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1. Foreword

Disclaimer: What follows are my informal notes in French, translated into rough
English, taken on the fly and reformatted with few personal comments ("NDJE" or dedica-
ted sections). It is clear that errors may have crept in, and I apologize in advance for them.
You can use the email address provided on the cover page to send me any corrections. I
wish you a pleasant read.

Please note that the Collège de France website has been redesigned. You can find
all the course videos, seminars, as well as course notes not only for this year but also for
previous years 1.

I would like to thank the entire Collège de France team for producing and editing
the videos, without which the preparation of these notes would have been less convenient.

Also, note that S. Mallat 2 provides open access to chapters of his book "A Wavelet
Tour of Signal Processing", 3rd edition, as well as other materials on his ENS website.

This year, 2021, is the fourth in the cycle of S. Mallat’s Data Science Chair: Regu-
larity, Approximation and Sparsimony.

2. Lecture 13 Jan.

2.1 Introduction to the "Regularization, Approximation, Sparsity" Tri-
angle

First, let’s introduce this year’s theme, which is "Sparse Representations." While
in previous years, we studied deep neural networks with their applications, where we
highlighted their empirical performance but also, from our perspective, a lack of mathe-
matical support to truly understand them. This year, we return to a core aspect of Data
Processing.

1. https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/
events

2. https://www.di.ens.fr/~mallat/CoursCollege.html

https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.di.ens.fr/~mallat/CoursCollege.html
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Figure 1 – The RAS triangle: "Regularity, Approximation, Sparsity."

If we denote x(u) ∈ Rd as the signal of interest (sound, image, time series, etc.),
classical topics in Signal Processing include:

— Approximation of this signal. Indeed, we may want to transmit this signal with
the fewest possible bits (Information Theory) to obtain x̃ ∈ Rm, and we try to
quantify the error incurred (signal distortion), for example, through a norm ∥x−x̃∥.
Specifically, the approximation we are interested in is of low dimension, i.e., m ≪ d,
as we often want to compress the signal for transmission.

— Denoising. In this context, x is "contaminated" by noise/error ε, and we attempt to
find a way to eliminate this nuisance. If the signal can be represented in a sparse
form while the noise cannot, then we will see that we have a way to handle it and
quantify the error.

— Finally, the Inverse Problems which we will revisit later.

In all of these themes, the goal is to recover x as cleanly as possible. Another
significant field is Analysis, closely related to what is called Statistical Learning, which
aims to answer the question: how to obtain y from x? In other words, we are looking for
a function f , such that y = f(x). Within this framework, we have themes like:

— Classification: e.g., determining if a given image is that of a cat, a boat, etc., or
identifying a speaker as Mr. or Ms. X. In this case, y is a class indicator (integer).

— Regression, where in this case, y is a continuous quantity. For example, if x repre-
sents the distribution of atoms in a molecule, y is its minimum energy.
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The function f is the underlying object, and we wonder if we can represent it with a
minimal number of elements/parameters for efficient learning.

So, in these two main themes, we will consider the problem of low-dimensional
approximation, which is related to Sparse Representations. In doing so, we will encounter
a third concept: Regularity. These three concepts are intimately related (Fig. 1). For
example, when considering sparse representations, the object of study (signal x or function
f) is taken as a whole, and we want to represent it in a "basis" with very few non-zero
coefficients. However, in practice, we cannot think of these representations without the
notion of approximation. The choice to zero out coefficients is made with a criterion of
approximation quality: minimizing the error incurred. And ultimately, when we discover
sparse representations, we also discover forms of signal regularity and the underlying
structure.

The interdependence of these three concepts is the subject of this year’s course.
Regarding applications, we will start with neural networks and then move on to signal
processing. We will illustrate the "RAS" triangle in:

— The linear domain. Of course, we will encounter the entire harmonic analysis of
Fourier. This is an essential foundation to master and is necessary to understand
the subsequent material. We will address Sobolev regularities, and so on.

— And we will move on to the non-linear domain to understand why it is fundamental.

Keep in mind that every time we introduce new tools, we can revisit all the concepts in the
RAS triangle: what are the structures highlighted, what are the approximation theorems,
and the associated sparse representations.

It is clear that the theme of sparsity is not new. For instance, we can trace it back
to Occam’s Razor 3. This philosophical principle also applies in science and, in essence,
entails eliminating all explanations that are unnecessary. We can also trace it back to
Aristotle, who considered one demonstration better than another if the former used fewer
assumptions than the latter. We could continue to explore the use of this notion of sparsity
in philosophy and science throughout the ages. This principle of minimal assumption is

3. William of Ockham (c. 1285-1347): an English philosopher of the 14th century, a representative
of nominalist scholasticism who criticized the possibility of a demonstration of divine existence. In this
regard, he opposed the views of St. Thomas Aquinas, who synthesized Catholic theology and Aristotle’s
philosophy.
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at the core of Newton’s approach to building models, which progressively become more
complex as our understanding of physical phenomena advances, rather than searching for
Truth with a capital "T" 4. What we can draw from this for the case at hand here and now
is that we have "measurements" (x) that we need to explain using the most parsimonious
representation systems possible.

A few more points to justify the use of sparsity. An empirical aspect, rather than a
philosophical one, is that we avoid "overfitting": in essence, if the number of hypotheses is
too large compared to the number of measurements, it becomes easier to provide an ex-
planation. Another perspective concerns measurement errors: minimizing prediction error
is a compromise between model error, bias, and statistical variance. In data compression,
there is also a trade-off between signal quality and the number of bits of information used.
Finally, sparsity can guide hypothesis selection to retain only those with the highest in-
formation density. This point will be addressed in the course through Information Theory
and the concept of Entropy.

Finally, considering the prevalent aesthetic aspect, especially in mathematics, we
might ask: can we make sparsity an absolute principle 5? For instance, in biology, simplicity
is not necessarily the rule. But in this context, it’s also important to understand the
situation in which the biological system evolves: does "simplicity" satisfy all the constraints
the system faces (e.g., minimizing energy, adapting to potential predators, etc.)? So, we
quickly realize that posing the question of simplicity/sparsity is only possible for isolated
systems. In the course, we will only ask well-posed questions.

4. Note: Isaac Newton was influenced both by Francis Bacon (1561-1626), who developed an empiricist
theory of knowledge, and by Robert Boyle (1627-91), considered the father of modern natural philosophy.
The "empirical philosophy" inspired by Bacon was in line with the thinking of the Royal Society of London.
Therefore, while Newton’s work is exceptional, it’s not primarily due to the use of a revolutionary new
method. However, explaining here the famous maxim "hypotheses non fingo" ("I do not feign hypotheses")
would be too lengthy; this maxim is entwined with the theological aspects of his time.

5. Note that the analytical philosophy emerging from the works of Gottlob Frege (1848-1925), Bertrand
Russell (1872-1970), and Ludwig Wittgenstein (1889-1951) formulates science as a set of statements whose
logical structure and meaning need to be found. In this context, sparsity plays a role in the selection of
signs, for example.



9

Figure 2 – The variety in which the data evolves, S, is parameterizable by m coefficients.

2.2 Brief Illustrations of the RAS Triangle

2.2.1 Signal Processing

In the case of compression, we represent x ∈ Rd by Φ(x) ∈ Rm, aiming for m ≪ d,
meaning that the information in the message x can be reduced to m bits. Implicitly, this
suggests that the signal (the data) doesn’t evolve randomly in Rd but rather on a manifold
S that might be included in Rm, or at least parameterized by m coefficients (Fig. 2). In
a way, Φ(x) is a local coordinate of x ∈ S. In this context, discovering structures within
the signal/data helps.

Once we understand that the structure constrains x to evolve on S, noising is
essentially taking the signal out of the surface S. An idea for denoising is to reproject x+ε
onto S (Fig. 3). Of course, there is a denoising error ε′, but it is much smaller than ε thanks
to this projection. Complications arise when the underlying space is not necessarily linear,
in which case non-linear projection methods are needed. What we observe is that the
smaller the space in which x evolves (i.e., the dimensionality of S), the more effective noise
removal becomes: the sparser and/or lower-dimensional the representation, the greater the
efficiency. An aspect that brings us into the RAS triangle is that the surface S can only be
a model, an approximation of the geometric locus of all x. Thus, once again, we encounter
two types of errors: one on the type of model because the signal does not exactly evolve
on S, and the other on the projection, which leaves residual noise.
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Figure 3 – Signal x and noise ε and a denoising process through orthogonal projection
onto the surface S.

Figure 4 – Inverse Problems: Can we retrieve x from measurements on x, denoted U(x)?
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The third type of problem, to some extent much more significant as mentioned, is
the Inverse Problems (Fig. 4). Here, what we have is not x but a measurement of x,
denoted U(x) ∈ Rn, where n is the number of measured parameters, such that n ≤ d:

x ∈ Rd U−−→ U(x) ∈ Rn n ≤ d (1)

However, in this context, the operator U is not invertible (otherwise, the solution would
be straightforward). To tackle this, we need prior information about x, particularly that
x lies on a surface S contained in Rd. Then, we can attempt inversion, but it requires
that m, the number of parameters characterizing the manifold S, be greater than n, the
dimension of the space in which U(x) operates. This is referred to as the inversion of the
restriction of the operator U to S. If the surface S is nonlinear, even if the operator U
is linear (e.g., an average of measurements), the inversion is nonlinear. This necessitates
the use of much more sophisticated algorithms and mathematics, even when dealing with
a linear operator.

2.2.2 Statistical Learning

In this field, the question arises of finding a function f that provides the response
y when given an input x: seeking f such that y = f(x). This applies to problems of
classification (where y is an integer or a vector of integers) or regression (where y is a real
number or a vector of real numbers). Let’s assume that x ∈ [0, 1]d and y ∈ R; the space
in which the function f operates is colossal. We can make some assumptions, e.g., the
conservation of energy, and then f belongs to the space of square-integrable functions:

L2([0, 1]d) =
{
f/
∫

[0,1]d
|f(x)|2dx < ∞

}
(2)

In this case, the space can be equipped with a quasi-Euclidean inner product, a pre-
Hilbert space (infinite-dimensional 6), allowing the definition of a norm between functions.
However, the space L2([0, 1]d) is equally vast, and finding f requires techniques quite
similar to Inverse Problems.

In particular, given a set of data {xi}i≤n and knowing the corresponding responses

6. In finite dimensions, it’s a Euclidean space
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Figure 5 – One-hidden-layer neural network.

{yi = f(xi)}i≤n, we have a Supervised Learning scenario, also called an interpolation
problem. However, strong assumptions about the class of functions for f must be made,
and a sufficient number of samples (n) is needed to determine f in infinite dimensions.
This is especially challenging when dealing with the curse of dimensionality 7.

From an algorithmic perspective, a one-hidden-layer neural network with m neurons
(Fig. 5) has three distinct operations:

— A linear operation through the action of a matrix Wm,d, which can be seen as a
scalar product over m vectors: Wx = {⟨x, ep⟩}p≤m

— A pointwise non-linearity ρ, such as a rectifier defined by ρ(a) = max(a, 0), and
other choices are possible.

— Finally, a linear classifier C, which, in the case of regression, has dimensions of
(m, 1), or (m,K) for classification between K-classes.

Ultimately, we can write, introducing biases bw and bc at the level of the two linear
combinations:

f̃(x) = Cρ(W.x+ bw) + bc (3)

7. See the 2018 and 2019 courses, for example.
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or in the case where y is a single number:

ỹ = f̃(x) =
∑
p

Cp ρ(⟨x, ep⟩ + bw) + bc (4)

If we ignore the biases for notation simplification, we realize that the response ỹ is a linear
combination of elementary functions:

ỹ =
∑
p

Cp gp(x) gp(x) = ρ(⟨x, ep⟩) (5)

In other words, to represent the function f , we have constructed a simple linear mo-
del in relatively low dimension (m) thanks to elementary functions {gp}p based on the
combination of a scalar product and a non-linearity.

For classification with K classes, y is a class label (e.g., y = 1, . . . , K), and what
we seek to approximate is log p(y|x) (the logarithm of the probability of y given x). This
allows us to use the Bayesian classifier, which says that the best choice for y is the one for
which the probability p(y|x) is highest. One can view this type of problem as K regression
problems, each followed by a max operation to obtain y. So, initially, we do not distinguish
between a pure regression problem and a classification problem.

In conclusion, learning with a neural network traverses the RAS triangle: unders-
tanding how many neurons are needed according to the regularity of the function, what
this will give in terms of the response’s approximation, and perhaps discovering that if it
works, it’s because the matrices W and C are sparse, which is a form of sparsity. However,
does one hidden layer suffice for the task at hand? In general, the answer is no, unless an
enormous number of neurons in the hidden layer is required (see the Universality Theorem
of a One-Hidden-Layer Network from the 2019 course). But in practice, there are cases
where it works quite well. What does this mean? It means that f has structure! And why
does f have structure? It somehow responds to the question of regularity in f .

When dealing with cases where one-hidden-layer networks do not work, we turn to
deep neural networks, and this requires stepping out of the linear framework. Indeed, a
deep network can be visualized as shown in Figure 6 and can be written as a cascade of
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Figure 6 – Multi-layer network.

operators (ignoring biases here):

f(x) = C ρJWJ . . . ρ2W2 ρ1W1x = CΦ(x) (6)

whose result is highly nonlinear. Again, understanding deep neural networks involves
going through the RAS triangle: what are the regularities of the learned functions? What
structures are learned? Does sparsity play a role? Do we have theorems that guide judg-
ment on the errors made? Etc. The major difficulty arises from asking these questions in
a highly nonlinear and high-dimensional context. And we understand that to grasp the
nonlinear, we must first understand what happens when we move from linear to nonli-
near. Why is it necessary on one hand but a challenge worth taking on the other? One
result is that in the nonlinear, we access sparser representations of much higher quality if
they reflect the underlying regularity of the problem. There are cases where the nonlinear
doesn’t perform better than the linear, but generally, nonlinear works better, and different
regularity classes are defined: the manifolds on which x evolves are curves.
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2.3 Course Outline

The considerations in the previous section will be explored further:

— The Linear 8: We will examine approximations of x (data/signal processing) or f
(learning/analysis) by projections into linear spaces. Immediately, the first tool we
will encounter is Fourier Analysis (Harmonic Analysis) as soon as we have some
structure. In this framework, the RAP triangle is completely understood. Regularity
is considered from the perspective of the decay of Fourier coefficients (especially
Sobolev, etc.). We have approximation theorems, which naturally lead to sparse
representations.
However, in certain linear cases, we do not know the basis of the representation,
so we turn to Principal Component Analysis (PCA). We will not revisit the algo-
rithms, but we will show the connection with Fourier Analysis and its limitations.
As for one-hidden-layer neural networks, we will revisit the Universal Approxima-
tion Theorem, which is not mysterious, and we will also examine its limitations in
high dimensions. The representation systems we will use will mostly be orthonormal
bases.

— The Nonlinear 9: We will also see how to perform approximations in bases, especially
the concept of thresholding (adaptive). However, we need to find "good" bases, and,
in particular, the ones from Fourier or PCA analyses are very poor (they are not
designed for this purpose). Thus, we will revisit Multi-resolution Analyses with
orthonormal Wavelet bases. We will see that fast Wavelet Transform algorithms
(the counterpart of FFT for Wavelets) strangely resemble the structure of deep
neural networks. From there, we will revisit the entire RAP triangle with the same
concepts as in linear cases but in a nonlinear framework. Sparse representations will
be different, low-dimensional approximations will be done with different algorithms,
leading to different regularity classes described in more general spaces than Sobolev
spaces, namely Besov spaces 10, where signals, instead of being uniformly regular,
can have singularities and are more complex 11. With these tools, we can address,

8. Note: There is a lot of material on this theme in previous courses (2018-20).
9. Note: See previous courses regarding, for example, Wavelets.

10. Named after Oleg Vladimirovich Besov (1933-), a Russian mathematician.
11. The measure of singularities is the index of the space, and the Dirac delta function is a member of

certain Besov spaces
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for example, images with contours, which have structures.

— Information Theory. We reach this point when we want to relate the concepts of the
RAP triangle to models. We will see this in the context of Compression because what
matters there is the number of bits, not the number of parameters: the difference? A
bit is, as the name suggests, a binary number 0 or 1, whereas a parameter is generally
a real number that theoretically requires an infinite number of bits to encode. The
underlying challenge is stability because we need to find stable approximations for
small bit transmission errors, for example. Of course, we will see that the number of
bits needed to encode information is related to Entropy. This is the basis of Claude
Elwood Shannon’s (1916-2001) theory.
We notice that in very high dimensions, processes concentrate in very small spaces
compared to the initial space; these are called typical sets (a well-established term),
and their size is given by Entropy. We will see how we can achieve optimal com-
pression codes with applications. In particular, we will examine image compression
codes with two standards: JPEG, which mainly uses Fourier bases, and JPEG2000,
which uses Wavelet bases. The second application will be denoising, which is not
only a practical problem but also allows us to identify the space in which x operates.
We will explore both linear and nonlinear aspects of denoising with underlying
models: the Bayesian approach and the minimax approach. Briefly, for data re-
presentation, there is a purely deterministic approach 12 that imposes a prior that
can be summarized as: we know that x belongs to a set Θ ∈ Rd. In this context,
we can hope to have the smallest possible global error over the set Θ: we want to
minimize the maximum error that can occur if x moves through the entire space Θ.
This introduces the concept of minimax:

min max
x∈Θ

(7)

Underlying Bayesian models are probabilistic, which may seem paradoxical because
probability implies uncertainty. In fact, it’s the opposite because having a probabi-
listic model means having a lot of information to build the probability that x is in a
certain part of the space Θ (p(x)). However, in practice, we almost never have access
to p(x). This is why we use minimax models to obtain rigorous results because the

12. Note: See a discussion on Bayesian vs. determinism in the 2019 course.
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idea is to consider the "worst-case" scenario.

Before concluding this section, let’s consider a point that needs attention. So far, we’ve
talked about space in terms of surfaces and manifolds. In very high dimensions, e.g.,
Rd with d ≫ 1, even the surface itself is of very high dimension, and mathematically,
we characterize it as a random process. In any case, we are not in the scenario of a 3-
dimensional space projecting the signal onto a 2-dimensional surface, and it’s clear that
properties in nearly infinite (or truly infinite) dimensions are not the same as in low
dimensions.

3. Lecture 20 Jan.

In this session, we will get a glimpse of how the Regularity, Approximation, and
Sparsity (RAP) triangle unfolds differently when we are in a linear context compared to
a non-linear one. We will work with two types of entities: either data in a broad sense,
denoted as x(u) and indexed by u (for example, time in 1D, pixel positions in a 2D
image, etc.), or a function f that answers the question y = f(x). So, depending on the
domain, the object for which we seek an approximation that benefits from a good sparse
representation according to its regularity will be either x or f , and in each case, it is
essential to clarify which object is under study.

That said, in most cases throughout the course, we will primarily work with x(u)
viewed as a function of u, and when it comes to neural networks, we will revert to using
the notation f .

3.1 A Simple Problem (Linear Context)

Consider the regular function x(u), whose graph is shown in Figure 7. The problem
at hand is to represent this function with the fewest parameters possible. One approach
that comes to mind is to regularly sample this function, denoted as {x(nT )}n≤N , and
perform regular interpolation x̃(u) between these values. The error in approximating x by
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Figure 7 – A regular function x(u) and regularly spaced sampling.

x̃ can be quantified using the quadratic difference (L2 norm):

∥x− x̃∥2 =
∫

|x(u) − x̃(u)|2 du (8)

This type of approximation is linear. Please note that this does not mean using linear
polynomials; it means that if we denote x̃1 ∼ x1 to indicate that x̃1 is an approximation
of x1, then by linear combination:

x̃1 ∼ x1

x̃2 ∼ x2

 ⇒ λ1x̃1 + λ2x̃2 ∼ λ1x1 + λ2x2 (9)

We are in a linear framework, and the approximation x̃ is characterized by M = 1/T
parameters (if the support is [0, 1]), so it resides in a space VM of dimension dim(VM) = M .
Thus, we have found a projection x̃ of the function x into this space VM . However, we
want to minimize the quadratic error Eq. 8:

Min
x̃∈VM

∥x− x̃∥2 (10)

Now, we know that the solution to this minimization problem leads to the orthogonal
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Figure 8 – Illustration of a linear approximation x̃ as the result of the orthogonal
projection of x onto the linear space VM .

projection of x onto the linear space VM (Fig. 8):

x̃ = PVM
x (11)

This is a general result in the linear case: the approximation that minimizes the quadratic
error is the orthogonal projection onto the considered linear space. It’s worth noting
that, within the RAP triangle, we are currently on the side of Approximation.

How do we compute an orthogonal projection? One simple way is to use an ortho-
normal basis of the global space of dimension d, which always exists (recall that we are
in finite dimension here). Let

B = {ei}i≤d s.t. ⟨ei, ej⟩ = δKij = δD[i− j] (12)
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We can rearrange the basis such that

∀x̃ ∈ VM , x̃ =
M∑
i=1

αiei (13)

The orthogonal projection of x onto VM is then

x̃ =
M∑
i=1

⟨x, ei⟩ei (14)

Now, how do we obtain bases that adapt to the fact that M can vary? First, we
can work in the space of functions with support [0, 1] and square-integrable L2([0, 1])
functions. Note that we can also work in the space of functions with support in R and
square-integrable L2(R) functions. These are spaces in which we can define an inner
product between two functions:

⟨x, x̃⟩ =
∫

[0,1] or R
x(u)x̃∗(u)du (15)

In these types of infinite-dimensional spaces, we construct an orthonormal basis B =
{en}n∈N such that

⟨ei, ej⟩ = δ[i− j] (16)

and we have the following result on the error of projections:

∀x ∈ L2, lim
M→∞

∥∥∥∥∥x−
M∑
i=1

⟨x, ei⟩ei
∥∥∥∥∥

2

= 0 (17)

As in finite dimensions, the projection space of dimension M (finite) VM is generated by
the first M vectors of the basis {ei}i≤M , and the error projects into the complementary
space:

x− PVM
x =

∑
i>M

⟨x, ei⟩ ei (18)

The advantage of using an orthonormal basis is that errors can be calculated easily. Indeed,
it is this orthogonality that allows us to write:

∥x− PVM
x∥2 = (x− PVM

x).(x− PVM
x) =

∑
i>M

|⟨x, ei⟩|2 = εℓ (19)
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Figure 9 – (left): We would like the error of the (linear) approximation to decrease
rapidly enough to set the threshold M0 quite low. This is reflected in a constraint on the
energy stored in the first coefficients (right).

We would like the approximation error, denoted as εℓ (where ℓ stands for "linear"),
to be as small as possible. Of course, we see from its previous expression that it depends
on M (the larger M , the smaller it is). Moreover, we know that

εℓ(M) −−−−→
M→∞

0 (20)

Naturally, we would like (Fig. 9 left) the decrease to 0 to be as rapid as possible so that
we can set a reasonably small threshold M0, such that the remainder of the series ∑i>M0

is a small quantity. We can formulate the requirement as having the energy in all inner
products beyond M0 to be small. However, we know that for any orthonormal basis, there
is the conservation of energy in x, which translates to:

∥x∥2 =
∞∑
i=1

|⟨x, ei⟩|2 (21)

So, it is necessary that the energy of the first coefficients is the most significant (Fig. 9
right), and thus, the decrease 13 of the sequence (|⟨x, en⟩|2)n to 0 must be rapid:

|⟨x, en⟩|2 rapid−−−→
n→∞

0 (22)

13. Note that the sequence is convergent because ∥x∥2 is finite.
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What does this mean? First, we have highlighted the use of a representation in the
orthonormal basis B. The constraint on the inner products |⟨x, en⟩| to decrease rapidly
implies sparsity, as in the representation, there are only a small number of coefficients
that carry the signal’s energy, if we want to make a linear approximation. So performing
an orthogonal projection is equivalent to setting coefficients beyond a rank M0 to zero.
Now, the key to being able to make this approximation without too much error is that
we have made an a priori assumption about the regularity of the function x(u).

Here are some questions that can be asked in the linear context:
— What is this notion of regularity?
— What are the optimal approximation spaces VM?
— And finally, what is the orthonormal basis B that achieves the best representation?

By answering these questions, we will discover Fourier analysis, Sobolev spaces, and en-
counter the problem of the curse of dimensionality.

3.2 A More Complex Problem (Non-Linear Context)

The example from the previous section, while generic, doesn’t cover all scenarios,
even for square-integrable functions. For instance, consider the 1-dimensional case shown
in Figure 10. In 2D, in an image, you might encounter situations where from one pixel to
its neighbor, you rapidly transition from one extreme to another on the grayscale due to
the contours of an object against a uniform background. Often, the "relevant" information
lies in the discontinuities.

Similar to the linear case, you can start with regular sampling at M points (left side
of Fig. 10). You obtain a regular interpolation x̃ of the function x, and x̃ is the result of
an orthogonal projection onto a linear space of dimension M (VM). However, x̃ is chosen
from among regular functions, so errors are mainly concentrated where singularities
occur. Therefore, you need to change the locations of the samples, keeping M of them
but concentrating them around the singularities. Thus, sampling adapts case by case
according to x (right side of Fig. 10). The approximation that transitions from x to x̃

is then non-linear: if I have a function x1 approximated by x̃1, and another function x2

approximated by x̃2, the function αx1 + βx2 is not approximated by αx̃1 + βx̃2, because
of the adaptation of sampling for each function (here M remains constant).
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Figure 10 – Example of using regular sampling on the left and adaptive sampling on
the right to better capture the singularities of the underlying function.

Alright, but how do you choose the right sampling? Certainly, we will try to locate
the singularities, but how? And if we can do that, how do we distribute the M samples
in proportion to the singularities? And we need to do this for any singular function (at
least for a class of them). An approach that has been key to solving these problems is not
very different from the one used in the previous problem. Let’s start with an orthonormal
basis B; then we know that x can be decomposed as follows:

x =
∞∑
i=0

⟨x, ei⟩ei (23)

Now, the M -parameter approximation x̃ can also be decomposed over the basis as follows:

x̃ =
∑
i∈S

⟨x, ei⟩ei (24)

The point is that we will choose S with |S| = M . It’s a partial sum, but not only with
the first M coefficients.

How will we choose them? What we want to do is minimize the quadratic error, and
with the orthonormal basis, we can easily estimate this error:

∥x− x̃∥2 =
∑
i/∈S

|⟨x, ei⟩|2 (25)

So the problem is to minimize this error under the constraint that we have M parameters.
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Figure 11 – Example of thresholding inner products to obtain adaptive sampling.

But for the error to be small, S must be the set of the M largest coefficients:

S(x) = {i ∈ N / |⟨x, ei⟩| the top M coefficients} (26)

In fact, we should be able to order the inner products |⟨x, ei⟩| from largest to smallest and
take the first M . We’ll see how to do this, but we can reformulate how to obtain S(x) by
introducing a threshold, denoted as TM , which ensures that we obtain M coefficients and
for which (Fig. 11):

S(x) = {i ∈ N / |⟨x, ei⟩| ≥ TM} (27)

The simplicity of implementing this scheme, despite it being non-linear, comes from
the fact that the basis B is orthonormal. But which basis are we talking about? Because
in the present case, it is about describing functions with singularities. By the way, we
will see that the optimal basis in the linear context is the Fourier basis, but it is not
at all capable of adapting to the singularities of the functions we are dealing with in
non-linearity. So, we’ll have to find something else, and we’ll see that Wavelet bases
fulfill the requirements. Now, is it worth it? Or in other words, does the approximation
error, once we switch to adaptive sampling, decrease significantly? The answer to this
question depends on the regularity of the functions. The notion of regularity, here in
non-linearity, is much broader. And finally, functions like the one in Figure 10 are not as
"irregular" as they may seem because despite their discontinuities here and there, there
aren’t many of them. Functions that are genuinely irregular, for example, are those that
describe Brownian motion, where at every point, there is a singularity.
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So, we will explore the RAP triangle in the non-linear context to discover new
bases, new regularities, and new approximation theorems. Knowing that the transition
from linear to non-linear occurs when moving from a one-layer network to a deep neural
network.

In the following, we will first focus on the linear case because it is fundamental to
understand non-linearity in the sense that we will recycle the same ideas, adapting them.
And more precisely, we will approach the RAP triangle from the perspective of regularity.

3.3 What Is a Regular (Linear) Function?

From the perspective of regularity, we ask the following questions: can we construct
approximations, build orthonormal bases, determine if they are optimal or not, and so on.

First, let’s consider x(u) as a time series. We can assess its regularity through its
derivatives. If x is differentiable, we know it’s already continuous, and its variations are
smooth. Moreover, if its first derivative is bounded by a constant:∣∣∣∣∣dx(u)

du

∣∣∣∣∣ ≤ C (28)

then we can say that the function x(u) is rather regular. If we want even smoother
functions, we need functions whose higher-order derivatives exist and are also bounded:

∀k ≤ n

∣∣∣∣∣dkx(u)
duk

∣∣∣∣∣ ≤ C (29)

This approach is the most natural. Starting from this notion of regularity, we can unfold
the entire RAP triangle.

First, we ask the question: what is a derivative operator? We know that for x ∈ L2,
it yields the derivative dx/du, and this derivative is bounded. To understand this, we’ll
diagonalize it. But let’s make a remark that relates to the 2020 course 14: the derivative
operator belongs to a broad class of operators covariant/equivariant with respect to

14. NDJE: Section 6 of the 2020 course can be a supplement.
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Figure 12 – Covariant/equivariant translation operator. The derivative operator is part
of this type of operators.

translation:

g.x(u) = x(u− τ) ⇒ Du(g.x(u)) = dx(u− τ)
du

= dx

du
(u− τ) = g.Du(x(u))

⇒ Du(g.x) = g.Du(x) (30)

(Note: an operator invariant under translation satisfies f(g.x) = f(x)). This covariant
translation operator can be represented as shown in Figure 12. In the following, we will
use the term covariant although it’s actually equivariance. Note that this property is
quite natural in signal processing. When transmitting a time series, we want operators
that maintain the temporal sequence of values. So, a shift at the input should result in
the same shift at the output. Regarding the derivative, this means that the derivative of
a time-shifted signal is itself time-shifted (with the same time shift).

Now, the function x(u) can be viewed as a sum of Dirac deltas:

x(u) =
∫
x(v)δ(u− v)dv (31)

Without going into distribution theory, we recall that the Dirac delta is the limit of
functions whose "mass" concentrates at a point (integral equals 1 while having a support
that tends to 0). If we apply an operator L covariant under translation, and if we have
some level of regularity to interchange the integral and the action of operator L:

L.x(u) =
∫
x(v)L.[δ(u− v)]dv =

∫
x(v)(L.δ)(u− v)dv (32)

In signal processing, the function L.δ(u) = h(u) is the impulse response of the operator
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Figure 13 – The linear operator covariant under translation, denoted as L, has expo-
nential functions eiωu as its eigenvectors, with associated eigenvalues equal to the values
of its estimated Transfer Function at ω (cf. ĥ(ω)).

L, and therefore, by covariance of L, we have:

L.x(u) =
∫
x(v)h(u− v)dv = (x ∗ h)(u) = (h ∗ x)(u) =

∫
x(u− v)h(v)dv (33)

which translates to the action of a linear operator covariant under translation L on x

being a convolution of x with the impulse response of the operator. So, the derivative
operator belongs to the class of convolution operators. What are its eigenvectors? Let’s
take an oscillating exponential function eiωu at the input of the operator, and we get:

L[eiωu] =
∫
eiω(u−v)h(v)dv = eiωu

∫
h(v)e−iωvdv = eiωu ĥ(ω) (34)

So, firstly, eiωu is an eigenvector of the linear operator L, and secondly, the associated
eigenvalue is ĥ(ω), which is the Fourier transform of the impulse response of the ope-
rator, i.e., the transfer function. This can be illustrated as shown in Figure 13. Note
that depending on the value of ĥ(ω), resonance phenomena can be highlighted. There-
fore, an important point to remember is that the Fourier Transform allows diagonalizing
convolution operators.

3.4 Fourier Analysis

Let’s revisit some results on Fourier Analysis 15. Fourier Analysis is a mathematical
chapter that essentially concluded around the 1960s with the final convergence theorems
for Fourier integrals and series.

15. This fundamental topic is worth reviewing in previous year’s courses as well.
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Figure 14 – Evolution of the Fourier coefficients of the two functions studied in the
sections 3.1 (regular/linear framework) and 3.2 (discontinuous/nonlinear framework)

.

We define the Fourier Transform of x as follows:

x̂(ω) =
∫ +∞

−∞
x(u)e−iωudu (35)

To ensure the integral makes sense, we can restrict ourselves to functions in L1(R) for
which: ∫

|x(u)|du < ∞ (36)

Now, let’s interpret x̂(ω): it represents the result of the correlation between the function
x(u) and sinusoids whose ω sets the oscillation frequency. If the function x is regular, it
oscillates slowly, so its coefficients x̂(ω) are large for small ω. Conversely, if x has rapid
variations, the "high-frequency" coefficients will be significant. Thus, the low frequencies
indicate the regularity of a function. In other words, the decay of Fourier coefficients
reflects the regularity of the function. An illustration is provided in Figure 14 for two
functions studied in Sections 3.1 (regular/linear context) and 3.2 (discontinuous/non-
linear context). The regular function’s Fourier coefficients converge to 0 much faster.

For the first theorem 16, we assume that the function x̂(ω) is also in L1(R), meaning

16. Proofs are provided in the course notes by S. Mallat.
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it doesn’t have too many high-frequency components.

Theorem 1 If x̂ ∈ L1(R), then there is an inversion formula to recover the function
x from its Fourier Transform:

x(u) = 1
2π

∫ +∞

−∞
x̂(ω)eiωudω (37)

Note that the operation of recombining sinusoids by weighting them with Fourier
coefficients is not straightforward. Because the sinusoids are spread out, and a very precise
weighting is required to reconstruct, for example, a function that is mostly regular except
for a small portion of its support (see, for example, Figure 22 of the 2020 course).

A consequence of this is:

|x(u)| = 1
2π

∣∣∣∣∫ +∞

−∞
x̂(ω)eiωudω

∣∣∣∣ ≤ 1
2π

∫ +∞

−∞
|x̂(ω)|dω (38)

Since x̂ ∈ L1(R), the right-hand side is bounded, and therefore, so is x. It has bounded
variations, and

∥x∥∞ = sup
u∈R

x(u) ≤ 1
2π

∫
|x̂(ω)|dω (39)

The second theorem follows from the intention to use the Fourier Transform for
convolution:

Theorem 2
g(u) = (x ∗ h)(u) → ĝ(ω) = x̂(ω)ĥ(ω)

This means that the convolution product is diagonalized in Fourier space. Indeed,
the convolution operator Lx(u) = (x ∗ h)(u) is linear and covariant under translation
because

L[gτ .x(u)] = L[x(u− τ)] = L[f(u)] =
∫
f(v)h(u− v)dv

=
∫
x(v − τ)h(u− τ − v + τ)dv =

∫
x(v)h(u− τ − v)dv = Lx(u− τ)

= gτ .(Lx(u))
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so it is diagonalizable by complex exponentials as we showed earlier. Therefore,

g(u) = (x ∗ h)(u) = Lx(u) = 1
2π

∫
x̂(ω)L[eiωu]dω =

∫
x̂(ω)ĥ(ω)eiωudω

resulting in the identification of x̂(ω)ĥ(ω) as the Fourier coefficient g(ω).

The third (fundamental) theorem is the Plancherel formula, which reflects that the
Fourier Transformation conserves angles (up to a constant factor):

Theorem 3

⟨x1, x2⟩ =
∫
x1(u)x∗

2(u)du = 1
2π

∫
x̂1(ω)x̂2(ω)dω = 1

2π ⟨x̂1, x̂2⟩ (40)

A consequence when x1 = x2 yields a relation (Parseval) which is an energy conser-
vation:

∥x∥2 = ∥x̂∥2 ⇔
∫

|x(u)|2du = 1
2π

∫
|x̂(ω)|2dω (41)

So, if x ∈ L2(R), then its Fourier Transform is also of finite energy, x̂ ∈ L2(R). The
FT preserves the space L2(R), and we will mainly define it in this space.

NDJE. Other properties of the TF are useful for what follows, see for example the
2018 course.

3.5 The Derivative Operator: Sobolev Regularity

Let’s return to the derivative operator, and first, let’s discuss its eigenvectors. Since
it is translation-covariant, as we studied in the previous section, its eigenvectors are eiωu.
The corresponding eigenvalue is simply iω, or in terms of the transfer function of the
derivative operator:

ĥd/du(ω) = iω (42)

Now, if we want to say that the kth derivative of x is bounded, meaning:∥∥∥∥∥dkx(u)
duk

∥∥∥∥∥
∞

≤ C (43)
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then one way to proceed is to impose that the Fourier Transform of the kth derivative is
integrable (see Eq. 39). However, knowing that:

dkx(u)
duk

FT−−→ (iω)kx̂(ω) (44)

this means that we must impose the condition:∫
|ω|k|x̂(ω)|dω = C (45)

In other words, the previous condition in the Fourier domain implies the condition on the
kth derivative in the real space. This reveals a condition of regularity for the function
x, because if the Fourier coefficients decrease rapidly enough so that, when multiplied by
ωk, the integral remains finite, this constrains the variations of the kth derivative.

Can we establish an equivalence? To do this, let’s use Parseval/Plancherel. We will
replace the condition "the kth derivative is bounded" with the condition "the kth derivative
is square-integrable", i.e.:

∫ ∣∣∣∣∣dkx(u)
duk

∣∣∣∣∣
2

du = 1
2π

∫
||ω|kx̂(ω)|2dω = 1

2π

∫
|ω|2k|x̂(ω)|2dω ≤ ∞ (46)

So, there is an equivalence here. If the right-hand integral converges, then the kth de-
rivative is square-integrable. This is Sobolev regularity or differentiability. In fact, this
exponent can be extended to the case of a positive real number, and the condition then
becomes:

s ∈ R+,
∫

|ω|2s|x̂(ω)|2dω ≤ ∞ (47)

If the integral converges, we say that the function is "s times" differentiable with s a
positive real number. This generalizes the notion of a derivative, and especially in practical
signal processing, we never actually compute the derivatives, but rather, we go to the
Fourier domain to study the decay of coefficients. Now, if the Fourier Transform decreases
rapidly enough, we can set a lower-frequency cutoff and keep only a small number of
coefficients, achieving sparse representation. However, one point to clarify is that, for
now, if we remain in the continuous domain, applying a threshold to ω still leaves us with
an infinite number of frequencies. The same goes for the calculation of Fourier integrals;
we would need an infinite number of frequencies. However, the goal of signal processing
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is to manipulate as few parameters as possible.

3.6 Transition from Continuous to Discrete

One remark we can make is that in practice, the support of the signal x(u) is finite,
and we normalize it to be in u ∈ [0, 1]. In the background, if we need to extend it beyond,
we consider x(u) to be periodic (or extend it to a periodic function). Thus, we consider
signals in L2([0, 1]). We can redo all the previous Fourier analysis. The building blocks
are the sinusoids, but this time with the constraint of having a period of 1, so ω = 2πn
for all integers. We then have the following theorem:

Theorem 4
B =

{
en(u) = ei2πnu,∀n ∈ Z

}
(48)

B is an orthonormal basis for L2([0, 1]), which is the (famous) result about Fourier
series:

∀x ∈ L2([0, 1]), x =
∑
n∈Z

⟨x, en⟩en

with
⟨x, en⟩ =

∫ 1

0
x(u)e−i2πnudu = x̂(2πn)

which is the Fourier coefficient taken at the discrete frequency 2πn. We perform
sampling in the Fourier space. The Plancherel/Parseval formula becomes:

∥x∥2 =
∑
n

|⟨x, en⟩|2 =
∑
n

|x̂(2πn)|2

3.7 The Multi-dimensional Case

Before using the orthonormal basis to expand the RAP triangle analysis, let’s take a
detour into multi-dimensions to redefine Sobolev regularity. At first glance, transitioning
from 1D to an arbitrary dimension seems straightforward; the results seem to translate
well. However, there will be a hitch: approximation results will become very poor. We’ll
quantify this with Sobolev.
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So, assume we have an orthonormal basis {en(u),∀n ∈ Z}, with u ∈ [0, 1] ( 17), and
we would like an orthonormal basis with u = (u1, . . . , uq) ∈ [0, 1]q. The method is simple;
we perform a separable product:

Theorem 5 If {en(u),∀n ∈ Z} is an orthonormal basis for L2([0, 1]), then
{
en(u) = (en1(u1) . . . enq(uq)), n = (n1, . . . , nq) ∈ Zq, u = (u1, . . . , uq) ∈ [0, 1]q

}
is an orthonormal basis for L2([0, 1]q).

The proof proceeds in two steps: the first step is to prove that the new vectors
(en) are orthonormal, and for the second step, we need to show that any function in
L2([0, 1]q) can be decomposed on this basis. For this latter step, we can already notice
that it holds for a separable function, meaning a function that can be written as the
product g1(u1)g2(u2) . . . gq(uq). Then, we can show that any function in L2([0, 1]q) can be
approximated by a family of functions constant on small cubes in [0, 1]q (similar to steps
in 1D involving steps).

The important thing is that we can extend the Fourier transform to any dimension,
because then the orthonormal basis for L2([0, 1]q) is given by

B =
{
en(u) = ei2πn.u,∀n ∈ Zq, u ∈ [0, 1]q

}
(49)

with n.u = ∑q
k=1 nkuk.

Now, the plan ahead: we can see how the notion of regularity is expressed in q

dimensions via Sobolev regularity, which is equivalent to the rapid decay of |⟨x, en⟩|,
providing an equivalence between regularity and sparsity. Then, we demonstrate an
equivalence between sparse representation and the quality of approximation. We will
see the equivalence between the rate of decay of |⟨x, en⟩| and the rate of convergence
of the approximation error ∥x − PVM

x∥2 = εM as M tends to infinity. So, we will have
equivalences that link the 3 notions of the RAP triangle.

The consequence is that when we tackle neural networks, the object is no longer
x(u) but f(x), meaning that the variable is x (an image, for example, depending on u

17. We can also do the same on R.
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with q = 2), whose dimensionality explodes (e.g., d the number of pixels, the number of
time samples, etc.). Therefore, we will see that the error decay is slow because sparsity is
poor, which is due to regularity that is not adapted to the problem (even if we constrained
the 100th derivative of f), which is nonlinear.

4. Lecture 27 Jan.

4.1 Exploring the RAP Triangle in a Linear Multidimensional Frame-
work

During this session, we will revisit the RAP (Regularity-Approximation-Sparseness)
triangle within a linear framework in multiple dimensions. We will begin our exploration
by delving into the regularity of functions in high dimensions. In doing so, we will redis-
cover the Fourier basis given the linear framework, and establish an equivalence between
regularity and sparsity in this basis. Next, we will address the equivalence between sparsity
and approximation. Given that the Fourier representation yields a representation with few
coefficients, we will be able to perform low-dimensional approximations.

In the linear context, we will also pose the question of what constitutes the "optimal"
basis. Here, we will make use of Principal Component Analysis (PCA), namely the
Karhunen-Loève basis, and we will find Fourier when translation invariance (stationarity)
is present. Following this, we will delve into the realm of non-linearity. Specifically, we will
examine the performance of single-hidden-layer neural networks. These networks can be
viewed both in a linear context, where we will encounter the Universal Approximation
Theorem, and in a non-linear context with Barron spaces 18. However, these studies,
unfortunately, do not provide answers to algorithm performance in practical scenarios.

A quick reminder: from this point onward, we will primarily use the notation x(u).
However, when dealing with high dimensions, we will denote it as f(x). Thus, in low
dimensions, u is the underlying variable of a time series or an image, for example. In
high dimensions, x becomes the underlying variable in problems of the form y = f(x), and
if you consider an image x, its dimensionality is the number of pixels.

18. Andrew R. Barron, Professor at Yale University
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4.2 Regularity of a Function in Multiple Dimensions

The regularity of a function in L2([0, 1]q) in a dimension q > 1 can be examined in a
classical manner by looking at partial derivatives. Thus, we aim to control the derivative
of x(u) in any direction v, where ∥v∥ = 1:

∂x(u)
∂v

= v · ∇ux(u) (50)

The partial derivative operator ∂/∂v is linear and translation-covariant, hence it is dia-
gonalizable in a Fourier basis. Indeed, by taking an element from the basis (Eq. 48):

∂ei2πn.u

∂v
= v · ∇ue

i2πn.u = (i2π) v · n ei2πn.u (51)

Now, we wish to control any order of derivative of x with respect to any direction
v, meaning that it should be square-integrable 19:

∥∥∥∥∥∂px∂vp
∥∥∥∥∥

2
=
∫

[0,1]q

∣∣∣∣∣∂px(u)
∂vp

∣∣∣∣∣
2

du (52)

and see how this is expressed in the Fourier basis. Let’s take the Fourier transform of
Eq. 50 (ω = 2πn):

∂̂x

∂v
(2πn) = (i2π)(v · n)x̂(2πn) (53)

and, by generalizing through iteration:

∂̂px

∂vp
(2πn) = (i2π)p(v · n)px̂(2πn) (54)

So, the condition of regularity through the control of partial derivatives can be written
as: ∥∥∥∥∥∂px∂vp

∥∥∥∥∥
2

≤ C
Parseval⇐=====⇒

∑
n∈Zq

|x̂(2πn)|2|i2π|2p(v · n)2p ≤ C (55)

The key point here in translating real-domain regularity (derivatives) into the Fourier
domain (coefficients) is the fact that the (partial) differentiation operator is diagonal in

19. ∥z∥2 denotes the L2 norm of z.
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the Fourier basis. Reading the condition, this means that when n becomes large, |x̂(2πn)|2

must decrease rapidly enough. But this condition must hold for any unit vector v ∈ Rq.
The term |v · n|2p achieves its maximum value when v is collinear with n. Thus, the
condition becomes: ∑

n∈Zq

|x̂(2πn)|2|i2π|2p|n|2p ≤ C (56)

Therefore, the independence of regularity from the direction imposes the equivalence:

∥∥∥∥∥∂px∂vp
∥∥∥∥∥

2
≤ C ⇐⇒

∑
n∈Zq

|⟨x, en⟩|2|n|2p ≤ C (57)

which is the Sobolev regularity of degree p.

4.3 Linear Approximation

4.3.1 Decay of Error and Fourier Coefficients

What is the difference in Equation 57 compared to the one-dimensional case? Essen-
tially, it’s the fact that n ∈ Zq, but this will have consequences because n lies in a much
larger grid. A partial (truncated) sum for the approximation of x(u) in the orthonormal
basis can be written as follows:

If we are in one dimension:

xM(u) =
M∑
n=1

⟨x, en⟩en (58)

And the error is given by:
∥x− xM∥2 =

∑
n>M

|⟨x, en⟩|2 (59)

In arbitrary dimension, the index n is a vector in Zq. We can restrict its norm, which
gives the low-frequency components that select the largest coefficients (Fig. 15). This can
be written as:

xM(u) =
∑

|n|≤RM

⟨x, en⟩en (60)
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Figure 15 – Low-frequency restriction of the 2D decomposition of x(u).

And the error becomes:
∥x− xM∥2 =

∑
|n|>RM

|⟨x, en⟩|2 (61)

The radius of the sphere, RM , selects M coefficients. Now, in dimension q, the volume of
a ball BM with radius RM is given by (assuming q is even for simplification):

V (BM) = πq/2Rq
M/(q/2)! (62)

Each point on the grid of Zq corresponds to a small hypercube and thus, approximately,
V (BM) ≈ M . Therefore:

RM = M1/q√qγ̃q(1 +O(log q/q)) ≡ M1/qγq (63)

(with γ̃q = 1/
√

2eπ ≈ 0.25)

Now, the idea is to study how the error in Eq. 61 behaves in high dimensions. In fact,
the crux of the problem arises from the following observation: when q becomes large, for
RM to become significant and achieve a good approximation, M must grow substantially.
The condition:

ε(M) = ∥x− xM∥2 =
∑

|n|>M1/qγq

|⟨x, en⟩|2 (64)
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How is this condition expressed in terms of Fourier coefficients (Eq. 57)? To relate the
two concepts, there is the following theorem that links the decay of Fourier coefficients
and the decay of error:

Theorem 6 Suppose an arbitrary orthonormal basis (not necessarily just the Fourier
basis). Then, we have the following equivalence:

∑
n∈Zq

|⟨x, en⟩|2|n|2p ≤ C ⇔
+∞∑
M=1

ε(M)M
2p
q

−1 ≤ Cγ′
q (65)

What does this mean? If |⟨x, en⟩| decreases rapidly enough, then it is equivalent to
saying that ε(M) = o(M−2p/q).

Proof 6. Let’s consider the right-hand side term that constrains the rate of decrease
of approximation errors by replacing the error with its expression in terms of Fourier
coefficients outside the ball:

A =
+∞∑
M=1

 ∑
|n|>M1/qγq

|⟨x, en⟩|2
M2p/q−1

=
∑
n∈Zq

|⟨x, en⟩|2
|n|qγ−q

q∑
M=1

M2p/q−1 ∼
∑
n∈Zq

|⟨x, en⟩|2
|n|2pγ−2p

q

2p/q

∼ γ′
q ×

∑
n∈Zq

|⟨x, en⟩|2|n|2p

We used: ∫ a+1

1
usdu ≤

a∑
M=1

M s ≤
∫ a

0
usdu = as+1

s+ 1

which gives an equivalent of the sum when a tends to infinity (and s < 0). So, A as the
right-hand term of the equivalence is proportional to the left-hand term, which indeed
establishes the relationship between the decay of error and Fourier coefficients. ■

This is a very strong result because from the rate of error decay, we can deduce the form
of function regularity. For example, if we know that the function is twice differentiable
but not three times, then the error decay is true for p = 2 but not for p = 3. Once
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Figure 16 – Examples of ε(M) decay depending on the values of p (derivative order)
and q (dimension of space).

again, the decay exactly reflects the order of regularity. This result is extensively used in
Approximation Theory to demonstrate equivalences between Sobolev-type regularity and
linear approximation forms, whether in Fourier bases or equivalent bases.

4.3.2 Curse of Dimensionality

As previously noted, the error decay satisfies the fact that

ε(M) = o(M−2p/q) (66)

and this is illustrated in Figure 16. For example, if we want to achieve an error of ε, then
the number of coefficients M must roughly satisfy

M ∼ ε−q/2p (67)

which means that this number must increase exponentially with dimensionality q. This
is the core problem because even if the function is, for instance, continuously differentiable
100 times, in high dimensions, M will explode (considering x as the variable of f(x) in
which case q ∼ 104−6). Thus, as the dimension significantly increases, in the linear
framework, we quickly become limited. However, it’s true that if we’re dealing with time
series where q = 1, there’s no issue, for images with q = 2, it works but less effectively.
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4.3.3 Low-Frequency Filter

We obtain a linear approximation xM by taking a partial series of the signal x(u):

xM(u) =
∑

|n|≤RM

⟨x, en⟩en (68)

The Fourier coefficients of this approximation are those of x, but only at low frequencies.
That is, we have the simple relationship:

x̂M(2πn) = x̂(2πn) 1|n|≤RM
(69)

Now, the operator 1|n|≤RM
takes values of either 1 or 0. It’s diagonal in Fourier, so it’s a

convolution. In fact, as in the 1D case, we can view xM as the convolution of x with a
Dirichlet kernel or low-pass filter hM that equals 1 inside the ball BM :

xM = x ∗ hM (70)

Thus, we rediscover the 1D idea that if a function is regular, we eliminate high frequen-
cies to obtain a linear approximation. This result is used in single-hidden-layer neural
networks.

4.4 Discovering the Right Basis: Unsupervised Learning

When we start with data, we generally don’t have any a priori knowledge of the
regularity of the underlying function. In the absence of regularity, we enter the RAP
triangle through the approximation-sparsity side. Thus, the question arises: given the
data alone, what is the linear approximation xM that minimizes the error?

Speaking of linear approximation, it involves projecting x onto a linear space VM
(see Fig. 8) to obtain xM . So, the question can be reformulated as: what is the linear space
VM that allows us to approximate signals x to minimize ε(M)? The first observation is
that if we have only one signal x, we can choose any hyperplane containing x, which
trivially gives ε(M) = 0. Therefore, we need several signals {xi}i≤N from a space Ω, and
we will use Unsupervised Learning to obtain the best approximation space VM .
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Initially, the "generic" signal x(u) is of finite dimension Rd, where u takes d values.
However, x is a random vector in Rd. And we need to establish the measure of the
approximation error, which must be minimized for all x ∈ Ω to obtain the optimal VM .
Thus, we would like to obtain:

Min
xM ∈VM

E(∥x− xM∥2) (71)

A fundamental concept when using quadratic error is that minimization will depend only
on one thing: the covariance. Let’s have a quick reminder to fix the notations:

E[x] = µ ∈ Rd, E[(x(u) − E[x(u)])(x(u′) − E[x(u′)])∗] = K(u, u′) ∈ Rd×d (72)

and K is a positive definite Hermitian matrix.

How is the covariance matrix K related to the approximation error with a random
vector? In fact, K will completely characterize linear combinations. A linear combination
is written as the dot product of x with z ∈ Rd, a deterministic vector (i.e., fixed with
respect to the randomness of x):

⟨x, z⟩ =
d∑

u=1
x(u)z(u) (73)

If we consider another linear combination ⟨x, z′⟩ and want to correlate it with the previous
one, then (let’s simplify the notations by assuming that E(x) = 0, so we consider the
vector x from which we subtract the mean µ):

E[⟨x, z⟩⟨x, z′⟩∗] = E[
∑
u

x(u)z∗(u) ×
∑
u′
x∗(u′)z′(u′)]

=
∑
u,u′

z∗(u)z′(u′)E[x(u)x∗(u′)]

=
∑
u,u′

z∗(u)z′(u′)K(u, u′)

= ⟨Kz′, z⟩ = zT .Kz′ (74)

So, the entire characterization of the correlation is given by the matrix K. Note that if
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Figure 17 – Illustration of the principal axes of the covariance matrix.

z = z′:
E[|⟨x, z⟩|2] = ⟨Kz, z⟩ (75)

Now, let’s consider the (expected) error of the approximation:

E(∥x− xM∥2) = E(
∑

|n|>RM

|⟨x, en⟩|2) =
∑

|n|>RM

⟨Ken, en⟩ (76)

We notice that once the basis is fixed, the error depends only on the covariance ma-
trix. The best basis will depend on the properties of this covariance matrix. Note that a
geometric interpretation of K is given by the principal axes of a population of vectors x
(Fig. 17). The axis with the greatest variability corresponds to the eigenvector with the
largest eigenvalue.

Here’s a widely-used theorem in data analysis and functional analysis because it
tells you why the Fourier basis is often optimal:

Theorem 7 For any M , E(∥x − xM∥2 = ∑
|n|>RM

E(|⟨x, en⟩|2) is minimized if the
elements of the basis {en}n≤d diagonalize the covariance matrix K associated with



43

x, with eigenvalues
λn = ⟨Ken, en⟩ ≥ 0

that are ordered in decreasing order. Another way to express the same thing is that

E(∥x− PVM
x∥2)

is minimized if VM is generated by the first M eigenvectors of the covariance matrix
K.

Proof 7. To begin the proof, let’s apply the Pythagorean Theorem, knowing that xM is
the orthogonal projection of x onto the hyperplane VM :

E(∥x− xM∥2) = E(∥x∥2) − E(∥xM∥2)

In this context, we aim to minimize the approximation error concerning all possible xM ,
which is equivalent to maximizing E(∥xM∥2). Now,

E(∥xM∥2) =
∑

|n|≤RM

E(|⟨x, en⟩|2)

In fact, the condition |n| ≤ RM defines the M vectors of the basis {en}n≤d, so we can
rewrite the sum as ∑M

n=1. Let’s consider the basis that diagonalizes the matrix K with
(λn) as the spectrum of eigenvalues, denoted as {ēn}n≤d. This is the Karhunen-Loève
basis 20, defined such that

⟨Kēn, ēn⟩ = λn ≥ 0 (decreasing) ⟨Kēn, ēn′⟩ = 0 (n ̸= n′)

So, the idea is to show that E(∥xM∥2) is larger in the Karhunen-Loève basis, so we need
to express en in this particular basis:

en =
d∑

k=1
⟨en, ēk⟩ēk

20. named after Kari Karhunen (1915-92), a Finnish mathematician, and Michel Loève (1907-79), a
Franco-American mathematician.
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Consequently, it follows that

E(|⟨x, en⟩|2) = E(|
d∑

k=1
⟨en, ēk⟩⟨x, ēk⟩|2)

=
∑
k,k′

⟨en, ēk⟩⟨en, ēk′⟩∗E(⟨x, ēk⟩⟨x, ēk′⟩∗) =
∑
k,k′

⟨en, ēk⟩⟨en, ēk′⟩∗⟨Kēk, ēk′⟩

=
∑
k

λk|⟨en, ēk⟩|2

So, the expression for E(∥xM∥2) becomes

E(∥xM∥2) =
M∑
n=1

d∑
k=1

λk|⟨en, ēk⟩|2 =
d∑

k=1
λk

(
M∑
n=1

|⟨en, ēk⟩|2
)

and we aim to maximize this expression by choosing the basis {en}n≤M of VM (considering
the degrees of freedom of the problem). Now,

0 ≤ ck =
M∑
n=1

|⟨en, ēk⟩|2 ≤
d∑

n=1
|⟨en, ēk⟩|2 = ∥ēk∥2 = 1

and, on the other hand,

d∑
k=1

ck =
M∑
n=1

d∑
k=1

|⟨en, ēk⟩|2 =
M∑
n=1

∥en∥2 = M

So, the {ck}k≤d are numbers in the range [0, 1] whose sum is equal to M . Now, the
{λk}k≤d are either positive or zero and arranged in decreasing order. Hence, to maximize
E(∥xM∥2), it suffices to set the first M ck values to 1 and the rest to 0:

ck =

1 k ≤ M

0 k = M + 1, . . . , d

Thus, for all k ≤ M , ∑M
n=1 |⟨en, ēk⟩|2 = 1, so the orthonormal vectors {en}n≤M are in the

space spanned by the first M vectors of the Karhunen-Loève basis, and finally, the same
applies to VM . ■
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This theorem is very important in practice, of course, and also because we realize that
the approximation problem becomes an operator diagonalization problem. Moreover, in
practice, the concept of stationary signals is often encountered, and we will see that one
can guess the orthonormal basis then.

4.5 Stationary Signals

Consider Second-Order Stationary Random Processes 21, and let p(x) be the pro-
bability density of x ∈ Rd. What happens to the probability density if the signal is
translated:

xτ (u) = x(u− τ) ⇒ p(xτ )? (77)

In this context, we say the process is stationary 22 if

∀k, α, p(x(u1), x(u2), . . . , x(uk)) = p(x(u1 − α), x(u2 − α), . . . , x(uk − α)) (78)

As a consequence, the mean of the signal is a constant. This is the case, for example, in
imaging or audio recording when there is no reference point. Additionally,

E[f(x(u1), x(u1 + τ))] = E[f(x(u1 − α), x(u1 − α + τ))] = E[f(x(0), x(τ))]

which is a function of τ alone. This implies that if we take f(x, y) = xy−µ, the covariance
matrix has the following property:

∀u, u′, K(u, u′) = K(u− u′) (79)

So, when we apply the operator K of a stationary process to a function g, for example,
we have

K.g(u) =
∑
u′
g(u′)K(u, u′) =

∑
u′
g(u′)K(u− u′) = (K ∗ g)(u) (80)

This is a convolution operation by K.

Now, a convolution operator is diagonalized in a Fourier basis. So, as soon as we

21. We weaken the notion of stationarity for ease of study.
22. a strong assumption
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Figure 18 – Example of g(u) and a periodicized translated version (note: the mean of g
is zero).

have a stationary process, the Karhunen-Loève basis is the Fourier basis, namely
{
ēk(u) = ei2πku/d

}
1≤u≤d

(81)

if we are in a discrete space with d values where we use modulo d periodicity of u to define
translation (note: the frequencies are 2πk/d).

Returning to the notion of uniform regularity, if, for example, the derivative of the
signal is bounded, the same holds for the translated signal, defining classes of functions
that are translation-invariant. And as the optimal Karhunen-Loève basis is identical to
the Fourier basis in this case, we can never do better in the context of linear approxi-
mation.

So, we have achieved the optimum in what we can do linearly, but is it satisfactory?
Let’s take a function g(u) with u ∈ [1, d], and any signal x is defined from g as follows
(v.a: random variable) (Fig. 18):

xτ (u) = g((u− τ) mod[d]), τ ∈ {1, . . . , d} uniform random variable (82)

The signal x is a random process, and since τ has a uniform distribution, we are equally
likely to "see" x or xτ , so the process is stationary. What is the matrix K? First of all,
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Figure 19 – The matrix K(u, u′) of the signal (Fig. 18), which clearly has a banded
structure indicating that the matrix depends only on the variable u− u′.

note that the expectation of x is simply the mean of g (invariant under translation):

E[xτ (u)] =
d∑

τ=1
p(τ)g((u− τ)mod[d]) = 1

d

d∑
τ=1

g((u− τ)mod[d]) = 1
d

d∑
u′=1

g(u′) (83)

Let’s assume this mean is zero to simplify calculations, then it follows:

E[xτ (u)xτ (u′)] =
d∑

τ=1
p(τ) g((u− τ)mod[d]) g((u′ − τ)mod[d])

= 1
d

d∑
τ=1

g((u− τ)mod[d]) g((u′ − τ)mod[d])

= 1
d

d∑
u′′=1

g(u′′)g(u′′ − (u− u′)))mod[d]) = K(u− u′) (84)

So, we indeed have a stationary signal (Fig. 19) with a covariance matrix that depends
only on the variable u − u′. Thus, through Theorem 7, we arrive at the Fourier basis for
performing low-frequency linear approximation. However, the signal g(u) can have dis-
continuities, so it’s not always legitimate to proceed with a low-frequency approximation
of it. We want to go for a nonlinear approximation that adapts the sampling to the re-
gularity of g(u). From the perspective of the optimal basis, we won’t necessarily take the
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first M vectors, but we’ll need to cleverly choose the vectors. What we will see then is
that Theorem 7 is no longer valid. We will discover the need to redefine other classes of
regularity, which are certainly more complex but worth it for certain types of problems.
We will also see that if we have a purely "linear" view when analyzing single-layer neural
networks, everything seems simple, and we don’t do significantly better than the Fourier
basis (or PCA). However, as soon as we take a "non-linear" perspective, the theorems
become more complicated to interpret.

5. Lecture 3 Feb.

During this session, we will explore the RAP triangle from a non-linear perspective.
It’s worth recalling that in a linear context, obtaining a low-dimensional approxima-
tion at the heart of data analysis is equivalent to adopting a sparse representation that
concentrates information on a few coefficients. This notion of sparsity is equivalent to the
regularity pattern of the underlying function. In the linear case, for the class of functions
invariant under translation, we’ve seen that the optimal basis is the Fourier basis. In a
more general context, we’ve also seen that the best basis is the one that diagonalizes the
covariance matrix, namely the Karhunen-Loève basis, which coincides with the Fourier
basis for stationary processes.

The question that arises now is whether we can do better by taking a non-linear pers-
pective? At the end of the previous section, we pointed out that an improvement might be
conceivable in cases where the underlying function exhibits discontinuities, meaning it’s
only piecewise regular, as exemplified by the function in Figure 10. A linear approximation
would involve considering the function as uniformly regular, implying regular sampling and
the exclusion of high frequencies. This approach, however, limits the quality of approxi-
mation around potential discontinuities. In such cases, adaptation on a case-by-case basis
becomes necessary. But how can we do this generically or automatically? When consi-
dering adaptive sampling, we assume that the regularity of the function is not uniform
everywhere, implying potential singularities. Note that these discontinuities/singularities
contain crucial information, such as object boundaries in 2D or musical note attacks.
Hence, the structure of signals resides in the high-frequency components. The question
then becomes: can we capture these discontinuities by having a sparse representation that
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provides a lower-dimensional approximation of higher quality than that obtained in the
linear context?

5.1 Non-linear Sparse Representation

We position ourselves in the context of searching for an orthonormal basis, meaning
the signal x decomposes as follows:

x =
∞∑
n=1

⟨x, en⟩en (85)

In the linear case, the approximation is performed by considering the truncated partial
sum with the first M coefficients. In Fourier, this corresponds to the low frequencies.
In the non-linear case, we’ll proceed with choosing the M coefficients, and thus we can
write:

xM =
∑
n∈IM

⟨x, en⟩en (86)

where IM is a set of indices n depending on x (while keeping |IM | = M). Since we have
an orthonormal basis, the error is straightforward to formulate as:

εM = ∥x− xM∥2 = ∥
∑
n̸∈IM

⟨x, en⟩en∥2 =
∑
n̸∈IM

|⟨x, en⟩|2 (87)

The choice of IM is made with the aim of minimizing this approximation error, and this
naturally leads to the definition:

IM = {n / |⟨x, en⟩| ≥ TM} , where TM such that |IM | = M (88)

which allows us to write:
εM =

∑
|⟨x,en⟩|<TM

|⟨x, en⟩|2 (89)

The question is whether εM calculated in this way is significantly smaller than what we
would have obtained with a linear approach. We will see that the answer is "yes" if the
basis provides a sparse representation. Therefore, Approximation and Sparsity are once
again two intimately related concepts.
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Figure 20 – Selection of the first M inner products once ordered in decreasing order,
defining the threshold TM .

Sparsity is manifested by the decreasing inner products but once ordered in decrea-
sing order:

|⟨x, ek⟩| ≥ |⟨x, ek+1⟩| (90)

As illustrated in Figure 20, the error corresponds to the sum of the squares of terms where
k > M or whose intensity is below the threshold TM . Thus,

εM =
∞∑

k=M+1
|⟨x, ek⟩|2 (91)

That being said, sparsity in the non-linear sense can also be represented without
sorting coefficients in descending order, as shown in Figure 21, where the coefficients
exceeding the threshold TM are few in number and are located anywhere depending
on the signal x. Furthermore, the residual error decreases towards 0 as the threshold is
lowered. How fast does it decrease?

5.1.1 Rate of Decrease of Non-linear Error

As in the linear case (Th. 6), we can constrain the rate of decrease of the error with
the following theorem:
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Figure 21 – Selection through the threshold TM of non-ordered inner products.

Theorem 8 If we order the inner products in decreasing order, and p is a derivative
order, if

∞∑
k=1

|⟨x, ek⟩|2k2p < ∞ (92)

which is equivalent to |⟨x, ek⟩|2 = o(k−2p−1) and characterizes the rate of decrease
of inner products, then

∞∑
M=1

εMM
2p−1 < ∞ (93)

which means that εM = o(M−2p). In fact, there is an equivalence between the two
rates of decrease.

In the linear case, we have the index k ∈ Zq, which gives εM = o(M−2p/q). In the case of
the theorem above, k ∈ Z, otherwise, the proof is identical. So, we have obtained an equi-
valence between the concepts of low-dimensional approximation and sparse representation
of the RAP triangle. However, even though there are similarities between the linear and
non-linear cases, for the latter, the result is obtained by ordering the inner products
by importance, which incidentally depends on the signal x. Nevertheless, it would be
desirable to obtain a constraint independent of the order of coefficients since that would
be more practical.
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5.1.2 Sparsity and ℓα Norm

There is an important theorem that lies at the heart of Approximation mathematics
and forms the basis for many algorithms. It states that the rate of decrease of ordered
coefficients is characterized by ℓα norms. Instead of dealing with the L2 norm in an
orthonormal basis, for example via

∑
|⟨x, en⟩|2 = ∥x∥2

we will focus on norms defined as
(∑

|⟨x, en⟩|α
)1/α

especially with α < 2.

Theorem 9 If for α < 2

Cα =
 ∞∑
q=1

|⟨x, eq⟩|α
1/α

< ∞ (94)

then, by ordering the inner products, the one of rank k satisfies a decreasing constraint,
resulting in a rate of decrease of the error:

|⟨x, ek⟩| ≤ Cα k
−1/α and εM ≤ C2

α
2
α

− 1M
−( 2

α
−1) (95)

It is important to note that the ℓα norm of x, i.e., Cα, controls both the rate of
decrease of ordered inner products and that of the error εM .

Proof 9. We start from the definition of Cα with an orthonormal basis {en} and a signal
x:

Cα
α =

∞∑
n=1

|⟨x, en⟩|α
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then we rearrange the indices with a descending order of inner products, which introduces
a new set of indices nq:

Cα
α =

∞∑
q=1

|⟨x, enq⟩|α

Now, we can truncate the series to the first k terms to lower bound the series:

Cα
α ≥

k∑
q=1

|⟨x, enq⟩|α ≥ k|⟨x, enk
⟩|α

So, in other words, the coefficient of rank k satisfies the constraint:

|⟨x, enk
⟩| ≤ Cαk

−1/α

which is what we wanted to prove 23. ■

This theorem indicates that the smaller α is, the faster the inner products and the
error decrease. Therefore, we would like to consider ℓα norms with α as small as possible.

Now, as long as α ≥ 1, Cα is a convex function of the inner products, and this is no
longer the case when α < 1. Why is this important? The reason is that if we do not know
the basis {en}, we need to discover it. In this case, we will want to minimize the ℓα norm,
which becomes a sort of cost function. In this context, having a convex function allows
the use of optimization algorithms. Therefore, in practice, we work with α in the interval
[1, 2), as small as possible, hence the use of the ℓ1 norm in optimization problems while
ensuring sparsity.

5.2 Application to Single Hidden Layer Neural Networks

In this section, we will put into practice everything we have learned so far to study
the classification/regression problem of the form f(x) = y using a single hidden layer

23. Note that to obtain the version with "little o", S. Mallat suggests taking the upper bound not from
the sum from q = 1 to k but from k/2 to k, which tends to 0.
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neural network. We will encounter two pitfalls that will lead us to radically change our
perspective.

For this type of problem, let’s recall that our goal is to approximate the function
f , which maps x to y, where y is either an integer type for classification or a real type
for regression. Here, x is the variable, and its domain is either Rd or [0, 1]d for bounded
signals, but most importantly, with d ≈ 104−6. So far, our object of study has been x(u)
with u in very low dimension q (u ∈ [0, 1]q). We know that when q starts to increase
significantly, we encounter the curse of dimensionality 24.

Each neuron m in a network with M hidden neurons (Fig. 5) first calculates a dot
product with a vector wm as follows:

x.wm =
d∑

u=1
x(u)wm(u) (96)

Then, we apply a non-linearity ρ (ReLU, sigmoid, hyperbolic tangent, cosine, etc.) and a
bias bm:

ρ(x.wm + bm) ∈ R (97)

Finally, we linearly combine the M non-linearities to obtain f̃ :

f̃(x) =
M∑
m=1

αmρ(x.wm + bm) (98)

In this case, we choose (this is an a priori assumption, a topic from the 2020 lecture) to
decompose f̃ into a family of functions {ρ(x.wm + bm)}m≤M . We perform a projection of
f into the space generated by this family of functions. The immediate question is: what
is the size of the error made?

To answer this question, we will consider the mean squared error, for example, if
the signals are in [0, 1]d (e.g., pixel values of an image):

∥f − f̃∥2 =
∫
x∈[0,1]d

|f(x) − f̃(x)|2 dx (99)

The idea is to show that by using what we have learned so far, we will be able to provide

24. For example, refer to the 2018 and 2019 lectures.
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the "usual" answers on the subject.

5.2.1 Universal Approximation (Linear Perspective)

One initial result 25 is the theorem of universal approximation, which states that,
using non-polynomial nonlinearities, the approximation error tends to zero as M ap-
proaches infinity. This theorem was demonstrated and refined mainly from 1988-92 by
the community of mathematicians specializing in approximation 26 using well-known tech-
niques, as it is primarily a result of linear approximation. So, where does the fact that
the error tends to zero come from?

To shed light on this, let’s take the viewpoint of linear approximation. We ask
whether there exists a family of generic functions that will be sufficient to approximate
any function f as the number of components (M) tends to infinity. But, as we’ve seen,
a family of functions in linear approximation implies Fourier. So, the question is how to
construct a Fourier basis from the family {ρ(x.wm + bm)}? Initially, let’s take the non-
linearity as the function ρ(a) = eia. Then, we have:

f̃(x) =
M∑
m=1

αme
i(x.wm+bm) =

M∑
m=1

αme
i bm ei x.wm (100)

which resembles a Fourier series. Now, we need to learn the weights wm (from the net-
work’s perspective), but in Fourier analysis, these correspond to the frequencies of the
decomposition. So, as long as the underlying function f has some smoothness, which is
assumed by all theorems dealing with this linear perspective, we focus on a low-frequency
approximation (Sec. 4.3). If we consider the case where x ∈ [0, 1]d, then wn = 2πn with
n ∈ Zd (Sec. 3.7). Thus, we get:

f̃(x) =
M∑
m=1

αme
i bm ei2π x.m (101)

And since we have an orthonormal Fourier basis, we have:

αme
i bm = ⟨f(x), ei2π x.m⟩ =

∫
x∈[0,1]d

f(x)e−i2π x.m dx = f̂(2πm) (102)

25. See the 2019 course for a version of the proof.
26. Notable contributors include George Cybenko, Kurt Hornik, Allan Pinkus, etc.
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Furthermore, we have the guarantee of obtaining the minimum (linear) approxi-
mation since the Fourier basis is optimal in this case. We know that f is real 27,so
f̂ ∗(ω) = f̂(−ω), and

f̃(x) =
M∑
m=1

αm cos(wm.x+ bm) (103)

Now, we know that if f ∈ L2([0, 1]d), meaning that f has finite energy, which
is a reasonable assumption, a result on Fourier series tells us that (unless something
extraordinary happens):

lim
M→∞

|f(x) −
M∑
m=1

αm cos(wm.x+ bm)|2 = 0 (104)

So, the theorem of universal approximation is roughly based on the notions we have seen
previously.

The "roughly" means, for instance, that the theorem works for other types of non-
linearities than non-polynomial exponentials. Why? We’d like to change the basis in 1D
between the families {ρ(w.x + b)}w,b and {cos(w.x+ b)}w,b with ρ being ReLU, sigmoid,
etc. For example, between ReLU and cosine, it suffices to show that cosine can be ap-
proximated by piecewise linear functions on sufficiently fine steps (e.g., see 2019 Course
Sec. 5.3.2). Additionally, the aforementioned convergence is in terms of the L2 norm,
whereas the theorems achieve uniform convergence (i.e., in the "sup" norm on the space
in which x evolves). However, these are refinements on a strong dominance of linear
approximation and the Fourier basis.

Nevertheless, having used the Fourier basis tells us that if we want rapid convergence,
we must impose regularity constraints on the class of functions f . For example, if f belongs
to a Sobolev space of degree p (Sec. 3.5), meaning that all derivatives of order p have finite
energy, then (Th. 6):

∥f̃M − f∥ = o(M
−2p

d ) (105)

But let’s examine this result more closely: it tells us that even if the functions are very
smooth (p large), which tends to speed up convergence, the fact that d can be very large

27. Let’s assume we are in this general case, which is not restrictive for practical cases like sound
processing or image analysis.
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(d ≈ 104−6) significantly reduces the rate of convergence unless we exponentially increase
the number of hidden neurons (M). We find ourselves facing the curse of dimensionality,
and most importantly, we fail to understand, in this framework, the quite remarkable
results of neural networks. But that’s not the end of the story...

5.2.2 The Non-linear Perspective

What was noticed in 1992 (e.g., A. Barron) is that the problem of finding an approxi-
mation f̃ should not be considered for a class of functions with a generic basis. Instead,
it’s necessary to specialize, not to say tailor the reasoning to the specific function f that
interests us for the posed problem 28. Therefore, searching for the general case is in vain,
as the specific case is the only one that interests us, at least initially, especially from a
"non-linear" viewpoint.

We need to adapt the projection basis; thus, in this context, we need to adapt the
(wn, bn) with respect to the object to approximate, namely, f . In the previous course,
we found a way to adapt the decomposition to x by selecting the inner products ⟨x, en⟩
beyond a threshold TM(x) chosen to have only M components. What should we do now
in our problem f(x) = y?

We will use the relationship between sparsity (low-dimensional approximation) and
ℓα norms (Sec. 5.1.2). Because what do we need to overcome the curse of dimensionality?
We need to find a basis in which the inner products |⟨f, ek⟩| decrease in an orderly manner
as 1/kα (or even α = 1 for convexity) because then, according to Theorem 9, we can deduce
that the error will be constrained by:

∥f − f̃M∥2 ≤ C2
α(f)

2
α

− 1M
−( 2

α
−1) (106)

meaning that the convergence speed will no longer depend on the dimension d of the
variable x. Thus, to make this result work, we need the ℓα norm of f to be bounded.

28. NDJE: What will be the problem later is to explain why weights learned to recognize cats/dogs are
entirely relevant for recognizing boats/cars, i.e., explaining a form of generality of the functions learned
by convolutional neural networks.
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The first article that put this scheme into practice dates back to 1993 (A. Barron 29).
Its result can be formulated as follows. First, note that the basis {en} chosen by A. Barron
is the Fourier basis with en = ei2πn. Second, instead of considering functions with Sobolev
regularity, for which we would be subject to the curse of dimensionality, let’s consider a
new type of regularity (Barron spaces).

Theorem 10 (A Barron 1993)
If the ℓα norm of f is finite and take α = 1, and if we consider the Fourier basis

(en = ei2πn) such that ∑
n

|⟨f, en⟩| ≤ Cf (107)

then the neural network with M neurons can provide an approximation f̃M such
that:

∥f − f̃M∥2 ≤
C2
f

M
(108)

Notice that the dimension d no longer appears, and we have breached the curse of
dimensionality. Later on, we were able to manipulate the parameter α (f ∈ Bα) and
derive results that we understand well, given the concepts covered in previous courses.
So, the curse of dimensionality is gone, but does this explain the results of neural
networks (convolutional)?

The underlying problem we face with this result is the following: does the class of
functions f ∈ Bα reflect the class of functions we encounter in practice and that neural
networks approximate well? In other words, the result holds for a class of functions,
but is this class representative of the functions we are practically dealing with (image
classifications, sound analysis, text analysis, regression, etc.), and do neural networks
approximate them very well? Unfortunately, the answer is negative, and the commu-
nity has realized this quite clearly, to the extent that there is a clear divergence bet-
ween this type of mathematical theorem and what is practiced every day by those who
use/implement neural networks. So, what does this mean? Be aware that Barron’s theo-

29. https://www.researchgate.net/publication/3078296_Barron_AE_Universal_approximation_
bounds_for_superpositions_of_a_sigmoidal_function_IEEE_Trans_on_Information_Theory_39_
930-945

https://www.researchgate.net/publication/3078296_Barron_AE_Universal_approximation_bounds_for_superpositions_of_a_sigmoidal_function_IEEE_Trans_on_Information_Theory_39_930-945
https://www.researchgate.net/publication/3078296_Barron_AE_Universal_approximation_bounds_for_superpositions_of_a_sigmoidal_function_IEEE_Trans_on_Information_Theory_39_930-945
https://www.researchgate.net/publication/3078296_Barron_AE_Universal_approximation_bounds_for_superpositions_of_a_sigmoidal_function_IEEE_Trans_on_Information_Theory_39_930-945
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Figure 22 – The volume of object classes Ωy is tiny compared to the space in which x

operates.

rem is correct, as are those who followed in his footsteps. There’s no doubt about that.
However, it’s essential to understand why this is not (yet) the right approach.

5.2.3 A New Perspective: The Bayesian Approach

Let’s try to understand why the Barron-like approach doesn’t exhaust the subject.
Take the case of image classification (dog, cat, boat, coffee machine...), but the problem
is the same with sounds. In 99.9% of cases (not 100% to account for some human error),
there is no ambiguity when we take an image. So, we associate class indices y with different
x (images), and we attempt to solve y = f(x). We can represent the members of class y
as:

Ωy = {x | f(x) = y} (109)

When we change y, we realize that the volume of Ωy is tiny compared to the size
of the space in which x operates (Fig. 22). In other words, a randomly taken image has
nothing to do with any image of a dog, cat, boat, coffee machine, or whatever. An image
of white noise, by definition, has no structure. So, functions that attempt to approximate
f(x) = y must do so well in a very small space of images. Be aware that even if they are
small compared to the total dimension of the space, the islands Ωy can still have large
dimensions, meaning that you cannot decompose f(x) = y into small, low-dimensional
problems fk(x) = yk with x ∈ Ωyk

.

So, the theorems that attempt to analyze (constrain) functions across the entire
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Figure 23 – The two perspectives on the problem y = f(x): either we attack the problem
from a viewpoint where for each value of x, we want to know f(x) somewhat independently
of whether x is a relevant signal (left diagram), or we study the level curves of f (right
diagram) and focus on the values of x that ultimately matter.

space [0, 1]d ask a question that doesn’t really make sense because what needs to be
analyzed is the restriction of f to the support of Ωy. First, this is the data support, where
learning can be attempted, and second, this is also the support of predictions where we
want the approximation to be good.

The idea of this approach is not to look at functions that are more or less regular over
the entire space [0, 1]d, but rather to focus on the geometry and the location of the islands
Ωy, which can be of large dimension. This is precisely the perspective of algorithms
and the Bayesian perspective. Be aware that this is not a matter of probabilistic versus
deterministic that differentiates the Bayesian perspective from the previous one. The idea
is that instead of asking "for any value of x, what is the value of the function f(x)?", we
will study the function through its level sets f = cte (Fig. 23). These different perspectives
on a subject are similar to when you look at Riemann integration (the first perspective)
and Lebesgue integration (the second perspective).

The Bayesian perspective is as follows: I want to know the label y given that I know
x. So, the object is the conditional probability p(y|x), and in the case of classification,
for a given x0, we take the y for which the probability p(y|x0) is maximum. This is the
maximum likelihood (see the discussion in Course 2018 Sec. 7.2.1). Now, Bayes’ theorem
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tells us that:
p(y|x) = p(x|y)p(y)

p(x) (110)

and we want to find the maximum with respect to y, which means the approximate value
ỹ is obtained by:

ỹ = argmax
y

p(x|y)p(y)
p(x) = argmax

y
p(x|y)p(y) (111)

With p(y) being the prior, which is prior information about class occurrence. In the
following, let’s assume that all classes are equiprobable (the volumes of Ωy are identical),
so we can drop p(y) to find ỹ. Finally, we can maximize the logarithm, which gives:

ỹ = argmax
y

log p(x|y) (112)

So, in the Bayesian perspective, we need to model not f(x) but log p(x|y) or p(x|y), which
means asking, given the label y, what is the location (geometric) of x in the space [0, 1]d?
Which is precisely the location of Ωy. Now, in high dimensions, there are concentration
phenomena where the probability p(x|y) is truly maximal on small domains Ωy, and most
images do not belong to any class due to a lack of structure. In fact, technically, what is
more pertinent to study is the difference in probability between two classes:

log p(x|y) − log p(x|y′) (113)

Because if this difference is positive, we assign label y, otherwise label y′ is the answer.

In doing so, the Bayesian approach is truly different because it’s not f that we will
focus on (e.g., regularity shape) and perform harmonic analysis, for example, as what’s
important is to ask where its support is and how to characterize it. In fact, through p(x|y),
it’s the modeling of x in each of the classes that underlies. Thus, in high dimensions, the
classification problem and the modeling problem of x are essentially the same, or more
precisely, we must tackle the problem of modeling the specificities of x in Ωy compared
to the specificities of x in Ωy′ . So, even when dealing with a classification/regression
problem of the type y = f(x) where initially we focused on f , ultimately, we return to
studying x(u). Hence, the deepening of signal analysis that will occupy us. We will show
how the nonlinear perspective will help us perform these modeling. However, before
that, let’s review the results obtained so far.
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5.2.4 Summary

What we have seen so far is that we can obtain:

— either non-adaptive linear approximations, where essentially we perform projections
onto linear spaces for which the best basis is obtained through PCA, which, for
stationary processes, gives the Fourier basis;

— or adaptive non-linear approximations, and for this to work, we must ensure that in
the chosen basis, the ℓα norms are finite to guarantee the decrease of the approxi-
mation error.

Ultimately, both of these perspectives are effective in low dimensions, but as the dimension
grows, we encounter the curse of dimensionality. This means that even Barron’s theorem
is ultimately not suitable for practical cases. We need to adopt another perspective that
brings us back to the study of x. Because the way this barrier can be overcome is not so
much that the function f is extraordinarily regular on [0, 1]d, but rather that its support,
i.e., the places where it is interesting to have a good approximation, is highly concentrated.
So, the challenge is to characterize this support, which is certainly restricted but not of
low dimension. Therefore, we will return to the RAP triangle to understand this notion
of regularity.

5.3 Information Theory. Wavelet Bases

During our study of a single-layer neural network, we realized the need to return to
the analysis of the signal x, even in the case of classification/regression. We will adopt
a non-linear perspective because the resulting signal modeling will be of much higher
quality than Fourier analysis. In this context, we will try to understand what type of
basis will allow us to do much better. In particular, we will address the question of
compression through Information Theory, which precisely explains the concentration
phenomena encountered in the previous section.

To approach this subject, we will start from the RAP triangle. Recall that in the
linear framework, we began with the concept of regularity of a function (Sec. 3.3): we were
able to characterize a function as uniformly regular through its translation-covariant de-
rivatives, which are diagonalizable in the Fourier basis. This allowed us to discuss sparsity
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Figure 24 – Different perspectives on function analysis: either the linear framework,
which assumes uniform regularity to give Fourier analysis with sinusoids delocalized in
time/space, or the non-linear framework that studies non-uniformly regular functions with
Wavelet analysis, which performs local analysis of transients/discontinuities.

and low-dimensional approximation. So, the starting point in the linear context is the
notion of uniform regularity. However, as we have seen previously, signals that contain in-
teresting features are those that exhibit discontinuities, transients, e.g., contours, changes
in rhythms, the attack of a musical note, etc. S. Mallat tells us that if you change even just
the first 50 milliseconds of a few seconds of a note produced by a violin in a musical piece
to the beginning of the same note produced by a piano, then our perception is completely
changed. This means that the perception of sound is strongly influenced by the signal’s
discontinuities, specifically the attack of a note by a violin or a piano. Therefore, we need
to focus on a form of piecewise regularity that can represent a wide class of functions
that are truly interesting for our concerns.

To do this, we need to find a way to localize the analysis of temporal transients in
1D (or spatial in 2D, etc), while in the Fourier framework, the cosines are localized in
frequency but completely delocalized in time. Thus, we need localized sinusoids, namely
wavelets 30 (Fig. 24).

5.3.1 Wavelet Analysis

A wavelet ψ(u) is an oscillatory function with finite support, and since it is localized
in space, it must be deformable not only by translation but also in scale to match the loca-

30. Refer to the 2018 and 2020 courses.
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Figure 25 – Illustration of translation and scaling operations applied to a wavelet.

tion and size of the transient (Fig. 25). Thus, from ψ(u), we introduce two transformations
by defining the family {ψv,s} (here in 1D):

ψv,s(u) = 1√
s
ψ
(
u− v

s

)
(114)

Note the normalization 1/
√
s to obtain an orthonormal basis:

∥ψv,s∥2 =
∫

|ψv,s(u)|2 du = ∥ψ∥2 (115)

We require that the wavelet oscillates, which is expressed by the constraint∫
ψ(u)du = 0 (116)

Now, as we are interested in the analysis of the local regularity of the signal x using
ψv,s, we define the Wavelet Transform as follows (wavelets are taken as real here):

Wx(v, s) = ⟨x, ψv,s⟩ =
∫
x(u)ψv,s(u) du =

∫
x(u) 1√

s
ψ
(
u− v

s

)
du

=
∫
x(u)ψ̃s(v − u) = (x ∗ ψ̃s)(v)

(117)

(118)

with
ψ̃s(u) = 1√

s
ψ
(

−u

s

)
(119)
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Thus, the Wavelet Transform can be viewed either as an operation of inner product
between x and ψv,s or as a convolution between x and the filter ψ̃s 31.

This operation measures the local variation of x around v on a scale proportional
to s. So, concerning the RAP triangle, we will attempt to capture the regularity of x,
specifically non-uniform regularity, and to do this, we will use sparsity to find a suitable
basis for capturing local irregularities (even local discontinuities).

In fact, we don’t have much choice when constructing the basis because we need a
family of localized functions that can adapt to the scale/size of irregularities. Thus, almost
mechanically, we arrive at the wavelet transform with the associated bases. Remember
that, regarding the Fourier transform or the wavelet transform, these are not tools that
you choose among others: the Fourier basis is "the" basis in the linear framework, with
translation invariance as the underlying principle, just as for studying transient pheno-
mena, we end up with wavelet bases.

However, to fully analyze the RAP triangle, we will need to define low-dimensional
approximations. This type of approximation is easy to do as long as we have orthogonal
bases. Therefore, the critical point is the construction of such bases from wavelets. Even
before that, we need to demonstrate that we are effectively capturing the regularity of
functions with these wavelets.

5.3.2 Local Lipschitz Regularity and Wavelet Coefficient Decay

Regarding local regularity, we will approach it in the sense of Lipschitz 32:

Definition 1 A function x(u) is Lipschitz α at a point v if ∃C > 0 such that

|x(u) − x(v)| < C|u− v|α (120)

Figure 26 illustrates local variations of Lipschitz functions 0 ≤ α < 1 (note that for α > 1,
the function is locally constant, and for a Brownian motion, we have α = 1/2 − ε). If we

31. Note that in the 2020 course, the perspective was that of convolutional filters, so the chosen nor-
malization was 1/s, while in the 2018 course, the factor was 1/

√
s because the "inner product" aspect

was emphasized.
32. Note: Rudolph O. S. Lipschitz (1832-1903), whose extension by Otto Ludwig Hölder (1859-1937) is

used by S. Mallat.
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Figure 26 – Illustration of Lipschitz functions α for different values of α.

work on an interval, we can make the notion uniform as follows:

Definition 2 A function x(u) is uniformly Lipschitz α on an interval I if ∃C > 0
such that

∀(u, v) ∈ I, |x(u) − x(v)| < C|u− v|α (121)

What needs to be realized is that the value of α can be a constant in the uniform case,
but more importantly, it can change locally and thus inform us about the local regularity
of the function. Now, can we relate Lipschitz regularity to the Wavelet Transform?

In the case of Fourier, we were able to relate the regularity of a function to the rate
of decay of inner products |⟨x, en⟩|, so we looked at how the inner products evolve as the
frequency (ωn = 2πn) increases. With wavelets, we will focus on a point v, and we will
also increase the "frequency" of oscillation, where the equivalent of ωn is 1/s, which is
the scale change. Indeed,

ψ̂v,s(ω) =
√
se−iωvψ̂(sω) (122)

so if |ψ̂(ω)| has a maximum at ω0, |ψ̂v,s| has it at ω0/s. Thus, by letting s tend to 0,
we should be able to appreciate the rate of decay of inner products at high frequency
and deduce the Lipschitz regularity α of the function. In fact, we have the following
theorem:
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Theorem 11 If x is Lipschitz α at v, then ∃C such that

∀s, |⟨x, ψv,s⟩| < Csα+1/2 (123)

This theorem tells us that the more regular the function is, i.e., the closer α is to 1, the
faster the inner product decay |⟨x, ψv,s⟩| as s → 0, or equivalently at high frequencies. This
is a different but related idea to what we had with Fourier. The main difference is that the
rate of decay is analyzed at a specific point (v), whereas in the Fourier case, the decay is
analyzed over an entire interval, to the extent that if there is only one discontinuity in the
interval, the decay is fixed at 1/ω, revealing nothing about the fact that the function may
be 100 times differentiable outside of that discontinuity. With the Wavelet Transform,
we have a tool like a microscope searching for (ir)regularities locally.

Is Theorem 11 an equivalence? In fact, there are several theorems. For example, there
is equivalence if, for instance, we have a function that is uniformly Lipschitz α over an
arbitrarily small interval. However, if we insist on the fact that we have a pointwise regu-
larity, then the answer is that the equivalence is "almost true", but we need to change the
bound by introducing a logarithmic correction because there can be issues with fractals.
This is a result from 1990 in "micro-localization" (see S. Jaffard 33). However, Theorem 11
with the sufficient condition is sufficient for our purposes.

Proof 11. To re-establish the result that pointwise Lipschitz condition imposes a constraint
on the inner product, we can write it as

⟨x, ψv,s⟩ =
∫
x(u) 1√

s
ψ
(
u− v

s

)
du (124)

and we know that the integral of the wavelet ψ is zero, which is also true for ψv,s(u) as a

33. For example, Theorem 3.1 in http://www.ens-lyon.fr/DI/wp-content/uploads/2009/07/
Jaffard-IC2.pdf.

http://www.ens-lyon.fr/DI/wp-content/uploads/2009/07/Jaffard-IC2.pdf
http://www.ens-lyon.fr/DI/wp-content/uploads/2009/07/Jaffard-IC2.pdf
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function of u, so

|⟨x, ψv,s⟩| =
∣∣∣∣∣
∫

(x(u) − x(v)) 1√
s
ψ
(
u− v

s

)
du

∣∣∣∣∣
≤
∫

|x(u) − x(v)| 1√
s

∣∣∣∣ψ (u− v

s

)∣∣∣∣ du
≤ C

∫
|u− v|α 1√

s

∣∣∣∣ψ (u− v

s

)∣∣∣∣ du
≤ C

∫
|su′|α

√
s|ψ(u′)|du′

≤ Csα+1/2
∫

|u|α|ψ(u)|du

Now, since the wavelet ψ is localized, the right integral is a constant, so the inner product
is indeed bounded, as indicated by the theorem. ■

Note that the proof relies on the fact that the wavelet is both oscillatory and localized,
and the understanding of the theorem goes far beyond a simple change of variables: if
the function is Lipschitz α, then the increments around v are multiplied by sα, which is
reflected in the constraint on the wavelet coefficients, i.e., the inner products.

6. Lecture 10 Feb.

At the end of the last session, we saw how the local Lipschitz regularity α of the signal
can be captured in the coefficients of the wavelet transformation. Thus, we have a way
to quantify the regularity of the signal x, and if it doesn’t have too many discontinuities,
then we can build sparse representations with orthonormal wavelet bases. Subsequently,
from these representations, we will be able to develop low-dimensional approximations,
completing the analysis of the RAP triangle that we embarked on in the non-linear fra-
mework to adapt to the signal x and understand the phenomena of concentration of level
set supports f(x) = y in high dimensions.
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6.1 Lipschitz α Regularity and Scalogram

So, consider the signal x(u). If we want to know the regularity around v0, we can
approximate it with the best polynomial approximation and study the approximation
error.

Definition 3 (Lipschitz α)
Let x(u) be such that

∃C > 0 s.t. ∀u |x(u) − pv0(u)| ≤ C|u− v0|α (125)

with m− 1 ≤ α ≤ m and pv0 a polynomial of degree m− 1, then we say that x is a
Lipschitz α function at v0.

Thus, we can view the local regularity of a function as the error of a polyno-
mial approximation. This brings us back to the result of Taylor’s expansion: if x is m
times differentiable, then the Taylor remainder is o((u− v0)m). Lipschitz regularity is an
extension when α is a real number. Now, if x(u) is a well-behaved function, α is relati-
vely large, and the polynomial approximation is more effective, so we can approximate x
with few parameters. But if α changes depending on v0, how can we still obtain a sparse
representation?

In the last session, we saw Theorem 11, which allows us to encode Lipschitz regularity
α in the decay of wavelet coefficients. Figure 27 shows an example of a signal x(u) with
irregularities at several locations, and the result of the wavelet transform, where intensity
in color represents | log(Wx(v, s))| with v on the x-axis and scale s on the y-axis, where
s = s0 2j 2n/Q (octave j, voice n) with Q = 16 voices per octave, and s0 as the smallest
scale of the wavelet. This is known as a scalogram. High frequencies (small scales) are
at the top, and low frequencies (large scales) are at the bottom. The effect of signal
discontinuities can be clearly seen. The Morlet real wavelet is used 34.

Recall that the wavelet ψ has a zero mean (Eq. 116), so its Fourier spectrum is that
of a band-pass filter (Fig. 28). Furthermore, we impose ψ to have m zero moments, i.e.,

34. It is given by the function ψ(x) = π−1/4e−x2/2(cos
(
πx(2/ log 2)1/2)−e−π2/ log 2), where the constant

ensures zero integral, and its Fourier transform is ψ̂(ω) = 23/2π1/4e−ω2/2e−π2/ log 2 sinh2(ωπ/
√

log 4).
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Figure 27 – Example of a Scalogram (bottom) obtained from the wavelet transformation
of the signal in the top diagram. The x-axis represents the variable u (e.g., time), and
the y-axis represents the scale s = s0 2j 2n/Q with j as the octave, n as the "voice", and
Q = 16 as the number of voices per octave, with s0 as the smallest wavelet scale. The
intensity of the grays indicates the value of | log(Wx(v, s))| on a scale where 1 corresponds
to black and 0 to white.

Figure 28 – The wavelet ψ has zero mean, making it a band-pass filter. Illustrated with
the real Morlet wavelet.
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∀k, 0 ≤ k < m,
∫
ψ(u)uk du = 0 (126)

For instance, the Morlet real wavelet mentioned above has 1 extra zero moment. Therefore,
if ψ hasm zero moments, it naturally follows that for any polynomial p(x) of degree d < m,∫

ψ(u)p(u)du = 0 (127)

Why is it important to use such wavelets? The reason is that the wavelet "ignores"
the polynomial part of x(u) and is only sensitive to the polynomial approximation error.
If the wavelet coefficient Wx is small, it signifies a small error, and vice versa. Therefore,
in the scalogram shown in Figure 27, only the high-value coefficients that reflect coherent
interference of the wavelet with the signal x in the vicinity of v and for a scale s (ψs,v) are
visible. As the scale increases, the wavelet dilates, and it delocalizes the discontinuities,
resulting in the appearance of "cones" that widen at the locations of v values where there
are discontinuities. However, if the signal x(u) has discontinuities almost everywhere, then
the scalogram is filled with cones, as in Figure 29, and reading it becomes challenging,
but the figure reflects the regularity/irregularity of the signal x(u) at all scales.

So initially, we will analyze the properties of the scalogram, and then we will try to
concentrate the maximum amount of information on a minimum number of coefficients,
which will lead to a sampling of the scalogram resulting in orthonormal wavelet bases.

6.2 In-Depth Study of the Scalogram

Let’s revisit Theorem 11 to provide a more precise version. This version was proven
by S. Jaffard and characterizes the pointwise regularity of the function, shedding light
on the famous cones. Here it is:

Theorem 12 (S. Jaffard)
Let ψ be a wavelet with m zero moments. If x is Lipschitz α ≤ m at a point v0, then
∃C > 0 such that

|Wx(v, s)| ≤ Csα+1/2
(

1 +
∣∣∣∣v − v0

s

∣∣∣∣α) (128)
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Figure 29 – Scalogram of a Brownian motion-like process.

and conversely a, if α′ > α, then we have

|Wx(v, s)| ≤ Csα+1/2
(

1 +
∣∣∣∣v − v0

s

∣∣∣∣α′)
(129)

then x is Lipschitz α at v0.
a. Note the difference in the exponent regarding the cone.

This result tells us that as s approaches 0 (i.e., high frequencies), the decay depends
on α. In Figure 27, at a large scale, the function has smooth variations between its
minimum and maximum, and the coefficients are fairly uniform along the u axis. However,
as the scale decreases, the localization of discontinuities becomes more prominent.

The cone is defined by |v − v0|/s ≤ 1 because then the decay rate is dominated by
sα+1/2, and the power α of |v − v0|/s controls cases of singularity like sin(1/u). Let’s see
how we can prove the first part of the theorem; the second, more technical part, will not
be addressed here 35.

35. See Proposition 3.2 of the document mentioned in the previous footnote about S. Jaffard, as well



73

Proof 12.
Let’s express the coefficient Wx(v, s) as follows:

Wx(v, s) =
∫
x(u) 1√

s
ψ
(
u− v

s

)
du

Now, the signal x(u) is approximated by a polynomial pv0(u) of degree m− 1. Given that
ψ has m zero moments, we know that

∫
pv0(u)ψ(u)du = 0. Note that this property also

extends to ψv,s(u) simply by a change of variable. So, with the same logic as the proof of
Theorem 11, we can write

Wx(v, s) =
∫

(x(u) − pv0(u)) 1√
s
ψ
(
u− v

s

)
du

which shows that the wavelet is not sensitive to the polynomial regularity of x. Thus,

|Wx(v, s)| ≤
∫

|(x(u) − pv0(u))| 1√
s

∣∣∣∣ψ (u− v

s

)∣∣∣∣ du
≤ C

∫
|u− v0|α| 1√

s

∣∣∣∣ψ (u− v

s

)∣∣∣∣ du
≤ Cs1/2

∫
|su′ + v − v0|α|ψ(u′)| du′

Now, for any a and b, we can show that |a+ b|α ≤ 2α(|a|α + |b|α), so

|Wx(v, s)| ≤ 2αCs1/2
∫

(|su′|α + |v − v0|α)|ψ(u′)| du′

≤ 2αCs1/2+α
(∫

|u′|α|ψ(u′)| du′ +
∣∣∣∣v − v0

s

∣∣∣∣α ∫ |ψ(u′)| du′
)

We have two integrals here that depend on the wavelet ψ, and these are constants that
can be taken as the maximum and factored out, which concludes the proof. ■

To prove the "converse", one needs to start from the wavelet coefficients Wx and
reconstruct the function x which is primarily done by showing that the Wavelet Transform
is invertible. We will explore this fundamental point later (see also the 2020 course).

as links to the chapters in S. Mallat’s book.
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So, the theorem gives us a way to interpret the scalogram. However, it must be
acknowledged that this image is far from being a sparse representation because we star-
ted with a 1D signal to obtain a 2D image. The question arises as to whether we can
compress the information. Jean Morlet and Alex Grossmann played a pioneering role in
the development of Continuous Wavelet Transform. J. Morlet (1931-2007), an engineer
at Elf-Aquitaine, studied geological layers through the analysis of seismic waves, while A.
Grossmann (1930-2019), a Franco-Croatian physicist, saw parallels with coherent states in
quantum physics. This led a multitude of mathematicians from different fields to converge
and study the Wavelet Transform, which analyzes a signal at different scales (see courses
from previous years). In particular, how can we discretize the representation?

6.3 Towards a Sparse Representation: Dual Discretization

6.3.1 Scale Discretization

First, let’s fix a discrete scale 36 with s = 2j. We will show that, under a condition on
the wavelet, this type of discretization is sufficient. In other words, having the coefficients
Wx(v, 2j) allows us to recover x. Recall that Wx(v, 2j) can be seen as a convolution with
the filter ψ̃2j (Eq. 119). Now, when we talk about convolution, we bring Fourier Transform
into the picture, so

Wx

∧

(ω, 2j) = x̂(ω) ̂̃ψ2j (ω) (130)

with ̂̃
ψ2j (ω) =

√
2j ψ̂∗(2jω) (131)

The question then becomes, can we reconstruct x̂(ω) from the coefficients Wx

∧

(ω, 2j)? This
is only possible if the Fourier spectrum is fully covered by the filters ψ̂(2jω). For the base
wavelet (j = 0), the filter is that of a band-pass filter. Thus, it suffices for the supports of
the dilated/contracted filters to gradually overlap so that if we take all j ∈ Z, the entire
Fourier spectrum is covered, i.e., without gaps. An illustration of how the filters ψ̂(2jω)

36. This discretization is implicit in the images of the scalograms presented in Figures 27 and 29, as in
practice, we only have a finite sample of x(u) values.
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Figure 30 – Illustration of the evolution of the support of the band-pass filter given by
ψ̂(2jω): for s = 2j > 1, the support shifts towards lower frequencies, and for s < 1, it
shifts towards higher frequencies.

evolve for different values of j 37 is shown in Figure 30.

The following theorem allows us to formalize this concept 38:

Theorem 13 If we have the following Littlewood-Paley condition

∀ω,
∑
j∈Z

|ψ̂(2jω)|2 = 1 (132)

then
x(u) =

∑
j∈Z

2−j(Wx

∧

(ω, 2j) ∗ ψ2j )(u) (133)

The proof is straightforward as usual, using the Fourier transform of the convolution
product. Thus, provided that we cover the Fourier spectrum of the signal well, we can
restrict ourselves to using only dyadic scales s = 2j (j ∈ Z). But we want to go further,
namely, discretize the axis u, meaning perform a sampling of the signal.

37. This is the wavelet ψσ(u) = 2π−1/4/
√

3σ(1 − t2/σ2)e−1/2(t/σ)2 whose Fourier transform is given by
ψ̂σ(ω) = 2

√
2/3π1/4σ5/2ω2e−1/2(σω)2 . For the illustration, σ = 2.

38. Refer to Courses 2018 and 2020.
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Figure 31 – Optimal sampling along the "space/time" axis in accordance with dyadic
scale discretization.

6.3.2 Discretization of the "Space" Variable

When we writeWx(v, 2j), the variable v, which is akin to space or time, is continuous.
How can we discretize it? Let’s use the signal x’s filtering formulation again, namely,

Wx(v, 2j) = (x ∗ ψ̃s)(v) (134)

And the question is how to judiciously choose the values of v to lose no information? Do
we have an intuition on this? The answer is yes because the size of the wavelet along v is
proportional to 2j, so we need to use a sampling that’s also proportional to 2j to cover the
entire support of x properly. In fact, the result is more precise because we will show that
the sampling interval is equal to 2j, and hence the samples are vn = 2jn (Fig. 31). So,
we will have the coefficients Wx(2jn, 2j) obtained using wavelets ψ2jn,2j , but to simplify
notation, we will write ψj,n. If we use the "inner product" perspective, we know that

Wx(2jn, 2j) = ⟨x, ψj,n⟩ (135)

and the question is whether the family of functions {ψj,n}(j,n)∈Z2 is an orthonormal basis,
for example, of L2(R) or L2([0, 1])), depending on the problem? Because then we can
reconstruct the signal.
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Figure 32 – Haar wavelet (also "Db1" in the Daubechies wavelet family) constructed in
real space. Decays as 1/ω in Fourier space.

6.3.3 Orthonormal Bases?

The question of finding orthonormal bases of this kind is not new, as Alfred Haar
(1885-1933), a Hungarian mathematician, gave an example in 1909 (Fig. 32). It’s quite
easy to see that the inner product of two Haar wavelets is zero, and thus, it naturally
follows that the family {ψHaarj,n }(j,n)∈Z2 forms an orthonormal basis of L2(R).

In 1948-49, Claude Shannon (1916-2001) and Harry Nyquist (1889-1976) proved a
well-known theorem 39 known as the Shannon Sampling Theorem. Even though Shannon
didn’t mention any wavelets, he used a perfect band-pass filter (Fig. 33). It is evident
that the filters ψ̂Shaj (ω) ∝ ψ̂Sha(2jω) have supports [2−jπ, 2−j+1π] (similarly for negative
frequencies). It is, therefore, easy to obtain the Littlewood-Paley condition (Th. 13). Thus,
we can reconstruct the signal, which is also demonstrated in another way by the sampling
theorem.

So, these two examples were known for a very long time, and the question that
remained unanswered for a long time was whether there are other types of functions that
have these properties. However, the two examples have disadvantages: Haar’s wavelet is
discontinuous and has no zero moments beyond its zero integral, so it cannot capture
polynomial regularities. On the other hand, Shannon’s wavelet in real space 40 decays as

39. The Whittaker–Nyquist–Kotelnikov–Shannon theorem, to be more comprehensive about the history
of the theorem.

40. According to the definition of the Fourier transform, we find ψSha(u) = sinc(t/2) − 2 sinc(t) with
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Figure 33 – Shannon wavelet constructed in Fourier space. Decays as 1/u in real space.

1/u, which is not a good indication of spatial localization. In fact, we would like to have
wavelets that are well localized in space, highly regular with a sufficient number of zero
moments, and, as a bonus, localized in Fourier space as well. Note that you cannot localize
equally well in both spaces due to the Uncertainty Principle (See the 2020 course).

It must be said that it seemed impossible to satisfy all these constraints. In fact,
Roger Balian and Francis Low, two theoretical physicists, had shown that it was not
possible to construct orthonormal bases of L2(R) in the form of gm,n(u) = e2πimug(u− n)
with (m,n) ∈ Z that are both localized in real space and Fourier space. It was a total
surprise, and the remarkable result of Yves Meyer in 1986 was to find such a family of
functions while trying to prove that it wasn’t possible!

Yves Meyer’s wavelet is both C∞ and rapidly decreasing. It is constructed in Fourier
space as follows:

ψ̂Meyer(ω) =


1√
2πe

iω/2 sin
[
π
2ν
(

3
2π |ω| − 1

)]
2π
3 ≤ |ω| ≤ 4π

3
1√
2πe

iω/2 cos
[
π
2ν
(

3
4π |ω| − 1

)]
4π
3 ≤ |ω| ≤ 3π

3

0 elsewhere

(136)

t = (2u− 1)π.
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Figure 34 – Example of a Meyer wavelet constructed in Fourier space. Note its rapid
decay in real space while being localized in Fourier space.

with ν(x) a Ck or C∞ function satisfying

ν(x) =

0 x ≤ 0
1 x ≥ 1

and ν(x) + ν(1 − x) = 1 (137)

An example is shown in Figure 34.

Following this result, a mathematical conceptual framework was developed that
allowed all these results to come together and construct new orthonormal bases that
satisfy various criteria of regularity and localization in both real and Fourier spaces. This
is the multiresolution analysis 41.

However, to develop this framework of orthonormal wavelet bases, we need to in-
troduce results from signal processing. Firstly, the Shannon Sampling Theorem, but in
a more general form than what we are used to. Its generalization will lead us to mul-
tiresolutions. The general idea is as follows: wavelets provide details of the analyzed
function, and therefore, we can improve the approximation of this function by gradually
aggregating finer and finer details. Multiresolution analysis naturally leads to the realm
of multigrid approximations, which are also found in numerical analysis and probability.
This will lead to the construction of orthonormal bases, and we will link this to filter bank
algorithms, which have been found to be the basis of deep neural networks, except that

41. Refer to the 2018 course for an introduction to MRA or AMR, and the 2020 course for another
aspect.
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these networks include a fundamental non-linearity (see the 2020 course). Finally, we will
arrive at low-dimensional approximations and the notion of sparsity, which was the initial
motivation. Remember: if a function is regular, then you apply Fourier harmonic analysis;
if the function has local discontinuities, you need to turn to multiresolution analyses.

6.4 Shannon Sampling Theorem

First, let’s establish the following result, which states that sampling a signal is
equivalent, in the Fourier domain, to periodicization:

Theorem 14 If {x(nT )}n is a sample of the signal x(u) (u ∈ R), then the Fourier
series ∑

n∈Z
x(nT )e−inTω = 1

T

∑
k∈Z

x̂

(
ω − 2kπ

T

)
(138)

This is a fundamental theorem in signal processing. Its proof can be seen as a consequence
of the Poisson summation formula 42.
Proof 14. Let â(ω) be the function on the right-hand side of the equality, which is
2π/T -periodic. Therefore, we can write it as

â(ω) =
∑
n∈Z

a(n)e−inTω

42. We can formulate the equality, based on the definition of the Fourier transform used in this docu-
ment, as

∑
n∈Z f(nT ) = 1/T

∑
k∈Z f̂(2πk/T ), which relates sampling in the real space and the Fourier

space. Additionally, we can observe that e−inT ω =
∫∞

−∞ δ(u−nT )du, allowing us to work with the equality
of two Fourier transforms by considering distributions, especially T

∑
n δ(u− nT ) =

∑
k e

i2kπu/T .
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and we need to demonstrate that the a(n) are the same as the x(nT ) on the left-hand
side of the equality. The a(n) are given by

a(n) = T

2π

∫ 2π/T

0
â(ω)einTω dω

= T

2π

∫ 2π/T

0

1
T

∑
k∈Z

x̂

(
ω − 2kπ

T

)
einTω dω

= 1
2π

∑
k∈Z

∫ 2π/T

0
x̂

(
ω − 2kπ

T

)
einTω dω

= 1
2π

∑
k∈Z

∫ (2k+1)π/T

2kπ/T
x̂(ω′)einTω′

dω′

= 1
2π

∫ +∞

−∞
x̂(ω′)einTω′

dω′ = x(nT )

(Note: The inversion of sum and integral can be performed if the sum ∑
k∈Z x̂ (ω − 2kπ/T )

converges uniformly, which requires some regularity assumptions on x(u) that we assume
to be satisfied.) ■

The sampling theorem allows us to reconstruct x(u) from the x(nT ). However, it’s easy to
understand that if the function is highly irregular between the samples, we can’t reliably
reconstruct the signal. This necessitates regularity assumptions, which in turn imply
constraints on the decay of Fourier coefficients. Let’s imagine that the supports of the
functions x̂

(
ω − 2kπ

T

)
do not overlap (no aliasing), meaning that the support of x̂(ω) is

contained within [−π/T,+π/T ], which is a strong constraint. In that case, we can perform
low-pass filtering, which in the spatial/temporal domain is equivalent to convolution with
a sinc cardinal function.

Theorem 15 (Shannon)
If the support of x̂(ω) is included in [−π/T,+π/T ], then

x(u) =
∑
n∈Z

x(nT )ϕT (u− nT ) (139)
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Figure 35 – Fourier spectra with replications every 2kπ/T , where on the left there is no
aliasing, unlike the case shown on the right (here T = 3). The baseband is illustrated by
the blue rectangle.

with
ϕT (u) = sin(πu/T )

πu/T
= sinc(πu/T ) (140)

whose Fourier Transform is the ideal low-pass filter

ϕ̂T (ω) = T 1[−π/T,+π/T ](ω) (141)

NDJE: A proof proposition can be developed as follows, relying on Theorem 14. Let’s take the
Fourier Transform of the right-hand side, we have

∑
n∈Z

x(nT )e−iωnT ϕ̂T (ω) =
∑
k∈Z

x̂

(
ω − 2kπ

T

)
1[−π/T,+π/T ](ω)

Now, as the support of x̂(ω) is included in [−π/T,+π/T ], it is also the case for ω − 2kπ/T ,
which mechanically constrains k to be 0. Thus, we recover x̂(ω), the Fourier Transform of the
left-hand side.

Let’s view this classic theorem from a different perspective. It tells us that if the
support is contained in [−π/T,+π/T ], everything works fine. But what happens when
we’re not in this case? As illustrated in Figure 35 (right), once we cut off the baseline
ω ∈ [−π/T, π/T ], the Fourier spectrum no longer matches that of x(u), and we can’t
reconstruct the signal.

In signal processing, to avoid aliasing, we start by pre-filtering the signal x(u) within
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Figure 36 – To avoid aliasing, we pre-filter the signal within the [−π/T,+π/T ] band.

the [−π/T,+π/T ] band using the ideal low-pass filter ϕT (u):

x
pre−filtering−−−−−−−→ (x ∗ ϕT )(u) = xT (u) (142)

This results in a signal xT (u) that no longer has high-frequency components. More preci-
sely:

x̂T (ω) = T x̂(ω) 1[−π/T,+π/T ](ω) (143)

meaning that the support of x̂T is well-contained within the interval [−π/T,+π/T ]. Thus,
we effectively avoid aliasing, as illustrated in Figure 36.

This low-pass pre-filtering process is an example of linear approximation. Essen-
tially, we approximate the signal by an element of a linear space defined as

VT = {x / Support x̂ ⊂ [−π/T,+π/T ]} (144)

This involves interpolation using the functions ϕT (u). In Figure 37, on the left side, you
can see the blue signal x(u), a sampling with T = 1/2, and the contribution x(nT )ϕT (u−
nT ) for nT = 7. Note that the zeros of ϕT (u− nT ) are uk = kT with k ∈ Z∗, so when we
sum all the contributions, we obtain a function (red) that passes through all the points
(red dots) of the sampling x(nT ). The result for T = 1/2 is shown as the green dashed
curve on the right side of Figure 37. To illustrate the effect of the sampling interval, the
approximation with T = 1 is also shown as the orange dashed line.

In fact, the family of functions {ϕT,n(u) = ϕT (u − nT )}n∈Z forms an orthogonal
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Figure 37 – Illustration of the interpolation formula Eq. 139 from Shannon’s theorem
(Th. 15). In blue, the signal x(u) sampled with T = 1/2 (red points). The contribution
x(nT )ϕT (u − nT ) for nT = 7 is shown on the left, while the approximation resulting
from the sum of all contributions is given on the right as green dashed lines (hardly
distinguishable from the blue curve). The approximation of lower quality obtained with
T = 1 is also shown as orange dashed lines.

basis of VT . First, all functions are members of VT because their Fourier support is that
of ϕ̂T , thus contained within [−π/T,+π/T ]. Second, the inner product between ϕT,n and
ϕT,m, as seen by Plancherel, is the integral of the product of their Fourier transforms, i.e.,

⟨ϕT,n, ϕT,m⟩ =
∫
ϕT,n

∧

(ω)ϕT,m
∧∗

(ω) dω ∝
∫ π/T

−π/T
e−iωT (n−m) dω ∝ δ(n−m)

With this basis of VT , we know that the best linear approximation is the orthogonal
projection of x onto this space (Sec. 3.1), which naturally gives us the expansion:

PVT
x(u) =

∑
n∈Z

1
T

⟨x, ϕT,n⟩ ϕT (u− nT ) (145)

If x ∈ VT , then x is equal to its orthogonal projection, which is the essence of Shannon’s
sampling theorem. Note that if we compare the two expansions on the basis of {ϕT,n}
(Eq. 139), we realize that 43

⟨x, ϕT,n⟩ = T x(nT ) (146)

43. where T =
∫
ϕ2

T (u)du.
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Thus, we have highlighted another way to express Shannon’s sampling theorem,
which is a very specific case of linear approximation where the filter is that of an ideal
low-pass filter. What we are going to see is that we can generalize this result by using
different types of filters. The reason we want to change the filter is that Shannon’s filter
is discontinuous in Fourier, so it only decays as 1/u in the real space, which doesn’t allow
for good localization of the irregularities in the sought-after signal x(u).

So, we will generalize the space VT in such a way that we will define nested spaces.
The analogy can be seen clearly in an image, where capturing essential structures is done
by using versions of the initial image taken at different resolutions. Therefore, we need
to set up a mathematical framework to understand these multi-scale structures. In this
framework, Wavelets will naturally find their place, as the wavelet coefficients are the
famous details of the image or solutions of a differential equation (ED). Moreover, if the
image is piecewise regular, then the representation is sparse, as the largest coefficients
are localized at the edges. In this scheme, we will also see that cascade filter algorithms
naturally arise. These are at the core of deep neural networks.

7. Lecture 17 Feb.

During this session, we will build the foundations of Wavelets from Multiresolution
Analysis. This topic, dear to S. Mallat, has many applications in mathematics and will
be used to model the data x(u) in order to understand the concentration phenomena in
problems of the form f(x) = y, which are at the core of neural networks. So, for the record,
the Wavelet Transform allows us to analyze the regularity of a function in a "space-scale"
or "time-scale" plane through what is called the scalogram. Wavelet coefficients allow us
to characterize the local regularity of the signal x at any point v. Large coefficients are
found near singularities.

However, we have seen that we can compress the representation to make it sparse by
first sampling the scale space (s = 2j) to retain only the coefficients W (u, 2j) because if we
have a wavelet whose dilated/contracted versions cover the Fourier space well (Littlewood-
Paley condition of Theorem 13), then we can recover the signal. We also found by an
intuitive argument that we can probably perform real-space sampling (vn = n2j). That
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Figure 38 – Family of nested linear spaces Vi.

is, we wonder if the family of functions{
ψj,n(u) = 1√

2j
ψ

(
u− 2jn

2j

)}
(j,n)∈Z2

(147)

is an orthonormal basis of the space L2 of signals x(u). If such a base(s) exists, then we
can apply the previously used scheme to eliminate small wavelet coefficients to obtain a
nonlinear low-dimensional approximation.

So, the problem we are addressing is to construct such orthonormal bases using
multiresolutions. The ideas came in particular from the field of computer vision, in part
due to limited memory size in the 1980s. Indeed, the question was whether it was possible
to minimize the size of an image without losing essential information contained in the
original image and to proceed with a progressive aggregation of details to refine the
perception of the object under study. So, first, we will define the projection of the signal
on grids at multiple resolutions, and then, by complement, we will add the details. In
doing so, we will discover orthonormal bases along the way.
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7.1 Multiresolutions

7.1.1 The Definition

We need to define projections at different scales, which are nested linear spaces
(Fig. 38) 44.

Definition 4 (Multiresolution)
Let the family of linear spaces {Vj}j∈Z indexed by j associated with scale 2j be called

a multiresolution if it satisfies the following properties:

i) We lose resolution when going from scale 2j to 2j+1, i.e.,

Vj+1 ⊂ Vj (148)

ii) We relate Vj and Vj+1 according to the equivalence

x(u) ∈ Vj ⇔ x(u/2) ∈ Vj+1 (149)

we dilate x(u) in one direction and contract it in the other.

iii) Moreover, if we approximate x(u) by its orthogonal projection onto Vj, we
would like that when the resolution is infinite (s → 0, or j → −∞), we can
completely reconstruct the signal, i.e.,

lim
j→−∞

∥x− PVj
x∥ = 0, ∀x ∈ L2(R) (150)

iv) Conversely a, if j → +∞ or the scale becomes infinite, then we lose resolution
and cannot reconstruct the signal

lim
j→+∞

PVj
x = 0 (151)

44. For readers of the 2018 notes: for Section 6.6, one must be careful about how the indices j are
arranged because they are opposite to the definition used here. This is a small gymnastics that must also
be paid attention to in publications.
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v) Finally, we need to add one last property related to the fact that we are building
approximations on grids, and when we translate x ∈ Vj, we do not change the
resolution, there is a translation invariance. Therefore,

∃ϕ ∈ V0 / {ϕ(x− n)}n∈Z is an orthonormal basis of V0 (152)

a. These two properties can be written as: ∪j∈ZVj = L2(R) and ∩j∈ZVj = 0.

Property (v) can be extended to all spaces Vj by the following lemma:

Lemma 1 ∀j ∈ Z, then {
ϕj,n(u) = 1√

2j
ϕ

(
u− 2jn

2j

)}
n∈Z

(153)

is an orthonormal basis of Vj.

7.1.2 Some Examples of Multiresolutions

To define the function ϕ, which is a cornerstone of the multiresolution definition,
let’s go back to the sampling theorem. Therefore, let

ϕ(u) = 1[0,1[(u) (154)

We will see that ϕ is related to the Haar wavelet. It is quite clear that the family {ϕ(u−
n)}n∈Z is an orthonormal basis of the linear space V0 of piecewise constant functions with a
step of 1. Similarly, ϕj(u) = ϕ(u/2j) is the function 1[0,2j [(u), and the associated family is
an orthonormal basis of the space Vj of piecewise constant functions with a step of 2j, i.e.,
constant on the intervals [2jn, 2j(n+ 1)[. In this context, constructing an approximation
of x at scale 2j means obtaining the approximation by a step function over intervals of
size 2j. An example is shown in Figure 39 (left).

Another example is provided by defining ϕ(u) through its Fourier spectrum, as in
Shannon’s theorem 15:

ϕ̂(ω) = 1[−π,π](ω) (155)
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In real space, we find that ϕ(u) = sinc(πu), and the decomposition of x(u) corresponds
to

x(u) =
∑
n

αnϕ(u− n) (156)

We know that αn = x(n) according to Shannon, and now we can vary the scale para-
meter to obtain approximations at different resolutions. In the Fourier domain, ϕ̂j(ω) =
1[−2−jπ,2−jπ](ω), so when j → −∞, we cover higher and higher frequencies, and we obtain
higher-quality approximations. An example is shown in Figure 39 (right).

The two previous examples are extremes: in the first one, the function ϕ is disconti-
nuous in space, while in the second one, it’s the Fourier spectrum that is discontinuous.
However, we would like to have more regularity in both spaces. Already at first glance,
we can say that the piecewise constant approximation is very rough, and we could opt for
at least a piecewise linear approximation, or even a piecewise polynomial one. Therefore,
we think that we can certainly obtain higher-quality multiresolutions. What we will see
is that with each multiresolution, we obtain a wavelet basis, the construction of which is
based solely on that of discrete filters, and in particular (or above all) the one associa-
ted with the function ϕ. Finally, we will find filtering-subsampling algorithms that also
appear in neural networks.

Figure 39 – Examples of multiresolution analysis with ϕ(u) = 1[0,1[(u) (left) and ϕ(u) =
sinc(πu) (right): in red j = 1, in green j = −1, and in blue the function x(u).
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7.2 Filter Banks

The construction of filters, and more precisely, filter banks, which are networks of
bandpass filters, is a traditional topic in signal processing aimed at separating the input
signal into multiple components. In fact, wavelet theory has somewhat solidified empirical
knowledge regarding the construction of filter banks.

First, let’s ask the question: how do we construct an approximation PVj
? It’s an

orthogonal projection onto the basis of Vj, so we have

PVj
x =

∑
n∈Z

⟨x, ϕj,n⟩ϕj,n (157)

Now, the inner product of x with ϕj,n can be seen as a convolution. Let’s introduce the
function

ϕ̃j(u) = 1√
2j
ϕ
(

− u

2j
)

= ϕj(−u) (158)

Thus, we can interpret the projection onto Vj as first a low-pass filtering with ϕ̃j followed
by interpolation with ϕj,n:

PVj
x =

interpolation︷ ︸︸ ︷∑
n∈Z

(x ∗ ϕ̃j)(2jn)︸ ︷︷ ︸
filtering

ϕj,n (159)

Finally, we can immediately generalize Shannon’s theorem 45:

Theorem 16 (multiresolution sampling)
If x ∈ Vj of a multiresolution, then the orthogonal projection PVj

x = x (and vice
versa), and thus

x(u) =
∑
n∈Z

(x ∗ ϕ̃j)(2jn) ϕj(u− 2jn) (160)

Shannon’s theorem becomes a special case when ϕ̂(ω) is the ideal low-pass filter on [−π, π].
However, what interests us is the transition between two different resolution grids, and

45. Note that here, it’s the same function ϕ that is used for filtering and interpolation. This scheme
can be generalized by using two distinct functions.
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this is where wavelets come into play. In doing so, we will focus on the two properties (i)
and (ii) of a multiresolution to derive wavelets.

Let’s fix j = 0. According to property (i), we know that V1 ⊂ V0 and ϕ(u) ∈ V0,
so according to (ii), ϕ(u/2) ∈ V1, and therefore ϕ(u/2) ∈ V0. Now, since the {ϕ(u− n)}n
form a basis for V0, we can decompose ϕ(u/2) using this basis 46:

1√
2
ϕ
(
u

2

)
=
∑
n∈Z

h(n)ϕ(u− n) (161)

And the h(n) are obtained using the orthogonality of the basis:

h(n) = ⟨ 1√
2
ϕ
(
u

2

)
, ϕ(u− n)⟩ (162)

So, if we know ϕ, we know the coefficients h(n). But what’s even more interesting is that
we can start with h(n) and construct ϕ. Let’s move to the Fourier domain, which gives
us

√
2ϕ̂(2ω) =

∑
n∈Z

h(n)e−inω

 ϕ̂(ω) = ĥ(ω)ϕ̂(ω) (163)

where we recognize the Fourier series associated with h. This leads to

√
2ϕ̂(2ω) = ĥ(ω)ϕ̂(ω) ⇐⇒ ϕ̂(ω) = ĥ(ω/2)√

2
ϕ̂(ω/2) (164)

We want to repeat this process, which allows us to write

ϕ̂(ω) = ϕ̂(2−Jω)
J∏
p=1

ĥ(2−pω)√
2

(165)

Now, if we let J tend to infinity, we see that ϕ̂(ω) is completely determined by the filter
ĥ(ω):

ϕ̂(ω) = ϕ̂(0)
+∞∏
p=1

ĥ(2−pω)√
2

(166)

What are the properties of ĥ(ω)? Remember that the family {ϕ(u − n)}n∈Z forms
46. In the literature, this is referred to as the scaling relation.
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an orthonormal basis and is used to construct a multiresolution. All of this leads to the
conclusion that the filter ĥ must be quite special. In fact, we want to reverse the problem:
what are the properties of h that work well so that ϕ then defines a multiresolution? In
doing so, we will rediscover properties used in signal theory, namely, mirror filters. Here’s
the theorem:

Theorem 17 (filter h)
If ϕ defines a multiresolution (Def. 4), and if we define h(n) as follows

h(n) = ⟨ 1√
2
ϕ
(
u

2

)
, ϕ(u− n)⟩ = ⟨ϕ1, ϕ0,n⟩ (167)

then the Fourier transform of h satisfies the relations

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2 and ĥ(0) =
√

2 (168)

These properties are illustrated in Figure 40.

Conversely, if ĥ satisfies the above relations and if

ĥ(ω) > 0 ∀ω ∈ [−π/2, π/2] (169)

then
ϕ̂(ω) =

+∞∏
p=1

ĥ(2−pω)√
2

(170)

is the Fourier transform of a function ϕ that defines a multiresolution.

Proof 17. Assuming 47 that ϕ̂(0) ̸= 0, we can easily deduce that ĥ(0) =
√

2 from Eq. 164.
The first of the two properties in Eq. 168 is the most crucial one and was highlighted by
M.J.T. Smith and T.P. Barnwell in the 1980s in the context of filter banks. Recall that
we want to end up with an orthonormal basis with ϕ(u) translated. Thus, we want

⟨ϕ(u), ϕ(u− n)⟩ = δ[n] (171)

47. Note that an argument is given later.
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Figure 40 – Example of a filter ĥ(ω) that satisfies the relations in Eqs. 168. In this case,
it’s a filter from a Daubechies multiresolution of order 4. Note: Depending on the libraries,
the filter may or may not include the factor

√
2.

which, through convolution with ϕ̃ (Eq. 158 with j = 0), gives

(ϕ ∗ ϕ̃)(n) = δ[n] (172)

Now, let’s use Theorem 14 with T = 1:

∑
n∈Z

x(n)e−inω =
∑
k∈Z

x̂ (ω − 2kπ) (173)

For x = ϕ ∗ ϕ̃, in the case where ϕ is a real function, we have x̂ = |ϕ|2 and the following
relation: ∑

k∈Z
|ϕ̂(ω − 2kπ)|2 = 1 (174)

This is the necessary and sufficient condition for having an orthonormal basis. Now, let’s
use Eq. 164 again. When we replace it, we get

∑
k∈Z

|ϕ̂(ω − 2kπ)|2 = 1
2
∑
k∈Z

|ĥ(ω/2 − kπ)ϕ̂(ω/2 − kπ)|2 = 1 (175)
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Therefore, by separating the even and odd k terms and using the fact that ĥ(ω) is 2π-
periodic (i.e., a Fourier series), we can write

∑
k∈Z

|ĥ(ω/2 − kπ)|2|ϕ̂(ω/2 − kπ)|2

=
∑
p∈Z

|ĥ(ω/2 − 2pπ)|2|ϕ̂(ω/2 − 2pπ)|2 +
∑
p∈Z

|ĥ(ω/2 − (2p+ 1)π)|2|ϕ̂(ω/2 − (2p+ 1)π)|2

=
∑
p∈Z

|ĥ(ω/2)|2|ϕ̂(ω/2 − 2pπ)|2 +
∑
p∈Z

|ĥ(ω/2 − π)|2|ϕ̂(ω/2 − (2p+ 1)π)|2

= |ĥ(ω/2)|2
∑
p∈Z

|ϕ̂(ω/2 − 2pπ)|2

︸ ︷︷ ︸
+|ĥ(ω/2 − π)|2

∑
p∈Z

|ϕ̂(ω/2 − (2p+ 1)π)|2

︸ ︷︷ ︸
Now, using relation 174, we can see that the two sums inside the braces are equal to 1.
Therefore,

|ĥ(ω/2)|2 + |ĥ(ω/2 − π)|2 = 2

which completes the proof because this holds for all ω, and we can use the 2π-periodicity
of ĥ to introduce the +π in the second term.

For the converse, we need to consider what happens at ω = 0. If ϕ̂(0) = 0, then
we have a bandpass filter. But, recall the condition on ψ: as j becomes more and more
negative, the spectral band shifts towards high frequencies, depleting the low frequencies.
Regarding ϕ, this is not possible because the projection PVj

x must satisfy property (iii)
of multiresolution (Def. 4), which states that PVj

x must converge to x for every element
of L2(R). This is a contradiction when depleting low frequencies. Thus,

ϕ̂(0) ̸= 0

The complete proof of the converse is in the notes that S. Mallat attaches to his course.
It starts with the relations on ĥ(ω) to demonstrate that the product in Eq. 170 makes
sense and indeed yields a function ϕ that has property 174 to provide an orthonormal
basis. ■
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Figure 41 – Burt’s Algorithm: cascade of a low-pass filter ĥ(ω) to prevent aliasing,
followed by downsampling by a factor of 2.

7.3 Filter Bank Algorithms (I)

Once we have a function ĥ(ω) that satisfies the relations 174, or its real-space version
using h(n), i.e.,

ĥ(ω) =
∑
n∈Z

h(n)e−inω (176)

we would like to understand how this can be useful in practice. In fact, algorithms existed
in image processing, notably Peter Burt’s algorithm 48. It involved cascading a low-pass
filter h to prevent aliasing (Sec. 6.4), followed by downsampling by a factor of 2 (Fig. 41).
The challenge at that time was to perform these operations in real-time, which required
using small-sized filters for fast convolutions. Although the filters used did not satisfy the
above-mentioned properties, the cascade of operations was in place.

Now, the orthogonal projection of x onto Vj is given by Theorem 16:

x(u) =
∑
n∈Z

aj[n]ϕj,n(u) (177)

So, we transition from the continuous variable u to the discrete variable n, which means
moving from x(u) to aj[n]

aj[n] = ⟨x, ϕj,n⟩ = (x ∗ ϕ̃)(2jn) (178)

and we are now dealing with discrete sequences only. What is the relationship between
aj[n] and aj+1[n]? The relationship becomes clear when we have the nested structure of

48. Burt-Adelson pyramid image processing.
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spaces Vj: knowing the projection of x onto Vj, we can project it onto space Vj+1 and so
on. To obtain the projection into Vj+1, we need to know the inner products with ϕj+1,n.
Now,

ϕj+1(u) =
∑
n

⟨ϕj+1, ϕj,n⟩ϕj,n(u) (179)

with

⟨ϕj+1, ϕj,n⟩ =
∫ 1√

2j+1
ϕ
(

u

2j+1

) 1√
2j
ϕ

(
u− 2jn

2j

)
du

= 1√
2

∫
ϕ
(
u

2

)
ϕ(u− n) du

= h(n) (180)

where the last equality is obtained using Theorem 17. Thus, we arrive at the relation

ϕj+1(u) =
∑
n∈Z

h(n)ϕj,n(u) (181)

What about ϕj+1,n(u)? It follows that

ϕj+1,p(u) = ϕj+1(u− 2j+1p) =
∑
n∈Z

h(n)ϕj,n(u− 2j+1p)

=
∑
n∈Z

h(n) 1√
2j
ϕ

(
u− 2j(2p) − 2jn

2j

)
(182)

and thus, we obtain the relation

ϕj+1,p(u) =
∑
n∈Z

h(n)ϕj,n+2p(u) (183)

We can now calculate aj+1[p]:

aj+1[p] = ⟨x, ϕj+1,p⟩ =
∑
n∈Z

h(n)⟨x, ϕj,n+2p⟩ (184)
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Figure 42 – Algorithm for transitioning from aj[n] to aj+1[n]: cascade of a discrete low-
pass filter h̃ followed by downsampling by a factor of 2. Similarities and differences with
Burt’s algorithm in Figure 41 can be noted.

and thus obtain

aj+1[p] =
∑
n∈Z

h(n)aj[n+ 2p] =
∑
n∈Z

h(n− 2p)aj[n] = (aj ∗ h̃)(2p) (185)

where we have highlighted the convolution with the filter h̃[n] = h[−n] (the counterpart
of ϕ̃) taken at 2p, meaning we indeed have a cascade of filtering and downsampling
(Fig. 42).

7.3.1 Example with Haar Multiresolution

Let’s revisit the indicator function ϕ of [0, 1], which was our first example of multi-
resolution (Sec. 7.1.2). The translated functions ϕ(u− n) are, therefore, indicators:

ϕ(u− n) = 1[n,n+1](u) (186)

Similarly, the function ϕ scaled by a factor of 2 is also an indicator:

1√
2
ϕ
(
u

2

)
= 1√

2
1[0,2](u) (187)
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Thus, using Theorem 17, we define the discrete filter h as the inner product between
ϕ(u− n) and 1√

2ϕ
(
u
2

)
, which gives

h[n] =

1/
√

2 n = 0, 1
0 elsewhere

(188)

Now, according to Theorem 16, consider the signal x(u) with u as a continuous variable. In
practice, this signal is sampled on a fixed grid denoted as V0, and we have the coefficients
a0[n] = x(n). Next, the algorithm provides the coefficients a1[p]:

a1[p] = a0[2p] + a0[2p+ 1]√
2

(189)

and the projection onto V1 of the signal becomes

PV1x(u) =
∑
p

a1[p]ϕ1(u− p) =
∑
p

a0[2p] + a0[2p+ 1]
2 ϕ

(
u

2 − p
)

(190)

Note that we ultimately average the coefficients to transition from one grid to another.
An illustration of this algorithm is shown in Figure 43. What will change in the future is
the support of h and its values, but the algorithm will remain the same.

7.4 Connection with Wavelet Bases

The filter bank algorithm studied in the previous section provides successive avera-
ging, but this is not how we can construct sparse representations where we aim to obtain
zeros instead. Note that when transitioning from Vj to Vj+1 and reducing information,
we lose the details of the signal present in Vj due to averaging. If we want to highlight
these details, we should project not into Vj+1 but into the complementary space 49 Wj+1

(Fig. 44):
Vj = Wj+1 ⊕ Vj+1 (191)

49. Note for readers from the 2018 Course, the scales are indexed by −j, meaning s = 2−j .
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Figure 43 – Illustration of the sampling algorithm with the Haar function ϕ(u): first,
we sample the signal to obtain an approximation (red) on grid V0, then in a second step,
through filtering and downsampling, we obtain an approximation on a grid 2 times larger,
V1.

Figure 44 – Spaces Vj and Wj connected by the complementarity relation Eq. 191. This
complements Figure 38.
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We know an orthonormal basis in Vj and Vj+1, so we need to construct an orthogonal
basis in Wj+1. However, note that the previous relation calls for recursion:

Vj =
J⊕

p=j+1
Wp ⊕ VJ (192)

Now, if J → +∞, VJ tends towards the empty set, while if j → −∞, then Vj tends
towards the entire space L2(R). In a sense,

L2(R) =
+∞⊕
j=−∞

Wj (193)

and all the spaces Wj are orthogonal to each other. Thus, obtaining an orthogonal basis
of L2(R) is done by grouping the orthogonal bases of all the spaces Wj. This is where the
wavelet ψ comes into play to connect the Wj sets with each other.

Theorem 18 (filter g)
Let g(n) be a filter obtained from the filter h (Th. 17) as follows:

g(n) = (−1)1−nh(1 − n) (194)

Also, let ψ(u) be derived from this filter g and the function ϕ (which is also derived
from h) as follows:

1√
2
ψ
(
u

2

)
=
∑
n∈Z

g(n)ϕ(u− n) (195)

Then, for all j, the family{
ψj,n(u) = 1√

2j
ψ

(
u− 2jn

2j

)}
n∈Z

(196)

is an orthonormal basis of Wj. And the family {ψj,n}(j,n)∈Z2 is an orthonormal basis
of L2(R).

This provides a generalization of Haar from the given filter h. It is remarkable that
it is possible to construct wavelet bases that go beyond the scope of this theorem, but
such wavelets are pathological and have very slow decay, making them unattractive and
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impractical for use. Therefore, in practice, we can view this theorem as a necessary and
sufficient condition for obtaining orthonormal wavelet bases.

Proof 18. First, if ψ(u) ∈ W1 ⊂ V0, the orthogonal complement of V1 in V0, and since V0

has an orthonormal basis {ϕn}n∈Z, we can decompose ψ(u/2) as follows:

1√
2
ψ
(
u

2

)
=
∑
n∈Z

g(n)ϕ(u− n) (197)

with g(n) unknown for now. But we know that

g(n) = ⟨ 1√
2
ψ
(
u

2

)
, ϕ(u− n)⟩ (198)

We also want an orthonormal basis 50 of W0 from {ψn}n∈Z, which means

⟨ψ(u), ψ(u− n)⟩ = ⟨ψ, ψn⟩ = δ[n] ⇔ (ψ ∗ ψ̃)(n) = δ[n] (199)

So, following the same reasoning as for ϕ (Eq. 174), we obtain the relation:

∑
k∈Z

|ψ̂(ω − 2kπ)|2 = 1 (200)

But we also want W0, the complement of V0 in V−1, to be orthogonal to V0, so the family
{ψn}n∈Z must be orthogonal to the family {ϕn}n∈Z. This additional constraint in the
Fourier domain results in the following relation:

∑
k∈Z

ϕ̂∗(ω − 2kπ)ψ̂(ω − 2kπ) = 0 (201)

Now, these two relations 200 and 201 are equivalent to the following two relations:

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2
ĝ(ω)ĥ∗(ω) + ĝ(ω + π)ĥ∗(ω + π) = 0

(202)
(203)

50. Note that we could write that {ψ1,n}n∈Z form an orthonormal basis of W1.
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Finally, one solution for ĝ(ω) is to choose:

ĝ(ω) = e−iωĥ∗(ω + π) (204)

In this case, it follows that:

ĝ(ω) = e−iω ∑
n∈Z

h∗(n)ei(ω+π)n

=
∑
n∈Z

(−1)nh∗(n)e−iω(1−n)

=
∑
m∈Z

(−1)1−mh∗(1 −m)e−iωm (205)

Hence, the identification of g(n) yields:

g(n) = (−1)1−nh∗(1 − n) (206)

Since ϕ(u) is real, it follows that h(n) is also real, which concludes the proof. ■

8. Lecture 3 Mar.

We saw in the last session how, starting from a function ϕ(x) or its filter h[n] (low-
pass), we can construct low-dimensional approximations at successive scales of the signal
x(u) by projecting them onto the spaces Vj:

PVj
x(u) =

∑
n∈Z

aj[n]ϕj,n(u) (207)

where aj[n] = ⟨x, ϕj,n⟩. Similarly, to introduce details that are lost when changing the scale
through low-frequency approximation, we can refine using the complementarity between
spaces Vj and Wj as follows (Fig. 44):

Vj−1 = Vj ⊕Wj (208)
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and thus
PVj−1x = PVj

x⊕ PWj
x (209)

We introduced a wavelet ψ and its associated band-pass filter g[n]. We also obtained
the relationships that filters h and g have (Th. 17).

8.1 Some Examples of Orthonormal Bases

In Sections 6.3.3 and 7.1.2, we saw some examples of wavelets. What about the
associated filters?

For the Haar wavelet, this was done in Section 7.3.1 with a numerical application.
As a reminder 51:

hHaar[n] =

1/
√

2 n = 0, 1
0 elsewhere

(210)

which yields for the filter of ϕ(u) = 1[0,1](u):

gHaar[n] =

g[0] = −h[1], g[1] = h[0]
0 elsewhere

(211)

Thus, if h[n] corresponds to an average of samples two by two, g[n] corresponds to
their difference. Furthermore:

ψ(u) =
√

2
∑
n∈Z

g[n]ϕ(2u− n) (212)

so

ψHaar(u) = −1[0,1](2u) + 1[0,1](2u− 1)
= −1[0,1/2](u) + 1[1/2,1](u) (213)

which corresponds to the sign changes shown in Figure 32.

51. Note that the normalization ĥ(0) =
√

2 =
∑

n∈Z h[n] might be surprising. Additionally, conventions
may vary depending on the libraries used.
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Figure 45 – I. Daubechies "Dbm" wavelet illustrations with m the number of zero mo-
ments

As a second example, we can consider the Shannon wavelet. The Fourier spectrum
of ψ is an ideal band-pass (Fig. 33). We can obtain it within the framework of multireso-
lutions by defining the ideal low-pass 2π-periodic function as:

ĥShan(ω) = 1[−π/2,+π/2](ω) (214)

From which we define the 2π-periodic function ĝ(ω) = e−iωh∗(ω + π), which becomes an
ideal band-pass:

ĝShan(ω) = e−iω
{
1[−π,−π/2](ω) + 1[π/2,π](ω)

}
(215)

Thus, the filter ĥShan selects low frequencies between −π/2 and π/2, while the filter ĝShan

excludes them.

Now, the question arises as to what wavelets, or filters, or multiresolutions are
interesting, considering the issues we’ve seen with Haar and Shannon wavelets, which
are discontinuous either in the real space or in the Fourier space. This question has been
addressed both by the Signal Processing community and the mathematical community,
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particularly by the Belgian-American mathematician Ingrid Daubechies, who studied
how to obtain "optimal" wavelets.

What we want are wavelets with the smallest possible support. We also want to
be able to assess the Lipschitz-α regularity of signals x(u) by comparing them to a po-
lynomial representation (Th. 3). Therefore, we also need the wavelet ψ to be "transpa-
rent" regarding polynomials of a certain degree m, which means that the wavelet has
m vanishing moments (Eq. 126). As per Theorem 12, we know that the decay of wa-
velet coefficients |Wx(v, s)| provides information about the regularity order α of x, i.e.,
|⟨x, ψj⟩| < C2j(α+1/2).

So, we have two constraints to satisfy: is it possible? The answer is yes. If ψ has m
vanishing moments and a compact support, then ψ̂(ω) = O(ωm) near 0 52. In other words,
imposing vanishing moments on ψ imposes how the band-pass filter ψ̂(ω) decays near 0.
Moreover, ĝ(ω) = O(ωm) because

√
2ψ̂(2ω) = ĝ(ω)ϕ̂(ω), and ϕ̂(ω) doesn’t vanish at 0.

Interestingly, the converse is also true, which can be summarized as follows:

Property 1

ψ(u) has m vanishing moments + compact support ⇔ ψ̂(ω) = O(ωm) ⇔ ĝ(ω) = O(ωm)

Therefore, to impose vanishing moments on ψ(u), we will either construct or verify that
the filter ĝ(ω) has the properties of decaying near 0. We will use the following property
as well:

Property 2

ψ(u) has a compact support ⇔ h[n] has a compact support

This property can be deduced from the following reasoning: If ϕ(u) has compact support,
according to the definition of h[n] as the inner product between ϕ(u) and ϕ(2u − n), we
conclude that there are only a finite number of n for which h[n] ̸= 0. Then, from the
relation between g[n] and h[n], we deduce that g[n] is also non-zero for a finite number

52. Note: with a bit of calculus and using the derivatives of the Fourier transform of ψ, we can show
that ∂(n)ψ̂(ω) = 0 for all n ≤ m, and then use Taylor’s expansion of ψ̂(ω).
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of n. Finally, the relation between ψ(u), ϕ(2u− n), and g[n] ensures that ψ has compact
support. Conversely, if h[n] does not have compact support, then ϕ(u/2) and ϕ(u − n)
have a non-zero overlap, so ϕ(u) cannot have compact support.

In fact, what Ingrid Daubechies demonstrated is that we cannot satisfy all the
properties we would like at the same time. In particular, if we want to increase the number
of vanishing moments, then the support of ψ (and ϕ) must grow. Thus, satisfying the
spatial localization of ψ and the regularity of the filter ψ̂ near 0 are in balance, and there
is an optimization to be done.

Property 3 ψ(u) has m vanishing moments and defines an orthonormal wavelet
basis ⇒ Support(ψ) ≥ 2m− 1, and the filters h and g have a size of 2m.

(NDJE: The case m = 1 yields the Haar wavelet, which indeed has only one vanishing
moment, namely, that its integral is zero, but it cannot make a monomial of degree 1
vanish.)

Several wavelets by I. Daubechies are shown in Figure 45, with "Dbm" indicating
the number of vanishing moments (for Haar/"Db1", the wavelet has only one vanishing
moment). It can be observed that as m increases, the wavelet becomes smoother, in
addition to having its support increased.)

8.2 Filter Bank Algorithms (II): DWT/IDWT

In Section 7.3, we developed a cascade of filtering-downsampling algorithms using
the low-pass filter h[n] (Fig. 41) to obtain successive low-dimensional approximations
PVj

x. The idea now is to introduce 53 the details of x by applying the band-pass filter g[n]
to obtain PWj

x. A generic decomposition example that will serve as a reference is shown
in Figure 46.

So, the idea is to start with sampling aL[n] of the signal x(u), which constitutes the
approximation at a certain reference scale L (the number of samples is Ns = 2L, and the

53. See also Course 2018 Sec. 6.6.0.4.
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Figure 46 – From bottom to top: the sampled function yielding 2S = 1024 samples
(S = 10), then by successive decomposition with the "Db2" wavelet, we obtain low-
frequency approximation coefficients numbering 2S−5 = 32 and detail coefficients at the
same scale. We also have detail coefficients of increasingly higher frequencies, ending with
those numbering 2S−1 = 512. Note that most of the detail coefficients are nearly zero, and
the most important detail coefficients concentrate at the discontinuities of the original
function in the cone of Theorem 12 (orange). The vertical scales are not the same for
each set of coefficients. Note: S. Mallat’s presentation on the projector is in reverse order
for the arrangement of detail coefficients, going from top to bottom, from low to high
frequencies.
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sampling interval ∆u ∝ 1/Ns), i.e.,

PVL
x(u) =

∑
n

aL[n] ϕL,n(u) (216)

From these samples, we can reconstruct wavelet coefficients at larger spatial scales 2∆u,
22∆u, up to a limit scale where the size of the approximation’s support is of the same
order of magnitude as the sampled function (accounting for edge effects). How do we
proceed?

If we know PVj−1x, we know that

PVj−1x = PVj
x+ PWj

x

⇒
∑
n

aj−1[n]ϕj−1,n(u) =
∑
n

aj[n]ϕj,n(u) +
∑
n

dj[n]ψj,n(u) (217)

Now, we know the decomposition of ϕj,n based on ϕj−1,m (Eq. 183), and we get

⟨ϕj−1,m, ϕj,n⟩ = h[m− 2n] (218)

Since ϕj,n and ψj,m are orthogonal, we can proceed with the inner product with ϕj,n (while
anonymizing the index n)

aj[n] =
∑
m∈Z

h[m− 2n]aj−1[m] = (a ∗ h̃)[2n] (219)

where h̃[n] = h[−n]. Similarly, we can show, based on the same framework developed in
Section 7.3, that

ψj+1,p(u) =
∑
n∈Z

g[n]ϕj,n+2p(u) (220)

and, therefore, the detail coefficients are derived from aj−1 as follows:

dj[n] =
∑
m∈Z

g[m− 2n]aj−1[m] = (a ∗ g̃)[2n] (221)

The elementary cell of the DWT algorithm is presented in Figure 47, and the DWT
(Discrete Wavelet Transform) algorithm is shown in Figure 48.

So, from an algorithmic perspective, the transition from aj−1 to (aj, dj) is done using
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Figure 47 – From the approximation coefficients aj−1, we obtain the approximation
coefficients aj and detail coefficients dj (Eqs. 219, 221). Then, we can cascade the algorithm
starting from aj, and so on.

Figure 48 – Diagram of a complete wavelet decomposition (Discrete Wavelet Transform).
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the filters h and g, which makes finite-support Daubechies filters attractive. However, it’s
important to note that underlying this, we calculate inner products with wavelets that
determine all the properties of these coefficients (e.g., sparsity). What is the computational
cost of the DWT transformation? At each cell of the decomposition from aj−1 to (aj, dj),
we have a constant number of operations if the filters have finite support (2m), namely, 2m
multiplications and 2m additions per coefficient. Furthermore, this number of coefficients
is halved at each stage. Therefore, if we start with N samples at scale L and decompose
down to the coarsest scale J , the number of operations is equal to

L−J∑
j=1

N2−j(4m) = 4mN(1 − 2J−L) ≤ 4mN (222)

In other words, the number of operations for the DWT is linear in N , making it faster
than the FFT, which is O(N logN). Additionally, the smaller the support of the filters,
the faster the DWT.

The algorithm is invertible (Inverse Discrete Wavelet Transform, or IDWT), and
the nested structure and orthonormal bases provide the synthesis formulas. Starting from
Equation 217 and the inner products

⟨ϕj−1,m, ϕj,n⟩ = h[m− 2n] ⟨ϕj−1,m, ψj,n⟩ = g[m− 2n] (223)

we obtain the following relation, which allows us to construct a finer-scale (or higher-
frequency) approximation at scale j − 1:

aj−1[n] =
∑
m∈Z

(aj[m]h[n− 2m] + dj[m]g[n− 2m]) (224)

To highlight a convolution operation, due to the 2m in the filters, we redefine aj and dj

by inserting zeros as follows:

ǎj−1[n′] =

aj−1[n] n′ = 2n
0 n′ = 2n+ 1

(225)
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Figure 49 – From the coefficients aj and dj, we can reconstruct the coefficients aj−1

using the formulas in Eqs. 224, 226, with the latter highlighting the doubling of the sizes
of coefficients aj and dj by inserting zeros before filtering.

Similarly for ďj−1. Thus, we can write

aj−1[n] = (ǎj ∗ h)[n] + (ďj ∗ g)[n] (226)

The diagram of the elementary cell of the IDWT algorithm is given in Figure 49. Now, by
iterating the process, we realize that to reconstruct the approximation of a certain order,
we need aJ and dJ , and only the detail coefficients dJ−1, dJ−2, and so on. The coefficients
aJ−1, aJ−2, etc., are only intermediate calculations. The complete IDWT algorithm is
presented in Figure 50.

8.3 Signal Approximations: Experimentation

With the coefficients {aJ , dJ , dJ−1, . . . , dL+1}, we can construct various types of si-
gnal approximations for x. For example, we can eliminate all the high-frequency coeffi-
cients (dj) to obtain low-frequency linear approximations PVj

x with coefficients aj. An
example is shown in Figure 51 using the function from Figure 46.

However, if we zoom in on one of these linear approximations (Fig. 52), we notice
that errors occur at discontinuities because we have smoothed the signal. We also observe
small residual oscillations, which are caused by the Gibbs phenomenon 54.

54. The "Gibbs phenomenon" (named after Josiah Willard Gibbs, physicist, 1839-1903): it is a phe-
nomenon of non-uniform convergence of Fourier series, first demonstrated by Henry Wilbraham in
1848, then discussed by Albert Michelson (Nobel laureate in Physics, 1852-1931) in 1898 and later by
Gibbs in the journal Nature. By the way, Michelson’s machine (https://www.youtube.com/watch?v=

https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
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Figure 50 – Diagram of a complete wavelet synthesis (Inverse Discrete Wavelet Trans-
form).

Figure 51 – Approximations of the x signal (Fig. 46) of the type PVj
x obtained with

different coefficients aj from j = J to j = L+ 1.

https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
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Figure 52 – Extract from Figure 51 to show that errors in low-frequency linear approxi-
mation occur at discontinuities, resulting in the Gibbs phenomenon.

How can we do better? As we recall from Section 5.1, we know that to obtain
a high-quality non-linear approximation, we need to be able to adapt to the under-
lying function/signal, for example, by keeping only the most significant decomposition
coefficients. For instance, we can take the DWT decomposition that gives the linear ap-
proximation like the one labeled "2−5" in Figure 51, corresponding to J = 5, and consider
only the most important coefficients from the list {aJ , dJ , dJ−1, . . . , dL+1} to have a total
of approximately 128 coefficients, which is about the same number as in the "2−3" linear
approximation (Fig. 52). The result is shown in Figure 53, demonstrating a significant
improvement in the approximation (note that by increasing to 150 coefficients, the small
Gibbs oscillations are no longer visible). It’s important to remember that we start with
1024 samples of the original function/signal. In terms of approximation quality with the
same number of coefficients, we have:

∥f − fapp. lin.∥2

∥f∥2 = 1.06 10−2 ∥f − fapp. n−lin.∥2

∥f∥2 = 6.95 10−4

NAsM30MAHLg&feature=em-comments) could not demonstrate this phenomenon, despite the lingering
legend. It was only in 1906 that the American mathematician Maxime Bôcher (1867-1918) provided a
clear explanation and gave it the name "Gibbs phenomenon", often also referred to as Wilbraham-Gibbs,
especially due to the eponymous constant. Subsequently, the definition of this type of low-frequency linear
approximation error was extended.

https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
https://www.youtube.com/watch?v=NAsM30MAHLg&feature=em-comments
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Figure 53 – In dark blue, the underlying function/signal, and in red, the non-linear
approximation obtained using the 128 most significant coefficients from the DWT de-
composition. This non-linear approximation is compared to the linear approximation in
Figure 52, which has approximately the same number of coefficients.

So, we were able to obtain a sparse representation of the signal x(u) and achieve a good
non-linear approximation that surpasses the linear approximation by more than a factor
of 10.

8.4 2D Wavelets

Image processing with wavelets can be done as effectively as in 1D, with one subtlety.
Two examples are shown in Figure 54. Why do we need 3 wavelets ψ? In 2D, the variable
u has two components (u1, u2). One might be tempted to use a separable product with the
1D basis {ψj,n}j,n: {ψj1,n1(u1)ψj2,n2(u2)}j1,n1,j2,n2 . The major drawback of this approach is
that it favors the two directions u1 and u2 with separate scales 2j1 and 2j2 , while we want
the decomposition to behave the same if the image is rotated. Therefore, we want wavelet
supports associated with scale 2j in both directions. In fact, we need to go back to the
original idea of multiresolutions: the image is first approximated on a regular 2D grid,
and gradually, we reduce the resolution by subsampling and examine how to incorporate
details to move back up the chain in the reverse direction.

We can separate the scales of the variables at a fixed j to obtain a low-frequency ap-
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Figure 54 – Examples of wavelet decompositions of two 512 × 512 images: first, the
image is decomposed into a small image constituting the low-frequency approximation of
size 256 × 256 and 3 "detail" sub-images at the same scale sensitive to vertical (top-right),
horizontal (bottom-left), and both directions (bottom-right) discontinuities. Then, the
low-frequency sub-image is further decomposed, similar to the original image, resulting
in 4 more sub-images of size 128 × 128, and so on. In the top-left corner, we have the
coarsest linear approximation sub-image of size 128 × 128 of the original image. Thus, we
have an image pyramid, whereas in 1D, we have a cascade of signals.
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proximation using {ϕj,n1(u1)ϕj,n2(u2)}j,n1,n2 , defining a basis for the approximation space
Vj on a 2D grid of scale 2j. Similar to 1D, we can calculate coarser and coarser approxima-
tions PVj+1x, PVj+2x, etc. And just like in 1D, the details will appear in the transformation
from PVj

x to PVj−1x. To achieve this, we need to decompose Vj−1 into a direct sum of Vj
and a complementary space Wj (Eq. 208). We can look at it from the Fourier frequency
perspective (Fig. 55) and realize the necessity of 3 types of wavelets to complete the fre-
quency space between the area covered by the approximation on Vj−1 (coarser and thus
covering a smaller region around the origin) and that on Vj.

Concretely, we define the 3 wavelets that cover the 3 Fourier regions as follows:

ψ1(u1, u2) = ψ(u1)ϕ(u2)
ψ2(u1, u2) = ϕ(u1)ψ(u2)
ψ3(u1, u2) = ψ(u1)ψ(u2)

(227)

As we need to do this at all scales, we dilate/contract and translate these three wavelets
as follows:

ψkj,n(u) = 1
2jψ

k

(
u− 2jn

2j

)
u = (u1, u2), n = (n1, n2) (228)

What we demonstrate is that the family
{
ψkj,n

}
n∈Z2

forms an orthonormal basis for Wj.
Similarly,

ϕ(u1, u2) = ϕ(u1)ϕ(u2) (229)

when dilated/contracted and translated also defines a family {ϕj,n}n∈Z2 which is an ortho-
normal basis for Vj. Through recursive complementation, we can obtain an orthonormal
basis for L2(R2) with the family

{
ψkj,n

}
j∈Z,n∈Z2

.

From an algorithmic perspective, the filtering-subsampling cascade is mostly preser-
ved, but we need to extend the detail coefficients which now cover 3 directions:

dj[n] = (⟨x, ψ1
j,n⟩, ⟨x, ψ2

j,n⟩, ⟨x, ψ3
j,n⟩) (230)

while the low-frequency coefficients (aj) are formally equal to

aj[n] = ⟨x, ϕj,n⟩ (231)
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Figure 55 – Division of the 2D Fourier plane when transitioning from an approximation
Vj (dark gray square) to a coarser approximation Vj−1 (light gray square): we need to
complement this latter area with 3 types of zones numbered 1 to 3, corresponding to
frequency pairs that respectively detect: horizontal edges or rapidly varying signals along
the vertical axis, hence high vertical frequencies; vertical edges or rapidly varying signals
along the horizontal axis, hence high horizontal frequencies; and finally, edges that exhibit
both types of variations.
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Figure 56 – Inset of an original 512 × 512 image, in the middle a linear approximation
that reduces the image size by a factor of 16, and on the right, a non-linear approximation
also with 1/16 of the initial coefficients, starting from a decomposition that reduces by a
factor of 32 and complements with detail coefficients.

with ϕj,n now acting in both directions (u1, u2).

As in 1D, we can obtain much more effective linear and non-linear approximations
of an image, as illustrated in Figure 56.

9. Lecture 10 Mar.

9.1 Summary of Concepts Developed in Previous Sessions

Throughout the various sessions, we have explored the RAP triangle, which deals
with the issues of Regularity that condition low-dimensional Approximations at the core
of data processing and their connection with Sparse Representations. We have shown
that there are equivalences between these three concepts, and we can view them from
two perspectives: linear versus non-linear. In the linear approach, we have reviewed that
the approximations obtained by projecting onto linear spaces are associated with forms
of regularity that are expressed, in particular, through the Fourier basis for translation-
invariant problems. In contrast, the non-linear approach leads to approximations that are
projections onto unions of linear spaces (MRA), where we select the most representative
coefficients in orthonormal wavelet bases, adapting to each case.
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As a reminder, in the linear case, the notion of regularity of the function f is in-
timately related to the decay of the Fourier coefficients |f̂(ω)|. This regularity is global,
meaning that even the slightest local discontinuity governs the decay of |f̂(ω)|, thus pri-
marily degrading the low-dimensional approximation and secondarily "masking" the fact
that the function may be very regular outside of this singular point. The question then
arises: can we do better, and how? The answer is yes; we need to be able to localize the in-
formation of these discontinuities/transients. Note that it is not trivial to do this because
these singularities/transients carry meaning (e.g., edge detection, note attack detection,
etc.).

We have also seen that these linear/non-linear approaches provide entry points to
understand single-layer neural networks with M neurons (Sec. 5.2). In particular, the
linear approach allows us to understand the Universal Approximation Theorem by analogy
with a Fourier series expansion and a change of basis that can be schematized by the
"cosine to ReLU" formula. And we also understand that this theorem is futile because it
is demonstrated that for regular functions, we have 55

f ∈ L2 ⇒ lim
M→∞

∥f − fM∥ = 0 (Universality) (232)

f ∈ Hα ⇒ ∥f − fM∥ = o(M−α/d) (Curse) (233)

In the non-linear framework, we have also seen A. Barron’s approach, which involves
adapting for each function f to obtain a sparse representation and taking only the most
significant coefficients to define the low-dimensional approximation. This approach seems
consistent to understand that, indeed, in the case of a neural network, it will be trained
to answer a specific question: recognizing a cat image among images of dogs, coffee cups,
etc., recognizing the sound of a piano among that of a violin, harp, etc. In particular, we
use the ℓp (p < 2) norm, preferably p = 1 for sparsity. If we ensure that we control the
Fourier coefficients of the function, then (Th. 10)

∑
n∈Zd

|⟨f(x), en(x)⟩|p ≤ ∞ ⇒ ∥f − fM∥ = o(M−2/p+1) (Independence of d) (234)

there is no longer a curse of dimensionality; the convergence is independent of the dimen-
sion d. However, again, this theorem is futile. Why? The reason is simple: the theorem

55. Hα is a Sobolev space associated with the factor α, i.e., the "order of derivation."
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tells us that everything goes well if the function is sparse in Fourier. However, images of
cats, dogs, etc., or musical frames or voice spectra are not sparse at all in Fourier, and
this approach does not explain at all the performance of deep neural networks.

Nevertheless, low-dimensional adaptive techniques are much more powerful than
Fourier analyses for detecting transients. Thus, we have reviewed the implementation
of multiresolutions and finding orthonormal wavelet bases (Sec. 7.1). We have revisited
the RAP triangle by considering the extension of the notion of regularity in the sense
of Sobolev. The key point is to capture localized singularities 56. As in the Fourier case,
we are led to calculate the correlations between the function and wavelets that are dila-
ted/contracted and translated with zero mean (ψu,s,

∫
ψ(u)du = 0); these are the wavelet

coefficients Wf (u, s). The intensity of these coefficients indicates in the (u, s) plane both
where (u0) and at what scale (s0) the function varies. We have seen that if we impose
that the wavelet ψ has zero moments, it ignores polynomial parts of the signal, and the
intensity of the coefficients Wf reflects deviations from this polynomial shape.

However, in order primarily to obtain low-dimensional approximations and secon-
darily to understand the link between regularity and the decay of coefficients Wf , we
have set up representations that allow signal reconstruction by sampling in the (u, s)
plane: s = 2j and u = n2j with (j, n) ∈ Z2. This leads to the orthonormal wavelet bases
{ψj,n(u) = 2−j/2ψ(2−ju− n)}(j,n)∈Z2 , which allow a generalization of Shannon’s sampling
theorem (Th. 16). In the Fourier plane, the ψ̂j(ω) = ψ̂(2jω) define more or less dilated
band-pass filters in which the spectrum f̂(ω) is analyzed. The key point for the recons-
truction of f to be possible is that the set of filters must cover the entire Fourier plane
(Littlewood-Paley condition), namely ∑j∈Z |ψ̂j(ω)|2 = 1.

Historically, we knew the Haar and Shannon wavelets (Sec. 7.1.2), which are indeed
orthonormal bases but are either discontinuous in real space for the former or an ideal
band-pass for the latter, resulting in slow decay in 1/u in real space. The possibility of
obtaining solutions with rapid and regular decay was long considered infeasible. However,
we have seen that we can construct such orthonormal bases. Firstly, with a wavelet ψ
that is both C∞ and rapidly decreasing, as done by Y. Meyer (Sec. 6.3.3), then with
wavelets constructed from nested sets Vj providing a linear approximation of the signal
PVj

f at a scale of 2j and whose orthonormal bases are derived by scale transformation (S.

56. note that we are still restricting ourselves to cases where the number of singularities is not large
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Mallat/Y. Meyer). From there, wavelets with compact support and possessing a certain
number of zero moments have been constructed (I. Daubechies, Sec. 8.1). In this context,
the wavelets ψj allow us to capture the details of the signal f at a scale of 2j. These
details complement the low-dimensional approximation PVj

f , which is the essence of the
decomposition:

PVj−1f = PVjf + PWjf (235)

We then demonstrate that there exists a scaling function ϕ that allows us to obtain an
orthonormal basis of Vj, namely {ϕj,n(u) = 2−j/2ϕ(2−ju− n)}n∈Z, and that there exists a
wavelet ψ that gives an orthonormal basis of Wj, namely {ψj,n(u) = 2−j/2ψ(2−ju−n)}n∈Z.
And finally, the union of all the bases {ψj,n}(j,n)∈Z2 forms an orthonormal basis for the
space L2(R). The two functions ϕ and ψ are related by a relation seen in the course
of theorem 18 (Sec. 7.4). The underlying key point is that the scaling function ϕ and
the wavelet ψ are determined by the properties of two 2π-periodic filters h(ω) and g(ω),
respectively:

ϕ̂(ω) = 1√
2

∞∏
p=1

ĥ(2−pω) ψ̂(ω) = 1√
2
ĝ(ω/2)ϕ̂(ω/2) (236)

and h(ω) and g(ω) are related to each other by

ĝ(ω) = e−iωĥ∗(ω + π) (237)

with ĥ satisfying

∀ω ∈ [0, π/2], ĥ(ω) ̸= 0 |ĥ(ω)|2 + |ĥ(ω + π)|2 = 2 (238)

Thus, the wavelet ψ is the result of a cascade of low-pass filters at different scales followed
by a band-pass filter. From the wavelet basis of L2, we can project any function f as
follows:

f =
∑

(j,n)∈Z2

⟨f, ψj,n⟩ψj,n (239)

and obtain the wavelet coefficients Wf (j, n) = ⟨f, ψj,n⟩. These wavelet coefficients are es-
sentially zero (sparse representation) except at the locations of the singularities/transitions
of the signal.
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Now, what has been important from a practical point of view (at least) is the
development of fast algorithms by S. Mallat for discrete wavelet transformations DWT
and its inverse IDWT, with a complexity of O(N), which is faster than the O(N logN)
complexity of the FFT (Sec. 8.2). These algorithms are based solely on the properties of
the Fourier coefficients, h[n] and g[n] (n ∈ Z), of the filters ĥ(ω) and ĝ(ω). We perform
a cascade of filtering and downsampling during a DWT (Fig. 47), and an inverse cascade
in IDWT (Fig. 49). However, the structure of these cascades is derived from the nested
structure of the sets Vj and their complements Wj. During the decomposition (DWT),
the coefficients obtained via the h filter are low-frequency components of the signal, while
the coefficients obtained via the g filter are high-frequency components.

This scheme has been extended (Y. Meyer) to 2D for image processing, but with a
subtlety (Sec. 8.4). To obtain an orthonormal basis of L2(R2) from the scaling function ϕ
and the wavelet ψ, we must now define 3 wavelets {ψk(u1, u2)}k≤3. These three wavelets
are obtained to cover regions of the Fourier space (Fig. 55) that are sensitive to transients:
either horizontal, vertical, or having both types of variations. In dimension D, we need
2D − 1 wavelets. To complete the decomposition, we need to define ϕ(u1, u2) as a simple
product of ϕ(u1)ϕ(u2). Thus, we can implement a fast pyramidal algorithm (Fig. 54),
where this time the high-frequency part has three components. As in 1D, most of the
wavelet coefficients are zero, and only those that indicate a transient in their selection
domain are significant.

Finally, we can relate the analysis of signal regularity to the behavior of wavelet
coefficients. If we consider local Lipschitz-α/Hölder regularity, that is, for example, at u0

|f(u) − f(u0)| ≤ C|u− u0|α (240)

depending on the value of α, we obtain different types of behaviors (Sec. 5.3.2). One way
to view Lipschitz-α regularity is to quantify the amplitude of the increment with respect
to u = u0, that is:

|f(u0(1 + s)) − f(u0)| ≤ C ′|s|α (241)

which results in a scaling of |s|α. Therefore, we relate the regularity property to the
behavior of the signal during a dilation/contraction, which makes it quite intuitive that
the wavelet transformation is well-suited to capture this type of regularity. Indeed, we
have formulated the theorem (S. Jaffard, Th. 12) that can be written in the context of
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dyadic grids as follows:

If f Lipschitz−α at u0 ⇒ |⟨f, ψj,n⟩| ≤ C2(α+1/2)j(1 + |n− 2−ju0|α) (242)

and, inversely, if for α′ < α we have

|⟨f, ψj,n⟩| ≤ C2(α+1/2)j(1 + |n− 2−ju0|α
′) (243)

then f is Lipschitz-α at u0. Thus, we understand that the most important coefficients are
localized at scale 2j in the cone where the supports of the wavelets ψj have a non-zero
overlap with the singularities of the signal. For example, we know that moving towards
high frequencies means making s tend to 0, and thus j tends to −∞, and the larger α is,
the faster the coefficients decay. We then understand the wavelet decompositions such as
the one shown in figure 46. By the way, if the function is bounded, which corresponds to
α = 0, the wavelet coefficients decay at least as 2j/2 (recall: going to high frequencies means
s → 0, which is equivalent to j → −∞). From these decompositions, we can conceive
approximations of the signal f . First, we can keep only the low-frequency approximations
(linear approximation), which correspond to projections onto the spaces Vj, i.e., PVj

f as
illustrated in figure 51. In this case, we fix the size of the grid onto which we project the
signal, which is similar to the strategy used when we want to compute a better basis,
for example in PCA analysis. However, we observed the same type of problems as in
Fourier, namely Gibbs oscillations at the locations of the singularities/transitions of the
signal, because we only use the low frequencies. To do better, we resorted to the sparse
description, which adapts (non-linear approximation) to the function f by requiring that
only the wavelet coefficients greater than a threshold T be kept:

fT =
∑

|⟨f,ψj,n⟩|>T
⟨f, ψj,n⟩ψj,n (244)

By doing so, we were able to verify that whether in 1D (Fig. 52) or in 2D (Fig. 56), we
can reconstruct the original function/image with its fine details by keeping only about
10% of the total wavelet coefficients."
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9.2 Quantitative Improvement in Nonlinear Approximation

Let’s consider the following theorem 57:

Theorem 19 (Linear Framework)
If x ∈ Cα[0, 1] (Lipschitz-α), and if we keep only M "low-frequency" coefficients,

then ∃C such that:
ε1D
ℓ = ∥x− xM∥2 ≤ CM−2α (245)

Proof 19.
Since we are in the linear framework, the approximation xM is obtained by projecting x
onto a linear space VL, namely PVL

x. We only need to adjust the size L to keep only M
coefficients. Now,

PVL
x =

∑
n≤M

⟨x, ϕL,n⟩ϕL,n (246)

with
ϕL,n(u) = 1√

2L
ϕ(2−Lu− n) (247)

As the support of x is [0, 1], then 58 n ∈ [0, 2−L]. So, M = 2−L.

Now, regarding the error, since we have the following decomposition of L2(R) (Sec. 7.4):

L2(R) = VL
L⊕

j=−∞
Wj

we can express the error of keeping only the projection onto VL as:

∥x− xM∥2 =
L∑

j=−∞

2−j∑
n=0

|⟨x, ψj,n⟩|2 (248)

57. Note: If in the previous section, the function notation was f(u) to match S. Mallat’s slides in the
session, here we revert to the notation x(u).

58. Note: L < 0 because 2L is the sampling rate on [0, 1], and we take 2L ≫ 1.
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Now, we know that the wavelet coefficients decrease as follows:

|⟨x, ψj,n⟩| ≤ C2j(α+1/2) (249)

So,

∥x− xM∥2 ≤ C2
L∑

j=−∞

2−j∑
n=0

2(2α+1)j = C ′(22αL) = C ′M−2α (250)

■

This is the same result we obtained in Fourier analysis (Th. 6) for smooth functions.
However, our interest lies in cases where the function is irregular.

It is interesting to study the 1D case because there is no cost in encoding singulari-
ties. Suppose the signal has Q singularities u1, . . . , uQ whose locations are unknown. The
question is: how many wavelet coefficients will be affected by these singularities? Let’s
assume that x is Cα on each interval ]uk, uk+1[. Inside these intervals, the wavelet will be
"transparent", and we can apply the previous theorem. The coefficients will be large only
around the discontinuities (i.e., in the "cone" discussed earlier). Now, if the wavelet has
finite support, we can convince ourselves that for each scale 2j, the number of translated
wavelets whose support contains a singularity is constant, denoted as K. Thus, the total
number of coefficients affected is: QK × Ns, where Ns is the number of scales s that we
retain. However, the latter is equal to |L′| if we cut the decomposition at a scale L′ with
high frequencies. So, the number of coefficients affected by the singularities is:

M1 = QK|L′|

What is the value of L′? If the signal is at least bounded on its support (including
singularities), which corresponds to α = 0, then the wavelet coefficients at scale 2j decrease
at least as 2j/2. But if we remove scales j ∈] − ∞, L′], we make an error that can be
quantified as follows:

L′∑
j=−∞

(QK)C22j = C2QK2L′+1 = C ′2L′ (251)

Now, we want this precision to be of the same order as in the linear case, i.e., C ′2L′ ≈
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M−2α. This implies |L′| ∼ 2α logM ≪ M . So, the total number of coefficients is equal to
those related to linear approximation and those related to the presence of singularities.
Thus, the total number is roughly:

Mtot ∼ M + C ′′ logM

Therefore, by increasing the number of coefficients very slightly, the error in the presence
of singularities is of the same order as the error without singularities.

In conclusion, we arrive at the following theorem:

Theorem 20 (Nonlinear Framework)
If x ∈ Cα on each interval ]tk, tk+1[ (k = 1, . . . , K), by keeping the M largest

wavelet coefficients, there exists C > 0 such that:

ε1D
nℓ = ∥x− xM∥2 ≤ CM−2α (252)

So, when approximating a function with singularities in a linear framework, what
governs the error decay is the smallest α in the interval [0, 1]. We practically end up with
α ≈ 0 (bounded function) due to the step-like singularities, which would result in a decay
of 1/M (unproven proposition). On the other hand, with a nonlinear approach, we are
not limited by this slow decay, and α can be larger. Thus, we understand why a nonlinear
approach in 1D gains significantly compared to a linear one.

However, the phenomenon changes completely in higher dimensions. If we revisit
Theorem 19 and calculate the number of coefficients, we need to place ourselves on a
grid. In 2D, we have M = 2−2L. Also, in 2D, we know that the normalization of wavelets
changes from 1/

√
2j to 1/2j to normalize the L2 norm. Thus, the condition on wavelet

coefficients is modified to:
|⟨x, ψj,n⟩| ≤ C2j(α+1) (253)

And if we look at the linear error, we must consider not 2−j coefficients n but 2−2j

coefficients (n1, n2), so:

ε2D
ℓ = ∥x− xM∥2 ≤ C2

L∑
j=−∞

2−2j22j(α+1) ≤ C ′22αL = C ′M−α (254)
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Generalizing to dimension q is straightforward, and we see that:

ε2D
ℓ ≤ C ′M−2α/q (no singularities) (255)

Now, if we consider a function that is only Cα piecewise, i.e., with singularities, there is
a change because even nonlinear approximation will be limited. Let’s take the example
of the square image (Fig. 54) and more precisely a horizontal edge of the white square.
We’ll trace the reasoning in 1D, identifying the differences. The number of wavelets that
will be sensitive to the edge is roughly:

Mj = ℓ/2j ×K (256)

where ℓ is the size of the edge, 2j is the number of translations along the edge of a wavelet
at this scale, and K is the number (constant) of wavelets involved in the vertical direction
(1D reasoning). Now, the function has a bounded step-like structure, so α = 0. This
imposes a constraint on the wavelet coefficients (Eq. 253):

|⟨x, ψj,n⟩| ≤ C2j (257)

Hence, the linear error in the presence of this edge is roughly:

ε2D
nℓ ≤

L′∑
j=−∞

MjC
222j = (ℓKC2)2L′ (258)

However, |L′| is still of the order logM , but M = 2−2L, so |L′| ∼ 2|L|. Thus, we obtain:

ε2D
nℓ ≤ C ′M−1 (with singularities) (259)

This implies that even if the image is C∞ (e.g., inside/outside the white square), the
nonlinear error is dominated by the discontinuities. As we increase the dimension q,
the surface of the discontinuities increases, and so we need to increase the number of
coefficients to achieve good approximation.
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9.3 Compression

Let’s now consider the perspective of the amount of information we need to retain
in order to reconstruct an image effectively. From a naive point of view, we might think
that we can encode each pixel of the image either with, for example, 8 bits (256 levels of
grayscale) or 1 bit (B & W). Transitioning from 8 bits to 1 bit obviously reduces the size
by a factor of 8, but it impacts the quality, and we lose a lot of information (Fig. 57).

Figure 57 – On the left, an image where each pixel value is encoded with 8 bits (1 byte),
and on the right, the same image with pixel values encoded using 1 bit.

However, we can do better. The idea is as follows: we work in the orthonormal
wavelet basis, and we compress the wavelet coefficients (function Q(x)) to a few bits:

x̃ =
∑
j,n

Q(⟨x, ψj,n⟩)ψj,n (260)

Now, if we look at the distribution of wavelet coefficient values (details only) in
Figure 58, we see that the distributions are indeed peaked at 0 (illustrating sparsity), but
the spread varies depending on the complexity of the textures. Therefore, it’s natural to
work in the wavelet basis that provides sparse representations with many zeros. Initially,
we only encode the non-zero coefficients. To do this, we use a fixed-step quantizer with
the following definition: if the value x takes values in [−a, a], and this interval is divided
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Figure 58 – On the left and in the middle, two images. On the right, in red, the norma-
lized histogram of wavelet coefficients (details only) for the boat image, and in blue for
the monkey image, which exhibits more textures.

into n = 2p+ 1 boxes, then:

Q∆(x) = k∆ ∆ = 2a
n

k = ⌊x/∆ + 1/2⌋ ∈ J−p, pK (261)

In other words, we assign the central value of the k-th box to x. Therefore, a coefficient
whose value lies in the interval [−∆/2,∆/2] is assigned a value of 0. This is particu-
larly interesting when considering the histogram of coefficient values (Fig. 58). Thus, we
construct a binary map b[j, n] such that:

b[j, n] =

0 if Q∆(⟨x, ψj,n⟩) = 0
1 otherwise

(262)

An example is shown in Figure 59. If we now assign a value to the non-zero coeffi-
cients using the simple quantizer above, we obtain reconstructed images for the parameters
shown in Figure 59. To appreciate the difference between the original image and two re-
constructions with different values of p, the first being the one in Figures 59 and 60, and
the other four times larger (with bins four times smaller), we show zoomed-in sections of
the reconstructed images and the original images in Figure 61.

The JPEG2000 standard employs a similar approach with refinements that would
be too lengthy to mention here (see S. Mallat’s book). However, the key message is that
with a compression factor of 40 (meaning we go from 8 bits/pixel to 0.2 bit/pixel), we
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Figure 59 – For the two images in Figure 58, we applied binarization (Eq. 262) with
the parameters a = 5 and p = 15 from the quantizer Eq. 261 (note that the distributions
of detail coefficients have fairly long tails). Coefficients resulting in a value of 0 appear as
white in the images. Wavelet decomposition is performed with "Db2".

can faithfully reconstruct the image. Of course, if we reduce the number of bits/pixel
too much, we start to lose details, as observed in Figure 60. Typically, an image can
be compressed by a factor of 50-100 without introducing significant artifacts. For higher
compression ratios, these techniques do not suffice.

That being said, how do these observations relate to nonlinear approximation? The
approximation error of the image x by the coding x̃ (Eq. 260) can be described in the
orthonormal wavelet basis. If we use the simple quantizer Q∆, it follows:

∥x− x̃∥2 =
∑
j,n

|⟨x, ψj,n⟩ −Q∆(⟨x, ψj,n⟩)|2

=
∑

|⟨x,ψj,n⟩)|≤∆/2
|⟨x, ψj,n⟩|2 +

∑
|⟨x,ψj,n⟩)|>∆/2

(
∆
2

)2

(263)

The first sum is the error when we keep only the M largest coefficients. Moreover, the
number of coefficients not set to 0 by quantization (the second part of the sum) is exactly
M due to the same argument. Therefore, the distortion D due to coding is bounded by:

εnℓ(M) ≤ D = ∥x− x̃∥2 ≤ εnℓ(M) + M∆2

4 (264)

Hence, this distortion D has two components: a nonlinear component due to the coeffi-



131

Figure 60 – Reconstructed images obtained from quantizing wavelet coefficients with
the parameters from Figure 59. The effect of quantization is visible.

cients not retained by the thresholding induced by the bin "0" width, and a component
due to the quantization of the coefficients retained by the nonlinear approximation.

If we assume that the wavelet coefficients are sparse (as suggested by the histograms
in Figure 58), which can be translated into a bounded ℓp norm (Sec. 5.1.2), for example:

∑
j,n

|⟨x, ψj,n⟩)|p ≤ Cp
p (265)

then the k-th wavelet coefficient (Th. 9) satisfies:

|⟨x, ψk⟩)| ≤ Cp
pk

−1/p (266)

The number M corresponds to the number of coefficients whose absolute value is greater
than ∆/2. Thus:

∆/2 = Cp
pM

−1/p (267)

and according to the same theorem:

εnℓ(M) ≤
C2p
p

2/p− 1M
1−2/p (268)

Therefore:
D = ∥x− x̃∥2 ≤

C2p
p

2 − p/2M
1−2/p (269)
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Figure 61 – Zoom: at the top, the original images; in the middle, images from Figure
60; and at the bottom, images reconstructed with quantization having four times more
bins.

Hence, the quantization error and the nonlinear error are of the same order, implying
that D = O(M1−2/p). This tells us that the coding error essentially depends on the
low-dimensional nonlinear approximation. This is because the number of coefficients set
to 0, contributing to the nonlinear error, is very large due to sparsity. The number of
bits required to encode the information has two components, both proportional to M ,
one arising from the localization of zero coefficients and the other from encoding the am-
plitudes of the non-zero coefficients. The crucial point to remember is that these coding
algorithms require a sparse representation.

Next year, we will delve into Information Theory to understand how neural networks
operate. In high dimensions, we have a valuable asset: the Central Limit Theorem, which
tells us that when summing independent variables, we converge towards the mean. This
phenomenon indicates that information is concentrated in certain parts of space, and the
number of bits required to encode it is defined by entropy.


