increase)
the conditioning (Eq. 121 and Sec. 5.5). Thus, for 1 < ℓ

E[− logP(Xi|Xi−ℓ, . . . , X1)] ≤ H(Xi|Xi−1, . . . , X1) ≤ E[− logP(Xi|Xi−1, . . . , X−∞)]
(159)

if we extend the probability law for negative indices up to −∞. The proof 66 is quite
technical. However, the philosophy is to play with this bounding to demonstrate the
convergence of the lower and upper bounds. This is done using the ergodicity hypothesis
and Birkhoff’s Theorem. Finally, by showing that the two limits are equal, this ensures
the convergence of the conditional entropy taken in between. ■

This theorem is central. For the record, it provides access to all notions of concen-
66. See Sec. 16.8 of the book by Th. Cover and J. Thomas given as an introduction this year.
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tration, typical set, uniformity of probability, with entropy at its core, which sets the
characteristics of these notions. The consequences are immediate, such as in coding, for
example. However, this theorem may seem abstract, and to better understand its deep
significance, we will study it in the context of Markov chains. This tool is very important
both conceptually - in understanding stochastic dynamic systems, the limit of Markov
chains gives access to stochastic differential equations - and algorithmically for sampling
probability distributions in high dimensions (e.g., Monte Carlo Markov Chain). So, we
will see an overview of Markov chains that will help us access the Second Law of Ther-
modynamics with the growth of entropy.

6.4 Markov Chains 67

6.4.1 Definitions and Properties

The guiding underlying idea is the assumption that the future is accessible by kno-
wing only the present (i.e., no memory). So, here’s the following definition:

Definition 9 (Markov Chain)
A process (X1, . . . , Xn) is a Markov chain if

∀(xi)i≤n+1 ∈ χn+1 P(Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) =
P(Xn+1 = xn+1|Xn = xn) (160)

A practical remark: if we have a finite-sized past (e.g., ℓ) knowing that Xn is the present
value, then we can define a process Yn = (Xn, . . . , Xn−ℓ) which will be Markovian. An
immediate consequence of this definition is (note that we later use the notation with (xi),

67. Andrei Andreyevich Markov (1856-1922)
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often referred to as "state" at time/step "i"):

P(X1 = x1, . . . , Xn = xn) = p(x1, . . . , xn) = p(x1)
n∏

i=2
p(xi|xi−1, . . . , x1)

= p(x1)︸ ︷︷ ︸
initial distribution

n∏
i=2

p(xi|xi−1)︸ ︷︷ ︸
transition probability

(161)

which introduces the notion of transition probability between two neighboring states. The
stationarity hypothesis introduces the notion of a stationary or homogeneous Markov
chain:

Definition 10 (Stationary Markov Chain)
A Markov chain is stationary if

∀(x, y) ∈ χ2,∀n, P(Xn+1 = y|Xn = x) = P(Xn = y|Xn−1 = x) (162)

so the transition probabilities do not depend on the time step n, which we can denote
as Px,y (be mindful of the order, think "x influences y").

Property 3
In the case of a discrete alphabet (i.e., χ is discrete), then (Px,y)(x,y)∈χ2 is a sto-

chastic transition matrix that has the following properties:

— Firstly,

∀x ∈ χ,
∑
y∈χ

Px,y = 1 (stochastic matrix) (163)

which comes from the fact that p(y|x) = p(x, y)/p(x) and ∑y p(x, y) = p(x).

— Secondly, by noting that a

∀y ∈ χ, P(Xn+1 = y) =
∑
x∈χ

P(Xn = x)Px,y (164)

we can use matrix notation by grouping the probabilities at step n as a column
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Figure 19 – Stationary 2-state Markov process.

vector µn, so

µn := (P(Xn = x))x∈χ =⇒ µn+1 = P T µn (165)

a. We can easily see this by expressing that P(Xn+1 = y) is a marginal of the joint probability
of (Xn+1, Xn).

When invoking the ergodicity hypothesis, Birkhoff’s Theorem (Th. 11) that ensures
convergence invites us to study the iterates of the transformation P = (Px,y), which, for
example, yields

µn+k = (P T )k µn (166)

The study of the eigenvalues of this transition matrix will inform us about the concepts
of equilibrium and invariant measure.

6.4.2 Some Examples

6.4.2.1 2-State Model

A first simple example (Fig. 19) of a Markovian process is one where the transition
matrix is given by

Px,y =

1− α α

β 1− β

 (167)

6.4.2.2 Random Walk

More complex scenarios can be studied using generalized random walks that intro-
duce the concept of independent hidden variables.
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Figure 20 – 1D Random Walk: Xn = Xn−1+Zn where Zn follows a Bernoulli distribution
{+1,−1} (p(+1) = 1/2). All five chains start at the origin x1 = 0. See the notebook
randomwalk.ipynb.

Theorem 13 Let {Zi}i≥1 be iid random variables independent of (Xj)j≥1, where the
state at step n depends on a recurrent function such that

Xn+1 = f(Xn, Zn+1) (168)

This is typical of stochastic differential equations where Zn is a kind of noise that
induces random transitions. Then, (X1, . . . , Xn) is a stationary Markov chain.

Proof 13. We need to show the absence of memory, and

P(Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) = P(f(xn, Zn+1) = xn+1|Xn = xn, . . . , X1 = x1)
(169)

Now, (Xn, . . . , X1) depends on (Zn, . . . , Z1, X1), and Zn+1 is independent of these va-
riables, so

P(Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) = P(f(Xn = xn, Zn+1) = xn+1)︸ ︷︷ ︸
independent of states 1,...,n−1

= P(Xn+1 = xn+1|Xn = xn) (170)

So, we indeed have a Markov process. For the process to be stationary, we need that
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∀(x, y) ∈ χ2

P(Xn+1 = y|Xn = x) = P(Xn = y|Xn−1 = x)⇔ P(f(x, Zn+1) = y) = P(f(x, Zn) = y)
(171)

Now,
P(f(x, Zn) = y) =

∫
1f(x,z)=y dPZn(z) (172)

but since the (Zi)i are identically distributed, the right-hand side is independent of n.
Thus, we have a stationary Markov chain. ■

An example of a random walk on Z with Zn being Rademacher variables {+1,−1}
(p(+1) = 1/2) is given in Figure 20:

Xn+1 = Xn + Zn+1 (173)

You can think of a stochastic automaton as a Turing machine that changes state every
time it reads a new symbol (instruction), and the transition depends on a random variable
(hidden/unknown).

6.4.2.3 Ehrenfest’s Urn

Another model closer to physics is the Ehrenfest’s Urn 68 (1907), introduced by
Afanasyeva and Paul, which models the diffusion of a perfect gas through a porous wall.
It is illustrated in Figure 21. If initially, all balls are in urn A (nA(t = 0) = N), what
happens after some time t, knowing that at each discrete time step, a ball is randomly
chosen and moved to the other urn: if it was in urn A, it goes to urn B and vice versa. The
graph on the right (notebook urne_Ehrenfest.ipynb) confirms our everyday experience
where we observe a homogenization into equal distributions in both urns. There is an
irreversible phenomenon at play. However, this doesn’t mean that a ball cannot cross
the barrier; on average, there are just as many going from A → B as from B → A after
a "certain time". But this irreversibility behavior when N is small doesn’t appear, as
illustrated in Figure 22; there is a high likelihood of returning to the initial state! This is

68. Paul Ehrenfest (1880-1933) made significant contributions, particularly in quantum mechanics and
relativity, with his wife Afanasyeva and daughter Tatyana.
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Figure 21 – Markov process called "Ehrenfest’s urn" modeling a perfect gas diffusing
through a porous wall. At each step, a ball is randomly selected and moved from one
compartment A → B or B → A. On the right, the number of balls in urn A after a
certain time t. (notebook urne_Ehrenfest.ipynb)

extremely unlikely when N ≫ 1. In fact, it can be shown that the average time between
two returns to the initial state is ⟨τ⟩ = 2N .

The modeling becomes straightforward if Xn = nA(t = n), and by defining Xn = x,
then

Xn+1 =

x− 1 prob. x
N

x+ 1 prob. 1− x
N

= Xn + Zn+1 (174)

where Zn+1 ∈ {−1,+1}, but it’s not a Rademacher variable because

P(Zn+1 = −1|Xn = x) = x

N
(175)

so there’s no independence of the Zn+1 distribution concerning the state Xn. Thus, while
being a Markov chain, the process is not a random walk as defined in the previous section.
It’s interesting to see under what conditions equilibrium and irreversibility phenomena
appear.
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Figure 22 – Same experiment as Figure 21 but with N = 4. In this case, returning to
the initial state is not negligible at all.

6.5 Invariant Law or Stationary Law: Equilibrium

In the context of Markov processes, as seen, for example, in Ehrenfest’s urn, where
probability distributions evolve over time (n), one might wonder if, after some time (n ≥
no), there is an asymptotic form that makes the system invariant. Consider the following
definition:

Definition 11 (invariant law)
An invariant law, denoted as Π, is a probability measure such that a (Prop. 3,

Eqs. 163, 164) (P is the transition matrix (Px,y)(x,y)∈χ2)

∑
x∈χ

Π(x) = 1 Π(y) =
∑
x∈χ

Π(x)Px,y (176)

In other words,
Π = P T Π (177)

meaning that Π is an invariant under the action of the transition matrix; it is an
eigenvector associated with the eigenvalue λ = 1.

a. Note that this is as if we took the limit n→∞ in Equation 164.
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For example, in the 2-state process ({x, y}) (Sec. 6.4.2.1), for reference

Px,y =

1− α α

β 1− β

 (178)

whose transpose has 2 eigenvalues (1, 1 − α − β). So, we do indeed have an invariant
distribution (λ = 1), satisfying not only the unity condition but also

−αΠ(x) + βΠ(y) = 0 (179)

hence

Π(x) = β

α + β
Π(y) = α

α + β
(180)

In general, we have |χ| equations (the unity condition is redundant as P satisfies it as
well) with |χ| unknowns. So, unless you end up in a degenerate case, there exists a unique
invariant distribution.

In the case of the Ehrenfest’s urn (Sec. 6.4.2.3), if x is the number of balls in box
A, then the equation governing Π(x) is given by

Π(x) = Π(x− 1)Px−1,x + Π(x+ 1)Px+1,x (181)

= Π(x− 1)
(

1− x− 1
N

)
+ Π(x+ 1)x+ 1

N
(182)

If we fix the condition Π(0) = Π(1)× 1
N

, then it can be shown that

Π(x) =
(
N

x

)(1
2

)N

(183)

This is a binomial distribution with probability p = 1/2. This confirms our intuition that
at equilibrium, the balls are evenly distributed between the two boxes. See an illustration
of this binomial distribution for N = 10 and N = 50 in Figure 23. When N is large, the
distribution converges to a normal distribution N (µ = N/2;σ2 = N/4).

The probability measure Π is stable for the system; any transformation via P
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Figure 23 – Invariant distribution in the case where Ehrenfest’s urn contains N = 10 or
N = 50 balls.

leaves it unchanged. What happens when we start from an unbalanced situation? In
the numerical simulations from the previous section (Sec. 6.4.2.3), we noticed that the
system can, on average, evolve towards this stable situation, but there are particularly
severe fluctuations when N is small. However, when N is large, we observe a kind of
irreversibility, meaning there is very little (if any in practice) possibility of ending up in a
state where all balls are in the same compartment. So, more generally, we are interested in
the system’s dynamics to understand when and how it can converge to a stable situation.
The concept of the reversibility of laws while observing an irreversibility phenomenon
was quite paradoxical in the early days of thermodynamics. And the concept of entropy
(Carnot) emerged in connection with observations of physical systems. Let’s see what this
looks like from a mathematical perspective.

6.6 Stationary/Invariant Law and Reversibility

The underlying idea is that the existence of the invariant law depends on reversibility.
But how do we define the reversibility of a Markov chain? For a Markov chain, we define
the transition from Xn to Xn+1, so reversing time requires defining how we go from Xn+1

to Xn.

Definition 12 (Inverse Matrix)
Consider a stationary process (Def. 10) with a matrix Px,y = P(Xn+1 = y|Xn = x)

(∀(x, y) ∈ χ2). If there exists a stationary law Π(x) ̸= 0, meaning all x are accessible,
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then we define the following matrix Qx,y:

Qx,y = Π(y)Py,x

Π(x) (184)

Then Q is a stochastic matrix (Eq. 163). Indeed, since Π = P T Π, then Πx = ∑
y ΠyPy,x,

so ∑y Qx,y = 1. Moreover, Q is the transition matrix from Xn+1 to Xn for the invariant
distribution. Using Bayes’ theorem, we have

P(Xn = y|Xn+1 = x) = P(Xn+1 = x|Xn = y)P(Xn = y)
P(Xn+1 = x)

= Py,x
P(Xn = y)
P(Xn+1 = x) (185)

If we have initialized the process with the invariant distribution Π, then

P(Xn = y|Xn+1 = x) = Py,x
Π(y)
Π(x) = Qx,y (186)

So, if the Markov chain is generated under the conditions where X1 ∼ Π, and we apply
P successively to obtain X2, . . . , Xn, all the variables Xi follow the distribution law Π,
and conversely, we can go back from Xn to Xn−1, . . . , X1 by applying Q. This can be
summarized by this small diagram:

X1(Π)
P−←−−−−−−−−−−−−−−→−
Q

XN(Π)

Note that the law Π is such that

Π = P T Π = QT Π (187)

but in any case, it is not necessary to conclude that P = Q. Hence the following defini-
tion, which specifies the framework of interest for reversible physical laws (except weak
interactions, for example 69)

69. NDJE. The laws of the Standard Model conserve CPT with very high precision (C charge conju-
gation, P parity, and T time reversal, but since the 1964 experiments on neutral Kaons, we know that
weak interactions break CP invariance and thus T invariance.
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Definition 13 (Reversible Markov Chain)
We say that a stationary Markov chain with transition matrix P is reversible relative
to an invariant probability Π, if, under the conditions of Definition 12, Q = P , which
translates to a

Π(x)Px,y = Π(y)Py,x (detailed balance) (188)

(Note that the global balance is given by the equation Π = P T Π) which is represented
by the small diagram:

X1(Π) = x
Px,y−←−−−−−−−−−−−−−−−−−−−−→−
Py,x

X2(Π) = y

a. NDJE. J. C. Maxwell introduced this notion in 1867 in his study of gas kinetics (principle
of sufficient reason).

The following property is particularly interesting in practice

Property 4 (Existence of an Invariant Measure)
If a stationary Markov process with transition probability P satisfies a detailed ba-
lance, then Π is an invariant measure (i.e., a stationary law).

The proof is simple; we know that ∀x, y, Π(x)Px,y = Π(y)Py,x, summing over y on both
sides ∑

y

Π(y)Py,x =
∑

y

Π(x)Px,y = Π(x)
∑

y

Px,y︸ ︷︷ ︸
=1 (stochastic matrix)

= Π(x) (189)

which is nothing else than Π = P T Π, so Π is indeed invariant (Prop. 11).

Random walks and Ehrenfest’s urn are examples of reversible processes. In the next
session, we will see how the ergodicity hypothesis ensures that all states are explored
and that the chain does not remain stuck in a recurrent state. Thus, this will ensure
convergence to the invariant measure. So, with these properties in hand, we will have
access to the entropy rate, the dynamics of entropy, and ultimately the evolution towards
maximum entropy.
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6.7 NDJE. Stochastic Matrix, Stationary Law, and Reversibility

We have seen that a stochastic matrix P satisfies by definition ∀x,
∑

y Px,y = 1 (Eq. 163).

• If P = P T , this necessarily implies the existence of a uniform stationary law Π, and the process is
reversible. Indeed, if Π(y) = C ̸= 0 for all y, Π(x) = C =

∑
y Py,xΠ(y) gives

∑
y Px,y = 1, which

is true.

• If we have a stochastic matrix P that additionally satisfies
∑

y Py,x = 1 for all x, we call it bi-
stochastic, and by revisiting the previous proof, we show that the uniform law is stationary. The
difference is that the process is not necessarily reversible 70, because in this case, we can have
Q = P T ̸= P . An example of such a situation is given by a process governed by the following
matrices P and Q:

P =


0 1 0

0 0 1

1 0 0

 Q = P T =


0 0 1

1 0 0

0 1 0

 ̸= P (190)

which can be represented by the diagram in Fig. 24.

1

23

P

P

P

Q

Q

Q

Figure 24 – Markov process with forward transition matrices P and backward transition
matrices Q.

70. An example of a 3-state bi-stochastic case where Q = P T and thus reversible is, for instance:

P =


1/2 1/2 0

1/2 0 1/2

0 1/2 1/2


.
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7. Lecture 22 Feb.

In this section, we will study the dynamics of a system, represented as a Markov
chain, as it tends towards equilibrium, where entropy reaches its maximum. Recall that
in this context (Definition 9), the system’s future is conditioned only on its present state,
meaning it does not depend on its past states. Typically, we encounter this behavior when
discretizing differential equations where only the first derivative with respect to time is
involved. Additionally, we will consider stationary chains (Def. 10), where the transition
probability from Xn to Xn+1 does not depend on "time". In this case, we have a potentially
infinite matrix 71 denoted as (Px,y)(x,y)∈χ2 (hereafter referred to as P ).

As a reminder, Px,y is a stochastic matrix that satisfies a normalization relation over
y (Eq. 163). This matrix governs the dynamics of the chain generation. We have seen that
if we denote µn = (P(Xn = x))x∈χ, then (Eq. 165)

µn+1 = P Tµn

At equilibrium (if it exists), there is an invariant measure Π that satisfies the equation 72

(Definition 11)
Π = P T Π

This is an eigenvector of P T with eigenvalue λ = 1. This invariant measure tells us that
if at the initial time t = 1, the system, for example, the set of velocities of gas particles,
is such that X1 ∼ Π, then at time t = n, Xn ∼ Π as well, which is the definition of an
equilibrium state.

The concept of reversibility led us to consider the matrix Q (Definition 12) defined
from P and the invariant measure Π as follows:

Qx,y = Py,x
Π(y)
Π(x)

It reverses the system’s evolution (time reversal). In the scenario where a probability

71. Mnemonic: "x influences y".
72. NDJE. One can also use the transpose ΠT = ΠT P .
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distribution satisfies the so-called detailed balance relation (Definition 13, Eq. 188)

Π(x)Px,y = Π(y)Py,x

then Π is an invariant measure. This can be formulated as "there are as many states
transitioning from x to y as there are states transitioning from y to x".

7.1 Random Walk on an Undirected Graph

Let’s consider undirected graphs (Fig. 25) where, by definition, transitions x →
y have the same weight as transitions y → x. These graphs can represent transition
probabilities of stationary Markov chains.

1

2

3

4

Figure 25 – Example of an undirected graph where, for any pair (x, y), the transition
x→ y has the same weight as the transition y → x.

The elements of the matrix P are defined as

Px,y = Wx,y∑
z Wx,z

(191)

which means we normalize by the sum of weights of arrows leaving from x, as shown in
the diagram below:
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12

3

4

w1,2

w1,1
w1,3

w1,4

What about the invariant measure? Let’s follow this reasoning: Consider the sum of
weights of all arrows pointing to x:

Wx :=
∑

y

Wy,x (192)

This represents a kind of measure of the attraction to x. Normalize it by ∑
x Wx =∑

x,y Wx,y := W to obtain a probability, and then define

Π(x) = Wx

W
(193)

Then, we observe that

Π(x)Px,y =
∑

z Wz,x

W
× Wx,y∑

z Wx,z

(194)

Now, for any pair (x, z), Wz,x = Wx,z, so we have

Π(x)Px,y = Wx,y

W
= Wy,x

W
= Π(y)Py,x (195)

Thus, Π satisfies detailed balance, making it an invariant measure.

This particular case of undirected graphs that yield reversible Markov chains is the
one commonly encountered in physics and is of primary interest. However, one might
wonder if the stationary law (invariant measure) always exists. In the general case, we
have Shannon–McMillan–Breiman theorem (Th. 12) that ensures almost sure convergence
of− 1

n
logP(X1, . . . , Xn) and leads to the phenomenon of concentration on typical sets. But

let’s see how ergodicity comes into play in the Markovian framework (Birkhoff, Th. 11).
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7.2 Ergodicity and Markov Chain

Recall that in the context of an ergodic process governed by a transformation law
T , we reach state Xn by applying the transformation T to state X1 a total of n times,
and more generally, Xn+k = T kXn. By Birkhoff’s theorem, this assures us that (Eq. 154)

(X1, . . . , Xn) ergodic ⇒ 1
n

n∑
i=1

Xi
p.s−−−→

n→∞
E[X]

Now, let’s introduce the following definitions that will allow us to ensure the existence of
the stationary law.

Definition 14 (Irreducible Chain)
A Markov chain is irreducible if we can transition from any state x to any other
state y, that is

∀(x, y) ∈ χ2, Px,y > 0 (196)

Note that there may not necessarily be a direct link between x and y. For example, in
the scheme 25, state "4" has no direct connection to states "2" and "3," yet the chain is
irreducible. If equation 155 gives us the residence time of a Markov chain in a set A, let’s
define here the first return time to any state.

Definition 15 (First Return Time)
For a state X1 = x, we define the "time" Tx

Tx = inf{n;Xn = x} (197)

if we cannot reach x, then Tx = +∞.

NDJE. One can get an idea, for example: we randomly draw a state x1 ∈ χ at time t = 1
according to the distribution of X1; then to determine the new state x2 at time t = 2, we
randomly draw according to the probabilities (Px1,x)x∈χ of the transition matrix P , and so
on. We note when we find the initial state again, let’s call it n(1). We repeat this exercise K
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times, and Tx is the minimum time among the (n(k))k≤K, or rather, the infimum obtained
as we consider K = +∞.

If there is a finite number of states, and all are accessible from x1, then Tx is finite.
But in the case of an infinite number of states, the question arises. Note that Tx is itself
a random variable. Even if we always start from the same initial state, with each new
evolution of the Markov chain, the successive intermediate states are randomly drawn
according to P before returning to x1. In other words, there are several possible paths
that start from x1 and return to it. So, consider the following definition.

Definition 16 (Positive Recurrent State)
A state x is said to be positive recurrent if the expected value of its return time is
finite a

Ex[Tx] <∞ (198)
a. NDJE. keeping in mind P(X1 = x) = 1, i.e., that we always begin the chain’s evolutions

from state x.

This means that in the case of an irreducible chain, starting from state x, we can return
to it an arbitrarily large number of times with a frequency of 1/Tx, which measures the
attractiveness of state x. However, this attractiveness changes depending on x; some states
attract more arrows than others. In the case of the random walk, this is the underlying
philosophy behind the definition of Wx. It’s tempting to wonder if the stationary law is
related to this notion of return time.

Theorem 14 (Ergodicity)
Let (Xn) be a Markov chain, irreducible and positively recurrent. Then,

1. considering the average of the number of times Xk = x

1
n

n∑
k=1

1Xk=x
p.s−−−→

n→∞
Π(x) > 0 (199)

where Π(x) is an invariant measure;

2. the previous invariant measure is the unique invariant measure;

3. for any function f such that ∑x |f(x)|Π(x) < ∞, Birkhoff’s theorem tells us
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that
1
n

n∑
k=1

f(Xk) p.s−−−→
n→∞

∑
x

f(x)Π(x) = EX∼Π[f(X)] (200)

If we start from x1 at t = 1 by drawing X1 according to its distribution,
we calculate f(x), then we transition the state from t = 1 to t = 2 and
calculate f(x2), and so on until f(xn), then we calculate the empirical average
of (f(xi))i≤n. When n tends to infinity, the result is identical to averaging
f(x) if we draw x according to the invariant law Π. In other words, temporal
averaging is identical to ensemble averaging. In fact, if we add that the chain
is aperiodic, then any starting measure converges to the invariant law.

The proof of this theorem is left for another course. It is important because if we
have a process described by the evolution of a Markov chain, under the two assumptions
of irreducibility and positive recurrence, then there exists an equilibrium state to which
the process converges (in distribution). This provides access to the equilibrium entropy.

7.3 Entropy of an Equilibrium Markov Chain

We will revisit concepts of entropy rates discussed in sections 5.4.1, 5.4.2, and in
particular Theorem 9 applicable to stationary processes:

H(χ) = H′(χ) = lim
n→∞

H(Xn|Xn−1, . . . , X1) (201)

In the case of Markov chains, the problem simplifies because conditional entropy reduces
to H(Xn|Xn−1). Furthermore, in the stationary case, this entropy does not depend on n, it
is equal, for example, to H(X2|X1). At equilibrium, X2 and X1 have the same distribution,
namely Π. Therefore, according to the definition of conditional entropy 73 (Definition 3),
we have:

H(′)(χ) = H(X2|X1) =
∑
x∈χ

P(X1 = x)H(X2|X1 = x) (202)

73. NDJE. there may be changes in notation along the way.
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Now, at equilibrium P(X1 = x) = Π(x). So, considering that:

H(X2|X1 = x) = −
∑
y∈χ

P(X2 = y|X1 = x) logP(X2 = y|X1 = x)

= −
∑

y

Px,y logPx,y (203)

It follows:

H(′)(χ) = −
∑

(x,y)∈χ

Π(x)Px,y logPx,y (204)

Thus, with a stationary equilibrium Markov chain, we can explicitly calculate every-
thing. The next question is how the process evolves when it’s not at equilibrium, and
where does the Second Law of Thermodynamics come from?

7.4 Markov Chain and the 2nd Law of Thermodynamics

As a preamble, let’s recall that if we consider Markov processes, this framework is
well-suited for physical processes.

To recap, Boltzmann’s perspective (Sec. 4.1) led to considering the entropy of a
system with fixed energy (at equilibrium) as the logarithm of the number of accessible
microstates, because the probability is uniform. What we will discover is that indeed,
when the equilibrium probability distribution is uniform, entropy increases towards its
maximum. However, we will also realize that if the equilibrium probability distribution
is not uniform, then there is no increase in entropy. So, be cautious.

Consider, at time n, two distributions µn = (P(Xn = x))x∈χ and µ′n. What is the
evolution of these distributions when they are governed by the same "transition proba-
bility matrix" (Px,y)(x,y)∈χ2? So, at time n, we have (µn, µ

′
n), and at time n + 1, we have

(µn+1, µ
′
n+1). It is interesting to compare the evolution of the Kullback-Leibler divergence

between these distributions (Definition 4). We know that the distance is non-negative.
What we will show is that the distance decreases as a function of n.
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Theorem 15 (convergence of distributions)
If µn

P−−→ µn+1 and µ′n
P−−→ µ′n+1 then

DKL(µn∥µ′n) ≥ DKL(µn+1∥µ′n+1) (205)

Proof 15.
If we consider two random variables Xn and Xn+1, we can evaluate their joint probability,
denoted here 74 as p(Xn, Xn+1) in the case of the evolution of µ, and q(Xn, Xn+1) in the
case of µ′. What about their divergence?

DKL(p(Xn, Xn+1)∥q(Xn, Xn+1)) =
∑
x,y

p(Xn = x,Xn+1 = y) log p(Xn = x,Xn+1 = y)
q(Xn = x,Xn+1 = y)

=
∑
x,y

p(Xn = x)p(Xn+1 = y|Xn = x) log p(Xn = x)p(Xn+1 = y|Xn = x)
q(Xn = x)q(Xn+1 = y|Xn = x)

=
∑
x,y

p(Xn = x)p(Xn+1 = y|Xn = x) log p(Xn = x)
q(Xn = x)

+
∑
x,y

p(Xn = x)p(Xn+1 = y|Xn = x) log p(Xn+1 = y|Xn = x)
q(Xn+1 = y|Xn = x)

=
∑

x

p(Xn = x) log p(Xn = x)
q(Xn = x)

=1︷ ︸︸ ︷∑
y

p(Xn+1 = y|Xn = x)

+
∑

x

p(Xn = x)
∑

y

p(Xn+1 = y|Xn = x) log p(Xn+1 = y|Xn = x)
q(Xn+1 = y|Xn = x)

The first term is none other than DKL(p(Xn)∥q(Xn)). As for the second term, p(Xn+1 =
y|Xn = x) = q(Xn+1 = y|Xn = x) = Px,y, because it’s the same (forward) transition
probability matrix governing the evolution of both chains, so the right-hand second term
is zero. Thus,

DKL(p(Xn, Xn+1)∥q(Xn, Xn+1)) = DKL(p(Xn)∥q(Xn)) (206)

74. NDJE. we are trying to simplify notations...



95

We could equally write

DKL(p(Xn, Xn+1)∥q(Xn, Xn+1))

=
∑
xy

p(Xn+1 = x)p(Xn = y|Xn+1 = x) log p(Xn+1 = x)p(Xn = y|Xn+1 = x)
q(Xn+1 = x)q(Xn = y|Xn+1 = x)

= DKL(p(Xn+1)∥q(Xn+1))

+
∑

x

p(Xn+1 = x)
∑

y

p(Xn = y|Xn+1 = x) log p(Xn = y|Xn+1 = x)
q(Xn = y|Xn+1 = x)

Now, p(Xn = y|Xn+1 = x) and q(Xn = y|Xn+1 = x) are governed by backward transition
matrices, which might not be the same (we are not at equilibrium), so the right-hand
second term is not necessarily zero. However, this term can be written as the expectation
of DKL(p(Xn = y|Xn+1 = x)∥q(Xn = y|Xn+1 = x)), so this term is non-negative. Thus,

DKL(p(Xn)∥q(Xn)) ≥ DKL(p(Xn+1)∥q(Xn+1)) (207)

■

So, the evolution of chains with the same forward transition probabilities brings
their probability distributions closer together over time.

A special case of the theorem is when one of the two distributions is the invariant
measure, e.g., ∀n, µ′n = Π. Then,

∀n, 0 ≤ DKL(µn+1∥Π) ≤ DKL(µn∥Π) (208)

An even more specific case is when the invariant measure is the uniform distribution,
meaning Π(x) is independent of x ∈ χ, and it’s equal to 1/|χ|. Then,

DKL(µn∥Π) =
∑

x

p(Xn = x) log p(Xn = x)
Π(x) = −H[µn]− log |χ| (209)

and thus,
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Theorem 16 (entropy growth)
If µn

P−−→ µn+1, and there exists a uniform invariant measure, then

H[µn+1] ≥ H[µn] (210)

In cases where Π is indeed an invariant measure but not uniform, then the sequence
of divergences DKL(µn∥Π) will converge (a decreasing positive sequence) but the entropy
of µ∞ is not maximal. So, one may ask: under what conditions is the invariant distribution
uniform? To answer this, we need to provide additional characteristics to the Markov
process.

Definition 17 (bi-stochastic matrix)
Let P = (Px,y)(x,y)∈χ2, it is bi-stochastic if and only if

∑
y

Px,y = 1 and
∑

x

Px,y = 1 (211)

So, we have the following properties:

Property 5

1) If the invariant measure Π is uniform, then P is bi-stochastic.

2) If P is bi-stochastic, then the uniform measure is invariant.

Indeed, for 1), P is stochastic by definition, and moreover:

Π = P T Π⇒ Π(y) = 1
|χ|

=
∑

x

Π(x)Px,y = 1
|χ|

∑
x

Px,y (212)

So, ∑x Px,y = 1. For 2), we just refer to the previous expression to conclude immediately.

We have a mathematical framework that consolidates the intuition from physics. It
tells us that entropy increases as time progresses. If the system is of a Markovian type,
then at each step of the time evolution, conditioned on state n, state n+ 1 becomes more
uncertain. The distributions approach the invariant distribution that spreads probabilities
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over available microstates. The attained entropy is maximum if the invariant distribution
is uniform (i.e., maximum spreading). And the tool that served us is the relative entropy.

Now, we will return to modeling high-dimensional data, with the idea that if this
data concentrates on surfaces, there is likely an underlying entropy dynamics at play.
However, we will return to Statistical Physics with a "canonical" perspective to get an
idea. We will end up with richer distributions than the uniform distribution.

7.5 Macrocanonical Ensemble

This concept was introduced by J. W. Gibbs in his 1901 treatise (see note 5). He
considers a system S in contact with a large reservoir R, with no exchange of matter
(assumption of very weak interaction). Typically, the reservoir serves to fix the tempe-
rature. Thus, there are energy exchanges between S and R. Additionally, we consider
T = S + R to be completely isolated and at equilibrium. Therefore 75,

UT = Const = UR + U (213)

If we are interested in energy exchanges δU between S and R, there will be fluctuations
that depend on the temperature 76 T . At equilibrium, the total entropy is maximized and
decomposes as (see Definition 1),

H[T ] = H[R] + H, dH[T ] = 0 (equilibrium) (214)

and all else being equal, such as volume V , number of particles (d) (see Sec. 4.1.2), we
have 77,

dH[T ] =
(
∂H[R]
∂UR

)
xR

(UR) dUR +
(
∂H
∂U

)
x

(U) dU (215)

75. We drop the index R for the notation of quantities related to the "small" system.
76. Recall that in the microcanonical case, T is related to the derivative of entropy with respect to the

system’s energy.
77. NDJE. I denote

(
∂f
∂x

)
z
(xo) as the partial derivative of f(x, z) with respect to x, holding z fixed and

evaluated at (xo, z).
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Since dUR = −dU , it follows that(
∂H[R]
∂UR

)
xR

(UR) =
(
∂H
∂U

)
x

(U) (216)

However, there is a difference compared to the equilibrium situation described in Section
4.1.2: we have a very large reservoir and a relatively small system. In particular, dUT ≈
dUR ≫ U . Thus, (

∂H[R]
∂UR

)
xR

(UR) ≈
(
∂H[T ]
∂UT

)
xT

(UT ) = 1
T

(217)

which defines the macrocanonical temperature. How does this condition the states of the
(small) system?

We know that the total system is in a microcanonical equilibrium, so all accessible
possible states are equiprobable. Among all these states, we count those that fix the energy
of the small system to the value Um, and thus fix the energy of the reservoir to the value
UR = UT −Um. Let ΩR(UT −Um) be the set of reservoir states (|Ω| being the cardinality),
Ω(Um) be the set of states of the small system, and ΩT (UT ) be the set of states for the
entire system. The probability that the small system has an energy (microcanonical) Um

is given by
P(Um) = |Ω(Um)||ΩR(UT − Um)|

|ΩT (UT )| (218)

Now, the micro entropy H of a system is proportional to log |Ω|, and we know that it is
an extensive quantity proportional to the number of particles present in the system. The
reservoir assumption thus makes its statistical weight much greater than that of the small
system. Consequently, log |Ω(Um)| is negligible, and log |ΩR | ≈ log |ΩT |, so 78

logP(Um) ≈ HT (UT − Um)−HT (UT ) + Cte

= −Um

(
∂HT

∂UT

)
(UT ) + Cte + . . . (219)

78. NDJE. The . . . primarily represent a term in Um/CT with C being the heat capacity of the reservoir,
which is very large by nature.
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The first term reveals the inverse of the canonical temperature β = 1/T , so 79

P(Um) ≈ Z−1 e−βUm (220)

We find the Maxwell-Boltzmann distribution in the case of particle velocities in an ideal
gas, and Z is the normalization constant that Gibbs calls the partition function:

Z =
∑

states
U=Um

e−βUm (221)

Therefore, the energy fluctuations (and thus exchanges with the reservoir) of the small
system depend on the temperature, that is, the variation of entropy of the reservoir with
respect to energy, which does not fluctuate.

This is the perspective of Statistical Physics; let’s now explore the mathematical
perspective to understand where these exponential laws come from.

7.6 Principle of Maximum Entropy

This is a work undertaken by Edwin Thompson Jaynes (1922-98) in 1957, where he
introduced a principle to attempt to reformulate Statistical Mechanics, especially with
the aim of addressing out-of-equilibrium problems. Jaynes placed himself in the context
of Claude Shannon’s Information Theory, where entropy is a concept detached from any
physical system. The problem posed is: when we have observations ϕk(x) where x repre-
sents an image, a sound, etc., and ϕk can be any function we wish to calculate from x,
what can be said about the average/expectation?

Mn(ϕk(x)) = 1
n

n∑
i=1

ϕk(xi) (222)

We know that if the (xi)i are iid random variables, then the law of large numbers tells
us that Mn converges to the expectation. However, what is the value of p(x), i.e., the
(probability) density of x? We would like to construct a model.

79. NDJE. You should interpret T as kBT if you want to place it in the context of thermodynamics.
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Laplace’s perspective 80 would be to roughly say: when we know nothing, we can
consider the observations as equally probable. This can be understood in a finite discrete
case, but what about an infinite continuous case? The uniform distribution over R poses
a problem (a distribution), and the empirical mean does not converge. So, how do we
generalize this "intuitive" idea? In fact, the key is to replace uniformity of probabilities
with maximizing uncertainty. In other words, we will try to find the probability p(x) that
spreads out the most, or in other words, imposes the least underlying constraints outside
of the observations. Hence, the emergence of entropy.

In fact, if we impose that for two independent random variables

H(X, Y ) = H(X) + H(Y ) (223)

and that H(X) ≥ 0 (in the case of values in an alphabet), Claude Shannon in his 1948
article shows 81 that entropy is, up to a constant, equal to

H = −
∑

i

pi log pi (224)

We can formulate the problem as follows: what is the probability p(x) such that

1. we have a series of observed empirical means

Mn(ϕk(x)) = 1
n

n∑
i=1

ϕk(xi) (225)

2. and the entropy, defined as

H[p] =

−
∑

x p(x) log p(x) (discrete)
−
∫
p(x) log p(x) dx (continuous)

(226)

is maximum.

80. NDJE. "The probability of the existence of an event is simply the ratio of the number of favorable
cases to that of all possible cases when we see no reason why one of these cases would occur rather than
the other." Extracted from Gérard Jorland https://doi.org/10.4000/ccrh.2772.

81. See the comment in Course 2022 Sec. 6.3

https://doi.org/10.4000/ccrh.2772
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Now, if x ∼ p, the expectation of ϕk(x) is simply

Ex∼p[ϕk(x)] =
∫
ϕk(x)p(x)dx (227)

Therefore, we will consider the following problem:

Theorem 17 (Gibbs)
If there exists a probability distribution p such that

(µk = Ex∼p[ϕk(x)])k≤K (constraints), p = argmax
p

H[p] (228)

then there exist K parameters Θ = (θk)k≤K such that

pΘ(x) = Z−1
Θ exp

{∑
k

θkϕk(x)
}

= Z−1
Θ eΘT Φ(x) (229)

with Φ(x) = (ϕk(x))k≤K. The constant ZΘ, the Gibbs partition function, ensures
the normalization of the probability and has the expression

ZΘ =
∫
eΘT Φ(x)dx (230)

Note that then
µk = Ex∼pΘ [ϕk(x)])k≤K = ∂ logZ(Θ)

∂θk

(231)

making Z a key piece for the calculation of thermodynamic quantities.

We find an exponential distribution similar to the Maxwell-Boltzmann distribution.
Note that in this context

U(x) = ΘT Φ(x) (232)

and the "temperature" appears as a Lagrange multiplier (up to sign) (e.g., θ0) that can
be factored out, giving rise to the formulation of the argument of the exponential U(x)/T
(with the appropriate sign according to the convention).

Proof 17.
We need to maximize a concave function (−p log p), or equivalently, minimize a convex
function, under linear constraints. If a solution exists, it is unique, and it is obtained using
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Lagrange multipliers 82. We then study the function (in the discrete case)

L(Θ, p) = −
∑

x

p(x) log p(x) +
K∑

k=1
θk

(∑
x

p(x)ϕk(x)− µk

)
+ θ0

(∑
x

p(x)− 1
)

(233)

The variable(s) are the values of p(xi), and we then study the derivative (in the continuous
case, this would be a functional derivative)

∀xi,
∂L

∂p(xi)
= −1− log(p(xi)) +

∑
k

θkϕk(xi) + θ0 = 0 (234)

From which, for all x, the solution, denoted as pΘ, is written as

pΘ(x) = Z−1
Θ exp

{∑
k

θkϕk(x)
}

(235)

But what about the adequacy between pΘ and the true distribution p? In fact, we have

DKL(p∥pΘ) = H[pΘ]−H[p] ≥ 0 (236)

Indeed,

DKL(p∥pΘ) =
∑

x

p(x) log p(x)
pΘ(x) = −H[p]−

∑
x

p(x)
(
− logZ +

∑
k

θkϕk(x)
)

= −H[p] + logZ −
∑

k

θk Ex∼p [ϕk(x)]︸ ︷︷ ︸
µk

(237)

But we have also imposed that µk = Ex∼pΘ [ϕk(x)], so we have

DKL(p∥pΘ) = −H[p] + Ex∼pΘ [− log pΘ(x)] = H[pΘ]−H[p] (238)

■

Therefore, having data, we build probabilistic (parameterized) models following Fi-
sher’s philosophy (Course 2022 and others). However, pΘ is not equal to p(x), which we

82. Course 2018 Sec. 8.3
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don’t know either. So in practice, we define the best model using a guiding principle:
1) it satisfies the observational constraints (the (µk)), and 2) the principle of maximum
entropy. We have a freedom: what are the measures (ϕk(x))k that we take/calculate to
constrain the model? For example, if we take means and second-order moments, we ty-
pically have a Gaussian model, but we can choose more complex functions, etc. What
should we choose? We will choose what reduces uncertainty the most, i.e., H[pΘ], to get
as close as possible to H[p].

So, in the choice of the optimal model, we want to find the measures (ϕk(x))k that
minimize the maximum entropy H[pΘ]. This is a minimax problem. In the case of image
processing (see Valentin de Portoli’s seminar in 2023), textures’ images can be seen as a
random process, and we need to establish a stochastic model. What are the measurements
we need to consider to establish good models? 20-25 years ago, says Stéphane Mallat, they
tried Gaussian models of the form U(x) = xTKx where ϕk=(i,j)(x) = xixj. It’s simple, but
not sufficient for textures with structure. We can extend to the use of feature mapping
(Course 2018 Sec. 7.3), but most importantly, what changed the game are neural networks
that provide the Φ(x), i.e., the optimal representations. But what are these Φ(x)? Don’t
we want to understand what CNNs learn? Don’t we have prior information that would
be good to put into these features (a theme of Course 2020, among others)? One of the
challenges is understanding the interactions between different scales of the problem.

8. Lecture 1st Mar.

We will revisit the model design process guided by the principle of maximum en-
tropy and by the available measurements ((µk)k≤K) obtained as expectations of data
functions ((E[ϕk(x)])k). The Gibbs theorem (Th. 17) provides us with access to an ap-
proximation of p(x), the probability density, using a parametric exponential model pθ(x)
where the parameters Θ are the Lagrange multipliers associated with the measurement
constraints, and hence are the dual variables of the measurements. We will delve into
this duality because, as a reminder, these parameters, which may seem like mathemati-
cal abstractions, represent tangible quantities in Physics such as temperature, pressure,
viscosity, and more.

In the process of entropy maximization, we find pΘ(x), which approximates p(x) in
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such a way that the divergence between the two distributions is given by

DKL(p∥pΘ) = H(pΘ)−H(p) ≥ 0 (239)

Thus, the error is attributed to an excess of entropy, i.e., too much uncertainty that we
lacked to construct the model. Therefore, the problem we face concerns the choice of
measures ϕk(x) that constrain the model (i.e., the parameters Θ). Hence, we aim to
minimize DKL(p∥pΘ) while maximizing entropy. This is achieved by finding the most
informative measures.

8.1 Example: The Gaussian Distribution

So, what measurements can we perform? When we have a random variable 83 X =
(X1, . . . , Xd)T ∈ Rd, we may want to estimate the mean and also the second-order mo-
ments

µ = Ep(X) = (Ep(Xi))i≤d Σ = Ep(XXT ) = (Ep(XiXj))(i,j≤d) (240)

83. NDJE. To start a bit more simply, let’s take a variable X ∈ R of which we know the expectation µ
and the variance σ2. The constraints translate to E[X] = µ and E[X2] = σ2 + µ2, giving us ϕ1(x) = x
and ϕ2(x) = x2. Then we find that

pΘ(x) = Z−1eθ1x+θ2x2
ZΘ =

∫
eθ1x+θ2x2

dx

Now,
µ = ∂ log Z

∂θ1
and σ2 + µ2 = ∂ log Z

∂θ2

Furthermore, Z has the expression (θ2 < 0)

Z(θ1, θ2) =
(

π

θ2

)1/2
eθ2

1/(4θ2)

Thus, we find that 1/θ2 = −2σ2, θ1 = µ/σ2, and Z =
√
−π/θ2e−θ2

1/(4θ2). Finally, the distribution pΘ(x)
takes the form

pΘ(x) = 1√
2πσ2

exp
{
− (x− µ)2

2σ2

}
= N (µ, σ2)

The case treated by S. Mallat is a generalization where X ∈ Rd.
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What is the expression for pΘ(x)? According to theorem 17, then

pΘ(x1, . . . , xd) = Z−1
Θ exp


d∑

i=1
θixi +

d∑
i,j=1

θijxixj

 (241)

We can "complete the squares," and by expressing the θ in terms of µ, we obtain the
expression

pΘ(x) = Z−1
Θ exp

{
−1

2(x− µ)TC−1(x− µ)
}

(242)

where the matrix C is the covariance (the expectation of the centered second-order mo-
ment)

C = Ep((X − µ)(X − µ)T ) = Σ− µµT (243)

and ZΘ = ((2π)d| detC|)1/2. It is verified that µ is indeed the mean of p. Regarding C,
as a symmetric matrix that is diagonalizable, we can perform rotations to place ourselves
in the basis where C is diagonal, allowing us to compute second-order moments through
integrals.

This tells us that the Gaussian distribution can be interpreted as the maximum
entropy distribution constrained by means and second-order moments. Now, Gaussian
distributions are certainly very practical and sufficient in some cases, but they cannot
capture the structures of a turbulent field or textures. So, what are the ϕk that we need
to add beyond second-order moments?

In theorem 17, there is clearly a duality link between observables and Lagrange
multipliers

(µk = Ex∼p[ϕk(x)])k≤K ←→ (θk)k≤K (244)

Duality tells us that the representation of pΘ can be written with either set of variables
(see, for example, note 83). We will delve into this link because this notion of duality
is fundamental, not only in Mathematics in optimization problems, but also in Physics
through the Lagrange and Hamiltonian equations. All of this is connected through the Le-
gendre transformation. But before that, let’s examine the basic properties of the partition
function.
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8.2 Partition Function ZΘ

We have seen in theorem 17 that observables µk and the associated Lagrange mul-
tiplier θk are linked through the partition function as follows:

µk = ∂ logZ(Θ)
∂θk

(245)

Let’s define the function, called free energy in Physics F (Θ) and in Optimization A(Θ),
the cumulant function as follows:

A(Θ) = −F (Θ) = logZ(Θ) (246)

Theorem 18 (cumulant function)
In the context of theorem 17, if the function A(Θ) = logZΘ has higher-order deri-

vatives on its support Λ, then firstly

∇θA(Θ) = µ = E(Φ(x)) that is, ∀k ≤ K, µk = ∂A(Θ)
∂θk

= E(ϕk(x)) (247)

and secondly, if we look at the Hessian, then

∇2
θA(Θ) = Cov(Φ(x)) ≥ 0 that is, ∀(k, k′) ≤ K,

∂2A(Θ)
∂θk∂θk′

= Cov(ϕk(x)ϕk′(x)) ≥ 0
(248)

(NDJE. expectations are taken with respect to the distribution pΘ(x))

The proof presents no problems; we just need to differentiate under the integral sign,
so the conditions for doing so need to be satisfied, but with an exponential, this works
fine. This theorem tells us that it is indeed the partition function that characterizes all
higher-order moments of pΘ.

Let’s make some observations:

• The Hessian of A is positive (it’s a covariance matrix), so A is a convex function.

• Next, consider the following definition:
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Definition 18 (free family)
We call (ϕ)k≤K free if it is a linearly independent family:

∑
k

βkϕk = BT Φ = ΦTB = 0⇔ B = 0 (249)

In this case, C = Cov(Φ(x)) > 0, meaning that no eigenvector is associated with
the eigenvalue zero. Indeed,

∀B ∈ (RK\{0}), E[(BT (Φ(x)− µ))2] = E[BT (Φ(x)− µ)(Φ(x)− µ)TB]
= BTE[(Φ(x)− µ)(Φ(x)− µ)T ]B
= BTCB = f(B) > 0 (250)

Now, f(B) being a strictly positive quadratic form, the eigenvalues of C are strictly
positive. This is shown by noticing that C being a real symmetric matrix, there
exists an orthogonal matrix Q and a diagonal matrix D such that QTCQ = D =
diag((λk)k≤K). If B̃ = QB, then

BTCB > 0,∀B ̸= 0⇔ B̃TDB̃ > 0, ∀B̃ ̸= 0⇔
K∑

k=1
λkb̃

2
k > 0,∀B̃ ̸= 0 (251)

Taking B̃ as the vectors of the canonical basis of RK , we conclude that all eigenvalues
of C are strictly positive.

In this context where (ϕ(x)k) is a free family, then the Hessian, which is equal
to the covariance matrix, is strictly positive. The problem is then strictly convex,
which is particularly interesting in the use of gradient descent. In particular,

∇2A(Θ) > 0⇔ (∇A(Θ1)−∇A(Θ2)).(Θ1 −Θ2) > 0 (252)

so there cannot be 2 sets of parameters Θ that yield the constraints µk. There is a
unique solution, meaning that there is only one set of Lagrange multipliers.
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8.3 Conjugate Duality: Legendre-Fenchel Transform

Notice that if we have the values of the optimal Lagrange multipliers Θ∗, then we
have the probability density pΘ∗ . Not only are the (µk)k accessible, but also any other
higher-order moments of the distribution. That being said, how do we compute the vector
Θ from the values of (µk)k? This is where the Legendre transform comes into play, and
we will take another look at what we are doing, which has a more general character.

Let’s place ourselves in a general convex optimization framework. We can repara-
meterize the function and work in the dual space. To do this, we introduce the Legendre-
Fenchel transformation 84.

Definition 19 (Legendre-Fenchel)
Let f : χ→ R or R̄ (contains infinity) be a convex function. Its conjugate function

is defined by the Legendre-Fenchel transformation as follows a:

L[f ](s) = sup
x∈χ
{sTx− f(x)} (253)

The solution to the problem is s = ∇xf(x), which implicitly provides a relationship
between x and s.

a. NDJE. there are several conventions concerning the overall sign of the transformation and
the relative sign between the two elements.

(NDJE. While the Legendre-Fenchel transform is initially defined for convex functions
and is used as such here, its application to a non-convex function is important to obtain
a convex envelope of that function. This property is used in the Landau theory of phase
transitions. See section 8.8 for an example of convexifying a Mexican hat.)

84. NDJE. The transformation is named after Adrien-Marie Legendre (1752-1833), who used it in
Analytical Mechanics for the transition from the Lagrangian to the Hamiltonian, and in Thermodynamics;
and Moritz Werner Fenchel (1905-88), known in particular for his work in convex analysis. I’m using the
notation L[f ] because ∗ is often used to represent the result of optimization, such as argmax. However,
in the literature, you might find f∗.
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Property 6 (convexity of L[f ])
The Legendre-Fenchel transform of a convex function is itself a convex function.

Proof 6. We will only show this property in the case where f is convex and twice
differentiable (1D) and f ′′ > 0. A solution to the problem is s = f ′(x). Note by assumption
that f ′ is strictly monotonic and invertible. So, if we denote g = (f ′)−1, x = g(s), and
thus f ′(g(s)) = s. The function g is also differentiable, g′(s) = 1/f ′′(g(s)). And L[f ](s) =
g(s)s− f(g(s)) is also differentiable, with

L[f ]′(s) = g(s) + g′(s)(s− f ′(g(s))︸ ︷︷ ︸
s

) = g(s)

and gives
L[f ]′′(s) = g′(s) = 1/f ′′(g(s)) > 0

implying the convexity of the Legendre transformation in this case, but the proof can be
generalized 85. ■

The Legendre transformation L[f ] is also called the convex conjugate of f . The relation

s = ∇xf(x) allows us to consider parameterizing f not in terms of x but in terms of s.

Theorem 19 (synthesis of convex functions)
If f is convex, then we can synthesize it using the Legendre transformation applied
to L[f ]:

L[L[f ]](x) = L2[f ](x) = sup
s
{sTx− L[f ](s)} = f(x) (254)

Here again, a solution is provided by x = ∇sL[f ](s). In this case, L2 = Id (involu-
tion).

(NDJE. An example of a convex function: f(x) = 1
4 x4. Finding s from x yields s = f ′(x) = x3, so

here the case is simple, L[f ](s) = 3
4 s4/3. Conversely, x = (L[f ])′(s) = s1/3, so we find that L[L[f ]](x) =

x4/3 − 3/4x4 = f(x). We recover f(x) by applying the Legendre transformation twice.)

A 1D example is given in Figure 26. There is a geometric interpretation of L[f ](s):

85. NDJE. See, for example, https://www.math.univ-toulouse.fr/~weiss/Docs/LectureNotes_
ConvexOptimization_PWeiss.pdf.

https://www.math.univ-toulouse.fr/~weiss/Docs/LectureNotes_ConvexOptimization_PWeiss.pdf
https://www.math.univ-toulouse.fr/~weiss/Docs/LectureNotes_ConvexOptimization_PWeiss.pdf
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Figure 26 – Illustration of the Legendre-Fenchel transformation of the function f(x) to
yield the function L[f ](s). For a given s0, the maximum of s0x − f(x) is reached for x0

such that f ′(x0) = s0. We have a parametrization of x in terms of s that can be exploited
to transform f(x).

the maximum of sx−f(x) is reached at the value of x0, and the point (x0, f(x0)) is where
the tangent to the graph of f at that point has a slope equal to s0.

An application in Analytical Mechanics is the transition from the Lagrangian 86

L (q, •
q, t), which, by the principle of least action, gives the Euler-Lagrange equations, to

the Hamiltonian H(q, p, t) defined by the Legendre transformation:

p(q, •
q, t) := ∂L (q, •

q, t)
∂q

H(q, p, t) = •
q p−L (q, •

q, t) (255)

which yields the Hamiltonian equations where the Newtonian force appears as the time
derivative of p. Another application is in Statistical Physics for the transition from energy
to free energy.

Now, if we inspect theorem 18, we realize that the relation

µ = ∇ΘA(Θ) (256)

86. NDJE. Here, only a single particle is considered, but this generalizes easily. The notation •
q indicates

the derivative of q(t) with respect to time t.



111

plays the same role as s = ∇f(x). So, we can write

L[A](µ) = sup
Θ
{µT Θ− A(Θ)} (257)

L2[A](Θ) = sup
µ
{µT Θ− L[A](µ)} (258)

Let’s see the connection between the Legendre transform and the optimization of
Θ.

8.4 Optimisation of Θ in terms of µ

Our initial goal is to find the parametric model pΘ(x) that best approximates p(x)
while satisfying the constraints µ (measurements) and following the principle of maximum
entropy. If we have n samples (xi)i≤n assumed to be randomly drawn from p(x) (i.i.d.),
then

Ep[log pΘ] =
∫
p(x) log pΘ(x) dx ≈ 1

n

n∑
i=1

log pΘ(xi) (259)

The Maximum Likelihood Principle 87 by R. Fisher tells us that if pΘ(x) is truly a good
model of p(x) and xi is a typical example of p(x), then we also expect pΘ(xi) to be large,
and thus, the average to be large.

In the case where pΘ takes the form of a Gibbs distribution, then

log pΘ(x) = ΘT Φ(x)− logZ(Θ) = ΘT Φ(x)− A(Θ) (260)

So, to obtain the optimal Θ, also known as the Maximum Likelihood Estimator (MLE),
we need to perform

max
Θ

Ep[log pΘ] = max
Θ
{ΘTEp[Φ(x)]− A(Θ)} = max

Θ
{ΘTµ− A(Θ)} = L[A](µ) (261)

We then find the connection with the Legendre transform of the function A(Θ) with
a correspondence of s ↔ µ and x ↔ Θ from the general case in the previous section

87. See Course 2022 Sec. 3.5
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Figure 27 – Illustration of the dual relationship between the set of measurements µ and
the set of parameters Θ.

(Def. 19). Thus, having the measurements µ, the optimal Θ∗ satisfies

∇ΘA(Θ∗) = µ (262)

However, we know that L[A] is convex (independent of the convexity of A), and therefore,

Θ∗ = ∇µL[A](µ) (263)

We can then summarize the dual relationship between µ and Θ when considering a
free family of measurements (Def. 18) in the diagram in Figure 27. In one case, we need
to calculate A(Θ) to obtain its gradient, and in the other case, it is L[A](µ) that concerns
us, and we need to maximize likelihood to obtain the optimal Θ∗.

To obtain Θ∗, we ultimately need to perform

Θ∗ = argmax
Θ

(ΘTµ− A(Θ)) = argmin
Θ

(A(Θ)−ΘTµ) (264)

Typically, in optimization, we can perform a gradient descent 88, so between the parame-

88. See Course 2018 Sec. 10.1, for example
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ters obtained at steps t and t+ 1, we have the following relationship:

Θt+1 −Θt = − ∇Θ{A(Θ)−ΘTµ}
∣∣∣
Θ=Θt

= −∇ΘA(Θt) + µ

= µ− µ(Θt) (265)

where, according to the Gibbs parameterization (Th. 17),

µ(Θ) = Ex∼pΘ [Φ(x)] (266)

So, if we start with an arbitrary value Θ0, then from the distribution pΘ0 , we can calculate
the moments µ(Θ0) using expectations. It is clear that initially these moments will not
be equal to the true moments µ which, by hypothesis, are given by

µ = Ex∼p[Φ(x)] (267)

Therefore, there is an error between µ and µ(Θ0), and the new value Θ1 must go against
the gradient by an amount equal in magnitude to the error on the moments. We iterate
the procedure, and as we are in a strictly convex case (see the observations made after
theorem 18), the solution exists and is unique.

So, the relationship between the Maximum Entropy Principle and the Maximum
Likelihood Principle is a dual relationship that we understand through the Legendre-
Fenchel Transform of the logarithm of the partition function Z(Θ), which is called the
free energy F in Statistical Physics or the cumulant function A in Optimization.

In conclusion, the mathematical framework described above shows the general nature
and removes the concepts of the partition function and free energy from their framework
in Statistical Physics, where Gibbs introduced them in the early 20th century. Also, in
the case of optimization, we can view the problem as that of maximizing entropy under
constraints (observables, µ), or that of maximum likelihood.

8.5 Problem of Estimating the Quality of Θt

If we take a closer look at the equation 265 for gradient descent from Θt to Θt+1, we
need to be able to test this new parameter value. To do this, we must be able to calculate
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the new estimates of moments. So, in a general sense, we need to be able to calculate ∀k∫
ϕk(x) pΘ(x) dx (268)

How can we perform this type of integral calculation? One possible method that seems
natural is as follows:

1. Generate N samples x ∼ pΘ(x);

2. Compute the average 1/N ∑N
i=1 ϕk(xi). The error scales as 1/

√
N .

The challenge lies in step (1) because we need to be able to sample from pΘ(x), which
already poses problems in low dimensions if the distribution has multiple modes, but it
becomes increasingly difficult in high dimensions, even in cases where there is only one
mode.

A commonly used technique is the generation of Markov chains (Sec. 6.4), called
Monte Carlo Markov Chain (MCMC). We construct Markov chains whose invariant
measure (Def. 11) is precisely pΘ. In other words, to produce 1 sample xi drawn according
to pΘt and to determine the moments µk(Θt), we need to evolve a Markov chain using a
transition matrix such that the invariant distribution is pΘt

x1 x2 . . . xn−1 xn x(1) ∼ Π = pΘt

P P P P

Then, we repeat the process to obtain x(2) and so on, in order to obtain enough samples
to calculate the averages and estimate the quality of µ(Θt).

In practice, there are several algorithms that generate such chains, such as the
Metropolis-Hastings algorithm (NDJE. See section 8.9 for an introduction. You can expe-
riment with the 2023 notebooks https://github.com/ jecampagne/cours_mallat_cdf/ tree/
main/cours2023 ). We won’t go into more detail about MCMC algorithms.

8.6 How to Design Φ(x)?

Summing up the previous sections, if we have well-suited (ϕk)k for the problem,
we have a formalism that works well. Especially when we are in the convex case. But

https://github.com/jecampagne/cours_mallat_cdf/tree/main/cours2023
https://github.com/jecampagne/cours_mallat_cdf/tree/main/cours2023
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the problem still remains: what are the (ϕk)k, if we have images of faces, textures, sound
patterns of music, speakers, etc., that will allow us to efficiently infer a Gibbs (exponential)
probability distribution, which will generate new images, textures, new sound patterns,
etc., by sampling. To address this problem, we need to go back to basics and ask the
question: what properties can we identify and integrate into the form of ϕ(x)? This is
the theme of a priori information, which was explored, for example, in the 2020 course.

Now, how do we express this a priori information in mathematically exploitable
terms? Even if we have precise experimental descriptions, for example, of a turbulent
fluid image or the texture of a tree bark, the challenge is to concretize it in mathematical
terms that define ϕ(x): that is the difficult point.

What has worked so far in the development of Physics (Statistical, Elementary
Particles, and Relativity) and in Mathematics as well, is to look at the symmetries of the
problem.

8.7 Symmetries of p(x)

The question we are tackling is to understand the transformations of x that leave
p(x) invariant. Typically, let g be such a transformation, generally an element of a group
G, which acts on x to transform it into x′ in such a way that

g ∈ G, x′ = g.x
invariance======⇒ p(x′) = p(x) (269)

G is indeed a group because

— g = Id is obviously the identity element of G;

— if (g1, g2) ∈ G,
p((g1 ◦ g2).x) = p(g1.(g2.x)) = p(g2.x) = p(x)

so g1 ◦ g2 ∈ G;

— finally, we can impose that g has an inverse such that g ◦ g−1 = Id.

The most classic group G is that of translations. In this case, if we conceive that x depends
on a variable u, e.g., u = (u1, u2) representing the position of a pixel in an image and x(u)
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represents the intensity of the signal at that position, then the action of a translation by
"vector" g is expressed as

x′(u) = x(u− g) = g.x(u) (270)

and stationarity is expressed as

p(x) = p(g.x)⇔ ∀u, p(x(u)) = p(x(u− g)) (271)

Stationarity is the manifestation of symmetry with respect to the group of translations.
Here’s an example where we move from an experimental observation ("stationarity") to a
mathematical characterization ("symmetry with respect to the group of translations").

Of course, there can be other types of symmetries: e.g., the group of rotations. But
the rotation symmetry might be suitable for certain scenarios, like in Cosmology when
observing the sky, but not, for example, in the case of face images where verticality imposes
a preferred direction. We can also have scale invariance: for example, in image processing,
the distance between the object and the camera does not change the nature of the object,
so the collection of all possible images of that object has a scale-invariant probability
distribution. But on the other hand, passport photos are not invariant under dilation
because preprocessing crops the image to provide an acceptable image for a passport or
ID card. All this to say that each problem has its own symmetries. What works in one
case/application may not work in another. Complex symmetries are also possible (e.g.,
local deformations or diffeomorphisms).

But why is it important to know the symmetries of p(x)? The main reason is the
reduction of dimensionality they allow us to achieve. This is done by reducing the number
K of measurements (ϕk(x))k≤K , by imposing invariants, which in turn implies a reduction
in the number of parameters (θk)k≤K of the model pΘ(x) that approximates p(x).

Note that we have K measurements, and x is of dimension d (x ∈ Rd). The question
we could ask is what is the relationship between K and d? Through reasoning developed in
Section 2.6, we expect K to grow exponentially with d: this is the curse of dimensionality.
So, K should be huge when d ∼ 106. But if we want to estimate p(x) from a single image,
then K ≪ d. This means that a lot of prior information is needed to achieve such
dimensionality reduction. This is where symmetries come to our aid.
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Definition 20 (Linear Invariant)
Let G be a finite group of linear transformations a of x, and let the averaging ope-
rator, denoted by M, be defined as

M.x = 1
|G|

∑
g∈G

g.x (272)

In other words, we take an average over the elements of the orbit of x, which is the
set Ox = {g.x; g ∈ G}. (NDJE. we can generalize this to a continuous group).

a. e.g., translation, rotation, dilation

M is an operator invariant under the action of the group. Indeed, for any g0 ∈ G

M.(g0.x) = 1
|G|

∑
g∈G

ϕ(g.(g0.x)) = 1
|G|

∑
g∈G

ϕ(g.x) =M.x (273)

In the case of an image and G being the group of translations with parameters τ

M.x =
∑

τ

x(u− τ) (274)

which is nothing more than the average of the signal contained in the image, and this is
indeed an invariant 89.

The consequence is that we can restrict ourselves to ϕ(x) that are invariant.

Definition 21 (Equivariance)
We say that ϕ(x) is equivariant under the action of the group G if

∀g ∈ G, ϕ(g.x) = g.ϕ(x) (275)

meaning that ϕ commutes with the elements of G.

89. NDJE: To convince ourselves, let’s take a periodic signal x(t) on [0, 2π] as an example. The sum
over θ is equivalent to an integral (2π)−1 ∫ 2π

0 x(u− θ)dθ, which, through a change of variable u′ = u− θ

and the periodicity of the signal, becomes (2π)−1 ∫ 2π

0 x(t)dt, which is nothing but the average of the
signal (
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Figure 28 – Illustration of the equivariance property of convolution under the application
of a translation: (top) from left to right: original image, translated image; (bottom) from
left to right: convolution of the original image by a filter, and convolution by the same
filter of the translated image. The convolution of the translated image and the translation
of the convolution of the original image. If x is the image, f is the convolution, and g is
the translation, then f(g.x) = g.f(x).

An illustration of the equivariance property of convolution under the action of the group
of translations is provided in Figure 28.

Note that equivariance, also called covariance, is distinct from invariance:

f(g.x) = f(x) invariance

f(g.x) = g.f(x) equivariant/covariance
(276)

We have an immediate result:

Property 7 In the case where ϕ is equivariant, the operator

ϕ̃(x) =M.ϕ(x) = 1
|G|

∑
g∈G

g.ϕ(x) = 1
|G|

∑
g∈G

ϕ(g.x) (277)
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is invariant.

Indeed, by the same type of change of variables as before,

ϕ̃(g′.x) = 1
|G|

∑
g∈G

ϕ(g.(g′.x)) = 1
|G|

∑
g∈G

ϕ(g.x) = ϕ̃(x) (278)

Theorem 20
If Φ is equivariant under G, and if p(x) is invariant under G, then we have the

following properties:

1) µ = Ep(Φ(x)) = Ep(M.Φ(x))

2) the maximum entropy distribution p(x) constrained by the measurements Ep(Φ(x)) =
µ is given by

p(x) = Z−1e−ΘTMΦ(x) (279)

Proof 20. For the first property, we can prove it by expanding the expression Ep(M.ϕ(x))
for one of the elements of Φ = (ϕk)k≤K , which we denote as ϕ for brevity. It follows:

Ep(M.ϕ(x)) =
∑
x∈χ

p(x) 1
|G|

∑
g∈G

ϕ(g.x) (equivariance of ϕ)

= 1
|G|

∑
g∈G

∑
x∈χ

p(x)ϕ(g.x)

= 1
|G|

∑
g∈G

∑
x′∈χ

p(g−1.x′)ϕ(x′) (x′ = g.x)

= 1
|G|

∑
g∈G

∑
x∈χ

p(x)ϕ(x)
 (invariance of p)

=
∑
x∈χ

p(x)ϕ(x) (
∑
g∈G

a = |G|a)

= Ep(ϕ(x)) (280)

The second property follows from the fact that we can seek pΘ(x) using the Gibbs theorem
(Th. 17) with the constraints µ = Ep(M.Φ(x)). ■
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This tells us that when we average, we reduce the number of variables by the size
of the group. Ultimately, it is not necessary to take arbitrary ϕ(x); we only need to keep
the averages of ϕ(x) with respect to the symmetry group. Therefore, we only need to
keep the observables "modulo" the symmetries. For example, for second-order moments,
we don’t consider all possible pairs of points but can group them into batches of pairs
with the same relative distance.

Now, as we mentioned earlier, before considering the symmetries of p(x), K is of
the order of ed. If we want to reduce it to K ∼ d, we need a group whose size is of
the order of ed. This is where we reach the limits of introducing global symmetries to
drastically reduce the dimensionality of the problem. In practice, we can assume that
p(x) is symmetric under certain groups (translation, rotation, dilation), but in the end, we
don’t have enough knowledge to dramatically reduce the dimensionality of the problem.
Thus, we need to approach the problem more finely. In particular, we need to look at the
problem’s scale dependence. Indeed, there are not only global symmetries that matter;
if we observe a phenomenon locally, it tends to propagate across scales. Expressing this
observation in mathematical terms will be the focus of the next session.

8.8 NDJE. Legendre Transformation: Non-Convex Case

This is a small supplement regarding the Legendre transformation. The question is,
what happens when the function f is not convex? An example is given with the function
f(x) = 1/4− x2 + x4, which resembles a Mexican hat (Fig. 29). If we study the function
g(s) = xs−f(x), we need to resort to solving a third-degree equation to find the maximum,
which cannot be done analytically in its current form. However, we know that s = f ′(x)
gives the function s(x), which allows us to determine the supremum. We can establish
the parametric graph in s given by {s = f ′(x), g(s(x))} (see Fig. 29 on the right in blue).
This graph exhibits a characteristic "swallowtail" shape. The Legendre transform L[f ](s)
is represented by the dashed red curve. Let’s now perform the transform of L[f ](t); the
key point is that the slope of L[f ](s) at the origin is given by ±x0s, where f(±x0) = 0.
However, since L[f ](s) is convex, this means that for all 0 < x < x0, xs−L[f ](s) ≤ 0, and
the supremum with respect to s is reached at s = 0, which is 0. Hence, for 0 < x < x0,
L[L[f ]](x) = 0, and symmetrically, it is also zero for −x0 < x < 0. Outside the interval
[−x0, x0], the function f(x) is recovered, and we now have an evidently convex curve
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(dashed red curve in Fig. 29 on the left). We have thus convexified the originally non-
convex function.

Figure 29 – Convexification of the Mexican hat.

8.9 NDJE. Metropolis-Hastings

This is an addition to the course because S. Mallat could not cover it due to time
constraints. It is about the Metropolis-Hastings algorithm for generating Markov chains
to obtain samples from a target distribution P (x) for which we do not have a direct
sampling method, or the other methods (e.g., Importance Sampling) are inefficient.

The method was first developed in 1949 by Nicholas C. Metropolis (1915-99) and
Stanisław Ulam (1909-84) and was later elaborated in more detail in 1953 by Metropolis
and colleagues and extended in 1970 by Wilfred Hastings (1930-2016). It is called the
Metropolis-Hastings (MH) algorithm, even though several authors contributed to it.

So, consider a distribution P (x) from which we want to draw samples. We will
construct a Markov chain, for which we will specify the transition matrix Px,x′ (transition
from x to x′) based on a distribution g(x, x′) (proposal) that allows us to draw a new
sample x′ given x, and a function A(x, x′) that accepts or rejects this new sample to
provide a new element of the chain. Otherwise, the chain is completed with the sample x
(note that it may happen that the latter is repeated several times in a row). Let’s take
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the expressions for Px,x′ and A(x, x′) as follows:

Px,x′ = g(x, x′)A(x, x′) A(x, x′) = min
(

1, P (x′)g(x′, x)
P (x)g(x, x′)

)
(281)

It can be shown that P (x) satisfies the detailed balance expression (Eq. 188). Indeed,
assuming P (x′)g(x′, x) > P (x)g(x, x′), then

A(x, x′) = 1 A(x′, x) = P (x)g(x, x′)
P (x′)g(x′, x) (282)

so

Px,x′ = g(x, x′) Px′,x = g(x′, x)× P (x)g(x, x′)
P (x′)g(x′, x) = P (x)g(x, x′)

P (x′) (283)

hence
P (x)Px,x′ = P (x′)Px′,x (284)

which is the desired expression. The case where P (x′)g(x′, x) ≤ P (x)g(x, x′) is treated in
the same way and leads to the same conclusion.

Therefore, if P (x) satisfies the detailed balance expression and under the ergodicity
conditions that guarantee the uniqueness of the invariant measure, then P (x) is the said
invariant measure reached asymptotically.

The algorithm proceeds as follows: a new sample of the chain xi at step i is generated
according to the following steps:

1. A sample x̂ is drawn according to g(x;xi−1), which can be, for example, a Gaussian
distribution with mean xi−1;

2. Then, we form the ratio

r = P̃ (x̂)
P̃ (xi−1)

× g(x̂, xi−1)
g(xi−1, x̂) (Metropolis− Hastings) (285)

We use the notation P̃ instead of P to indicate that we do not need to know the
normalization constant of the target distribution in practice.
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3. Finally, we decide on the value of xi as follows:

Let u ∼ U(0, 1), if r > u⇒ xi = x̂, otherwise xi = xi−1 (286)

The initialization of the process is done by randomly generating x0. If the distribution
g(x, y) is invariant under the exchange of variables x and y (e.g., a Gaussian), then the
ratio r simplifies to

r = P̃ (x̂)
P̃ (xi−1)

(Metropolis) (287)

Even though this version of the ratio r is particularly dedicated to Metropolis, the ter-
minology Metropolis-Hastings is often used in all cases. The drawback of the method is
its random walk nature, especially because the distribution g(x, y) is fixed once and for
all. Other methods adapt the shape of this distribution as the process evolves. Finally, a
category of "Hamiltonian" methods are Metropolis methods that use gradient information
(p is the conjugate variable of x) to reduce the random walk behavior. These methods
are particularly effective in high dimensions and cases where the probability density has
a complex shape. In cases where the probability density has multiple disjoint modes, a
different approach is required.

9. Lecture 8 Mar.

During this session, we will utilize the tools developed in the previous sessions (and
lectures) to model non-Gaussian ergodic stochastic processes such as sounds, images. Thus,
we will revisit the maximum entropy models.

9.1 Maximum Entropy Models

We consider a scenario where, given the data x, we can compute several means of
possibly (and almost surely) nonlinear functions (µk = E(ϕk(x)))k≤K , and from this, we
can infer a probability distribution of maximum entropy constrained by these observations.
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This parameterized distribution is expressed as (Th. 17):

pΘ(x) = Z−1
Θ exp

(
−

K∑
k=1

θkϕk(x)
)

(288)

with Θ = (θk)k being Lagrange multipliers associated with the constraints (µk)k. We have
seen that:

DKL(p∥pΘ) = H(pΘ)−H(p) ≥ 0 (289)

Therefore, we need to maximize the entropy of pΘ while minimizing DKL(p∥pΘ). So, the
choice of ϕk(x) or their construction is now important.

Several issues arise:

— We need to compute expectations (µk), which relates to the question of ergodicity
(Sec. 6.2). We use prior information about the studied stochastic process, namely
its stationarity;

— In the list of moments µk, we will first look at the means and covariances. One
important consequence in the stationary assumption is that the covariance operator
is diagonalizable in a Fourier basis, leading us to the notion of spectral power.
However, we will see that the Fourier basis is not suitable in most cases.

— We are in the case of a single observation (e.g., a single image) as in Cosmology
(see the seminar by E. Allys). In general, phenomena are multi-scale. Thus, we need
to proceed with multi-scale analysis (also called multi-resolution), which leads us
to the Wavelet Transform. NDJE. S. Mallat will provide a brief overview of this
transformation; for more details, see Sec. 5.3 of the 2021 course and the included
references, as well as the book mentioned in the introduction.

— The purpose of these concepts is to study interactions between scales. We will see
that capturing structures (e.g., textures’ filaments in images, impulses in sound-
tracks, etc.) requires understanding how information propagates across scales, un-
like Gaussian processes where different scales are present but independent of each
other (they fluctuate without interaction). These interactions are captured with
non-linearities, especially in the scattering transform (Course 2020 Sec. 9.5). We
will see some examples of sound and image generation and the limitations of this
kind of approach.
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9.2 Mean Computation

So, we have a single sample x from a random variable X (e.g., one image, one sound
frame), and u represents the underlying variable, such as the location of a pixel in the
image (u = (u1, u2)). This variable u is of low dimension. In the assumption of stationarity,
i.e., invariance by translation over the underlying variable, the means and covariances 90

satisfy the following relations:


E(X(u)) = µ(u) = µ

Cov(X(u), X(u′)) = C(u, u′) = C(u′ − u)
(stationary) (290)

Recall that according to the stationarity assumption is the manifestation of translation
invariance of p(x) (Sec. 8.7), the probability density of X used for expectation calcula-
tions. In other words, expectations do not depend on position, and covariances depend
only on relative positions. In this framework, the estimation of the signal’s mean is ob-
tained through the empirical mean:

µ̃ = 1
N

N∑
u=1

X(u) (291)

First and foremost, µ̃ is an unbiased estimator because E(µ̃) = µ (thanks to the invariance
of the expectation of X(u)). The question that arises is the consistency of this estimator
(Course 2022 Sec. 3.4), which means how it behaves as N →∞ (e.g., the number of pixels
tends to infinity).

Property 8

E[(µ̃− µ)2] = 1
N

N−1∑
τ=−N+1

(
1− |τ |

N

)
C(τ) (292)

Note that if ∑∞τ=0 |C(τ)| < ∞, meaning that the correlation between 2 points ra-
pidly decreases with the difference τ between these points, then E[(µ̃ − µ)2] = O(1/N).

90. Cov(A, B) = E((A−E(A))(B−E(B))T ). Of course, in the case of finite-sized images, sounds, etc.,
one must consider ad hoc conditions for the boundaries.
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Ergodicity (at least for the mean) provides the assumption for this to work.

Proof 8. The proof is done by expressing the value of µ̃ and performing an appropriate
change of variables:

E[(µ̃− µ)2] = E
[(

1
N

N∑
u=1

X(u)− µ
)(

1
N

N∑
u′=1

X(u′)− µ
)]

= E

 1
N2

N∑
u,u′=1

(X(u)− µ)(X(u′)− µ)


= 1
N2

N∑
u,u′=1

Cov(u− u′)

= 1
N2

N−1∑
τ=−(N−1)

(N − |τ |)︸ ︷︷ ︸
# terms

C(τ) (293)

The number of terms is calculated taking into account that u and u′ are in J1 , NK. Bringing
in one of the 1/N terms allows us to obtain the result. ■

Now, the formula tells us the following: for the empirical mean to converge to the
expectation, there must be decorrelation, meaning that C(τ) decreases rapidly to make∑

τ |C(τ)| converge. In this case, E[(µ̃− µ)2] = O(1/N).

So, we need to construct ϕk(x) that exhibit decorrelation to ensure the estimation
of means with a single sample (one image, one sound frame, etc.). However, using only
means is not sufficient; we need to consider higher-order moments.

9.3 Second-Order Moments (Covariance), Failure of Fourier

The covariance matrix C = [C(u, u′)]u,u′ (of size N × N) allows us to calculate
correlations between variables obtained by linear combinations of X. In fact, for any A

and B:
A =

N∑
u=1

a(u)X(u) = aTX, B = bTX =⇒ Cov(A,B) = aTCb (294)

(NDJE. recalling what Cov(A,B) is from footnote 90, we easily obtain the result).
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The matrix C is symmetric, positive because Cov(A,A) = V ar(A) = aTCa ≥ 0, so
all eigenvectors are associated with positive (or zero) eigenvalues. It is diagonalizable, and
working in the eigenvector basis is equivalent to performing Principal Component Analysis
(PCA, see Course 2021, Sec. 4.3 Th 7). However, we are in a stationarity assumption
(Eqs. 290), so C is a symmetric and Toeplitz 91 matrix, which we can write as:

C =



C(0) C(1) C(2) . . . C(N − 1)

C(1) C(0) C(1) . . . C(N − 2)

C(2) C(1) C(0) . . . C(N − 3)
... . . . . . . . . . ...

C(N − 1) C(N − 2) . . . C(1) C(0)


(295)

Thus, for all b:

C(u, .)b =
∑
u′
C(u, u′)b(u′) =

∑
u′
C(u− u′)b(u′) = (C ∗ b)(u) =

∑
u′
C(u′)b(u− u′) (296)

The presence of convolution tells us that the diagonalization basis is that of Fourier.
Thus,

C ∗ eiωu =
∑
u′
C(u′)eiω(u−u′) = eiωu

∑
u′
C(u′)e−iωu′

︸ ︷︷ ︸
Ĉ(ω)

(297)

where we recognize the (series) Fourier transform of the covariance operator, and the
sine waves are the eigenfunctions of this operator. Since the operator is positive, we
have:

Ĉ(ω) ≥ 0 (spectral power) (298)

Note that:
C(u) = 1

2π

∫ π

−π
Ĉ(ω)eiωu dω (299)

91. Otto Toeplitz (1881-1940).
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Figure 30 – Schematic representation of the evolution of spectral power as a function of
ω (blue). For images, Ĉ(ω) ∼ 1/ω. When you have only one realization, what you observe
is auto-correlation of the signal (orange), and its fluctuations are also governed by Ĉ(ω).

and in particular, for τ = 0:

C(0) = E[|X(u)|2] = 1
2π

∫ π

−π
Ĉ(ω) dω (300)

C(0) is the total energy of the signal, and that’s why the spectral power can be likened
to energy density by frequency.

How do we estimate this covariance if we have only one realization of X? We can
project 92 X onto an eigenvector eω(u) = eiωu/

√
N :

eT
ω X = 1√

N

N∑
u=1

X(u)e−iωu (301)

According to property (Eq. 294), since a = (eω(u))1≤u≤N is an eigenvector of C with
eigenvalue Ĉ(ω), we deduce that:

E(|eT
ω X|2) = Ĉ(ω) (302)

A typical evolution of Ĉ(ω) is shown in Figure 30 (blue curve).

However, in the case of a single realization, the auto-correlation of the signal fluc-
tuates (orange curve), and the magnitude of these fluctuations is directly related to the

92. NDJE. In the complex case, aT b should be understood as (a∗)T b, where ∗ denotes the complex
conjugate.
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value of Ĉ(ω). So, there are errors, and the question arises of how to obtain a consistent
estimator? To do this, we choose to average the auto-correlation over ranges 93 of ωk values
weighted by well-chosen windows, in order to estimate the covariance only at a few values
of ω. Thus, by combining multiple measurements of Ĉ(ωk), noise can be suppressed. But
consistency is only achieved for a few values of ωk. There is an intrinsic problem with the
consistency of the covariance estimator using the Fourier transform in practical cases.

There is a deeper reason why the Fourier transform is not suitable. When analyzing
a sound frame with transients, or an image with object contours, the following occurs:
when you perform the Fourier transform of a signal like the one shown in Figure 31 (top
image, blue curve), you correlate it with sine waves like the orange curve, which means
taking a dot product that mixes information from the signal throughout its "temporal"
course (note that the phenomenon is similar in 2D for an image). In particular, at a given
frequency, you indiscriminately mix times when the signal is regular and times when
it has a lot of structure. When you then try to reconstruct the signal by taking only a
portion of its spectral components (e.g., ω such that |Ĉ(ω)| > T , where T is a threshold),
small oscillations appear at all transition moments (red curve, bottom image). In fact,
the dependence of the signal’s Fourier spectrum is dominated by the signal’s transients:
from the spectrum, you cannot tell if the signal is regular at a specific part of its temporal
course (or part of an image).

9.4 Wavelet Filtering (1D)

Transients are typical of non-Gaussian phenomena, think for example of the loca-
lization of vortices in turbulent flow. So, it’s crucial for us to be able to handle them as
faithfully as possible. We need to have a local description of the signal and, therefore, be
able to correlate it with functions that oscillate only over a small "temporal" window
like the one in green in the top image of Figure 31, which we call wavelets. In order to
capture transients over the entire "temporal" range of the signal, we need to be able to
translate these wavelets, and to capture all time scales, we also need to dilate/contract
them as shown in Figure 32. The interest of these wavelets is that the correlation coeffi-
cient with the signal is nonzero only if the signal has a transient localized in the support
of the wavelet.

93. NDJE. k indicates that discrete values of ω are taken, in practice, when digitizing the signal.
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Figure 31 – Top image: original signal in blue, typical delocalized sinusoid from Fourier
analysis (orange), and typical localized wavelet from Wavelet analysis (green). Bottom
image: reconstructed signal in red when taking only part of the Fourier spectrum (the
difference from the true signal is shown in the bottom graph). See gibbs_FFT.ipynb

Figure 32 – Illustration of translation and scaling operations applied to a wavelet.
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Figure 33 – Change in wavelet support size with frequency, and invariance with respect
to time translation.

If ψλ(u) is the "wavelet" function with a scale of λ, then we calculate the wavelet
coefficient 94 of X(u) as follows:

(X ∗ ψλ)(u) =
∑
u′
X(u′)ψλ(u− u′) = (Wλx)(u) (303)

This coefficient measures the fluctuation of the signal in the vicinity of u on a scale
of approximately λ. How does this solve the problem of the Fourier transform and the
fluctuations of Ĉ(ω)? The key point is that the support of the wavelet is bounded both
in time and frequency 95, as illustrated in Figure 33. This automatically performs the
windowing mentioned in the previous paragraph to obtain consistent estimators of second-
order moments.

Let the base wavelet be the following function, known as the Morlet or Gabor wa-

94. NDJE. For a detailed introduction to wavelet transforms, see, for example, the 2020 Course Sec. 7
and the 2021 Course Secs. 7 and 8.

95. NDJE. The same concentration phenomenon also occurs for 2D wavelets.
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Figure 34 – Complex Morlet wavelet Eq. 304 with quasi-zero power spectrum for ω < 0
(σ = π).

velet 96 (See Equation 304):

ψ(x) =
e−

t2
2

(
−e−σ2

2 + eiσt

)
4
√
π

√
−e−σ2 − 2e− 3σ2

4 + 1

ψ̂(ω) = e−
1
2 (σ−ω)2 − e−σ2

2 −
ω2
2

4
√
π

√
−e−σ2 − 2e− 3σ2

4 + 1
(304)

It has the particularity of having a nearly zero Fourier spectrum for ω ≤ 0 (admissible
wavelet) and concentrated around the frequency ω0 which satisfies the equation:

ω0 = σ

1− e−σω0

(σ ≳ 2, then ω0 ∼ σ). Figure 34 illustrates this for σ = π.

Note that one can roughly construct a basic wavelet from a window function (e.g.,
Gaussian) multiplied by a phase so that the power spectrum is shifted to the desired value
in the ω > 0 domain. The fact that ψ̂(0) = 0 means that the wavelet’s average is zero:

ψ̂(0) = 0⇒
∑

u

ψ(u) = 0 (305)

96. NDJE. Named after Jean Morlet (1931-2007) and Dennis Gabor (1900-1979). See notebook mor-
let_wave_1D_2D.ipynb
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Figure 35 – Top image: Fourier spectrum of the Morlet wavelet (Fig. 34) for different
scale factors (linear scale on the left, logarithmic on the right). Note the constant width of
the spectrum in logarithmic scale. Bottom image: Morlet wavelet in real space for different
scale factor values. Note that the characteristic width of the wavelet in real space changes
inversely to its width in Fourier space.

Now, if we apply a scale factor λ, it follows that:

ψλ(u) = λψ(λu) =⇒ ψ̂λ(ω) = ψ̂(λ−1ω) (306)

By adjusting the values of λ, we can cover the entire range of ω (Fig. 35 top). Note
that the Fourier spectrum of a Morlet wavelet has a constant width in logarithmic scale.
Notice a general characteristic that the wider the Fourier spectrum, the narrower the
characteristic width of the wavelet in real space, and vice versa (Fig. 35 bottom).

When we perform a convolution of the signal X with a wavelet ψλ in real space, in
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Figure 36 – Evolution of Ĉ(ω) (Fig. 30) and spectra of some wavelets obtained with
different scale factors.

Fourier space, we perform the product of Fourier transforms as follows:

Ŵλx(ω) = X̂ ∗ ψλ(ω) = X̂(ω)× ψ̂λ(ω) (307)

So, each wavelet will capture a part of the Fourier spectrum of the signal depending on
the value of λ, and at the same time, it will locally capture the signal’s behavior in real
space.

We will apply this type of filtering in the case of Ĉ(ω) as illustrated in Figure
36. Not only does this provide consistent estimators of the spectral power, but in the
non-Gaussian case, it also provides useful information about transients.

NDJE: Before moving on to the 2D case, let’s make a small addition that S. Mallat
couldn’t cover due to time constraints, which you can find, for example, in Secs. 7.5
and 8.1 of the 2020 Course. When looking at the evolution of the Fourier spectra of
wavelets (Fig. 35), to cover the entire range of ω ∈ [0,∞], it would require an infinite
number of wavelets. Considering high frequencies, we know that the spectral power of
the signal decreases, so we can imagine not considering wavelets whose scale factor is
beyond a cutoff λ ≥ λmax. However, at low frequencies, we cannot do the same because
we know that the signal has regions of regularity (think of areas of the same intensity in
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any image). Nevertheless, we can complement, for example, the family of band-pass filters
{ψλ}λmin≤λ≤λmax with a low-pass filter (e.g., Gaussian) ϕ. Then, the Fourier spectrum thus
covered allows us to reconstruct the signal from the wavelet coefficients and the equivalent
obtained with the ϕ filter, that is:

Wx = (ψλ ∗X), ϕ ∗X) (308)

Finally, following the pattern of characteristic "widths/heights" of the wavelet power in
the time-frequency plane (Fig. 33), it can be shown that one can discretize both scales
and spatial translations as (2j n, 2j) with (n, j) ∈ Z2, to obtain an orthonormal basis for
L2(R). In practice, in audio, it is customary to use some redundancy by taking a scale
factor 2j/Q for wavelets with Q ∼ 16. This is related to human hearing and the concept of
an octave (See Course 2020 Sec. 8.1).

9.5 2D Filtering

NDJE. For the 2D case treated in detail, see Course 2021 Sec. 8.4.

The general principle is as follows: what can be implemented in 1D can be extended
to any nD. In Fourier if X(u = (u1, u2)), then if ω = (ω1, ω2) and ω.u = ∑

i=1,2 ωiui,
synthetically, we have

X̂(ω) =
∑

u

X(u)e−iω.u (309)

As in the 1D case, we need to design an admissible wavelet whose power spectrum is
limited to a region in the Fourier plane. One possible solution is to mimic the philosophy
of the 1D Morlet/Gabor wavelet (see the notebook morlet_wave_1D_2D.ipynb):

ψ(u1, u2) =
(
−e−

ξ2
2 + eiξu1

)
e−

u2
1+u2

2
2σ2

ψ̂(ω1, ω2) = πσ2e−
1
2 σ2ω2

2
(
e−

1
2 σ2(ω1−ξ)2 − e−

1
2 (ξ2+σ2ω2

1)
)

(310)

The parameter σ controls the characteristic width of the wavelet, while ξ sets the position
of the power maximum in Fourier. An illustration is given in Figure 37.

Now, as in 1D, we can change the scale λ (taken dyadic, λ = 2j with j ∈ Z), but we
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Figure 37 – Basic 2D wavelet (Eq. 310) with its Fourier spectrum localized around
ω1 ≈ ξ (σ = 1, ξ = 5/4π), with zero power in the ω1 ≤ 0 plane.

can also apply a rotation by an angle θ. It follows 97

ψj,θ(u) = 2−2jψ(2−jrθ.u) =⇒ ψ̂j,θ(ω) = ψ̂(2jr−θ.ω) (311)

An illustration of the combined action of scaling and rotation is given in Figure 38.

Then, by combining a collection of wavelets with different parameters j and θ, we
can cover the Fourier plane just like in 1D. Figure 39 illustrates this. Of course, we can
adapt the base wavelet and the number of rotations to fill any gaps left here just to make
the different associated "blobs" visible. However, like in 1D, to cover the low frequencies
(the central zone, ω ∼ (0, 0)), we use a low-pass filter ϕ(ω) like a simple Gaussian.

So, in the end, the image (signal) is passed through a series of band-pass filters
and a low-pass filter (θk = 2πk/K) just like in 1D:

Wx = ((ψj,θk
∗X)j∈Jjmin ,jmaxK,k∈J0,K−1K, ϕ ∗X) (312)

which allows analyzing the signal at all scales and all orientations. It’s also essential to
consider translations in real space to have a complete view of transients across the entire
image. Note that a particular orientation of a wavelet is sensitive to transients along the
perpendicular axis.

97. NDJE. Firstly, regarding the 2020 Course Sec. 8.2, I changed the definition of the sense of rotation,
which is purely arbitrary. Here, rθ =

( cos θ − sin θ
sin θ cos θ

)
. Secondly, the normalization factor is indeed λ2 because

we have 2 coordinates.
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Figure 38 – Effect of scaling and rotation on the basic 2D wavelet (Eq. 311): for the top
row j = −1 and θ = 30◦, while for the bottom row j = 1 and θ = −30◦.

9.6 Examples of Usage

NDJE. S. Mallat projects some examples of wavelet decompositions; I’ll try to
reproduce them here. Some are from section 2.9.2, which I include here for clarity.

An example of decomposing an audio signal is shown in Figure 40 (also see simple
examples in the notebook wavelet1D.ipynb). The horizontal axis represents time, while
the vertical axis represents frequencies. However, since the size of the band-pass filters
is scale-independent in logarithmic scale (e.g., Morlet wavelet), and the position of the
maximum is related to the scale, the vertical axis also represents log λ. At each point in
this plane, the color represents the magnitude of Wx, with blue indicating a value of 0.
It’s worth noting that the majority of coefficients are zero, and only a few coefficients
matter. Thus, we have a representation in the time-(log scale) plane of the positions of
transients in the signal (at what time and at what scale λ). In this case, we can describe
the different "attacks" of notes with their fundamental frequencies and harmonics. Thus,
we can see the structures of the signal that allow us to discriminate/identify specific
instruments, etc.
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Figure 39 – Top: (Real part of) wavelet after rotations of kπ/8 with k ∈ J0 , 7K. Bottom:
Coverage of a portion of the Fourier plane by collecting the spectra of several wavelets
with scale factors j = (−1, 0, 1) and undergoing multiple rotations of 30◦.
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Figure 40 – Example of wavelet decomposition of a signal x(t): the color represents the
value of ∥Wx∥ with blue indicating zero values. The sparsity of the frequency decompo-
sition and its temporal evolution can be observed.
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Figure 41 – Time-frequency representations of four music sequences (NDJE. the "r" in
"rondelettes" is a friendly typo).

The next example is shown in Figure 41, where a note is played by several musical
instruments. Wavelet analysis provides a detailed representation of the structures, high-
lighting the importance of having a network of numerous time-scale filters. Thus, starting
from a signal X with d temporal values, we project it into a higher-dimensional space,
which is a general method in Machine Learning. However, in this case, only a few coef-
ficients contain information that is subsequently used for analysis (e.g., classification...).

The third example concerns Figure 42, which shows three representations of "ap-
plause." We can perform a wavelet decomposition of the original sound X(u) and represent
it in the time-scale plane as before. However, we can try to reproduce the sound by mode-
ling it as a Gaussian process, capturing the first and second-order moments of the original
sound at each discrete instant. Thus, in a time slice, we can model the probability density
p(x) of the signal as follows:

p̃(x) ∼ exp{−1
2(x− µ)TC−1(x− µ)} (313)

and generate a new realization X ′(u), which is then analyzed again with wavelets. We
notice that the distribution of power across frequencies (scales) of the signal over time is
well preserved. However, we have lost the signal’s structures that are not captured by
the mean and covariance, which we now understand because the Gaussian process cannot
account for them. So, we need to find a way to capture the missing structures. The third
representation will be explained later in the session.

Similarly, consider a 2D turbulent flow phenomenon (Fig. 43, left image). From
d = 6 104 samples of the signal X, we can use µ = E(X) and n second-order moments
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Figure 42 – Time-frequency representations of applause: the original sound on the left;
in the middle, generation of a Gaussian model that preserves the original energy at all
scales/frequencies; on the right, generation by a more realistic model that considers cor-
relations between scales.

Figure 43 – Example of a simulation of 2D turbulent flow (left) and the realization
(right) of a Gaussian model that simplifies the problem by considering only the second-
order moments of the distribution on the left, i.e., by considering only the covariance
matrix.
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C(k) = E(ϕk(X)) defined as ϕk(x) = (k.x − µ)(x − µ) with k.x being a translation of x
by k ∈ R2. We can then build a Gaussian model of the form

p̃(x) ∼ exp
(
−
∑

k

βkϕk(x)
)

However, the right image in Figure 43 shows the result of a realization from this Gaussian
model. It’s evident that while the scales of fluctuations seem preserved, the geometry of
the structures is not that of the original signal. Therefore, the problem in physics, but in
signal processing in general, is how to capture the signal’s structures beyond second-order
moments.

When using 2D wavelets with different dyadic scale factors, orientations, and spatial
translations, we "explode" a typical image into all these filtering channels and obtain small
images that can be represented as shown in Figure 44. It can be observed that at each
scale, the orientation of the wavelets makes orthogonal transitions in the original image
visible. This allows the detection of boundaries between regions of equal intensity, which
are the sought-after transient phenomena.

Notice that this way of operating the various wavelet filters closely resembles the
structure of convolutional neural networks.

What we also observe here in 2D, and as we noticed in 1D, is that as soon as there
are transients between very regular ranges, the wavelet coefficients are essentially zero,
except for a few that are highly localized in the time-scale plane. This is what we call
sparsity. Moreover, between scales, we visually notice that the structures are correlated;
there is a lot of scale-to-scale dependence. How can we capture these dependencies using
statistical quantities?

9.7 Sparsity

NDJE: See also the 2021 course Section 5.1. for the case of an orthonormal basis
where thresholding is applied to the decomposition coefficients. Here, S. Mallat uses a
different approach within the context of mean estimators.

Suppose we want to use E(|X|) and E(|X|2); we can use estimators (here, u can be
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Figure 44 – Successive cascade of low-pass (ϕ) and band-pass ψ filter applications at
different scales and rotations. At a given scale and rotation, all coefficients obtained
through translations are collected to reconstruct image patches. At each change in scale,
pooling/averaging by a factor of 2 in both directions is performed, changing the size of
the image patches. Dark areas indicate regions where coefficients are zero. The wave-
let2D_sparsity.ipynb notebook allows you to calculate the first stage of decomposition
with a discrete Haar wavelet (Course 2012 Sec. 8.4).
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seen as the index of a pixel in 2D):

µ̃1 = 1
N

N∑
u=1
|X(u)| µ̃2 = 1

N

N∑
u=1
|X(u)|2 (314)

What does the ratio µ̃2
1/µ̃2 tell us?

Property 9
1
N
≤ r = µ̃2

1
µ̃2
≤ 1 (315)

The case where r = 1 corresponds to a constant signal, and r = 1/N when the signal
is concentrated on 1 pixel in the case of an image with 1 temporal sample in 1D.

The proof of r ≤ 1 can be done cleverly using Cauchy-Schwartz:

(
∑

1× |x(u)|)2 ≤ (
∑

12)× (
∑
|x(u)|2).

The first inequality is due to the fact that the square of the sum of absolute values is
always greater than the sum of the squares of absolute values.

So, the value of r somehow measures the sparsity of the signal X: very sparse when
r is small, or not sparse at all for r = 1. What about a Gaussian signal? For x ∼ N (0, 1) in
1D, then (µ1, µ2) = (

√
2/π, 2), so rg = 2/π. In 2D for x ∼ N (0,12×2) (also for a complex

Gaussian), (µ1, µ2) = (
√
π/2, 2), so rg = π/4. What about an image, like the sub-images of

the decomposition in Fig. 44? If r < rg, then we have sparsity information that is much
greater than for a Gaussian process. Note: The notebook wavelet2D_sparsity.ipynb
provides an example and values of r ≈ (0.20 − 0.25) < rg, illustrating a sparsity of
wavelet coefficients much greater than a Gaussian process.

These notions of sparsity were widely used in the 1980s-2000s, S. Mallat tells us.
They are very useful for coding, for example (see the 2022 course Section 9.5), but they
provide global information. They are not sufficient to constrain a model for generating a
new image of a boat, for example.

As mentioned in the previous section, what needs to be captured are the correlations
across scales.
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9.8 Interactions between Scales

Understanding these interactions between different scales is truly the fundamental
point of this entire field of Mathematics and Physics.

By using the various wavelet coefficients, we can study the correlation:

C(u, u′, λ, λ′) = Cov((X ∗ ψλ)(u), (X ∗ ψλ′)(u′)) (316)

A property tells us that if the supports of the Fourier transforms of the two wavelets
are disjoint, then the correlation coefficient is zero:

C(u, u′, λ, λ′) = 0 if ψ̂λ)(ω)× ψ̂λ′(ω) = 0 (317)

This result comes from the filtering of processes. Let X be a stationary random process; we can calculate
the convolution with a deterministic filter h. Now,

(gτ X)(u) = X(u− τ) =⇒ gτ (X ∗ h) = (gτ X) ∗ h (318)

This is the manifestation of convolution equivariance (Definition 21). And since gτ X = X (stationary),
gτ (X ∗ h) = X ∗ h, so X ∗ h is a stationary process. In particular,

E[(X ∗ h)(u)] = E

[∑
v

X(u− v)h(v)
]

= E[X]
∑

v

h(v) (319)

In the case where h is an admissible wavelet,
∑

v h(v) = 0 (Eq. 305), and thus,

E[(X ∗ h)(u)] = 0 (320)

Regarding correlations between X ∗ h and X ∗ g taken at 2 different points, then 98

Cov((X ∗ h)(u), (X ∗ g)(u′)) = (C ∗ h ∗ g̃)(u− u′) = Chg(u− u′) (321)

with C(τ) = E(X(u)X(u − τ)) the two-point correlation function whose Fourier transform is the power
spectrum Ĉ(ω) (measured, for example, in cosmological analyses of the cosmic microwave background),
and g̃(u) = g∗(−u).

98. Note: By writing the left-hand side and remembering that the means are zero, we obtain a double
sum over (v, v′), for example, in which the expectation follows E(X(v−u)X∗(v′−u′) = C(v−v′ +u′−u)
in the complex weighted case of h(v) and g∗(v′). By expressing what (a ∗ b ∗ c)(x) is in a general way, we
then reveal the double convolution estimated at u′ − u. Hence the result when using the definition of g̃.
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This tells us that for a stationary process X, if we want to estimate the correlation between two

admissible wavelet coefficients, it amounts to filtering the covariance of the process by the corresponding

two filters. So, if the supports of ĥ and ĝ do not overlap, Ĉhg(ω) = 0. Hence the result.

In the concrete example of Figure 44, if we take the coefficients of one of the sub-
images denoted x̄1 and its equivalent at x̄j at a scale 2j where j ̸= 1, then the correlation
factor is zero. Even though everything seems to suggest otherwise. Why does this hap-
pen? It’s due to destructive interference caused by the phase difference between the
two objects. So, if you only want to calculate the correlation between linear measure-
ments, you end up with a failure, as you obtain no information through the correlation
coefficients.

Moreover, it should be noted that if X is a Gaussian process, and A = X ∗ h is a
linear combination of Gaussian random variables, it is also a Gaussian random variable.
So, if B = X ∗ g, we know that A and B are two Gaussian random variables with zero
correlation for g and h having disjoint supports. Therefore, A and B are two independent
random variables, and all higher-order moments are also zero. So, in the Gaussian case,
decorrelation means independence between random variables, hence the absence of
structure. This explains the results on the generation of signals (audio or turbulent) by
Gaussian models (Figs. 42, 43).

9.9 Scattering Network

To go further and find a way to capture the structure while using correlations, we
need to handle phases. We can use a non-linearity like |x| or alternatively 99 ReLU(x).

Note that if ψ(u) has a Fourier spectrum concentrated around ω = ω0, then ψλ

has its spectrum concentrated around ω = λω0, and the same goes for X ∗ ψλ. So, if we
multiply 100 by e−i(λω0)u, the spectrum shifts to be concentrated around ω = 0. We can
perform this shift for X ∗ψλ′ while leaving X ∗ψλ intact if λ′ < λ, so that the two spectra
partially overlap. However, this is not enough to eliminate destructive interference. But
now we can use non-linearity. Considering |X ∗ ψλ′ | and X ∗ ψλ′ , not only do the spectra

99. The ReLU, which cancels the negative part of the signals, indeed works.
100. See, for example, Table 1 Sec. 3.4 in the 2012 lecture.
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overlap, but the correlation is non-zero. Thus, we can consider the following covariances,
with scales λ = 2j and λ′ = 2j′ such that j ̸= j′:

Cov((X ∗ ψj)(u), |(X ∗ ψj′)(u− τ)|) = C(1)(j, j′, τ)
Cov(|(X ∗ ψj)(u)|, |(X ∗ ψj′)(u− τ)|) = C(2)(j, j′, τ)

(322)

In the Gaussian case, there’s no escape from the fact that C(1) = 0 and C(2) = 0
due to the independence of variables mentioned in the previous section. However, in the
non-Gaussian case, a priori, we have C(1) ̸= 0 and C(2) ̸= 0.

Notice that if we have a signal with N pixels (or discrete samples), we have N

possible values of τ , while the number of scales 101 λ (or λ′) is of the order of log2 N . So,
the number of moments is of the order of N log2

2 N . For example, if N = 106, this is
4 108 coefficients, which is far too many to calculate so many moments. Remember, first,
we only have one image, and second, we want consistent estimators that require weighted
averaging over ranges of values. In short, we need to find a way to reduce the number
of moments.

We have pointed out that since X(u) is stationary, |X ∗ ϕj|(u) are stationary pro-
cesses. In practice, these wavelet coefficients are sparse in the sense that almost all of
them are zero except for those corresponding to the transients of X(u). So, by taking
their absolute values, we have a new signal that can be analyzed by scale-j2 wavelets by
calculating the coefficients:

(|X ∗ ψj)| ∗ ψj2)(u) (323)

Then, we only need to consider the following covariances:

Cov((|X ∗ ψj)| ∗ ψj2)(u), (|X ∗ ψj′)| ∗ ψj2)(u)) = C(3)(j, j′, j2) (324)

meaning that we don’t need to involve the parameter τ , which dramatically reduces
the combinatorial complexity. These coefficients are, a priori, non-zero only in the non-
Gaussian case.
101. See, for example, Lecture 2018 Sec. 6.6.0.3 for values of jmax.
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These iterations (cascades) of wavelet convolutions form what S. Mallat calls scatte-
ring networks 102 (also see Lecture 2020 Sec. 9.5). From a network architecture perspective,
you can refer 103 to Figure 45:

1. For the top image: Starting from an image x, you begin by applying a cascade
similar to the one presented in Figure 44, which yields the green sub-images (low-
pass filtering by ϕ) and the blue ones (filtered by ϕj), connected by green and
black arrows. Then, you apply a non-linearity ρ(x) = |x| in this case, but it could
be a ReLU to all coefficients of the sub-images. The next step is to consider each
blue sub-image, applying an identical cascade as before, with a new low-pass filter
and a set of band-pass filters at a different scale j2 (red arrows). The notebook
scattering2D.ipynb allows obtaining coefficients of the form |x ∗ ψλ| ∗ ϕ and ||x ∗
ψλ| ∗ψλ′ | ∗ϕ in 2D. The application of the low-frequency filter allows for translation
invariance (Lecture 2020 Sec. 9.4).

2. For the bottom image: At each step, it’s necessary to renormalize the coefficients
(equivalent to BatchNorm) to condition the problem correctly. Once we have dif-
ferent wavelet coefficients, we can calculate correlations at a given scale (red lines),
which in the language of CNN corresponds to correlations between channels. These
are the moments that we keep, and their number is roughly K = log3

2 N , or about
8,000 for N = 106.

This type of Scattering network is a kind of convolutional network where the
weights (i.e., the filters) are known in advance (wavelets). There is no learning here. We
impose the wavelets because we have prior knowledge. We want to capture transients,
so we need spatially localized filters; furthermore, since the signals are stationary, we
need consistent moment estimators, which means we need to average over appropriate
frequency ranges. So, the filters must also meet this dual requirement. Inevitably, we
are led to consider wavelet bases. Then, to obtain interactions between scales, we need
to eliminate phases, hence the need for non-linearities like the absolute value or ReLU.
Thus, the network architecture is ultimately natural.

What does this look like in practice for images like the turbulent flow in Figure 43?

102. NDJE. J. Bruna and S. Mallat "Scattering Convolution Networks" (2012) https://arxiv.org/pdf/
1203.1513.pdf
103. NDJE. I’m taking two images projected by S. Mallat of the same network to explain the process.

https://arxiv.org/pdf/1203.1513.pdf
https://arxiv.org/pdf/1203.1513.pdf
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Figure 45 – Please refer to the text for descriptions of the images.
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Figure 46 – Top row: Original images. Bottom row: New realizations obtained from
maximum entropy models based on the coefficients C(3)(j, j′, j2) of a scattering network
that calculates correlations between channels. But, limiting it to log2 N moments.

With the scattering network, we extract moments 104 C(3)(j, j′, j2) = E(ϕk(X)), and then
we can create a model of p(x) that maximizes entropy, resulting in:

p̃(x) = Z−1 exp
(
−

K∑
k=1

βkϕk(x)
)

(325)

We obtain the Lagrange multipliers βk. Then, we can generate new realizations x̄.

The results are shown in Figures 46 and 47. We are able to capture the structures
unlike the Gaussian model. And when the original images have high resolution, we can
consider more moments. The model is even more faithful and allows generating realizations
whose moment statistics are faithful to the originals up to the 4th order.

The description of the Ising model is also non-Gaussian due to local interactions,
but also because we impose spin values of ±1. Here too, the description by scattering
networks that provide correlations between scales allows us to capture the multi-scale
structuring of the process.

104. NDJE. Here, covariance Cov(a(u), b(u)) means
∑

u a(u)b(u) since the means are zero due to the
renormalization of coefficients.
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Figure 47 – Similar exercise (Fig. 46) of generating new realizations from 2nd-order
moments calculated by a scattering network, but considering more coefficients because
the original images have higher resolution. In this case, we can reproduce statistics up to
the 4th order.

In the case of sounds, we obtain a new synthesis similar to the one on the right
side of Figure 42. It works equally well; to the ear, we can recognize the structures of the
different original sounds.

10. Epilogue

Is there a limit to describing a phenomenon using 2nd-order coefficients obtained
from scattering networks, which, as a reminder, have no learned weights? What about
processes like faces? The short answer is: everything we’ve discussed in this course col-
lapses. The question is why? The ergodicity assumption is false, particularly due to non-
stationarity (all images are recentered). But let’s assume that one image of a face is a
realization of the "face" process; the properties of this process are much more complex
than those of the physical processes considered earlier.

Let’s summarize the course briefly. The central concept is that of entropy. We
can view it as a measure of uncertainty, but we know it’s a count of the discrete states
the system can take. We were able to define a rate of entropy for stationary processes,



152

which was particularly useful in the case of Markov chains (Sec. 7.3). But in the case of
a system that becomes increasingly large (n→∞) for which we don’t have these ergodi-
city/stationarity assumptions, it becomes very complicated to predict what happens. In
particular, will entropy fluctuate or converge?

We know that if entropy converges, then we can derive many results. For example,
we observe the asymptotic distribution in typical spaces with almost uniform probability,
and the number of elements in these sets is given by entropy. So, entropy is the variable at
the heart of the system’s description. We also saw that the temporal evolution of such a
system converges to a maximum entropy (2nd law of thermodynamics) corresponding to
the stationary measure (equilibrium) in the Markovian case. In the end, we can summarize
by saying that in this case we have control over the mathematical properties of the
system. In the Gaussian case, it’s even simpler because there is a lack of structure; in
the non-Gaussian case over the last 15 years, as S. Mallat tells us, we have been able to
master the subject as well (e.g., scattering networks) by understanding scale interactions.

However, in the case of faces, what do we do? As S. Mallat says, we may wonder
if there’s an underlying process for the "production" of a face image? If not, we cannot
apprehend the statistical properties. At some point, we need to calculate expectations,
i.e., empirical means in practice, so we need several samples from the same process...
But if each image had its own "history," it would not be feasible. However, we have
algorithms (see Valentin de Portoli’s 2023 seminar) that work spectacularly: consider
Generative Adversarial Networks, Variational Auto-Encoders, or diffusion models... So,
there is likely an underlying mathematical model. This is the current area of research.

When we look at the results of these generative models, we see a memorization
phenomenon, meaning that parts of the generated image are found in the database. This is
not at all what we observe when we proceed with the maximum entropy modeling scheme.
When we do so, we favor diversity since we spread the probability over all elements of a
typical set. In contrast, in GANs, VAEs, etc., it seems that diversity is not maximized,
nor is it simply the trivial case of randomly drawing an element from the database. There
is variability without maximizing entropy because we find these structures present in
the database. Clearly, a model guided by the principle of maximum entropy would have
zero probability of generating even a small portion of the image identical to that in the
database. Therefore, we must abandon the principle of maximum entropy. Note that if
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we force these generative models to increase entropy, the quality of the images deteriorates,
and fine textures disappear (e.g., hair).

According to S. Mallat, we should try to build a bridge between a simple model of
face memorization and probability modeling by the maximum entropy principle, which
imposes strong ergodicity properties on the process. This is one of the themes discussed
by Marc Mézard (Statistical Physics and Inference: The Challenge of Structured Data)
during this year’s seminar.

In conclusion, S. Mallat tells us that about 99% of the activities of researchers and
doctoral students are focused on developing architectures to compete boldly to increase
performance. However, there is another aspect that is equally fascinating, which is trying
to understand what makes a particular architecture successful.

NDJE. (lightly adapted from John Zarka’s thesis). "Finding the right balance between
theory and practice is always a subtle exercise. Some theoretical frameworks can explain the
basic properties of deep architectures well but are limited in practical applications or rely on
too restrictive assumptions. On the other hand, recent deep architectures that achieve state-
of-the-art results on large-scale problems have reached such a level of technical complexity
that it seems difficult to open these black boxes and expose the mathematical foundations
that lead to their impressive performance."

So, S. Mallat’s message is "we can try to do less well while trying to understand
better.".


