
HAL Id: hal-04550718
https://hal.science/hal-04550718

Submitted on 18 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Notes and Comments on S. Mallat’s Lectures at Collège
de France (2019)
Jean-Eric Campagne

To cite this version:
Jean-Eric Campagne. Notes and Comments on S. Mallat’s Lectures at Collège de France
(2019): Deep Neural Networks: how and why. Master. Learning through deep neural
networks., https://www.college-de-france.fr/fr/agenda/cours/apprentissage-par-reseaux-de-neurones-
profonds, France. 2019, pp.138. �hal-04550718�

https://hal.science/hal-04550718
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Notes and Comments on S. Mallat’s Lectures at
Collège de France (2019)

Deep Neural Networks: how and why.

J.E Campagne ∗

Apr. 2019; rév. 4 octobre 2023

∗If you have any comments or suggestions, please send them to jeaneric DOT campagne AT gmail
DOT com

2

Table des matières

1 Foreword 7

2 Introduction to the Conference Series 7

2.1 Mathematical Domains . 8

2.2 Data Analysis . 9

2.3 Supervised Learning . 10

2.3.1 The 2 Types of Problems: Classification/Regression 10

2.3.2 Learning Algorithm . 11

2.4 Unsupervised Learning . 12

2.5 Revisiting the Curse of Dimensionality . 13

2.6 Linear Classifiers . 14

2.7 Neural Networks (NN) . 16

2.8 Convolutional Neural Networks (CNN) or Deep Convolutional Networks
(DCN) . 18

2.9 Course Outline for 2019 . 21

2.9.1 Phase 1: Developing Intuition and Asking Questions 21

2.9.2 Phase 2: Single Hidden Layer Networks 22

2.9.3 Phase 3: Multi-Layer Networks . 22

2.9.4 Phase 4: Convolutional Networks (CNN) 22

3 Applications 23

3.1 Computer Vision . 23

3.1.1 Image Classification . 23

3

3.1.2 Video Classification . 28

3.1.3 Other Types of Problems: Image Segmentation 28

3.2 Speech Recognition . 30

3.2.1 Traditional Approach . 30

3.2.2 The (Very Recent) Revolution of CNNs 31

3.3 Natural Language Processing . 34

3.3.1 Pre-1990 View of the Problem . 34

3.3.2 Post-1990 View of the Problem . 37

3.3.3 Machine Translation . 39

3.3.4 Describing a Video . 39

3.4 Physics: N-Body Interactions . 40

3.5 Connection with Neurophysiology . 41

3.6 Reinforcement Learning . 42

3.7 Unsupervised Learning . 43

3.8 Generative Adversarial Networks (GAN) 44

3.9 Limits and Opportunities . 46

3.9.1 The Dark Face to Illuminate . 46

3.9.2 The Motivating Face . 47

4 Mathematical Perspective 47

4.1 Introduction . 47

4.2 Approximation Problem . 48

4.3 Estimation and Optimization Problem . 50

4.4 Other Questions . 53

4

4.5 Approximation/Regularity, What Type of Regularity? 54

4.6 Emergence of Symmetries and Local Groups 55

4.6.1 From Global to Local . 55

4.6.2 Impact on the Neural Network . 58

4.7 Scale Separation, Multi-Scale Hierarchy . 59

4.8 The Notion of Sparsity . 62

4.9 Summary from a Mathematical Perspective 65

5 Where Do the Ideas of Neural Networks Come From? 65

5.1 Cybernetics . 65

5.2 The Perceptron (1957) . 68

5.2.1 Introduction . 68

5.2.2 Gradient Descent Algorithm . 70

5.2.3 Regularization . 75

5.2.4 SVM: Support Vector Machine . 77

5.2.5 Assessment of the Perceptron . 78

6 Multi-layer Architecture: Part I 78

6.1 Introduction . 78

6.2 Expression of the Network’s Output . 79

6.2.1 The Case of Boolean Functions . 81

6.2.2 Using Function Regularity . 83

6.3 Universality Theorem of a 1-hidden layer network 85

6.3.1 Fourier Basis . 86

6.3.2 Approximation of Sinusoids by σ 90

5

7 Multi-Layer Architecture: Part II 92

7.1 Introduction . 92

7.2 Recall of the Universal Approximation Theorem 94

7.3 Convergence of the Approximation f̃ . 95

7.4 Definition(s) of Regularity . 95

7.4.1 Regularity in the Sense of Derivatives (Sobolev/Hilbert): Maiorov’s
Optimality Theorem . 95

7.4.2 Other Types of Regularity . 98

7.4.3 Increasing the Number of Layers: It’s Better! 104

8 Neural Network Optimization 104

8.1 Introduction . 104

8.2 Bayesian Approach and Maximum Likelihood Principle 105

8.2.1 Transforming the Problem via Bayes 105

8.2.2 Maximum Likelihood . 106

8.2.3 Kullback-Leibler Divergence . 108

8.2.4 Relation with Bayesian Models . 109

8.3 Implementation for a Neural Network (Classification) 111

8.3.1 Introduction . 111

8.3.2 Introduction of Softmax . 112

8.3.3 Optimization: Special Case of Classification by Logistic Regression . 113

8.3.4 For a Multi-Layer Perceptron (MLP) Neural Network 115

6

9 Optimization Algorithms for MLPs 116

9.1 Gradient Computation in MLPs (Back-propagation) 116

9.1.1 Forward & Backward Flow . 116

9.1.2 Initialization: Calculating ∇xJ
ℓ ? 118

9.1.3 Gradient Backpropagation . 120

9.1.4 The Jacobians of Fj . 121

9.1.5 Graphical Representation of the Algorithm 122

9.2 Convergence Study of GD . 123

9.2.1 Batch or Stochastic GD . 123

9.2.2 Example of the Quadratic Function: Convergence of GD 124

9.2.3 Mini-Batch Normalization . 129

10 Stochastic Gradient 130

10.1 Introduction . 130

10.2 Acceleration of GD and SGD with Variable Steps 131

10.3 Mathematical Framework: Strong Convexity and Regularity 132

10.3.1 Batch Method . 132

10.3.2 SGD Method . 135

10.4 Generalizations? . 137

10.5 Optimization Problems . 137

7

1. Foreword

Disclaimer: What follows are my informal notes in French, translated into rough
English, taken on the fly and reformatted with few personal comments ("NDJE" or dedica-
ted sections). It is clear that errors may have crept in, and I apologize in advance for them.
You can use the email address provided on the cover page to send me any corrections. I
wish you a pleasant read.

Please note that the Collège de France website has been redesigned. You can find
all the course videos, seminars, as well as course notes not only for this year but also for
previous years 1.

I would like to thank the entire Collège de France team for producing and editing
the videos, without which the preparation of these notes would have been less convenient.

Also, note that S. Mallat 2 provides open access to chapters of his book "A Wavelet
Tour of Signal Processing", 3rd edition, as well as other materials on his ENS website.

This year, 2019, is the second in the cycle of S. Mallat’s Data Science Chair.

2. Introduction to the Conference Series

During this year 2019, and in the subsequent years, we will focus on Why it works,
rather than solely concentrating on How it works. There are many tutorials that provide
access to the software for implementing Neural Networks (acronyms used in this course:
NN or MLP for Multi-Layer Perceptron) to solve practical cases. Therefore, providing
another one here would not add value. On the other hand, the Why is in the realm of
fundamental research that we want to promote. We will see that many questions will
remain unanswered.

1. https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/
events

2. https://www.di.ens.fr/~mallat/CoursCollege.html

https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.di.ens.fr/~mallat/CoursCollege.html

8

2.1 Mathematical Domains

Of course, there is an algorithmic aspect that we will study (details, origins, etc.),
but beyond that, understanding a Deep Neural Network (DNN) requires us to employ
tools that cover a very broad range of mathematics:

— Statistics: We will be collecting data, so we start with empirical measurements from
which we calculate estimators.

— Probability: To ensure that statistics yield precise results, we need to make assump-
tions about probability distributions.

— Algorithmics, including parameter optimization. In the early 2000s, we focused on
convex optimization because there were convergence theorems. However, DNNs are
full of local minima, so we are in non-convex situations where methods shouldn’t
theoretically work. Yet, It works! and quite well. New questions arise: why does it
work? and in what situations does it work?

— Other branches will come into play because we will discover that DNNs will perform
well only if they are well-structured. Since 2010, we have used Convolutional Neural
Networks (CNNs), and when we want to understand (and analyze) why they work
so well, we enter the field of harmonic analysis, which is related to the Fourier
Transform and also to multiscale analyses such as Wavelets, introduced in 2018.

— These networks (DNNs) are dynamic, for example, during learning, and so they can
be seen as dynamical systems. This is a new branch of mathematics that addresses
the dynamics and convergence of complex systems.

— Lastly, another mathematical domain that will be useful is geometry. Indeed, these
DNNs perform high-dimensional learning. It is necessary to understand the struc-
tures in these spaces, which means grasping the symmetries (representations of
groups) of these systems.

In the end, all these fields will interact, and we will be at the frontier of current
mathematical knowledge.

Another aspect, of course, underlying DNNs, is "artificial intelligence" (AI). Al-
though the course does not cover it, it is clear that DNNs raise questions about the
relationships/modeling of the interaction between our brain and its environment through

9

the senses (vision, hearing) but also communication (language). This is closely related
to the concept of intelligence. There is a long history of studying intelligence, and the
response of DNNs is at least surprising, if not counterintuitive.

Finally, another underlying aspect of the course is “complexity architecture”. This
is the title of an article from 1962 by Herbert A. Simon (1916-2001), "Nobel" laureate
in economics in 1978 and, more importantly, Turing laureate in 1975 for his work in AI,
making him one of the pioneers of AI in the USA. Why is this notion important?

The first course (in 2018) focused on the curse of dimensionality, in which we
realized that a function with a very large number of variables (think of the millions of
pixels in an image) that wants to answer a question must deal with an extremely large
combinatorial space. And a priori, the number of samples required to successfully perform
learning is an exponential function of the dimension, and thus seemingly hopeless. It is
important to keep this in mind to understand the complexity of the problem. However,
DNNs learn with a reasonable number of samples, for example, to recognize sounds,
images, or language. Why? The reason is that the underlying function is not arbitrary; it
has many regularities. But what kind of regularity is it?

In fact, if the world (problem) is very complex, there is strong structuring, and
DNNs are capable of apprehending this structuring, as long as they can approximate the
original function. So, by studying the architectures of DNNs, we learn about the nature
of the regularities of the functions they approximate. And we ask the question: while the
problem is very complex, why are the functions also simple (i.e., regular)? We will draw
a connection with physics and the concepts of DNN architectures.

2.2 Data Analysis

We are addressing concepts that are generic, meaning they apply equally well to the
analysis of audio signals (d ≈ 106 time samples), images (d ≈ 106 pixels), texts (d ≈ 106

words), agents in a social network (d ≈ 109 individuals), or even moles of something in
chemistry (d ≈ 1024 entities). Therefore, we have a vast amount of data to deal with, and
the question arises of how to find methods without specializing too much in any particular
field. Two significant questions come to mind:

10

— Data modeling: This means capturing their nature and variability, understanding
their structures. We can associate unsupervised learning methods (see the 2018
first course), and we will revisit them. In the potentially vast space in which data
evolve, the question is: what is the restricted subspace that is actually explored?
We will implement probabilistic models. The applications of modeling are diverse:
for example, if we want to do compression, we need to understand the structure,
develop models to determine the smallest number of bits possible that allows signal
restoration; if we want to restore images, such as in medical imaging, we also need
to define models; the same applies if we want to do image synthesis.

— Prediction: More related to AI, it involves using data to know the answer to a ques-
tion (generally speaking). For example, what is the type of animal in a given image?
In this type of problem, we also find medical diagnosis, text analysis (recognizing
the author, fields/categories of the text, etc.), translation, and more. All of this falls
under the domain of statistical learning, and it’s through the work in this field that
there has been something of a revolution in the last ten years.

2.3 Supervised Learning

2.3.1 The 2 Types of Problems: Classification/Regression

We are working in high dimension d, as previously mentioned, and we denote the
vector of a sample as x = (x(1), . . . , x(d)) ∈ Rd.

The first type of problem is Classification: Given x, what is f(x), the class to which
it belongs? Let’s say, for example, I have images of different trees, animals, flowers, etc.
The domain of classes is vast, and within each class, there is significant variability. In
supervised learning, we assume that we have a certain number of training images/samples,
meaning we have n labeled samples {xi, yi = f(xi)}i≤n. The immense variability within
a class is one way to visualize the curse of dimensionality. To cope with this, we need
to find what is common to all elements of a class (reveal their structure), which means
finding the invariants of a class, and among these invariants, those that differentiate the
different classes. Implicit in invariance is the notion of symmetry, and thus, the theory of
groups (cf. geometry) plays a role.

11

The second type of problem is Regression, which means we want to know the value of
f(x) as a function, for example, taking values in R (rather than as a discrete class index).
An example of such a problem is Physics. The question (a trivial one) is whether we
can learn Physics without knowing the underlying "laws" 3 but "simply from the data". In
quantum chemistry, x describes the position of each atom, and we would like to calculate
the quantum energy of the system f(x). In astrophysics, given the position, velocity, and
mass of objects (planets, stars, galaxies, etc.), can we know the energy of the system? We
know that if we knew f(x), then by differentiating it (taking the gradient), we would have
access to the "forces/interactions" of the problem and thus learn about Physics... But if
I add a molecule, a galaxy, would we be able to calculate its energy without knowing
the Schrödinger equation or the law of gravity? Yes, but! It requires learning with prior
information, and it is a subject of study to understand how this prior information is
captured by DNNs.

The case of Physics is interesting because we know many principles that constrain
f(x), which is not the case in classifying cats/dogs, for example, where we know nothing
a priori about what connects an image to a dog or a cat or another object. In Physics, we
can ask much more pertinent questions about Why it works, especially since the notion of
symmetries is fundamental. Note that Physics in the broad sense (including Chemistry)
was traditionally the discipline of high dimensionality, and statistical learning has also
become a discipline of high dimensionality. Therefore, it is not surprising that the former
can guide the path to understanding the latter.

2.3.2 Learning Algorithm

Let’s take the case of an image x: we ask the question "what animal is in this image?"
The answer y in this case is "dog". An algorithm in statistical learning is parameterized
(Figure 1), potentially with a large number of parameters, such as the weights of the
DNN. The learning phase allows us to optimize the algorithm so that the estimation on
the examples ỹi approximates the correct answer yi. The challenge, obviously, is genera-
lization. That is, if we give an x unknown to the training set, the algorithm’s response ỹ

should be close to the true value y. Ideally, it should even be equal to it. The underlying
question is: what functions will be favorable for learning? What is the regularity that

3. NDJE: or can we discover new relevant laws?

12

Figure 1 – Schematic view of an algorithm that takes input x and provides an estimate
ỹ.

these functions must satisfy so that, from a few samples, we can interpolate an answer
that is a good approximation of the solution? The parameterized algorithm above can
be seen as an interpolation algorithm.

Mathematical perspective: We approach this through regularity that reveals the
structuring of the problem. However, as we saw in the first course (2018), notions of
regularity through continuity/differentiability are not sufficient and do not work at all
in high dimension.

Computer Science perspective: All the algorithms used in DNNs are very elegant and
work well, but we don’t understand them well. Therefore, it is a fundamental research
topic.

2.4 Unsupervised Learning

We have data, and we want to understand the underlying structures: vortices in a
fluid, filaments in interstellar helium/hydrogen gases. These are modeling problems, and
we would like to know the probability density p(x) of each realization x and, for example,
differentiate between a turbulence field and another type of random field.

This type of problem (e.g., turbulence) is not new in Physics; see Kolmogorov’s
papers from the 1940s, and yet their resolution is still relevant. Note that Kolmogorov
introduced a scale invariance model related to the Navier-Stokes equation. However, this

13

model, even though it provides an approximation, is ultimately not suitable for the fine
description of turbulent phenomena.

The problem of synthesis/modeling becomes more obscure when we are dealing not
with "textures" like turbulent fields but with faces or objects, or even complete scenes
mixing everyday objects. Already the problem is much less well-posed than in the case
of turbulence fields because there are no underlying equations (Navier-Stokes or others).
Nevertheless, it is evident empirically that DNNs are capable of addressing this type of
problem (in Physics or elsewhere) without us really knowing why.

In unsupervised learning, we do not have labels, and it must be recognized that while
there is no cost associated with data acquisition (although it depends on the domain),
having labels is expensive in the industrial world. Therefore, it is natural to consider
clustering algorithms, and this is a theme that comes up from time to time. The question
then is: is it a fantasy to be able to do classification without labels? In some "simple"
cases, indeed, it will work. In fact, the number of degrees of freedom must be low (cf.
the dimensionality of the problem). It does not work in high dimensions (curse) because
the points are far apart, and a "sphere" covering almost the entire space is needed to
collect a similar sample (see the 2018 first course and the following section).

2.5 Revisiting the Curse of Dimensionality

This was the subject of the 2018 course, but we revisit it here because it is essential
to grasp the problem. In supervised learning, we have labeled samples {xi, yi = f(xi)}i≤n,
and we seek to approximate f(x). We can represent xi as a single point in d-dimensional
space and f(xi) as a color index, for example. Thus, we can study the distribution of these
points in space.

Now, let x be a new point: what is f(x)? The immediate idea is to interpolate the
value of f at point x. To do this, we need to collect the nearest neighbors of x that are
labeled. The problem is that generally in high dimensions, ||x − xi|| is very large! To
convince ourselves, consider the following example. We are in d dimensions in the space
[0, 1]d, and we want to ensure that for any x, we find a neighbor at a distance less than

14

1/10, meaning that the xi must satisfy:

∀x ∈ [0, 1]d, ∃xi ∈ [0, 1]d / ||x − xi|| ≤ 1/10 (1)

If the xi are uniformly distributed (i.e., we do not favor any particular x), then 10d points
are needed to cover the entire space. However, one must consider that d ≈ 106 in typical
high-dimensional cases, so the number of samples is astronomical. In practice, as soon as
d ≥ 20, we are in a high-dimensional regime.

So, it is quite rare that we can use nearest neighbor algorithms; in any case, it should
only be reserved for low dimensions. On the other hand, in high dimensions, if we want it
to work, we will either have to discover much more global forms of regularity or perform
dimensionality reduction, which can also be interpreted as the discovery of underlying
regularities that allow, for example, the identification of object classes (flowers, chairs,
lamps, faces, etc.). The bottom line is that having a priori labels is very important in
high dimensions, and yet it is the most costly.

2.6 Linear Classifiers

These concepts were covered in the 2018 course, and they date back to the 1990s.
The idea is to simplify the problem as much as possible by linearizing it. What we want
is to find a transformation (or change of variables) Φ such that we can linearize the
boundary (see Figure 2). To illustrate, let’s consider the case of a 2-class classification:

x = (v1, . . . , vd) Φ−→ Φ(x) = (v′
1, . . . , v′

d) (2)

If the technique of linearization is common in math/physics, here x is in a high-
dimensional space, and understanding the nature of this change of variables is more com-
plex. Once the transformation is done, the separation surface is a hyperplane with a
normal vector w (see Figure 3).

Learning in this case involves determining the vector w. The classifier has a simple

15

Figure 2 – Illustration of the use of a transformation x → Φ(x) to place oneself in a
space where the binary classification problem is separable by a hyperplane.

Figure 3 – Diagram of the normal projection to the separating hyperplane.

16

expression:

f̃(x) = sign {⟨w, Φ(x)⟩ + b} = sign
(∑

k

wkv′
k + b

)
(3)

A trivial example of this type of classifier is one that tells you whether there is a
firetruck or a car in an image. The diversity within these 2 classes can be very high (e.g.,
d is the number of pixels in the image), yet counting the number of red pixels is very
discriminative.

In less trivial cases, the v′
k are often called patterns or features, and although this

is not the only possible interpretation, the sum ∑
k wkv′

k can be seen as a vote among the
patterns.

So, this linearization procedure simplifies the problem greatly, but in what situation
can it be applied? Or in which case can we find the transformation Φ(x)? 4 Two scenarios
then arise:

— either we have prior knowledge (e.g., firetrucks are big and red), and in this case,
the transformation Φ(x) is known;

— or we have no prior knowledge (note that this is the majority of cases), and we will
need to "learn" Φ(x). Neural networks provide a strategy in this case where both
Φ(x) and w are determined simultaneously during the learning phase. However, we
will see that we do not start entirely without prior knowledge, but we will work with
all the variables available in dimension d 5.

2.7 Neural Networks (NN)

Computer neural networks date back to the 1950s and were modeled by analogy with
the brains of small animals. The single-layer model was presented in the 2018 course,
corresponding to the schema 6 shown in Figure 4. For the non-linear element, one can
think of a Rectifier (ReLU), which as we will see, is widely used in deep neural networks

4. Note in passing that finding w is not the problem because there are many algorithms in linear
algebra (see SVM, Logistic Regression, etc.) that deal with this topic.

5. NDJE: However, Kernel methods allow us to bypass the transformation itself since in this case, it
is "enough" to apply a similarity function K; but it remains that K is a prior choice.

6. Note that the sign of b has changed compared to the 2018 illustrations.

17

Figure 4 – Diagram of how a neuron operates with a part for linear aggregation and a
part for non-linear activation.

(DNN):  0 if ∑
k wkxk < b∑

k wkxk − b otherwise
(4)

The thresholding by the bias b allows for sparse activation 7.

It is worth noting that this single-layer model is of the same type as the linear
classifier with the boundary determined by a hyperplane characterized by the wk and
bias b. Now, we can chain layers of neurons together to form a network (NN or MLP
for Multi-Layer Perceptron) as shown in Figure 5 (2 hidden layers). We can see that the
function Φ(x) we were looking for previously is the result of learning the upstream part
of the neural network; the final operation is similar to that of a single neuron in Figure
4.

What does it mean to learn a neural network? It involves determining its parameters
(the weights between different layers) by minimizing the error between ỹi and the true
labeled value yi. For this purpose, cost functions are defined, and the goal is to find their
minimum. This is a challenging optimization problem because there are numerous local
minima that must be navigated to find the global minimum or at least approach it 8.

It is essential to understand that there is prior information, as mentioned in the
previous section, embedded in the architecture of the network. This information is not
discovered during training at the moment although the weights can, in a way, provide

7. Note: this effect is similar to what is found in Wavelet Analysis.
8. Note: Recent studies show that solutions found by Gradient Descent methods are not arbitrary and

that networks obtained in this way yield similar results.

18

Figure 5 – Simplified diagram of a multi-layer neural network where the representation
Φ is the result of all the sub-layers; it is used at the end of the network for tasks such as
classification.

an indication of the most active neurons and those with nearly zero activity. Does this
arsenal work in general? The answer is no! In other words, if you add lots of neurons
and lots of interconnected layers, and you try to optimize them blindly, it will not yield
any useful results at all. Therefore, only specific architectures (prior information) will
produce satisfactory results. Empirically, we have discovered relevant architectures for
certain problems, and underlying this is the idea that these architectures have effectively
captured (reduced) the complexity of the problem.

2.8 Convolutional Neural Networks (CNN) or Deep Convolutional Net-
works (DCN)

A significant breakthrough was made in the 1990s by Y. LeCun (AT&T Bell Lab.)
and J. Bengio (Univ. Montreal) in the way neural network architectures are designed 9.
They incorporated problem symmetries, such as translation invariance (note: local distor-
tions are also considered), by using convolutional filters that capture this prior knowledge,

9. NDJE: See http://yann.lecun.com/exdb/lenet/index.html for a history of the first convolutional
networks, which were used to automatically recognize handwritten digits on checks. Note that Y. LeCun,
J. Bengio, and G. Hinton received the 2019 Turing Award.

http://yann.lecun.com/exdb/lenet/index.html

19

Figure 6 – Schematic of a first convolutional layer with 5 different filters. For each filter,
e.g., filter F1, each neuron handles a small part of the original image, and all weights
associated with each neuron are identical across neurons.

significantly reducing the connections in the first layer(s) of the neural network. This, in
turn, simplifies weight optimization through learning.

Let’s gradually dive into the details. For the sake of illustration, consider an image
with n × n = d pixels. However, keep in mind that, as indicated in LeCun and Ben-
gio’s article, this procedure also applies to speech samples and time series data. First,
each neuron in the first layer (the green bubbles in Figure 6) is only connected to (or
responsible for) a subpart of the original image, typically a small 3 × 3 or 5 × 5 patch,
for example. Each neuron of this type, therefore, performs a local linear combination of
the pixel values to which it is connected (xi with i restricted to a region), and it is also
associated with a rectifier (or another non-linear function).

Now, imagine that in the image, we want to recognize a small object (e.g., a stick),
and we don’t know a priori where it is located in the image. Therefore, there is no reason to
favor the response "a stick" in one or the other of the two patches in Figure 6. Consequence:
the weights wk of the two neurons must be the same, reflecting translation invariance.
This leads to a considerable reduction in complexity: firstly, each neuron handles a small
number of inputs, and secondly, the weight matrix is the same for all neurons. If we now
have a family of filters, each specialized for a particular type of processing, the results
are manifested as separate outputs, denoted as F1, F2, . . . , F5 in Figure 6.

Next (Figure 7), the neurons in the next layer still focus on a small patch, but this
time, they consider the same area in different filtered images (see the small dashed tube).
Each neuron performs a linear combination of the results from the first layer in a small

20

Figure 7 – Schematic of the second convolutional layer: the results from each filter in
the first layer are combined in a new convolutional process.

Figure 8 – Overview of the convolutional network with an aggregation step at the end
to produce ỹ from the learned representation Φ(x) during the training process.

cube. By the same argument as before, we conclude that for another neuron that focuses
on another small cube, the weights are the same. This process eliminates spatial location
information in the original image. However, it constructs a small image in layer 2, and by
varying the weights (changing the filter), a series of small images that make up layer 2 is
obtained (note: each linear combination is associated with a rectifier).

We can continue by stacking filtering layers to build the network architecture
(CNN). In the end, we usually connect to a single neuron (more commonly, we have
a fully-connected "classical" network) that provides the estimate ỹ, and the last layer
actually gives the transformation (change of variables) Φ(x) (Figure 8). In the end, the
initial complexity of the problem has been significantly reduced because neurons are
specialized, and translation invariance has been implemented by minimizing the number
of weights at each layer. However, by stacking layers, we quickly end up with CNNs with
several hundred million parameters to optimize.

The number of parameters is much larger (in general) than the original dimensio-

21

nality d of the input space x. The network is then trained with typically thousands or
even millions of samples, and it shouldn’t work, theoretically. However, the big surprise
is that it does work: the results on "classic" benchmarks are quite remarkable and gene-
ric, meaning the same architecture can tackle a wide range of problems, such as image
classification, speech recognition, translation, and physics problems. We will analyze how
it works in our classes, as there is a certain algorithmic art with optimization methods
like stochastic gradient descent, but we will mainly focus on the why it works.

Let’s empirically see what happens. Neurons are capable of significantly reducing
the dimension of the problem. For example, if we start with a sample in a 106-dimensional
space (e.g., the number of pixels in an image), the last layer typically has around 100
variables. Moreover, when we analyze what happens in the layers, the boundaries between
classes flatten (linearize), and in the end, we have a hyperplane problem for classification.
But why does this flattening occur? The architecture, of course, plays a crucial role, and
this connection is what we will study through harmonic analysis and geometry (group
theory).

2.9 Course Outline for 2019

2.9.1 Phase 1: Developing Intuition and Asking Questions

We will start with the applications because, at this point, we are beyond the stage of
questioning whether all of this is just buzz or a passing trend. The results are impressive,
and there are significant industrial implications. Therefore, it’s essential to develop an
intuition for these complex objects by understanding how they work. Along the way, we
will raise the mathematical questions that arise.

S. Mallat mentions that he will explore a vast universe in which each expert from a
discipline can contribute to understanding the problem (using their own tools). Thus, we
will examine various perspectives that shed light on understanding deep neural networks.
We will go back to the origins of questions in Artificial Intelligence, including Cybernetics
(Wiener 1947, Herbert Simons 1960) and the early networks of Frank Rosenblatt (1957
Perceptron). The questions raised from this early period are fundamental.

22

2.9.2 Phase 2: Single Hidden Layer Networks

Next, we will delve into networks with two layers (i.e., one hidden layer) because
this is a case that we can understand reasonably well now. We are aware of the famous
universal approximation theorem by Cybenko (1988) 10. This theorem essentially states
that this type of network can approximate almost any function. However, we know that
this result can be deceptive, as if the convergence is guaranteed by the theorem but is
exponentially slow in practice, it doesn’t help us much.

So, we will need to study the theory of approximation because the problem is not
just about making the error tend to zero; it’s about making it tend to zero rapidly enough
to be effective with the number of labeled examples we typically have.

2.9.3 Phase 3: Multi-Layer Networks

Afterward, we will move on to multi-layer networks (MLP: multi-layer perceptrons
or DNN: deep neural networks). We will look at approximation performance, but we
will quickly hit the limits of mathematical tools. We will then shift to the algorithmic
perspective. We will explore optimization through stochastic gradient methods. The idea
is old (Robbins and Monro 1951), but there has been a lot of research in this area (see
the 2018 seminar on lazy versions). These algorithms are particularly effective for training
multi-layer networks through the backpropagation method (Rumelhart, Hinton, Geoffrey;
1986).

2.9.4 Phase 4: Convolutional Networks (CNN)

Next, we will study convolutional networks (CNN or ConvNets), introduced by Y.
LeCun in 1990. These networks have delivered spectacular results in human handwriting
recognition and other domains. We will dive into the realms of mathematics, algorithms,
and applications, taking our time to advance, identify underlying questions, and attempt
to answer them. This course is not for those in a hurry who want to program right away;

10. NDJE: In 2018, S. Mallat mentioned it at the end of his series of lectures, postponing its proof to
this year.

23

there are plenty of tutorials available online for using tools like Torch, Keras, TensorFlow,
etc.

NDJE: This fourth part was postponed to 2020.

3. Applications

An experiment conducted by Thorpe et al. in 1996 11 showed that for a human,
determining whether there is an animal in an image takes 150 ms, despite the diversity
and complexity of the images. This means that the response is efficient but relatively slow,
especially when passing through typically 10 neural layers. Furthermore, observations tend
to indicate that there are no feedback loops because that would make it even slower.

3.1 Computer Vision

3.1.1 Image Classification

The first significant application was in computer vision, which started in the 1970s.
Typically, for an image like the one in Figure 9, one would want to describe the scene,
such as recognizing a football game, identifying the position of the players, and locating
the position of the ball.

In the 1970s-1990s, the approach to answering these questions involved recognizing
patterns, understanding the specific nature of an object (e.g., the shape of a ball, the
features of a player) and then trying to extract this information from the image. The
process often began by extracting edges (which could be achieved using filters), as shown
in Figure 9 (right), processed using Mathematica EdgeDetect. Many papers from the
1970s-1980s described how to best detect edges. This reduced the number of relevant
points significantly, making it "easier".

However, when it came to recognizing objects (patterns) and understanding how
they are arranged relative to each other in the image, things became challenging, espe-
cially in complex cases. Defining metrics for comparing edges became a problem. Questions

11. Nature, Jun 6;381(6582):520-2.

24

Figure 9 – Illustration of the use of "classical" image structure analysis techniques: here,
edge detection.

arose, such as what defines a shape, how to describe it, and how do "objects" interact in
a broad sense? These issues were examined from the perspectives of symbolic represen-
tations and image grammar (e.g., the sky is usually blue and at the top of an image, feet
are at the bottom, the round head is near the top, etc.). In fact, this entire approach to
image recognition was heavily influenced by the grammar of natural language (cognitive
science, S. Mallat cites Noam Chomsky, the founder of generative linguistics). However,
while these methods worked in simple cases (e.g., recognizing a face with a few key points),
they were entirely inadequate when dealing with even slightly complex images.

There was a failure in this approach, and it was not easy to identify, especially given
that almost the entire research community in this field had been working within the same
methodological framework for about thirty years. It should be noted that the adoption of
Neural Networks to tackle these problems marked a radical and not immediately accepted
departure from the previous approach.

Neural Networks made a significant breakthrough in this field in 2012, after nearly
25 years of research. It resulted from the ImageNet competition, a database containing
1 million images and 2000 object classes established by researchers at Princeton. The
competition aimed to determine whether classification could be achieved by learning
from these images. At that time, the dominant algorithms for learning were kernel-based
(Kernel methods: Kernel PCA, Kernel SVM, etc.), meaning that features were established
empirically through image preprocessing and then provided to the algorithms. The field

25

Figure 10 – Architecture of AlexNet (2012), the first neural network to beat kernel
methods in the ImageNet data challenge.

saw significant progress between 2000-2010 with these techniques, which yielded good
results. However, the ImageNet problem remained very challenging.

Then, a Canadian team led by Geoffrey Hinton (Alex Krizhevsky and Ilya Sutsever)
reported their score with a network architecture presented in 2012 (submitted to NIPS
2012), the structure of which, called AlexNet, is shown in Figure 10.

AlexNet is a convolutional network with 5 layers, trained on 1.2 million images (224
x 224) containing 1000 classes. The first layer of filtering (48 different filters) consists of
neurons, each handling 11x11 patches. The second layer subsamples, and the process
continues with 128 filters and so on. In the end, there is a dense classifier ending in a
vector with 1000 variables that provides the classification result.

It took many trials to arrive at this architecture, but the remarkable result is that it
works! They achieved approximately 17% error 12, which was about a 30% improvement
over the competition (see Figure 11). AlexNet became a benchmark and is relatively easy
to reproduce with modern libraries. It should be noted that the best networks today have
150 layers and achieve less than 3% error, surpassing human performance (as discussed

12. NDJE: S. Mallat mentions a figure of 15.3%, which applies to a variant of the presented architecture.

26

Figure 11 – Evolution of error rates on ImageNet for different algorithms: AlexNet in
2012 marks the beginning of the era of Neural Networks.

below). Why does the network size need to increase? It’s not necessarily to capture more
information but rather due to optimization issues, which we will come back to.

Why does it work? Even though the images are complex! It is believed to work so
well because the network has been able to capture (learn) underlying structures, inva-
riants. What are these invariants? What is the nature of the knowledge extracted by
the DNN? These questions are important because if we don’t understand how this type
of network functions, we use it as a black box without being sure whether the answer is
correct or not. Furthermore, in some cases, we must be able to explain the result, for
example, when selecting job candidates, disputes may arise; in medical diagnostics, we
may need to guide toward the right treatment or not. . .

Error Evolution: Figure 11 shows the Top 5 errors (i.e., comparing the true label to
the top 5 labels with the highest probability) over the years since 2011. Before AlexNet,
the best results, around 26%, were achieved with k-NN (k-nearest neighbor) or NCM
(nearest class mean classifier) algorithms with very well-structured local descriptors. Then,
AlexNet marked the start of neural networks with refinements in architecture and learning
algorithms 13.

13. NDJE: And the accompanying hardware. . .

27

Figure 12 – Illustration of adversarial examples: here, AlexNet fails to recognize the
"noisy" images on the right, classified as "ostrich," whereas without noise, it classifies them
correctly. The noise is highly specialized, and its structure is revealed (middle images)
when magnified by a factor of 10. In L2 norm, this noise represents only 1% of the signal.

It can be observed that recent results show performance "superior" to that of a
human. However, this statement should be taken with caution, as the nature of errors
is different. It’s clear that a human seeing an image of an animal or an exotic flower for
the first time may not recognize it, but when shown the same animal or flower in another
image, humans have a much superior learning ability compared to neural networks, which
require "many" examples to learn. On the other hand, in some cases, the errors made by
neural networks are surprising, so the nature of their errors is at least different from
that of a human.

Now, understanding why a complex system makes errors is essential, not only
intellectually but also because it is connected to its stability/instability in engineering.
This problem can be seen with neural networks through what are called adversarial
examples. In Figure 12, the left column consists of correctly labeled ImageNet images (x),
the middle column shows error images to which ϵ is added to "fool" the neural network (in
this case, AlexNet) with ||ϵ|| < 10−2||x|| (the defects are imperceptible to the naked eye,

28

and they need to be magnified by a factor of 10 to "see" anything in the middle column).
The images in the right column, created by x+ ϵ, are all identified as a species of ostrich!
There is clearly an instability that we absolutely want to avoid, and therefore, we must
understand it to find a solution. In fact, the nature of these instabilities is understood.
In the example above, the noise was chosen specifically to cause the network to fail. A
first reaction might be to think that encountering noise that reproduces these particular
defects has an extremely low probability, so we can forget about it. However, imagine that
instead of classifying images, this type of neural network is in control of a commercial
airliner: do we have the right to allow such catastrophic defects to occur? The answer
is clear.

However, avoiding these defects actually harms the network’s performance. There
is a trade-off between performance and stability. Therefore, the idea is to ensure that
the probability of encountering these "catastrophic" defects is extremely low. Note that
these "pathological cases" are counterintuitive because they contradict the very good
generalization ability of these neural networks once trained.

3.1.2 Video Classification

In the online video, an example of which is shown in Figure 13, you can appreciate
the results of a Convolutional Neural Network (CNN) classifier operating in real-time to
recognize the type of sport being played. In fact, the classification is performed frame by
frame. The images are complex, and the number of classes is high, yet it works remarkably
well, achieving up to 80% for the Top 5 classes.

3.1.3 Other Types of Problems: Image Segmentation

Finding the contour of an unknown object in an image, for example, a Dalmatian in
a black and white speckled image (Figure 14). We can see that to solve such images, one
needs to have prior knowledge of what a dog is or a specific organ in the case of a medical
image. This low-level problem, known as segmentation, is at the interface with structural
recognition problems. This type of problem is crucial in fields such as medical image
interpretation and, of course, autonomous driving. It works well with neural networks, as
shown in the example in Figure 15.

29

Figure 13 – Screenshot from a video (https://www.youtube.com/watch?v=qrzQ_
AB1DZk) showing the results of a CNN with the top 3 sports categories and their scores
in the upper left corner. Excerpt from the publication https://cs.stanford.edu/people/
karpathy/deepvideo/: classification using a new dataset of 1 million YouTube videos be-
longing to 487 classes.

The network recognizes both structures and contours: low-level information (the
contour) interacts within the network with high-level information (the type of structure).
This problem has been a research topic since the 1960s (cf. Roberts cross operator), where
the question was whether to take on the problem: for example, should one recognize
"transitions" to define a contour that, through its shape, gives the structure of the object?
Or should one start with a type of object that one is trying to recognize to determine its
contour? In fact, CNNs allow feedback loops that mix both perspectives.

These segmentation algorithms are implemented in chips that allow real-time usage
for autonomous vehicles. Videos on this subject can be found. While CNNs take a long
time to train, once this step is completed, the response to a new stimulus is very fast.

However, in the case of autonomous vehicles, there are rare cases of crashes, such as
"a child chasing after a ball running onto the road". Manufacturers must take them into
account. Typically, these are cases that were not part of the training videos. A strategy
must be found: "the problem must be structured". Not only by structuring the training
database but also the architecture of the network (e.g., dividing it into specialized parts).

So, it is not enough to provide any CNN with data and hope that it converges in

https://www.youtube.com/watch?v=qrzQ_AB1DZk
https://www.youtube.com/watch?v=qrzQ_AB1DZk
https://cs.stanford.edu/people/karpathy/deepvideo/
https://cs.stanford.edu/people/karpathy/deepvideo/

30

Figure 14 – The type of image that poses a problem: should one start from "contours"
to guess what’s in the image, or start from "a priori shapes" and look for them in the
image?

three days.

3.2 Speech Recognition

3.2.1 Traditional Approach

This is a field that dates back to the early 1960s, and the techniques used have
evolved relatively little until the 2010s. Typically, the process began by taking the spec-
trogram of the temporal signal, as shown in Figure 16. In the top spectrogram, you can
observe phonemes (from the word "encyclopedias" pronounced in English) with "funda-
mental + harmonic" structures, and others that are not "voiced," like "cy". So, locally in
time, the recognition of a phoneme (or its elementary component) is attempted, repre-
sented by a state in a Markov chain (blue blobs in the figure 16). To learn these states,
Gaussian Mixture Models (GMM) are used. Then, this Markov chain is optimized, ta-
king into account the timing of phoneme occurrences. There are more probable phoneme
successions in the lexicon of the speaker’s language. Therefore, transition probabilities

31

Figure 15 – Example of segmentation with a CNN.

(curved arrows) between a sound at t = i and the next sound at t = i + 1 are optimized.

The technique used is a dynamic programming algorithm (Viterbi). In essence, this
algorithm dates back to 1967 and is used to correct errors in a noisy channel. If n is the size
of the noisy message and a is the number of possibilities per letter, then the possibilities
tree grows as an. A. Viterbi found a way to simplify the tree as it is constructed. This
method was the framework within which people worked for about fifty years, and the
field had become more of an industrial problem rather than academic research.

It’s worth noting that the two spectrograms in Figure 16 are, in fact, the same word
("encyclopedias") pronounced by a female speaker (top) and a male speaker (bottom).
Thus, you can see the challenge of speech recognition as the diversity of voices is vast and
leads to very different spectrograms.

3.2.2 The (Very Recent) Revolution of CNNs

Around 2013-14, the methodology changed. It was realized that the initial steps
(Gaussian Mixture Models, Markov chain) could be replaced by Recurrent Neural Net-
works (RNNs), and gradually, all the steps were introduced into RNN architectures. Mo-

32

Figure 16 – Examples of two spectrograms from two English speakers (a woman for the
top one and a man for the bottom one) recorded during the pronunciation of the word
"encyclopedias". A Markov chain analysis relates phonemes to the state of the chain.

bile applications are equipped with these types of RNNs embedded in chips. The structure
is similar to that for image analysis, i.e., cascades of convolutions and subsampling. The
difference is that the filters no longer operate in the image space but in the space of
temporal series, where the concept of causality is also an important ingredient.

The evolution has been rapid, and it continues. One of the classic problems, for
example, is source separation. These developments are important, especially when consi-
dering hearing aids for the hearing impaired. If the device simply increases the sound
power, it not only increases overall noise but also fails to better capture what the speaker
is saying.

A "normally constituted" human, with two ears and focusing attention on the spea-
ker, naturally performs component separation and selective amplification. In the case
shown in Figure 17, the problem is initially a bit more complex because there is only one
microphone, and there is a mixture of two speakers. In fact, the methods developed before
2018 worked more or less with sophisticated techniques of sparsity and separation, such
as Non-negative matrix factorization, but they had their limitations.

The issue is that the spectrogram of the recorded sound is a mixture, as seen in
Figure 17, where there are two speakers (red & blue). Ideally, each point in the time-
frequency plane (coded here with 256 channels) is associated with either the "blue" speaker
or the "red" speaker, as in a classification problem. However, we do not know the number

33

Figure 17 – Illustration of how one can proceed to separate the sound mixture of two
speakers.

of speakers or the typical spectrograms of each. If, on the other hand, we can separate
the speakers and have some phase information, we can reconstruct each speaker’s voice,
as shown in Figure 17.

However, the paper by Yi Luo and Nima Mesgarani from September 2018 (arXiv:1809.07454v2)
describes the architecture of a CNN (Figure 18). The authors were able to show that the
convolutional neural network significantly outperforms methods for separating spectro-
gram mixtures of each speaker in the Time-Frequency domain 14. In this network, in fact,
the "masks" of the speakers are learned at the same time as the sounds they pronounce.
This follows the same pattern as deep neural networks: learning the representation simul-
taneously with classification. Note that S. Mallat did not think that we would reach this
level of listening quality.

Well, we understand the algorithmics, but understanding the structures that have
been captured is still not fully understood. We have some ideas based on previous methods
that tried to take into account timbre, the frequency rigidities inherent to a particular
speaker, but by using these specificities, no one has come close to what CNNs achieve.

It’s worth mentioning that the authors also tried to completely do away with spec-
trograms, meaning they used raw recordings. They found that the initial layers of the

14. The authors had developed an LSTM network, but the one in Figure 18 is even better

34

Figure 18 – CNN architecture from arXiv:1809.07454v2 for solving the problem of sepa-
rating the voices of multiple speakers speaking simultaneously. Here is the paper’s legend:
(A): the block diagram of the TasNet system. An encoder maps a segment of the mixture
waveform to a high-dimensional representation, and a separation module calculates a mul-
tiplicative function (i.e., a mask) for each of the target sources. A decoder reconstructs
the source waveforms from the masked features. (B): A flowchart of the proposed system.
A 1-D convolutional autoencoder models the waveforms, and a dilated convolutional se-
paration module estimates the masks based on the nonnegative encoder output. (C): An
example of causal dilated convolution with three kernels of size 2.

network reproduced the equivalent of a spectrogram. But beyond these initial layers, it is
very difficult to understand what the CNN is doing or learning.

3.3 Natural Language Processing

3.3.1 Pre-1990 View of the Problem

This is a field that covers a wide range of areas: translation, text analysis, conversa-
tion between people, question answering, descriptive comments, and more—all related to
linguistics. Before we take a mathematical/algorithmic perspective on the subject, let’s

35

take a completely different look that sheds light on the notions that ultimately concern
how language has emerged and how it is structured. This approach will equip us with
insights into algorithms armed with this knowledge.

The first grammars date back to the 16th century, and it’s worth noting that the
Port-Royal Grammar 15 published in 1660 is inspired by René Descartes’ Rules for the
Direction of the Mind.

Linguistics itself emerged in the 20th century with Ferdinand de Saussure (1857-
1913), a precursor to structuralism in linguistics, and the development of the science of
communication sign systems (semiotics) invented by Charles Sanders Peirce around the
same time (1839-1914). Structuralism (e.g., Claude Lévi-Strauss in anthropology, Roland
Barthes in literature, Jacques Lacan in psychoanalysis, Michel Foucault and Louis Al-
thusser in philosophy, and more) distinguishes between the signifier (what supports the
sign, e.g., sound) and the signified (e.g., the idea, the underlying concept) and attempts to
analyze these signs as a system and seeks to highlight structures 16. So, we have a succes-
sion (hierarchical) of structures: sounds, phonemes, morphemes, morphology, syntax, and
more. For example in French, "chanteurs" can be broken down into "chant" (the action),
"eur" (the one who does it), and "s" carrying the plural meaning; "chant" belongs more to
the lexical field, while "s" belongs to the grammatical field. All these concepts emerged
and were guided by empiricism by segmenting and structuring discourses. This structura-
list approach dominated linguistics until the 1960s, but it influenced other disciplinary
fields such as image processing (segmentation into elementary structures, contours, and
relationships between patterns, and more). Subsequently, post-structuralism in the 1960s
and 1970s (e.g., Jacques Derrida, Michel Foucault, Gilles Deleuze, etc.) generalized these
concepts and dissected social phenomena through the structure of the context from which
they emerged (e.g., the structure of language).

In 1957, Chomsky’s formal grammars emerged (Noam Chomsky (1928-), the foun-
der of generative linguistics, "Syntactic Structures"), which means that a more rationa-
listic view replaced the previous empirical view. The concepts put forward by Chomsky
have a profound connection with programming, compilers, computability theory (mathe-
matical logic), and natural language processing. Chomsky’s hypothesis is that a part of

15. its full title: Grammaire générale et raisonnée contenant les fondements de l’art de parler, expliqués
d’une manière claire et naturelle

16. In doing so, it even eliminates speakers/authors, but that’s another debate.

36

the structures of human language, its grammar and syntax, is related to the biological
transmission of genetic code. From a syntactic (or grammatical) point of view, one can
distinguish between correct and incorrect sentences. These grammatical structures are
at the core, according to Chomsky, of a human’s ability to structure all language. So,
the question arises: what are the structures of grammars in general, and to what type
do natural language grammars correspond? According to Chomsky, there are universal
structures (independent of culture), and he proposed classifications of grammars known
as the Chomsky Hierarchy. These formal developments resonated with the emergence of
computer science.

Figure 19 – Analysis through a syntax tree of the sentence: "l’oiseau pose ses pattes sur
une branche” ("The bird puts its paws on a branch").

In 1965, the book titled Aspects of the Theory of Syntax by N. Chomsky introduced
the concept of universal deep structures and peripheral structures. It presents language ac-
quisition as innate development. An important concept is recursion, which allows sentence
generation through the generation of syntax trees that exhibit a hierarchy. However, this
is too rigid because, if we consider the syntax tree that analyzes the sentence "l’oiseau
pose ses pattes sur une branche" ("The bird puts its paws on a branch") as shown in
Figure 19, the words "pattes" and "sur" ("paws" and "on") that follow each other are "very
far apart" in the tree. Therefore, this method has difficulty capturing horizontal compo-
nents of interactions. Nevertheless, this theoretical foundation was central to the study
of natural language: translation, interactions between speakers.

In the 1970s-1990s, formal semantics developed with tools like mathematical logic
and formal theoretical language (λ-calculus being the first language defined and forma-

37

lized for recursive functions). Richard Montague (1930-71) demonstrated in 1970 that
natural language could be treated as a formal language (initially English, with gene-
ralization following). Knowledge can be captured by a set of symbols that will structure
themselves into propositions. In computer science, expert systems and the Prolog lan-
guage emerged. In 1985, Artificial Intelligence courses were based on these concepts and
tools. When immersed in the field, it was very difficult to think that it could be something
else. Indeed, if you are interested in what intelligence is, you quickly think of language,
which involves linguistic structures, and you wonder how these structures are arranged.
So, "it’s obvious that it must be like this"! 17 In the background of the developments of
that time, the Turing Machine defined the framework that "simulated" the human mind.
And, once the framework was defined, it needed to be filled.

3.3.2 Post-1990 View of the Problem

Now, let’s take a completely different perspective that emerged around 1990 with
Statistical Machine Learning and later with Neural Networks (NN). However, we must
keep in mind the old notions because, as we will see, they do not entirely collapse.

The reason for this paradigm shift was the encounter with the wall of complexity.
That is, as long as we are dealing with small problems, such as very simple sentences like
"John loves Mary" or "John is going to the party with Mary," the old method works. But
when multiple "actors" interact, there is an explosion of complexity that small, highly
specialized linguistic corpora-based systems cannot handle.

A brief philosophical detour may help illustrate this point. We can consider two
philosophical poles: Empiricism and Rationalism 18. Empiricism, a more Anglo-Saxon
notion proposed by Francis Bacon (1561-1626), John Locke (1632-1704), and David Hume
(1711-1776), holds that knowledge is based on the accumulation of observations and
measurable facts, from which one can extract general laws through inductive reasoning,
moving from the concrete to the abstract. It opposes rationalism (and innatism), which

17. NDJE: This is precisely what, in the history of science, is called a Kuhnian paradigm, named after
Thomas Kuhn, a contemporary of Karl Popper, who described the conditions for scientific revolutions
between "normal" phases where a "paradigm" prevails.

18. NDJE: This is a section I rewrote in consultation with philosophers. Of course, this is just a
summary.

38

posits discursive reason as the only possible source of all real knowledge. Rationalism,
as advocated by René Descartes (1556-1650), Gottfried Wilhelm Leibniz (1646-1716),
and others, posits the existence of universal logical principles (principle of the excluded
middle, principle of sufficient reason) and a priori ideas, i.e., independent of experience
and preceding all experience.

While empiricism traces its roots to Aristotle’s "tabula rasa" (the image of wax
receiving impressions), it had significant extensions: analytical philosophy, logical empiri-
cism of the Vienna Circle, and linguistics. Rationalism draws from Plato, who exercises
mathematics to detach us from the senses, and from Aristotle, who relies on concrete
observation of nature (physis) to establish the foundations of formal logic (Organon),
metaphysics, and ethics through reason. All these approaches to knowledge can be found,
among other places, in Physics and Mathematics. Emmanuel Kant (1724-1804) criticized
Hume’s empiricism because for Kant, it is the subject that provides its rules to the
object for knowing it (there is a form of a priori). He sets the limits of human unders-
tanding, which only has access to phenomena (via experience), and filters them through
reason using an a priori. This is the Kantian synthesis.

Empiricism challenges causality: we only have access to successive events, and the
causal relationship is only a relationship of temporal succession, with no guarantee that
the same thing can happen again 19. Knowledge is not obtained through logical inference
but rather through association.

These two perspectives are at the heart of two completely different natures of ma-
thematics. The formal semantics before 1990 is more of a rationalist type (e.g., logic),
while the ML/NN approach is more based on notions of analogy (geometry, distance).
Whether we like it or not, we are subject to cultural biases, and while in France, we might
say "tomorrow the weather will be nice or it will snow", in the USA, people might say
"there is a 30% chance of it being nice or snowing," which is much more probabilistic. We
will see how this manifests in the field we are interested in in this course.

19. NDJE: At the extreme, science is impossible

39

3.3.3 Machine Translation

In the 1990s, there was a shift towards a statistical approach with Markov chains
related to speech analysis. However, gradually, there was a divide in the world of linguis-
tics. On one side, there were people working on theory (structuralists, formal grammars),
and on the other side, there were people working on experience and statistics, uncovering
correlations that they used for sentence generation. The latter group was not well-received
by the former. . .

Neural Networks belong to the second category. In 2010, they achieved striking
results, and they form the basis of all current software for online translation (Google
Translate, DeepL, etc.). There are cases where this kind of translator makes mistakes, but
syntax and semantics are respected. However, a vast amount of data is still required for
training. Interestingly, this architecture has been extended to rare languages! In practice,
the most internal layers of the network are retained, learned from French and English,
for example, and only the final layers are retrained with the target language. So, it’s as
if the internal layers of the network capture universal structures (similar to Chomsky’s
generic structures) independent of language.

In the end, we see the aforementioned divide disappearing. Because these networks
empirically (statistically) managed to capture language structures (conceptual). Were
these structures learned from training data, or were they already present from the begin-
ning, i.e., in the architecture of the network, which is a kind of a priori? In a way, "the
innate element" is the network architecture (rationalism, innatism), and "the learned
element" is the weights (empiricism, learning through experience).

In this empiricism/rationalism debate, the problem is therefore to understand to
what extent the network architecture is fundamental (rationalism) or not, because then
it would be learning that does the job (empiricism).

3.3.4 Describing a Video

Beyond applications focused solely on language, we are beginning to see multimodal
applications: video and textual description, but more generally, sound-image/video-text-
language. For example, consider the video https://vimeo.com/146492001, which provides

https://vimeo.com/146492001

40

an illustration of NeuralTalk2 from the Google Brain Team in 2016 (a network consisting
of a CNN: convolutional NN followed by an RNN: recurrent NN).

3.4 Physics: N-Body Interactions

Let’s recall that until very recently, Physics was the "only" science with a very
high dimensionality and numerous interactions between particles, think, for example, of
Astrophysics, Fluid Dynamics, and Quantum Chemistry. Over the centuries, we have been
able to build a solid corpus of equations that govern these phenomena: Newton/Einstein,
Boltzmann, Maxwell, Navier-Stokes, Schrödinger/Dirac, and so on. One could associate
this discovery approach of particle interactions with a "rationalist" perspective.

One might think that, knowing these fundamental laws of dynamics, electromagne-
tism, and other forces between elementary particles, it would be enough to understand all
of Physics because "all we have to do is work through the formalism". However, it is clear
that the problem is extremely complex due to its dimensionality. Fundamentally, all the
fields mentioned (Astrophysics, Fluid Mechanics, Quantum Chemistry) involve N-body
problems. Simulations can help in some cases, but most of the time, many approximations
are necessary!

However, "empirically", we see the emergence of structures: galaxies, two-dimensional
turbulence, and molecules. So, instead of starting from the "simple" + equations to build
complexity, can we not start from observations to capture complex structures? This can
be formulated with the following question: can we predict a solution through regression
based on a database of solutions and some a priori information about the system under
study?

In fact, the answer is yes! And again, with neural networks, this is being done
better and better. And every time (even for language), we see that the same type of
network works, namely, convolutional networks. For example, in quantum mechanics,
anti-symmetric wave functions of fermions seem to be captured by this type of network.

The applications are crucial because conducting, for example, rapid simulations on
complex systems is at the heart of many industries: for example, the pharmaceutical
industry for the manufacture of new molecules (e.g., calculating stability); materials phy-
sics; modeling dynamic flow around the profile of a car/plane. All these fields have been

41

booming for the past three years. Note that these applications do not require predictions
to be accurate to 10−12, but they at least want to obtain the behaviors of these solutions.

3.5 Connection with Neurophysiology

Historically, around 1950, computational neurons emerged from biological models.
Of course, the neurons in the brain are much more complex than formal neurons. Fur-
thermore, in the brain, we now know that glial cells are at least as important as neurons.
That said, in the functioning human brain, we see "specialized" areas (large-scale struc-
turing), and we have identified neural plasticity (Marian Diamond, 1964), which explains
the "reconfiguration" (through learning) of neurons that then take on the functions of
deficient neurons.

What are the (mathematical) operations supported by these specialized areas? Note
that if there is a connection between all these areas, we can think of the "elementary
building blocks" of the brain. So, if CNNs work for "artificial" vision, it may be natural
that they also work for "artificial" hearing because these two functions in the brain are
supported by different areas, but fundamentally, these areas are composed of neurons (and
other cells). And we can generalize this to language, memory, and so on.

In the last five years, there has been a lot of research on the connections between
neurophysiology and neural networks. For example, the response of a neuron in the secon-
dary visual cortex (back of the brain) to an input stimulus: can we build a mathematical
model of this connection? Concerning the mathematical model, we have not succeeded,
but can we build a neural network that performs the same function?

In fact, we cannot train such networks with physiological stimuli, so what is done
is to take neurons from networks trained on images from ImageNet, for example, and by
reducing the inputs, we try to see what the prediction capabilities of these artificial neurons
are. What we find is that they are much superior to all elementary models obtained with
linear auto-regressive models or with simple non-linearity, etc.

So, there is similarity between artificial neurons and physiological neurons. We also
see this at the level of invariants. In 1981, groups of neurons in the visual cortex were
discovered that are sensitive only to the recognition of simple bright bars on a dark back-
ground. Later, some neurons in the central nervous system were found to be specialized

42

in detecting complex stimuli (the "grandmother cell" theory, which would recognize your
grandmother’s face). These functions have also been discovered in deep neural networks
(see Google DeepMind in 2012).

Finally, we cannot avoid addressing the subject in all its generality. If at the ma-
thematical level we juggle with geometric, statistical, probabilistic properties, we can see
that this topic touches on many of the aforementioned fields, but we can also add social
sciences and humanities because there is a conception of knowledge behind it.

3.6 Reinforcement Learning

We have seen that there is supervised learning and unsupervised learning. There is
a third type called reinforcement learning. It’s different because it is based on the "trial
and error" principle. Instead of providing labeled examples (example + known response),
we have a dynamic system with a feedback loop (reward if successful). The idea is to adapt
the system gradually to optimize reinforcement (reward) to be as positive as possible.

One of the applications is learning for games, e.g., AlphaGo, which defeated the
reigning world champion of the game of Go. In this case, it’s important to distinguish
in AlphaGo the convolutional neural networks (CNNs) (note: there is local translation
invariance and multi-scale structures) that have been adapted for playing chess as well.
There is an undeniable form of creativity compared to Deep Blue, which had beaten
Kasparov. Deep Blue was based on a strategy of "gain" from a function with several
depths of moves (utility function) by searching for the optimal solution in a decision tree.
What constrained Deep Blue was the programming of the utility function that tells you
"keep the queen or the bishop in such and such a situation". In contrast, reinforcement
learning does not use any of these a priori strategies. But please note, the networks do
not learn "from scratch" because there is still an underlying a priori: their architecture.
However, apart from the architecture, we do not tell the network not to sacrifice the queen,
for example. What we have seen is the emergence of new chess strategies (sacrifices) that
have revolutionized the game.

Apart from the "playful" aspects, in the industrial world, it is very important,
for example, to train a robot to perform a particular task: for example, the famous
game for children of putting the right shapes in the right holes! By applying this type of

43

Figure 20 – Examples of different textures: a turbulent interstellar cloud, another type
of fluid, a pile of stones, and bubbles.

Figure 21 – Generation of new textures from those in Figure 20.

learning, robots can accomplish very complicated tasks through trial and error. See, for
example: https://www.youtube.com/watch?v=JCjTQfy0h8w And there are many other
videos showing groups of robots learning together...

3.7 Unsupervised Learning

Presumably, we won’t have time to cover this type of learning this year but rather
next year, however, it’s important to keep it in mind. So, the idea is to establish models
from data: for example, from data on fluid flows, we want to establish probability densities.
Here too, spectacular results have been obtained using neural networks.

Let’s take Figure 20 from left to right: a turbulent interstellar cloud, another type
of fluid, a pile of stones, and bubbles. We take an image and input it into a convolu-
tional network trained on ImageNet (animals, everyday objects, etc.) with no relation to
turbulence. Inside the network, we can calculate correlation coefficients between the sub-
images produced by the neurons "stimulated" by this new image. From these correlation
coefficients, we can regenerate new images (Figure 21) from white noise that gradually
reproduces the correlation matrices (variational auto-encoder) 20.

20. NDJE. Here, the network is trained with ImageNet, so the correlation coefficients do not contain

https://www.youtube.com/watch?v=JCjTQfy0h8w

44

Figure 22 – Schematic architecture of Generative Adversarial Networks.

If we had determined correlation matrices of the images themselves to produce new
images, we would have completely destroyed the structures 21. So, how is it possible that
this works? The nature of these correlations is an active area of research in statistics
because this defines new random processes with very sophisticated properties.

3.8 Generative Adversarial Networks (GAN)

In the examples from the previous section, the images are stationary, meaning that
local statistical properties are invariant under translation in the image. Can we do the
same for non-stationary images? For example, if I take the image of one (or more) faces,
can we synthesize new faces?

Six years ago, the answer would have been NO; we were not able to synthesize
turbulence (stationary image) even though the Navier-Stokes equations date back to the
mid-19th century, and Kolmogorov’s theory dates to 1941. So, the community was parti-
cularly skeptical. The current answer is YES: Ian J. Goodfellow et al. in Yoshua Bengio’s
group in 2014. These are special convolutional networks called "generative autoencoders"
that consist of two networks (Figure 22). It is clear that if we had only one network, giving
it white noise would have no chance of working. The two networks act in opposition: the

any a priori information capturing the nature of turbulence images, piles of rocks, or sets of bubbles.
21. NDJE: think about what happens when we produce CMB maps from Cℓ

45

Figure 23 – Generation of a new image from white noise passed through a trained GAN.

generative network (G) produces new images, and the discriminator (D) provides the pro-
bability that the image presented to it comes from the database rather than a generated
image.

We use a cost function that optimizes all the parameters of the two networks simul-
taneously:

min
G

max
D

{E[log D(X)] + E[log(1 − D(G(Z)))]} (5)

This function states that the "discriminative" network should make as few mistakes as
possible, but the "generative" network should deceive it as much as possible (it’s the
equivalent of a minimax two-player game). That is, D is trained to maximize the proba-
bility of correctly classifying an image as either from the database or generated by the
model G, while G is trained to minimize E[log(1 − D(G(Z)))] or, more practically, to
maximize E[log D(G(Z))]. At convergence, D(X) = D(G(Z)) = 1/2, meaning that the
discriminator cannot distinguish between a database image and a generated image.

Some examples: Let’s take a GAN trained on images of bedrooms, so we present a
white Gaussian vector z of about 100 parameters, represented here as a small image, but
it can be a vector (Figure 23). It will generate an output image of 105 to 106 pixels G(z).
So, we present z1, and G gives G(z1) = g1, then a new z2, it produces G(z2) = g2. An
interesting property is that if we make linear combinations of z1 and z2, the result is an
image of a bedroom resulting from the mixture of the two images g1 and g2 (Figure 24).

We can do this kind of exercise with a database of faces (examples abound on the
web), etc. Each time, we get a different G: Gbedroom, Gface, etc. However, there is no
information in the white noise at the input (the z), so it must be in the filters of the Gi

that there is coding (information) of what a bedroom is, a face, etc. The generator has
captured the important structures to reconstruct a face, a bedroom, etc. If we look at
it from a rationalist point of view, to put it briefly, we would break down a face into its

46

Figure 24 – Illustration of the property of linear combinations of GANs.

elements like the mouth, eyes, nose, and establish relationships (grammar) between them.
The underlying question: how is this structuring imprinted in the network? Ultimately,
what type of memory, organization is incorporated into these networks? We know how
to program them, but currently, we are not able to describe how they work.

Note that there are applications in graphic art: painting a canvas in the style of a
particular painter, or even interpolating artistic styles (see Gatys, Ecker, Bethdge 2015;
https://arxiv.org/pdf/1508.06576.pdf). Let’s not talk about generating "musical works",
which leaves many of us intrigued, but it can be done.

3.9 Limits and Opportunities

3.9.1 The Dark Face to Illuminate

Currently, we are in an essentially empirical phase, with work focusing on algo-
rithms. We need vast amounts of labeled data, and often it doesn’t work due to a lack of
training data. What structures are encoded in the filters? In fact, if we train the same
network with different initial values, the weights will "individually" converge to different
values, yet the network’s performance is essentially the same! So it’s not the individual
weights that matter but the entire network. What is the regularity of the learned func-
tions?

We understand very little about how a network works, what its performance, ge-
neralization capabilities, and limits are. Ultimately, we have no a priori control over the
result. The only controls we can have are established from statistical tests. However, these
tests are often biased. Indeed, let’s revisit the conventional method that splits the training

https://arxiv.org/pdf/1508.06576.pdf)

47

dataset into three parts: the training set, cross-validation set, and test set. Everything
would go well if the training dataset is (was) representative of all the cases the network
will have to deal with. However, there is a strong likelihood that the training dataset is
biased, whether we want it or not.

Finally, the architectures of networks are most of the time empirically optimized,
which is time-consuming and costly. We would like to have an "architect’s guide".

3.9.2 The Motivating Face

The fact that the same type of architecture can yield excellent results in very different
domains, i.e., the generic aspect of these networks, is indeed an enigma, but it contributes
to the enthusiasm to understand Why, and to answer the question: what form of knowledge
is being learned?

Regardless of these questions that some might call philosophical, the scientific pros-
pects and applications are considerable. Indeed, if we are capable of learning to predict
the evolution of N-body dynamical systems, then we become capable of conducting much
finer statistical physics than that based on the study of disordered systems such as gases
and crystals. The challenge is to perform physics at the mesoscopic level (chemistry,
biology).

In mathematics, of course, there are many open questions, and in general, there
are many research opportunities: and it’s happening very quickly! Note that there aren’t
many people working on mathematics outside of algorithmics. Why? Because it’s difficult,
of course!

4. Mathematical Perspective

4.1 Introduction

Let’s address, in this course (and the following ones), the questions raised by neural
networks from a mathematician’s point of view. We will focus on supervised learning.

48

Figure 25 – Schéma d’un réseau convolutionnel CNN.

Figure 26 – Illustration of the probability density p(x) of an image in the set Ω.

So, we will examine the structure depicted in Figure 25, where the input x (here a ma-
trix) passes through the network, where the filters (Wi) are linear operators (matrices)
associated with a non-linearity σ like a Rectified Linear Unit (ReLU), and by stacking
them successively, we build the network architecture up to the last layer Φ(x), which is
aggregated to give ỹ = f̃(x), the approximation of the function we want to compute.

4.2 Approximation Problem

Firstly, we have an approximation problem, which is the determination of W ∗, a
set of parameters (note: biases are also included) such that the approximation ỹ = fw∗(x)
is as good as possible. We define a notion of risk:

49

R(W) = Ex(r(f(x), fw(x))) (6)

Here, r(y, ỹ) is a penalty function for making an error. Typically, for Regression and
Classification problems, we use the following risks (non-exhaustive list):

Regression Classification

y ∈ R y ∈ A

(y − ỹ)2 1 if y ̸= ỹ, 0 otherwise

Ideally, the solution W ∗ minimizes the risk on average, which means:

W ∗ = argmin
W

R(W) (7)

This assumes that we know the probability distribution p(x) of the data x over Ω.
For instance, in Figure 26, darker colors represent higher probability density. Under what
conditions is the error R(W ∗) small? In other words, we would like to ensure that for a
given ε:

R(W ∗) ≤ ε (8)

However, in high dimensions, this problem becomes challenging. When making clas-
sical assumptions about the function f having a certain degree of regularity on x ∈ Ω,
such as being Lipschitz (with almost everywhere bounded derivatives), achieving a small
error requires having a sufficient number of examples that cover Ω well for interpolation
of f (see Figure 27). How many examples are needed? Typically:

n ≈ ε−d (9)

The same scaling applies to the number of parameters needed to fit these examples:

50

Figure 27 – Illustration of the interpolation problem in high dimensions. There are few
or no known samples close to a new sample.

W ≈ ε−d (10)

However, d is very large, leading to what is known as the "curse of dimensionality".
Therefore, strong regularity assumptions beyond Lipschitz are needed to achieve a small
error, indicating that the data points x in Ω are highly structured. What are these new
forms of regularity?

This is a field of mathematics that is well understood when d is small (d ≤ 3), but
in high dimensions, it’s a different story, which we will explore later. Before that, let’s
address another problem.

4.3 Estimation and Optimization Problem

In the previous section, we assumed that we had the "best solution" and asked if this
solution met a quality criterion (minimum cost/risk). Now, we need to find this solution
W ∗. Why is this difficult?

Firstly, we need to calculate the expectation R(W):

51

R(W) = Ex(r(f(x), fw(x))) (11)

=
∫
Rd

r(f(x), fw(x)) p(x) dx (12)

However, p(x) is completely unknown because we only have information about it
through a limited set of training examples.

So, what we can do is calculate an estimate of the risk R̃(W). We move into the
domain of empirical statistics. If we have constructed a neural network, we can know the
empirical mean risk based on the examples used:

R̃(W) = 1
n

∑
i

r(yi, fw(xi)) (13)

We would like the behavior of this estimate as n approaches infinity to be such that:

R̃(W) −→
n→∞

R(W) (14)

Under what conditions is this true? We need to control the variability of the empirical
estimator; for example, we need to control the maximum error:

max
W

|R(W) − R̃(W)| (15)

However, this will depend on the number of parameters in W . Ultimately, we want:

R̃(W ∗) = min
W

R̃(W) (16)

This means that if we feed an example xi into the "optimized" neural network with
parameters W ∗, the difference between yi and fw∗(xi) should be as small as possible.

The more parameters we want to adjust, the more examples are needed to keep the
error small. This leads to a similar problem as before. Typically, n ∼ O(105−6) while the
number of parameters is often O(108).

52

However, if it works in practice, it’s because of a form of regularization that occurs.
The network will adapt to adjust only the most relevant parameters for providing the
answer.

This notion of regularization is the other main theme of neural networks that we
will explore, and it is often implicit. Even without explicitly imposing regularization, it
occurs. It’s crucial to understand the nature of this regularization.

Now, we also need to find the solution W̃ ∗ that minimizes the empirical cost. The
well-known mathematical framework for this was convex function minimization, where
simple gradient descent methods work perfectly. The problem with neural networks is
that we are not in this case at all. We have a plethora of local minima. So, a priori,
gradient descent methods will not find the right solution. However, surprisingly, it works.
We often end up in local minima, but the "distance" to the global minimum that we
estimate is usually small: 1) if the network is well-configured, 2) if the right gradient
descent method is chosen, and 3) if the algorithm’s parameters are tuned correctly.

This is an empirical field: non-convex optimization attempts to obtain theorems that
provide guidance for creating a good network. This optimization will be central in this
year’s course because, at the very least, even if we are not interested in the mathematics,
we would like to have ideas for designing a network, knowing how to train it, and what
to do if it doesn’t work.

The set of network parameters W consists of the set of matrices Wi and the biases
of the non-linear functions, so for J layers:

W = {Wi, bi}i≤J (17)

The number of parameters is quite substantial, numbering in the millions.

For each set of parameters W , we obtain a different f̃ , so it is natural to use the
notation fw. Therefore, by varying W , we get a whole class of functions fw, denoted as
Hw:

Hw = {fw / ∀ W} (18)

Hw is the set of functions that can potentially be programmed with a neural network.

In all the examples we have seen in the previous chapters, what we are looking for is

53

Figure 28 – Structured images are part of a set Ω ⊂ Rd.

to find an approximation of f such that y = f(x), with x ∈ Ω, where Ω is, for example, a
set of structured images, a subset of all possible images of the same dimension. We know
that Ω ⊂ Rd with d being the dimensionality of the problem (Figure 28).

We don’t know f or, a fortiori, the (Wi, bi), and we don’t know the topology of Ω
any better. . . but in supervised learning, we have examples: {xi, yi = f(xi)}i≤n. So, we
want to approximate ỹ with a function from a specific neural network, i.e., fw = ỹ.

With this general framework set, how do we get the right neural network, or how do
we determine the Wi and bi? Recall that we have an enormous class of possible functions
(cf. Hw), so what is the right strategy? In fact, we have two sub-problems.

4.4 Other Questions

Returning to the approximation problem, we ask how and why do these network
architectures, even if we manage to optimise them, give a good answer? We try to
understand what functions f(x) can be approximated by a network. For example, if you
start with a quantum N-body chemistry problem that must satisfy a potentially very
complicated Schrödinger equation, why can we ultimately approximate the solution with
a network with 108 parameters and very few examples? But more generally, why are
images, sound, language structured, or what structures are we talking about? This
type of question arises when approaching the approximation problem in the form of: what

54

is the notion of regularity? Another question is how are all these problems similar? Is
there a common notion of regularity?

4.5 Approximation/Regularity, What Type of Regularity?

As we have seen several times, if we only have local regularity (Lipschitz), it is not
sufficient, as we are not able to provide enough samples in the vicinity of a particular x to
infer the value of f(x). So, we need notions of global regularities that invoke symmetries.
We will introduce an operator (in the manner of physicists. . .) g that will move x to x′:

x → g.x = x′ (19)

How will the function f react to this transformation? That is, instead of looking at
|f(x) − f(x′)| with x′ in the vicinity of x, here we look at f(g.x). Now, if g is a symmetry
of f , then

∀x ∈ Ω, f(g.x) = f(x) (20)

Note that |g.x − x| does not need to be small, unlike Lipschitz regularity.

Can we describe the properties of f based on its symmetries? Intuitively, the more
symmetries a function has, the more regular it is. A quick reminder: E. Galois introduced
the symmetries of the roots of algebraic equations of degree d to show that they cannot
be expressed in radical form when d ≥ 5; that is, he was able to understand the nature
of the solutions.

If g1 and g2 are 2 symmetries of f , then

f(g2.(g1.x)) = f(g1.x) = f(x) (21)

meaning that g2.g1 is also a symmetry of f . Therefore, we can study the set of
symmetries of f :

Gf = {g/g symmetry off} (22)

55

which has a group structure with basic properties:

— The composition of 2 elements is also an element of the group.
— The existence of a neutral element.
— The existence of an inverse for each element.
— The associative law of composition.

4.6 Emergence of Symmetries and Local Groups

4.6.1 From Global to Local

Let’s see in the practical case of image classification, what kind of symmetry is at
play and how does knowing these symmetries help us understand the problem? An image
x is composed of pixels that we denote by u, x(u) is the pixel value. If we perform a
translation:

x(u) → g.x(u) = x(u − g) (23)

the nature of the object in the image does not change, which implies that:

f(g.x) = f(x − g) = f(x) (24)

Also, if we perform a rotation:

x(u) → g.x(u) = x(Rg.u) (25)

In some cases, this won’t change the problem (e.g., recognizing a dog, galaxies), but in
some cases, it can pose recognition problems (e.g., sky/sea, or the digit 6 vs. 9). So,
rotational invariance depends on the problem.

Now, how does knowing the type of symmetry help us? In fact, we can reduce the
dimension of the problem. Initially, x ∈ Ω has a huge dimension d; however, if there exists
a symmetry group G, we can reduce (by quotienting) the study space to the set Ω/G

(think of arithmetic, modulo Z/pZ, which allows us to reduce the study to remainders
after division by p).

56

Figure 29 – Examples of deformations of the digit 3.

Figure 30 – Different types of deformations that can be applied to an image.

For translation, we can subtract 2 parameters (for a 2D image), but if d is very
large, d − 2 is still very large! So, if we want to significantly reduce the dimension of the
problem, we need to obtain very large symmetry groups. What can we think of? In the
analysis of digits, for example, we can consider groups of deformations. For example, in
Figure 29, there are different distortions of the digit 3.

We can formalize the result of a deformation with "local translation":

x(u) → g.x(u) = x(u − g(u)) (26)

(it’s a local group). Note that we always use the same notation g.x(u) to highlight the
concept of transformation; otherwise, we can get into details, as shown in Figure 30, but
that would make the notation cumbersome.

We can then see that instead of 2 parameters to define a global translation, now
the group G of local translation will be indexed by 2 regular functions. Therefore, the

57

dimension of G can be very large. In the end, if this type of symmetry is present in
the problem, the dimension d is greatly reduced. We have gone from discrete groups to
Lie groups of Marius Sophus Lie (1842-1899), well-known in Theoretical Physics, which
describe the underlying regularities of functions f(x).

However, there is something to keep in mind, and that is that there is an element
of low dimension behind it that allows us to tackle the problem, namely, the dimension
of the space in which u evolves. In the case of a 2D image, u indexes the position within
the image, so we have 2 independent parameters; for sound, it’s time that indexes, which
is 1 parameter; similarly for text, there is an ordering of letters. . . even in Physics, the
underlying dimensionality is only 4 dimensions (unless otherwise). And this is absolutely
fundamental because in all convolutional networks, convolutions act on the variable u.
Discovering the symmetries of the problem means applying transformations to the variable
u and observing how f behaves.

Let’s look at audio. It is natural to study frequencies and harmonics (as seen in the
spectrogram). If there are spectral regularities, we want to perform frequency translations,
which are modeled by:

x(u) → g.x(u) = x(u)eig.u (27)

But here too, instead of taking a global transformation, we can consider local transfor-
mations of the form:

x(u) → g.x(u) = x(u)eig(u).u (28)

In practice, we might then ask: can we recognize a sound even if it is distorted by a
vocalization produced by a singer? If we want to tackle this problem, then the function
must be invariant to local deformation in the frequency space.

What we observe through this example is that by knowing the space in which u

operates and the type of problem posed, we have access to different types of symmetries.
However, how do neural networks capture the symmetries of the problem, which belong
to very high-dimensional groups? Moreover, we do not fully understand the subject of
deformation groups in high dimensions, which is the study of diffeomorphisms, one
example of which is shown in Figure 31 for a 2D square.

58

Figure 31 – Example of a diffeomorphism applied to a square.

4.6.2 Impact on the Neural Network

A network performs successive transformations:

x → Φw(x) → fw(x) = σ(⟨ω, Φw(x)⟩) (29)

with a linear transformation from Φw(x) to fw(x), followed by a non-linearity σ. So, if we
know that the problem has the symmetry g, then:

Φw(g.x) = Φw(x) ⇒ fw(g.x) = fw(x) (30)

We say that g is a symmetry of f (and of Φ), which is equivalent to saying that f (and
Φ) is invariant under the action of g.

Thus, gradually, during training, the network constructs a representation Φ that has
the right symmetry. Experimentally, we observe these invariants in networks. Moreover,
we also observe them in the networks of the brain in the upper cortical areas (e.g., for
sound, vision). And in the case of the brain, we observe much more subtle symmetries
because we can recognize a face in many conditions that could be described as "degraded".

So, we always come back to the same question: what types of invariants are learned
by the network? Because if we can design networks with a priori symmetry properties
(e.g., translational symmetry ⇒ convolutional filter), how are they also capable of learning
other types of symmetry? and what do they learn? We know that it’s not the parameters

59

Figure 32 – Illustration of short-distance interactions within a group.

themselves that carry meaning; there are invariants that make two solutions obtained by
two different trainings equivalent. The study of symmetries can attempt to understand
these invariants.

4.7 Scale Separation, Multi-Scale Hierarchy

When we have many variables, such as pixels in an image, letters in a text, atoms
in physics, agents in a social network, and it is the interactions between these variables
that are relevant to solving the studied problem, what we observe is that the actors who
interact the most are those who are closest to each other (Figure 32).

In a social network, a person will interact with their family and friends; in an image,
a pixel will interact with its neighbors, such as the red crosses in Figure 32. However,
potentially, one must also take into account long-distance interactions (between red and
blue crosses in Figure 33), even if they are of much lower amplitude: in a social network,
should we not consider the influence of a distant country to understand the voting behavior
of people nearby? In an image, we know that the background can also have large-scale
components; in statistical physics, we also know the importance of long-distance forces in
spin glasses, etc. Why should we not neglect these long-distance interactions? The reason is
that, as we have many variables (e.g., several billion in a social network, etc.), by neglecting
interactions with many agents, we neglect the sum of these interactions compared to local

60

Figure 33 – Illustration of long-distance interactions between groups.

interactions, yet they can potentially be of the same order of magnitude due to the high
number of interactions between agents at long distances. However, while at short distances,
we can take into account all interactions between closer neighbors, the more distant groups
are considered, the more we can consider initially only an "averaged" interaction.

Therefore, through this averaging operation, which takes more and more variables
(agents, particles, pixels, etc.) as they become more distant, we transition from a problem
in dimension d (the number of agents, particles, pixels, etc.) to a problem in dimension
O(log d). This is a phenomenon of hierarchical, multi-scale processing, which we will
come back to and which is very intuitive (it even has roots in Descartes’ "Discourse on
the Method": "Divide each of the difficulties I examine into as many parts as possible
and as is required to resolve them better"). This is very important because potentially it
allows us to overcome the curse of dimensionality.

This is manifested in convolutional neural networks (CNNs) like the one in Figure
34: as we progress from the input to the deep layers, there is a reduction in information
(convolution and sub-sampling layers), but it becomes increasingly complex and aggre-
gates pixel ranges from the initial image.

Thus, this hierarchy of scales allows for a massive reduction in the number of
network parameters. However, the problem is still challenging because, while we can
consider "averaging" interactions as we consider larger scales, large groups of agents (pixels,
etc.) far from a region of interest also have interactions among themselves, as illustrated in

61

Figure 34 – Detail of convolution and sub-sampling operations in a CNN that reveal
interactions at various distances between pixels of the initial image.

Figure 35. For example, we can consider a geopolitical problem where one’s own actions
(e.g., purchases) are influenced by distant countries whose behavior we would like to
understand on a country-by-country basis, but perhaps it is the tensions between these
"distant" countries that are relevant to our affairs.

What mathematical tool will be used to capture this hierarchy of information? In
the 1980s-90s, there was a tool: Wavelet Theory 22. Note that the first idea that comes
to mind for hierarchical organization is that of a tree structure: for example, a company
broken down into divisions, services, with humans at the end; we also saw these trees in
Chomsky’s grammars. In this type of formalization, we don’t really need mathematics,
although we can develop algorithms such as decision trees. But this relatively simple and
standard tool doesn’t work in our problem because, even in a company, we know very well
that two office neighbors who don’t speak to each other can be far away when we go up
the hierarchical chain. The problem also arises concretely for Chomsky grammars when
scaling up. We want to introduce a horizontal structure at all "nodes" so that we can
exchange information, or in other words, to make the structure more flexible. Random
Forests are decision trees, but there are many of them, and we average them to account
for both hierarchical structure and variance at all scales.

22. NDJE: S. Mallat briefly mentioned it in 2018, and I provided a fairly detailed appendix on it.

62

Figure 35 – Illustration of the role of interactions between groups at different scales.

In convolutional networks, information "naturally" communicates in the filters. How
these communications are related to the notion of symmetry is a subject of study?

4.8 The Notion of Sparsity

The notion of "sparsity" actually applies to all learning algorithms and is generally
used in low dimensions. It is often associated with pattern recognition, as if there were
some basic elementary patterns that needed to be recognized to understand the problem.
Intuitively, this makes sense: in a face, there are eyes, a nose, a mouth; in a text, there
are words, phrases, paragraphs, etc. So, we want to highlight patterns that structure the
entirety of a face, text, etc. However, depending on the problem, there can be many ele-
mentary shapes that we probably want to organize into families. Mathematically, the idea
of decomposing a function into specific families falls under the realm of Approximation
Theory. We then define a basis B that includes a very large set of orthogonal vectors
(N ∼ ed):

B = {gn}n≤N (31)

Thus, any function can be decomposed as:

f(x) =
N∑

k=1
αk gk(x) (32)

63

However, it is wise to reveal those patterns/features that are not necessarily ortho-
gonal because they may be redundant but better represent the function f . So, we take a
subset of coefficients that still provide a good approximation:

f(x) ≈
∑
k∈I

αk gk(x) (33)

By taking only a subset of coefficients, this means that the others are set to 0. There-
fore, finding a sparse representation means finding a representation (basis) in which most
of the coefficients are zero, and the few non-zero coefficients represent the elementary
patterns.

A natural tool that comes to mind in this context is the Fourier basis eim.x in which
the function f is decomposed. Indeed, if the function f is very smooth (in a Sobolev
space), then the low frequencies are well representative, while high frequencies will be
scarce or non-existent. However, if there are discontinuities, we will need to adapt the
basis.

In general, we need to find dictionaries (not necessarily linearly independent, any
pattern is accepted):

D = {gn}n (34)

The representation is said to be sparse if we can approximate the function f by fM with
a limited number M of coefficients:

fM(x) =
∑

k∈IM

αk gk(x) and, |card(IM)| = M (35)

We would like the approximation to converge quickly to the function as we increase
M , i.e.,

||f − fM || ≤ CM−α (36)

Sparsity is therefore about finding a basis, a family, or a dictionary that allows this type
of approximation by reducing the number of coefficients.

This type of scheme can be implemented in low dimensions. Here, we refer to the
dimensionality of u. For example, in an image x, we index the pixels with 2 parameters
if we want to maintain the row-column structure (u1, u2), and the pixel’s value is x(u).

64

Thus, in the case of an image (similar for sound), efficient compression algorithms have
been developed. But in the case of a function f with a very large number of parameters,
for example f(x(u)) as a function of x, then the number of elements in the dictionary
will grow exponentially.

In this case, we will need to use different tools from the outset. We feel that there is
indeed an aspect of very high dimensionality in certain problems (e.g., chemistry, physics,
etc.), but in a way, if we work with molecules of a certain type and know their interactions,
we can forget about the quantum aspect and Schrödinger’s equation. These are concepts
at work in classical approximation theory. The question then is: how and where do these
structures appear in neural networks? In recent publications on neural networks, authors
try to reveal these patterns in filters. For example, in digit recognition, a certain filter
may capture a specific shape, corner, and so on.

So, in a first approach to a problem, it becomes natural to question patterns. But this
is not enough. In fact, we cannot capture very complex phenomena in high dimensions
that give rise to new properties/structures. Think about the textures of wood, stone,
fabric, etc. If we want to account for all the different types of textures we encounter in
nature, there are countless variations. Yet, humans easily perceive different textures in
their environment.

Therefore, it is likely necessary to have a global perspective. This translates to
understanding the structure of the entire set Ω in which x evolves. Typically, this is what
is examined in unsupervised learning. For example, if we work with organic molecules (Ω)
and begin to understand how they interact, then train a network with these molecules,
it is clear that if we provide it with a molecule of a different type (ionic crystal), it may
not work well a priori! In conclusion, the network will become highly specialized in the
elements of Ω.

Here, you can clearly see the difference between this type of learning and one that
involves understanding the Schrödinger equation or another equation in physics that works
outside of Ω. Ultimately, even in very high dimensions, by restricting ourselves to Ω, we
simplify the problem (to some extent).

65

4.9 Summary from a Mathematical Perspective

What has been described in the previous sections is more of a research program.
In the following sections, we will address the algorithmic, optimization, and estimation
aspects. When studying a network with 1 hidden layer (often called 2-layer networks), the
theory of approximation is well understood. However, beyond that, there is an explosion
of complexity, and we have a much harder time understanding what is happening.

5. Where Do the Ideas of Neural Networks Come From?

5.1 Cybernetics

The history begins with the American mathematician Norbert Wiener (1894-1964),
whose ideas are presented in his book Cybernetics or Control and Communication in the
Animal and the Machine (1948), which had a significant impact beyond the scientific
world. Wiener’s father was a Russian immigrant to the United States and had a vision of
the child as a completely malleable clay, so he had a project to turn his son into a genius.
Along with a friend, also a Russian immigrant who shared his educational views, they
traveled across Europe to provide their children with a historical and literary education,
while immersing them in science at home. It turns out that Norbert developed a prodigious
memory due to vision problems that made him focus on his hearing. And, in the end,
both Norbert and his friend became child prodigies. Both children earned their Ph.D.
degrees around the age of 18 at Harvard, with Norbert specializing in mathematical logic.
However, his friend couldn’t handle the pressure and ended up committing suicide.

Norbert, on the other hand, created and revolutionized several fields, including si-
gnal processing (e.g., the eponymous filtering), control theory (e.g., he introduced feed-
back loops, motivated by anti-aircraft gun tracking of airplanes), Brownian motion has a
"Wiener measure", and he revisited Fourier analysis, among others. So, his extraordinary
creativity extended far beyond the realm of science.

According to Wiener, cybernetics is a "complete theory of control and communi-
cation, whether in the animal or in the machine". In this framework, learning is seen as

66

Figure 36 – The different phases of a control loop to reach port.

a dynamic system. Intelligence is viewed as an adaptation to reality, and this adaptation
cannot be thought of without considering time. Thus, there is a system that evolves over
time and must adapt. One consequence is that we do not model the world but rather
the way to react to the outside. A classic example is that of a "boat returning to port"
with external conditions such as wind, currents, and waves. Two approaches are possible:
either we model the entire external environment and the operation of the boat itself,
or we focus solely on the boat’s course and speed to achieve the objective. The figure 36
illustrates the different phases of a control loop.

This very general system is that of negative feedback, where one acts based on error.
This idea has been extensively developed not only in engineering but also in social science
and biology. This led to the development of a cognitive robot project, the (caricatural)
functioning of which is schematically represented in figure 37. The "goal" or "objective"
achieved is an input to the "Planner" part of the cognitive system (a primitive version
of the brain), which also includes a "World Representation" and a "Perception" module
to interact with it. People discussed this scheme extensively, trying to figure out how it
could be implemented in computer (and mechanical) systems. This was fundamental for
the field of "control systems".

Developments in cybernetics occurred in the 1940s to 1960s. There was a lot of
analysis of the scheme (figure 36) in relation to what could be observed in nature. An
article by Herbert Simon titled "The Architecture of Complexity" (1962) highlighted
that learning is effective when the world is structured and not too complex. Complexity,
for example, determines the number of learning samples, but in general, it sets a limit on

67

Figure 37 – The "Cognitive Robot" project.

how much of the world can be learned. H. Simon also showed that there is a notion of
ubiquitous hierarchy observed (reductionism) in Physics (particle, molecule, atom...), in
Biology (cell, tissue, organ...), in the symbolic domain (e.g., language: letter, phoneme,
word, sentence, paragraph, chapter...), in History with the evolution of states (tribes,
village, town, region, state, empire...), and generally in solving mathematical problems
(hierarchy of theorems...).

One of the questions that emerged is: Why do we observe this hierarchical structuring
everywhere? H. Simon’s thesis about the existence of these hierarchies is the need to have
something that is stable while being adaptive over time. To illustrate his point, he used
the image of a watchmaker who assembles a very complex watch during a step where he
holds all the pieces together but is continually interrupted by customer calls. The result
is that this poor watchmaker will have to restart his assembly very, very often, or he
may never succeed in assembling the watch. The watchmaker will probably change his
operating mode to assemble pieces and then assemble larger and larger subsets and finally
assemble the "big pieces" together. If he is interrupted, he will have less work to redo and
will converge toward assembling the watch. This image represents Darwinian evolution,
which structures elements hierarchically, from stable elements to all scales. H. Simon

68

describes complexity through the hierarchy of structures, and this hierarchy allows us
to understand complexity. This idea is crucial because it lies at the heart of all deep
neural networks in which "depth" introduces notions of structure and hierarchy.

The consequence of hierarchy is that there is an organization into subsystems that
are quasi-separable and therefore weakly linked. This qualitative idea is quite natural
and is not new. However, this approach has been a failure! The real question is: how to
represent weak interactions without eliminating them (see section 4.7). How to represent
these hierarchies, how to represent the different states at all scales while integrating the
notion of sparsity so that we can "learn this structure". This is the question that spans
all the disciplinary fields mentioned above and one to which the community has not been
able to answer for a long time, as evidenced by Chomsky’s grammars. It is also at the
core of the understanding of how deep neural networks (DNNs) operate.

So, the underlying ideas of DNNs are not new, we are at the "algorithmic" stage,
meaning we can implement them and make them learn structures, but "mathematically"
we do not understand how they work.

5.2 The Perceptron (1957)

5.2.1 Introduction

This is the idea of Frank Rosenblatt, an American psychologist who invented a
single-layer learning network 23. It’s worth noting that Wiener, Chomsky, Rosenblatt were
all at MIT, as were Marvin Lee Minsky and John McCarthy, who founded the Artificial
Intelligence Group. Minsky and McCarthy developed the logical and symbolic aspects.

The problem posed is a classification x ∈ Rd

f(x) =


−1

1
(37)

23. Note: In 1943, W. Pitts and W. McCulloch introduced a "formal neuron" capable of performing
logical functions, four years before the realization of the first transistor.

69

Figure 38 – Example of 2-dimensional classification.

Figure 39 – Graphical representation of what a linear classifier should do.

and the goal is to separate sets of xi by finding a "boundary" between the two populations,
as shown in figure 38. The equation of the boundary is given by

⟨w, x⟩ + b = 0 and we choose ||w|| = 1 (38)

where w is the orthogonal direction and b is the distance from the origin of the axes to
the line. The "x"s belong to class 1, and the "o"s belong to class -1. Given the class yi of
all xi in the training sample, we want the xi to be on the "correct side" of the boundary
so that

yi(⟨w, xi⟩ + b) > 0 (39)

This can be graphically represented as shown in figure 39, where the non-linearity is the
"sign" function.

70

The question is to find the components of the vector w (i.e., wk) to achieve the
separation of the two classes with an iterative algorithm that will update the weights to
converge to the solution. The basic ideas of neural networks were defined at this very
simple stage.

The first idea is to introduce a cost (risk) for misclassification. So, we will take all
the misclassified points i ∈ M, and the Rosenblatt risk is given by

R(w, b) =
∑
i∈M

(−yi) (⟨w, xi⟩ + b) (40)

In the above expression, "−yi" gives the "wrong class", and "⟨w, xi⟩ + b" gives the signed
distance of the point to the line; it is the penalty for misclassification. In other words, the
further the point is from the correct side of the boundary, the greater the penalty.

The second question is to find an iterative algorithm that minimizes R(w, b). The
problem is that the solution is not unique. In fact, Rosenblatt posed the question of
finding at least one solution. We will proceed with a gradient descent with respect to the
free parameters Θ = (w, b).

5.2.2 Gradient Descent Algorithm

The gradient descent algorithm can be described as follows (see Figure 40, where k

indicates the k-th step of the calculation):

— We start with an initial value Θ0.
— Next, we calculate the gradient of the function to be minimized:

(∇R(Θ))k = ∂R

∂Θk

(41)

The derivative with respect to a unit direction v⃗ is then the dot product:

∂R

∂v⃗
= v⃗.∇⃗R(Θ) (42)

To maximize convergence speed, v⃗ should be collinear and opposite to the gradient.

71

Figure 40 – Diagram of a simple gradient descent.

Figure 41 – Schematic of a gradient descent. We can get "stuck" in a local minimum.

72

In practice, the evolution of the values of Θ is represented as shown in Figure 41
in one dimension. As can be seen in this example, the algorithm can get stuck in a local
minimum, but that’s not the focus here; we will see improvements to this method in later
courses 24.

So, let’s calculate the gradients:

(∇R(Θ))k =


∑

i∈M(−yi) xi,k for wk∑
i∈M(−yi) for b

(43)

(Note: The index k can be omitted for vector notation.)

However, we can either calculate the sum ∑
i∈M directly at each "step" of the calcu-

lation or visit the points one by one. This latter method had already been introduced by
Rosenblatt. It is, in fact, the stochastic gradient, which had not been formalized in this
way at the time. That means that each misclassified point already has a cost:

ri(w, b) = (−yi) (⟨w, xi⟩ + b) (44)

with a gradient:

∇ri(Θ) =


(−yi) xi

(−yi)
(45)

So, every time we have a new data point, we can update the parameters Θ:

Θ(s+1) = Θ(s) − α(s)∇ri(Θ) (46)

Thus, in the case we are considering here:

w(s+1) = w(s) + α(s)yixi

b(s+1) = b(s) + α(s)yi

(47)

Both algorithms (standard and stochastic) are schematically compared in Figure 42 in

24. Note: In 2018, there was a seminar dedicated to new "Lazy" Gradient Descent methods.

73

Figure 42 – Schematic comparison of global (Batch) gradient descent and stochastic
gradient descent.

the case of searching for a minimum in 2D.

An observation known as the Hebbian Rule (named after Donald Hebb, a Canadian
psychologist and neuropsychologist, 1904-1985) in biology and in computer science notes
that the weight w is increased if the input x and the output y (which is also the input
of a neuron in a subsequent layer) are positively correlated.

Now, the question that comes to mind is: how does it converge?

Theorem 1 The Perceptron converges to a separating hyperplane if the data is se-
parable.

An example of non-separability is the XOR function. This was noticed very quickly
and weakened the results of Rosenblatt’s Perceptron 25.

Let’s assume that we are in a separable case, meaning that there is a possible
solution. Does the Perceptron converge to this solution? Yes... but.

Proof 1. So, there is a solution by hypothesis. Let x∗ = (x, 1) and Θ = (w, b), then:

∃Θ∗ / ∀i yi⟨Θ∗, x∗
i ⟩ > 0 (48)

25. Note: In the 1970s, there was great disappointment in the community because all linear classifiers
were affected (Fisher, Perceptron, etc.), and it seemed impossible to solve non-linear problems.

74

We can normalize ||x∗|| = 1, and the condition remains the same. Now, once Θ∗ is known,
we can normalize it so that the condition changes to:

∃Θ∗ / min
i

(yi⟨Θ∗, x∗
i ⟩) = 1 (49)

If, for the moment, α is a constant, then the rule for modifying Θ becomes:

Θ(s+1) = Θ(s) + αyix
∗
i (50)

So:

||Θ(s+1) − Θ∗||2 = ||Θ(s) − Θ∗ + αyix
∗
i ||2 (51)

= ||Θ(s) − Θ∗||2 + α2y2
i ||x∗

i ||2 + 2αyi⟨(Θ(s) − Θ∗), x∗
i ⟩ (52)

Note that the iteration is done over the samples (xi, yi) that are misclassified, meaning
that at step s:

yi⟨Θ(s), x∗
i ⟩ < 0 (53)

So, by using the constraint on Θ∗ and noting yi = ±1 and taking α = 1 (the gradient
step or learning rate) to minimize the upper bound, then:

||Θ(s+1) − Θ∗||2 ≤ ||Θ(s) − Θ∗||2 + α2y2
i − 2αyi⟨Θ∗, x∗

i ⟩ (54)
≤ ||Θ(s) − Θ∗||2 + α2y2

i − 2α (55)
≤ ||Θ(s) − Θ∗||2 + α2 − 2α (56)
≤ ||Θ(s) − Θ∗||2 − 1 (57)

So, at step s + 1, we gain on the squared distance to the limit by 1 unit. It takes N

iterations for:
||Θ(N) − Θ∗||2 < 1 (58)

with N given by:
N = ⌈||Θ(0) − Θ∗||2⌉ (59)

and in this case, Θ(N) defines a separating plane.

75

Indeed,
∀i yi⟨Θ(N), x∗

i ⟩ = yi⟨Θ(N) − Θ∗, x∗
i ⟩ + yi⟨Θ∗, x∗

i ⟩ (60)

Now,
|yi⟨Θ(N) − Θ∗, x∗

i ⟩| = |⟨Θ(N) − Θ∗, x∗
i ⟩| ≤ ||x∗

i || ||Θ(N) − Θ∗|| ≤ 1 (61)

and
yi⟨Θ∗, x∗

i ⟩ > 1 (62)

so
∀i yi⟨Θ(N), x∗

i ⟩ > 0 (63)

which indeed defines a separating plane. ■

So, Θ(N) is not necessarily equal to Θ∗ because there is no uniqueness of the solution
to the separating hyperplane, but it is one obtained in N steps. However, we do not have
a priori control over the choice of the final separating plane, and as we will see, they
are not all equivalent. Furthermore, in the non-separable case, it can be shown that the
parameters will exhibit a potentially very long cyclic behavior, and the diagnosis that the
algorithm is not converging may not be obvious.

5.2.3 Regularization

It has been mentioned several times that neural networks (implicitly referring to
deep networks) have a considerable number of parameters, and given the relatively small
number of samples, we should not be able to make them learn the weights. However,
we find that we can converge the learning algorithm towards a solution that does not
overfit or overfits very little, meaning it is robust enough for generalization. This is due
to regularization, and this is precisely what is missing in the Perceptron algorithm that
we just implemented in the previous section.

Let’s introduce the important concept of margin, which will define the notion of
regularization, and we will see the correspondence with the penalty on weights. You can
refer to the 2018 course on Support Vector Machine Classification for more details.

The idea, proposed by Vladimir Vapnik in 1990 (born 1936), a Russian mathemati-

76

Figure 43 – Schematic representation of the margin concept to find the hyperplane least
sensitive to sample variability near the boundary.

cian, is as follows: we need to choose the hyperplane that is most robust to small changes
in the training data (see Figure 43). In other words, we choose the hyperplane that is
"farthest" from both classes: x+

i and x−
i .

Note that on the hyperplane ⟨w, x⟩ + b = 0, and outside of it ⟨w, x⟩ + b = c ̸= 0.
And on either side of the plane, we can find the points x1 and x2 closest to the hyperplane
of both classes and such that the hyperplane is in the middle (meaning that the point
(x1 +x2)/2 is on the hyperplane). Therefore, if we denote m||w|| as the distance of x1 and
x2 to the plane, as they are on either side, in general we have:⟨w, x1⟩ + b = m||w||

⟨w, x2⟩ + b = −m||w||
(64)

Now, we can rescale the x values such that the distance between x1 and x2 is equal
to 2. Thus:

||w|| = 1
m

(65)

So, maximizing the "2m" margin (and therefore m) is equivalent to minimizing
||w||. This leads to a truly important result: when we minimize the norm of the network’s
weights, we tend to get a network that is more robust for generalization.

77

5.2.4 SVM: Support Vector Machine

Given that w is a linear combination of xi, the Perceptron problem can be reformu-
lated as follows: find (w, b) such that:

yi × (⟨w, xi⟩ + b) ≥ 1; and min(||w||2) (66)

During the 2018 course, we solved this constrained problem by introducing a La-
grangian with Lagrange multipliers αi:

L(w, b, α) = 1
2 ||w||2 +

∑
i

αi(1 − yi × (⟨w, xi⟩ + b)) (67)

We need to solve the case where the problem is not strictly separable due to outliers
(a pathological case of poor classification). This is solved by introducing a Perceptron-like
penalty for cases of misclassification. Vapnik suggests defining the error on the margin as
how much the misclassified points/samples need to be moved to place them beyond the
margin for correct reclassification. So, if we denote ξi ≥ 0 as the distance for sample i

that needs to be moved, then:

yi × (⟨w, xi⟩ + b) ≥ 1 − ξi (Soft SVM) (68)

and the constraint becomes:
min(||w||2 + C

∑
i

ξi) (69)

So, SVM resembles the Perceptron, but the constraint on ||w||2 changes all the proper-
ties of the classifier: it is more robust, and since the constraint is convex, it converges to
a unique solution.

Note that we could have chosen a constraint ∑i ξ2
i , but then the very badly classified

points would have a very strong influence on the found solution; by taking ∑
i ξi, we

penalize the cases of very poor classification without having too much influence.

78

5.2.5 Assessment of the Perceptron

Through this simple example of the Perceptron and its extension to the Support
Vector Machine, important concepts have emerged:

— gradient descent (GD)

— its variant, stochastic gradient descent (SGD) (although in this specific case, ran-
domness did not appear as an essential ingredient, thanks to the convexity of the
simple problem. We will revisit this in a later course.)

— convergence issues

— regularization problems.

However, the approximation problem remains. We manage to make the algorithm
converge, but what is the size of the set of functions that can be approximated using
the Perceptron? We know that XOR cannot fit into this class.

6. Multi-layer Architecture: Part I

6.1 Introduction

In the introduction, S. Mallat refers to the depression in the community during the
1970s 26. During those years, linear classifiers were disqualified, and then it was realized
that the path of multi-layers had to solve the problem of non-linear classifications. All of
this was well formalized in the 1980s and 1990s.

We will study the network with 1 hidden layer or, as some call it, "the 2-layer
network" (see Figure 44). We will show that this network can approximate any function
(linear or not). This is the Universal Approximation Theorem that we will demonstrate
from two different perspectives. Through the proof of this theorem, we will see that:

— While the proof of this theorem can be considered a beautiful piece of mathematics,
it still does not solve the problem as outlined last year. The curse of dimensionality
is still not far off.

26. NDJE: This is the "first ice age". There was a second one in the 1990s due to gradients becoming
zero or infinite as the number of layers increased.

79

Figure 44 – Schematic of a neural network with 1 hidden layer or 2 layers (including the
input layer and the hidden layer). Note that the number of hidden neurons is also denoted
as K.

— Nevertheless, this theorem is interesting because it helps understand the nature of
the problem. In particular, when we perform approximation, we use the regularity
of the function, and thus, we see which mathematical tool we use in this case:
the theory of approximation and Fourier analysis are absolutely central here to
understand the approximation capacity of this network.

6.2 Expression of the Network’s Output

In the architecture shown in Figure 44 (note that the notation has changed slightly
from 2018, but nothing fundamental),

ỹ = σ

[
K∑

k=1
ck σ

[
d∑

m=1
wk,mxm + bk

]
+ b′

k

]
= f̃(x) (70)

where σ(x) is a non-linearity (ReLU, sigmoid, tanh, sign, etc.). What we now observe is
that in neural networks, if we change the non-linearity function (and many experiments
have been done), the architecture, if properly configured, will still work when retrained.
It just needs to have a non-polynomial non-linearity. The ReLU function is particularly

80

suitable because its derivative is almost everywhere defined and bounded, making gradient
descent work well. By doing this, we have abandoned any over-interpretation of the types
of non-linearity, as has often been done in the past.

Note that each neuron k in the hidden layer responds as follows:

xk ≡ σ

[
d∑

m=1
wk,mxm + bk

]
(71)

and this is nothing but the application of a data separation by the hyperplane (wk, bk).
Thus, in the hidden layer, we obtain the collection of K data separation hyperplanes
in one pass, which lets you imagine the power of selection. We can write the previous
relationship for hidden neuron k in a matrix form:

xk = σ [Wkx + bk] (72)

and this generalizes in a multi-layer network where the output of layer j + 1 depends on
the output of the previous layer j:

x⃗j+1 = σ
[
Wjx⃗j + b⃗j

]
(73)

or, using another notation:
xj+1 = σ [Wjxj + bj] (74)

In the subsequent courses, we generally omit the notation with arrows or the use of
bold letters for vectors (although we will use it at times), but one should still visualize
this vector/matrix concept (note that the non-linearity is applied component-wise within
the brackets).

Denoting Θ as the set of network parameters, which includes all (Wk, bk, ck, b′
k)k≤K ,

we are interested in the class of all functions f̃Θ:

H =
{
f̃Θ / ∀ Θ

}
(75)

and we wonder if this class is large enough to approximate the function f(x) of interest?
If not, we will have a bias error.

81

We have n labeled samples {xi, yi = f(xi)}i≤n, and as we saw previously, we have
a problem that can be divided into three parts (approximation, estimation, and optimi-
zation):

— First, we will try to search within H for a specific function f̃Θ∗ such that f̃Θ∗ ≈ f(x).
This is a question of approximation.

— Second, even if f̃Θ∗ exists, can it be estimated from n examples?

— Finally, even if it were possible to estimate it, we want to obtain a "good" approxi-
mation, so we have an optimization problem.

In the following, we will tackle the "approximation" part, knowing that "estimation" is
straightforward in this case (due to convexity), and the "optimization" part remains to be
addressed. In fact, the most challenging problem is indeed approximation.

6.2.1 The Case of Boolean Functions

A priori, we have a function of the type:

x ∈ Rd f−→ y ∈ R (76)

But here, we will approximate each component of x with a q-bit (note that the notation
for a bit here is ±1), the same goes for y. So, initially, let’s consider functions of the type:

x ∈ (±1)q×d f−→ y ∈ (±1)q (77)

If q is large enough, we can know real numbers with good numerical precision. Note that
we can decompose the function f into q functions that give 1 bit of y. So, we simplify the
problem by studying functions of the type:

x ∈ (±1)q×d f−→ y ∈ (±1) (78)

We can view this problem as a 2-class classification with input vectors of q × d = d′

quantized dimensions.

82

Theorem 2 Let f be a function such that

x ∈ (±1)d′ f−→ y ∈ (±1) (79)

then, for any d′, there exists a 2-layer network (or 1 hidden layer) such that f ∈ H.

Proof 2. We will construct the right neural network and see how many hidden neurons
we need. Let’s try to build a network by focusing on the set of x defined by

A = {x / f(x) = 1} (80)

Note that x has 2d′ possible values. Take K elements from this set, denoted as

{wk}k≤K with wk = (±1)d′ and f(wk) = 1 (81)

And for the nonlinearities, we will take the "sign" function. Now consider the relationship
between the input x and the first layer:

σ(wk.x + bk) (82)

By analyzing the bits of x and wk, the dot product is equal to

wk.x =

∣∣∣∣∣∣∣∣
d′ if x = wk

≤ d′ − 2 if x ̸= wk

(83)

And if we take bk = 1 − d′, then

σ(wk.x + bk) =

∣∣∣∣∣∣∣∣
1 if x = wk

−1 if x ̸= wk

(84)

So, each neuron k detects whether the input x is equal to wk or not. We can express
f(x) as a sequence of OR operations:

f(x) = 1 if (x = w1)∥(x = w2)∥ . . . ∥(x = wK) (85)

83

So, we need to perform a logical disjunction (OR) of these K equalities. In fact, we can
do it like this:

f(x) = σ

(
K∑

k=1
σ(wk.x + 1 − d′) + K − 1

)
=

∣∣∣∣∣∣∣∣
1 if ∃k / x = wk

−1 if ∀k, x ̸= wk

(86)

■

In fact, we have constructed a representation of a Boolean function. However, to
represent all x such that f(x) = 1 as q-bits in d-dimensional space, we will typically need
2d′−1 = K neurons, assuming that half of the vectors belong to class 1. Otherwise, we can
certainly say that K ≈ O(2d′). So, we need an exponential number of neurons.

In the end, this type of network is a large memory that stores vectors (wk) for
which the function is equal to 1. For classification, it simply compares the input to these
encoded vectors. These networks, therefore, seem rather coarse, even devoid of any form
of complexity. However, it is known that these single-hidden-layer neurons are satisfactory
for certain problems but not too complex ones, meaning they cannot be used for image
classification. For that, we need to go beyond this simple description of Boolean functions.

6.2.2 Using Function Regularity

In the previous construction, we were content with storing vectors such that f(x) =
1, without considering the regularity of the function. So, first, we must genuinely consider
x ∈ Rd as a continuous variable (i.e., not quantized), and second, analyze the regularity
of f(x). It’s in this context of continuity that the Universal Approximation Theorem
emerges. We will simplify the expression:

f̃(x) = σ

[
K∑

k=1
ck σ

[
d∑

m=1
wk,mxm + bk

]
+ b′

k

]
(87)

84

by removing the last unnecessary non-linearity here. Then we attempt to approximate
f̃(x) as follows:

f̃(x) =
K∑

k=1
ck σ

[
d∑

m=1
wk,mxm + bk

]
=

K∑
k=1

ck σ [wk.x + bk] (88)

Note that the terms σ [wk.x + bk] are functions referred to as "ridge functions". In
general, a "ridge" function is one that satisfies:

f : Rd −→ R such that ∃ga : R −→ R such that f(x) = g(a.x) (89)

Then,
∀x ∈ Rd / a.x = c ∈ R ⇒ f(x) = g(c) (90)

So, a ridge function is constant on the hyperplane a.x = c. Thus, σ [wk.x + bk] is constant
for x belonging to hyperplanes parallel to the hyperplane (wk, bk), and it only varies if x

has a component collinear with wk.

Therefore, the problem is to decompose f(x) (find an approximation) into K func-
tions (ridges) that vary only in one direction each. The ultimate question will be how
many directions (i.e., values of K) are needed to approximate f(x)?

Let the set of functions be 27:

Mσ = Vect
{
σ [w.x + b] /w ∈ Rd, b ∈ R

}
(91)

Is it large enough to approximate the function f? In other words, is Mσ dense in the set
of continuous functions C(Rd)? This is the minimum level of regularity we impose.

So, we want to approximate f(x) with a linear combination of elements from Mσ

as precisely as possible. Therefore, we need a criterion, a distance. For this purpose, we
will consider compact sets Ω in Rd (essentially bounded sets), and we want:

∀ϵ > 0, ∃f̃ ∈ Mσ / ∀Ω ⊂ Rd, ∀x ∈ Ω |f(x) − f̃(x)| ≤ ϵ (92)

This is the metric of uniform convergence on a compact set, which is a particular

27. nb. "linear combination" = Vect

85

topology. These aspects were extensively studied between 1987 and 1993:

— Hecht & Nielsen, who used a result by Kolmogorov that, in fact, should not have
applied, showed a new way to pose the problem and brought a certain renewal to
the problem.

— Gallant & White then asked whether it is possible to construct a particular sigmoid
function that could satisfy the approximation result.

— Cybenko in ’89 showed that the result holds for any sigmoid.

— Liensko, Lin, Pinkus, and Schocken (’93) showed that the result generalizes to any
nonlinear function σ as long as it’s not a polynomial.

Finally, S. Mallat mentions the review paper from 1999 that presented the state of the art
at that time: Allan Pinkus "Approximation theory of MLP model in Neural Network" 28.

6.3 Universality Theorem of a 1-hidden layer network

Theorem 3 Let σ ∈ C(R), then Mσ is dense for uniform convergence on a compact
set if and only if σ is not a polynomial.

We will proceed with a constructive proof because through this construction, we
aim to understand: how it works, why it is challenging, how it relates to the regularity
of the function to approximate, especially the smoother the function, the fewer hidden
neurons are needed, and how the curse of dimensionality manifests itself except in a
few special cases, etc.

If σ is a polynomial of degree m, let’s see what happens in d = 1. In this case:

f̃(x) =
K∑

k=1
ck σ(wkx + bk) (93)

is also a polynomial of degree m. However, this is not sufficient to approximate a conti-
nuous function on an interval. We can verify this with a polynomial of degree m + 1; if we
want to approximate it with a polynomial of degree m, there will be a significant error.

28. http://www2.math.technion.ac.il/~{}pinkus/papers/acta.pdf

http://www2.math.technion.ac.il/~{}pinkus/papers/acta.pdf

86

For example, on the bounded interval Ω = [0, 1], consider the continuous function:

f(x) = x5 (94)

and attempt to fit it with a degree 4 polynomial. The residuals are shown in Figure 45.
We cannot achieve uniform convergence with arbitrarily small error on [0, 1]. Therefore,
we observe that this approach does not work because we remain within the class of
polynomials if σ is a polynomial.

In fact, let’s specify the problem that arises: in the case of using an MLP, we do not
actually know f ; we only have labeled samples, and we want to fix σ a priori (in the above
case, we fix m as the polynomial degree) to satisfy criteria for all f belonging to a certain
class of functions, here continuous functions on Rd, i.e., C(Rd). Therefore, let’s consider
a non-polynomial σ. S. Mallat mentions that there are many proof strategies. The one
he proposes involves sine/cosine functions because the mathematically well-understood
ridge functions that vary in only one dimension are the basis for Fourier functions. We
will select sinusoidal functions in Rd that vary in only one dimension (see Figure 46).

6.3.1 Fourier Basis

Lemma 1 Any function belonging to C(Rd) can be approximated with arbitrary pre-
cision using a Fourier basis, that is,

∀f ∈ C(Rd),∀Ω(compact) ⊂ Rd, ∀ϵ > 0, ∃K and {wk}k≤K

s.t. : ∀x ∈ Ω |f(x) −
K∑

k=1
(αk cos(wk · x) + βk sin(wk · x))| ≤ ϵ (95)

Through this lemma, we establish a connection with Harmonic Analysis, which will
help us understand how the number of ridge functions (cf. K) is directly related to the
regularity of function f .

Imagine for a moment that this lemma is proven. If we can subsequently write a

87

Figure 45 – Residuals of fitting the function x5 with a degree 4 polynomial.

Figure 46 – Ridge sinusoidal function varying in only one dimension.

88

Figure 47 – Embedding of the compact Ω into a cubic box of size [−π∆, π∆]d.

decomposition of sine/cosine functions in terms of ridge functions σ as follows:

cos(t) =
∑

j

λc
j σ(γc

j t + δc
j) (96)

sin(t) =
∑

j

λs
j σ(γs

j t + δs
j) (97)

then we will have made progress.

Let’s move on to the proof of the lemma by relating K to the regularity of f . So,
we work on a compact set Ω ⊂ Rd. Since it is bounded, we can embed it in a larger box
such that (see Figure 47):

Ω ⊂ [−π∆, +π∆]d (98)

Next, we define a finite-energy Fourier basis on the large box L2([−π∆, +π∆]d).

A quick reminder in d = 1:

L2([−π∆, +π∆]) =
{

f / ||f ||2 =
∫ π∆

−π∆
|f(x)|2dx < ∞

}
(99)

On L2([−π∆, +π∆]), we know that the family
{
einx/∆

}
n∈Z

(100)

89

is an orthogonal basis, with the inner product defined as

⟨f, g⟩ =
∫ π∆

−π∆
f(x)g∗(x)dx (101)

Now, in d dimensions, x ∈ Rd = (x1, . . . , xd), and the set of vectors
{
ein1x1/∆.ein2x2/∆.(. . .).eindxd/∆

}
{n1,...,nd}∈Zd

=
{
eiw.x/∆

}
w∈Zd

(102)

form a orthogonal basis for L2([−π∆, +π∆]d) 29.

We want to approximate f on Ω (see Figure 47) which we have embedded in
[−π∆, +π∆]d. We will extend f to Rd by imposing a null condition outside of [−π∆, +π∆]d

and, for example, by using linear interpolation on the complement of Ω in [−π∆, +π∆]d.
Thus, based on the preceding discussion, f ∈ L2([−π∆, +π∆]d) can be decomposed in
the Fourier basis as follows 30:

f(x) = 1
(2π∆)d

∑
w∈Zd

f̂(w)eiw.x/∆ (103)

However, this requires an infinite number of frequencies, so we would like to know if we
can take a limited number (this is a form of sparsity) and still obtain a good approximation
of f .

The w ∈ Zd are actually the weights of the hidden neurons; in 2D, they tile space as
shown in Figure 48 (integer intersections). By constraining them to the smallest weights
(red circle), we recover the Perceptron regularization:

||w|| ≤ C (104)

This restriction is very natural because we want to approximate smooth functions where
low frequencies dominate. We will then attempt to approximate function f using the
truncated Fourier basis and examine the error norm.

29. Note: The proof proceeds by showing that the 1D version is orthogonal, the density is achieved by
the Poisson kernel, and the d-dimensional version is formed by the product of the 1D bases.

30. The normalization coefficient is not important.

90

Figure 48 – Illustration of the weights w = {n1, . . . , nd} ∈ Zd, and focusing on weights
||w|| ≤ C is equivalent to using Perceptron-type regularization.

6.3.2 Approximation of Sinusoids by σ

So, the next step is to approximate sinusoids using the non-linearity. We will do
this with the ReLU. Therefore, we need to consider cases of:


cos(w.x)

sin(w.x)
with |w| < C and x ∈ [−π∆, +π∆]d (105)

Note that the dot product w.x (the argument of cosine or sine) is bounded by:

|w.x| < |w|.||x||L2 < |w|.||x||L1 < Cπ∆d (106)

Let’s consider cosine (here, we are dealing with scalars, so in 1D). We want:

| cos(t) −
∑

j

λc
j σ(γc

j t + δc
j)| ≤ ϵ/K (107)

(The bound comes from the fact that the approximation of f by the sum of K cosines
and sines is bounded by ϵ; we ignore the factor of 2). How many non-linearities do we

91

need?

Figure 49 – With a linear combination of ReLU, we can obtain a "triangle" function (in
green).

Observe that with ReLU, we can create a Triangle function through a linear combi-
nation, as shown in Figure 49. We know (from the 2018 lecture) that the Nyquist theorem
tells us that this triangle generates the vector space of linear splines. To convince yourself,
in Figure 50, you can easily see that the sum of the red and green triangles gives the blue
curve. Therefore, triangles can precisely approximate a piecewise linear function, which
can approximate the cosine to a certain level of fixed precision.

Figure 50 – Approximation of a piecewise affine function using properly normalized
"triangle" functions.

So, by using ReLU and their translations, we can achieve any piecewise linear

92

approximation of the cosine function.

Note that biases are used in this operation to translate the ReLU functions. Ho-
wever, how many ReLU functions do we need? In fact, we need as many as the number
of biases, which is the same as the number of samples needed to obtain an approximation
of ϵ′ = ϵ/K accuracy 31.

We need 2K sines and cosines, and each sine/cosine requires 2π∆dC/ϵ′ samples
(domain size divided by error), so the number of ReLU functions is (order of magnitude):

Nσ ≈ K2∆dC/ϵ ≈ C2d+1 d∆
ϵ

(108)

In this formula, ultimately ∆ is the domain size, and d is the dimension; these two
factors are not critical. On the other hand, we have the crucial factor C2d+1 with C(ϵ)
governed by the regularity of the function which determines the high-frequency cut-off.

In the next section, we will analyze how C(ϵ) varies with the regularity of the func-
tion. However, we won’t be able to constrain it to decrease rapidly enough to counteract
the exponential increase to avoid the curse of dimensionality. The only case that might
work is when we can use much fewer frequencies, meaning we can be sparse. There are
cases where this happens, such as when the problem is separable in different dimensions.
We will also see the state of knowledge in the year 2000 on what can be learned as the
number of layers increases: we will see that there was not much hope - "increasing the
number of layers won’t help!"

7. Multi-Layer Architecture: Part II

7.1 Introduction

Let’s revisit the Universal Approximation Theorem, not because the demonstration
in the previous section provides a construction of a Neural Network with 1 hidden layer,
but rather because it highlights the limitations of this type of network and provides an

93

Figure 51 – Slightly modified diagram of Figure 44 with notations from the Universal
Approximation Theorem.

understanding of the problem and the questions raised.

So, we start with the diagram in Figure 51 (note that the second non-linearity
will not be necessary), and we ask: can we approximate any continuous function on Rd

depending on K (the number of hidden neurons)?

The first-level answer is indeed yes, we can approximate any function, but in most
cases, K will become enormous as soon as we require a good approximation. The second-
level answer is K will have to be enormous, but this will depend on the regularity of the
function f(x).

It is the second level that will interest us because it connects K, the number of
neurons, and the regularity of the function we want to approximate, which we do not
know a priori.

31. As a side note, ReLU is not crucial; we need to define from the non-linearity a function with compact
support that plays the role of a triangle

94

7.2 Recall of the Universal Approximation Theorem

Let’s give another formulation of the Universal Approximation Theorem (Section
6.3):

Theorem 4 If f ∈ C(Rd), and let σ ∈ C(R) be a non-polynomial function, then

∀ϵ > 0, ∃f̃ ∈ Mσ / ∀Ω ⊂ Rd, ∀x ∈ Ω |f(x) − f̃(x)| ≤ ϵ (109)

with

f̃(x) =
K(ϵ)∑
k=1

Ck σ(wk.x + bk) (110)

A reminder of the demonstration principle, which happens in two steps:

1. We decompose f(x) according to a family of ridge functions of the sinusoidal type.
Decomposition into a Fourier series where we identify the {wk} as frequency indices
(considering that the compact Ω is bounded and can be embedded in a large box
of volume (2∆)d, which can be quantized), and the {bk} as translation indices of
the sampling function σ 32. We limit it to low frequencies |w| < C to obtain an
approximation, which gives the value of K.

2. Then we show that sinusoids can be decomposed into σ functions.

In conclusion, the number of σ functions required Nσ for the error on f(x) to be ϵ is
obtained as follows:

|w| < Cϵ ⇒ K = Cd
ϵ ⇒ Nσ ≈ K2∆dCϵ/ϵ ≈ C2d+1

ϵ

d∆
ϵ

(111)

In fact, it is the constraint on K that matters. The question is, what is the value of the
constant Cϵ?

32. Note that we used a ReLU, but the complete proof shows that this result is independent of σ

95

7.3 Convergence of the Approximation f̃

We know that we have truncated the high frequencies to obtain the approximation
f̃(x), so

f̃(x) =
∑

|w|<Cϵ

f̂(w) ei 2π w.x
∆ (112)

Furthermore, as we are working with an orthogonal basis, we can quickly deduce an error
in the approximation:

f(x) − f̃(x) =
∑

|w|≥Cϵ

f̂(w) ei 2π w.x
∆ (113)

In L2 norm, this translates to

∥f(x) − f̃(x)∥2 = 1
(2π∆)d

∫
[−π∆,π∆]d

|f(x) − f̃(x)|2dx (114)

The error corresponds to the energy of all the coefficients omitted, specifically

∥f(x) − f̃(x)∥2 = 1
(2π∆)d

∑
|w|≥Cϵ

|f̂(w)|2 (115)

The regularity of the function f is reflected in the rate of decay of the Fourier coefficients 33.
This concept forms the basis of Harmonic and Functional Analysis.

Note that since f ∈ L2([−π∆, π∆]d), the Fourier series converges. So, when Cϵ → ∞,
we know that the error tends to 0. There are no issues in that regard.

The real challenge, once again, is how to choose the value of K. We can relate the
uniform regularity of f to the decay of |f̂(w)|, which ultimately defines K.

7.4 Definition(s) of Regularity

7.4.1 Regularity in the Sense of Derivatives (Sobolev/Hilbert): Maiorov’s Optimality
Theorem

Let’s consider the 1D case for illustration. For instance, we can define regularity
simply by the first derivative, i.e., consider the function to be differentiable and that it

33. NDJE: Review the 2018 course on Lipschitz functions.

96

has finite energy, which means that∫
|f ′(x)|2dx < ∞ (116)

Now, f̂ ′(w) = iwf̂(w), and if we are on a compact set, the second constraint yields

∑
w

|w|2|f̂(w)|2 < ∞ (117)

So, it’s not only the energy of the function f that needs to be constrained; furthermore,
as the sum converges, we have

|w|2|f̂(w)|2 = o(1) ⇒ |f̂(w)| = o(|w|−1) (118)

indicating the type of decay at infinity of the Fourier coefficients 34. We can extend this
notion by requiring constraints on derivatives up to order m, then we define Sobolev
regularity: ∑

w

|w|2m|f̂(w)|2 < ∞ ⇒ |f̂(w)| = o(|w|−m) (119)

Since the function f is square-integrable, we can express the constraint differently 35.

∑
w

(1 + |w|2m)|f̂(w)|2 = A < ∞ (120)

That being said, the conclusion is that high-frequency energy will decay faster as m

increases. So, let’s revisit the error calculation:

∥f(x) − f̃(x)∥2 = 1
(2π∆)d

∑
|w|≥Cϵ

|f̂(w)|2 <
∑

|w|≥Cϵ

(1 + |w|2m)
C2m

ϵ

|f̂(w)|2

< A/C2m
ϵ = ϵ2 (121)

34. NDJE: reminder o(1) ≪ 1 for a mathematician.
35. NDJE: one also finds for L2 functions the constraint ∥f∥2

L2,m =
∑

w(1 + |w|2)m|f̂(w)|2 = A < ∞,
which indicates that f is an element of the Hilbert space Hm (cf. L2 functions satisfying this Fourier
constraint), but the one given by S. Mallat works just as well.

97

The constraint on Cϵ and K (the number of neurons) can then be written as

Cϵ = A1/2mϵ−1/m ⇒ K = Ad/2mϵ−d/m (122)

The number of coefficients to adjust grows as

Nσ ∝ K2 ∝ ϵ−2d/m (123)

Remember that we want to make ϵ as small as possible, so for K not to explode in high
dimensions (cf. large d), we can only approximate functions of very high regularity (cf.
large m). In other words, requiring regularity on derivatives of order m gives an apparent
dimension of the problem determined by d/m.

In the years 1988-94, efforts were made to obtain better upper bounds for equa-
tion 121. Here, S. Mallat used sine/cosine functions instead of directly analyzing ReLU
functions to sample the function f , so it’s not optimal but intentional on his part for
clarity of presentation. The answer from these studies is that YES, instead of requiring
K2 coefficients, we can very well get by with just K coefficients. But this doesn’t change
the conceptual picture because d ≈ 106. With that said, let’s provide the definitive form
of the theorem on Sobolev functions.

Theorem 5 Maiorov (1999): If f has m Sobolev derivatives, then there exist sigmoid
functions such that the total number of control coefficients is of the order of

K ≈ ϵ−(d−1)/m (124)

But what’s very nice is that WE CAN’T DO BETTER! That is to say, there is no (linear
or non-linear) scheme that can beat this scaling law. So, we can say "end of the story",
we’ve found the universal approximation machine. But the problem remains the same: if
we want to reduce the error by 2, then we must multiply the number of neurons by a
colossal factor according to the law:

ϵ → ϵ/2 ⇒ K → 2(d−1)/m K (125)

So, this result, although mathematically elegant, is entirely impractical except in cases of
reduced dimensionality! We need to consider other types of regularity much greater than

98

and beyond Fourier Analysis for cases of very high dimensionality that would make the
result less pessimistic.

7.4.2 Other Types of Regularity

A comment from S. Mallat: there is a "tricky" aspect of mathematics in which we
arrive at theorems like Maiorov’s, and we tend to forget the assumptions (not of the
theorem itself) of the general conceptual framework in which they are embedded. Thus,
the consequences of Maiorov’s theorem have led the vast majority of people working in
the field to consider that single or multi-layer neural networks will not be a future subject.

Therefore, it is better to revisit the basic questions that gave rise to the hypothesis
of Sobolev regularity and, once again, to delve into the concept of regularity itself. In
this new framework of thinking, we can mention a paper whose first version dates back
to 2014 and was revised in October 2017 by Francis Bach (ENS/Inria): "Breaking the
curse of dimensionality with Convex Neural Networks" 36. Let us recall that in this type
of problem, there are three facets to consider:

— Approximation: If we have an oracle that provides the weights, what is the error in
approximating the function f(x)?

— Optimization: What algorithm can be used to obtain the weights?
— Estimation: We have only a "reasonable" number of N examples, how do we proceed?

That said, we will focus on the first problem, which is Approximation, because it ulti-
mately conditions the rest. What are the assumptions about f that we can make for the
Approximation problem to have a reasonable solution? F. Bach has compiled a list of
"classic" interesting assumptions, of which there are three.

In the first assumption (Dimensionality Reduction): we consider the set Ω such
that

x ∈ Ω ⊂ Rd with dim(Ω) = s ≪ d (126)

In other words, Ω is a manifold in Rd. The simplest version is that of a linear manifold,
so

f(x) = g(WT x) with rank(W) = s < d (127)

36. source: 2014arXiv1412.8690B, see a presentation https://www.di.ens.fr/~{}fbach/fbach_cifar_
2014.pdf

https://www.di.ens.fr/~{}fbach/fbach_cifar_2014.pdf
https://www.di.ens.fr/~{}fbach/fbach_cifar_2014.pdf

99

meaning that W is a d × s matrix. Through this, the number of relevant variables is
actually s. In this case, as we outlined in the previous section, the Universality and
Maiorov theorems apply with the replacement of d by s (note: this resembles feature
reduction):

ϵ ≈ K−(m/(s−1)) (128)

There are types of problems that naturally lend themselves to this dimensionality re-
duction: e.g., measurements at different points on an articulated arm because the joints
introduce structural constraints.

The second assumption uses "Interaction Separability". This is often found in
physical problems. For example, in a probabilistic case where we study Markov Models:

x ∈ Rd, f(x) =
J∑

j=1
fj(xi; i ∈ Ij) (129)

meaning that f decomposes into a sum of functions, each of which depends on only a small
number of variables. One can imagine an image in which local operations are performed
that only involve a small number of pixels for each operation. In physics, this type of
decomposition is found when long-range interactions can be neglected. For a Markov
probability problem, it’s as if we only need to know local conditional probabilities. So,
this separability assumption is crucial and is found in many domains. It helps break the
curse of dimensionality.

If all the Ij are of dimension s, we have J problems of dimension s. In this case, the
number of "neurons" is on the order of

ϵ ≈ J × K−(m/s) ⇔ K ≈ (ϵ/J)−m/s (130)

This is a situation that occurs in many problems. What Francis Bach looks at is the case
where

f(x) =
J∑

j=1
fj(⟨x, wj⟩) (131)

meaning that we project the d variables onto a dot product, so s = 1, and in this case

ϵ ≈ J × K−(m) ⇔ K ≈ (ϵ/J)−m (132)

100

The third assumption uses "Sparsity or Parsimony". In this context 37, we ask whether
we can reduce the number of descriptors for the function f(x). We define a dictionary D =
{gm}m≤M with potentially many features/patterns/descriptors gm; however, to obtain an
approximation f̃ of f , we can take only a small number of them:

f̃(x) =
∑
m∈I

αkgk(x), ∥f − f̃∥ ≤ ϵ with |I| = K such that ϵ ∼ K−α (133)

In other words, we take the smallest number of descriptors (K), and at the same time, we
want an approximation error that decreases rapidly as we increase this number.

Recall that in Fourier analysis, we had the same approach, i.e., we do not keep all
frequencies but restrict ourselves to low frequencies |w| < C (cf. Perceptron regulariza-
tion). However, the constant C depends solely on the nature of the differentiability of f

through m, but it does not fundamentally depend on the function f itself: two functions
that are three times differentiable will have nearly the same value of C.

In the sparsity assumption, we allow ourselves to adapt to the function f , especially
I depends on f . Therefore, we introduce adaptability and, above all, the coefficients αk will
depend on f , i.e., we naturally introduce non-linearity. Adaptability can be understood
quite easily, as in the case of Figure 52, where adaptive sampling is more effective than
regular sampling in capturing the abrupt variability of the function itself.

A result by A. R. Barron was proposed in 1991: instead of imposing the Sobolev
constraint (Eq. 119), a weaker assumption is made:

∑
w

|w| |f̂(w)| < ∞ (134)

then the number of terms (neurons) will decrease/increase as follows:

K ∝ 1
ϵ

(135)

meaning that the curse of dimensionality has been removed! This result is cited many
times in machine learning books. This result seems miraculous because let’s recall the

37. Note: This notion was also addressed in 2018: Wavelet Analysis.

101

Figure 52 – Example illustrating the difference between regular sampling (red points)
regardless of the function to be processed and adaptive sampling that takes into account
the abrupt variations of the function to be approximated (green points).

Sobolev assumption: ∑
w

|w|2m|f̂(w)|2 < ∞ (136)

at first glance, it is not clear what has changed. However, it is not at all the same thing
because remember that w ∈ Zd (see the Universality Theorem), and there is a notion
of "hidden" sparsity that is almost never satisfied in Fourier analysis. Let’s see how A.R.
Barron’s new assumption works. We will make it even simpler to show the connection
with sparsity. Recall that if f ∈ L2 and thus has finite energy, then

∥f∥2
L2 =

∑
w

|f̂(w)|2 < ∞ (137)

This is a strong constraint.

102

Theorem 6 If we assume

A =
∑

w∈Zd

|f̂(w)| < ∞

then

∃ {wk}k≤K with K = (A/ϵ)2 / fK(x) =
K∑

k=1
f̂(wk)e−iwkx, ∥f − fK∥2 ≤ ϵ2 (138)

The idea is to show that we get rid of the exponent d. In fact, the constraint is an L1
norm, and as soon as this norm is used, there is sparsity 38. For the proof, we order the
Fourier coefficients in decreasing order

F = {f̂(wk)/|f̂(wk)| ≥ f̂(wk+1)} (139)

We then use the following result:

Lemma 2
A =

∑
w∈Zd

|f̂(w)| ⇒ f̂(wk) ∈ F , |f̂(wk)| ≤ A

k
(140)

If there is a mechanism that allows us to obtain an approximation by taking only frequen-
cies belonging to a set I, then the error comes from the frequencies that are not taken
into account:

fI =
∑
w∈I

f̃(w)e−iw.x ⇒ ∥f − fI∥2 =
∑
w /∈I

|f̃(w)|2 (141)

Therefore, now to select the right frequencies, we will take those for which the Fourier
coefficients are the largest, so

fK =
K∑

k=1
f̃(wk)e−iwk.x (142)

meaning that I = FK ⊂ F for which we constrain k ≤ K. Then

∥f − fK∥2 =
∑

k>K

|f̃(wk)|2 ≤
∑

k>K

A2

k2 ≤ A2
∫ ∞

K

dx

x2 = A2

K
(143)

38. Note: See the types of L1, L2 regularization in the 2018 course: Classification/Regression in high
dimension

103

and thus if we take K = A2/ϵ2 then

∥f − fK∥2 ≤ ϵ2 (144)

This is the result of the theorem. Therefore, sparse approximation consists of selecting
the largest Fourier coefficients, and if the coefficients decay fast enough, the constraint on
K is independent of the dimension d. The remaining task is to prove Lemma 2 concerning
the L1 norm that determines the decay of the coefficients. We have (where wk are the
frequencies with ordered Fourier coefficients, cf. F), ∀P :

A =
∑

w∈Zd

|f̂(w)| =
P∑

k=1
|f̃(wk)| +

∑
k>P

|f̃(wk)| ≥
P∑

k=1
|f̃(wk)|

≥ P × |f̃(wP)| (145)

So, we indeed have:
∀P |f̃(wP)| ≤ A

P
(146)

which is the result of the lemma.

This result is more general than the particular case of the Fourier transform; as
long as the coefficients in an orthogonal basis are controlled by an L1 norm. In fact,
A.R. Barron uses the condition:

∑
w

|w| |f̂(w)| < ∞ ⇒ K ∝ 1/ϵ (147)

and not 1/ϵ2 as above, but the idea is the same.

However, why does Baron’s miraculous theorem not apply to real problems? For
the simple reason that, with very few exceptions, functions f(x) (in image classification,
sound, etc.) are not sparse in Fourier space. So, it’s a very nice theorem but it doesn’t
apply. In summary, in the 2000s, with all the forms of regularity considered, the result of
increasing the number of layers is not very clear: will it change the outcome?

104

7.4.3 Increasing the Number of Layers: It’s Better!

There is a great paper that shows that, on the contrary, increasing the number
of layers is better. It’s an article by Ronen Eldan and Ohad Shamir (2015-16): "The
power of depth of feedforward networks" 39. The authors show that there exists a simple
radial function of Rd expressible with a 3-layer network (2 hidden layers) that cannot be
expressed with a 2-layer network (1 hidden layer) without using an exponential number
of neurons. This function is the Fourier transform of the unit-volume ball of radius Rd in
d-dimension:

ϕ(x) =
(

Rd

||x||

)d/2

Jd/2(2πRd||x||) (148)

So, through this counterexample to the universality theorem (note that this doesn’t mean
the theorem is false, you have to be careful about the assumptions): it’s better to increase
the number of layers than to increase the number of neurons in a smaller network. To
build their function, Eldan and Shamir use the fact that to approximate their function,
you need a lot of high-frequency power, which kills the |w| < C approximation in the
proof of the 1 hidden layer network. And they use the high-frequency rotation symmetry
so that adding one more hidden layer works very well.

So, the result is interesting for the idea that multi-layer networks are better. Howe-
ver, the functions in their "demonstration" are not realistic.

8. Neural Network Optimization

8.1 Introduction

Let’s recall the diagram in Figure 1 representing the parameterized algorithm that
maps x to ỹ, the output of the neural network. In fact, ỹ depends on the parameterization
θ, and we denote it as ỹθ. In the case of Classification, we have input-output pairs (x, y)
with y an index, which is quite different from the case of Regression where y ∈ Rp. In
the case of indices, there is no natural topology; one can index in multiple ways. Thus,

39. https://arxiv.org/abs/1512.03965

https://arxiv.org/abs/1512.03965

105

the notion of continuity of the underlying function f(x) that ỹθ must approximate is
not at all clear!

In terms of optimization, we define the notion of risk (see the 2018 course):

r(y, ỹ) =

∣∣∣∣∣∣∣∣
0 y = ỹ

1 y ̸= ỹ

(149)

The total error on an empirical database used for learning, for example, is defined from
the risk:

R̃(θ) = 1
n

n∑
i=1

r(fθ(xi), yi) (150)

We hope that this empirical risk converges to the average risk as n tends to ∞:

R(θ) = E(x,y)[r(y, fθ(x))] (151)

What’s the problem? Certainly, we have gradient descent algorithms to minimize the
risk, but that assumes that the function R̃(θ) is differentiable. However, in classification,
the risk r(y, ỹ) is not differentiable at all, and this adds to the fact that y are indices.
The approach to this problem is to find quantities that are regular and can be estimated
with regular fθ that do not depend on too many parameters. Then, we define a risk that
can be differentiated with respect to θ.

8.2 Bayesian Approach and Maximum Likelihood Principle

8.2.1 Transforming the Problem via Bayes

So, we have the average risk introduced in the previous section:

R = E(x,y)[r(y, ỹ(x))] (152)

106

Figure 53 – The neural network viewed as a "machine" that approximates conditional
probability densities (normalized).

One can ask what is the best approximation ỹ(x) of y? To answer this question, we can
use conditional probabilities to write that

R = Ex

(∑
y

r(y, ỹ(x)) p(y|x)
)

(153)

with ∑
y p(y|x) = 1. Now, y = {0, 1}, and we want to minimize the risk R, so we would

like r(y, ỹ(x)) = 0 in the case where the probability p(y|x) is maximal. Therefore,

r(y, ỹ(x)) = 0 (meaning : y = ỹ) when p(ỹ|x) = max
y

p(y|x) (154)

This is the Bayesian Classifier: ỹ(x) is the most likely class given the observation x. This
implies that we choose the class that maximizes p(y|x), and as a result, ỹ(x) minimizes
the error on average. This is the ideal classifier, but to implement it, we need to know the
probability distribution p(y|x). Therefore, we transform a problem of approximating y

(indices) into the approximation of p(y|x) continuous functions (for all y). Note that if we
have 10 possible values of y (10 classes), then there are 10 functions of x to approximate:
p(y|x) = gy(x). These gy(x) are well-regularized and well-structured functions.

The Neural Network is viewed from this perspective as a "machine" that approxi-
mates conditional probability densities (normalized). The emerging schema is shown in
Figure 53.

8.2.2 Maximum Likelihood

So, we want pθ(y|x) to be an approximation of the true probability distribution
p(y|x). Therefore, we need a metric that gives us an estimate of the approximation error.

107

In this context, the maximum likelihood will appear as a particular case of minimizing
the error between pθ(y|x) and p(y|x) using the specific distance of the Kullback-Leibler
divergence.

The framework is as follows: given a family of Data = {xi, yi}i≤n, how do we approxi-
mate p(y|x)? If the sample family is drawn from pθ(y|x), then the principle of maximum
likelihood is to choose θ = θ∗ such that the probability of the data is maximized for
pθ∗(y|x). It is assumed that the data are all independent.

The probability of obtaining yi given xi according to pθ is by definition pθ(yi|xi).
If the data are all independent, then the probability of obtaining the n samples in the
family is simply the product of individual probabilities, i.e.,

n∏
i=1

pθ(yi|xi) (155)

and thus,

θ∗ = argmax
θ

[
n∏

i=1
pθ(yi|xi)

]

= argmax
θ

[
log

(
n∏

i=1
pθ(yi|xi)

)]

= argmax
θ

[
1
n

n∑
i=1

log pθ(yi|xi)
]

(156)

(Note that the normalization factor is not important).

Now, the average of "log" can be expressed as the expectation of "log" over the
empirical distribution of the sample family, and thus, the maximum likelihood principle
is translated into

θ∗ = argmax
θ

E
{x,y}∼Data

(log pθ(y|x)) (157)

This Likelihood Principle can be seen as the minimization of a "distance": the Kullback-
Leibler divergence.

108

8.2.3 Kullback-Leibler Divergence

The Kullback-Leibler divergence 40 is defined as

DKL(p||q) = Ep

(
log p

q

)
=
∫

p(x) log p(x)
q(x) dx (158)

It is not a strict distance, but it has important properties:

— DKL(p||q) ≥ 0, which can be shown by noting that ∀x > 0, log x ≤ x − 1 (equality
for x = 1);

— It is not symmetric (so it is not a distance);

— One way to understand it is to imagine symbols produced by p(x) and wanting to
code these symbols optimally. However, you are given the distribution q(x) instead
of p(x), so you will have coding inefficiency: DKL(p||q) is precisely this inefficiency.
Why? Because the optimal Shannon code associated with p(x) is of size − log(p(x)),
but you have q(x) instead, so you get the optimal code − log(q(x)), and the difference
between the two reveals log(p/q), which on average yields p log(p/q).

— There are many other interpretations of this "distance" that appear everywhere in
information theory (including machine learning).

— If DKL(p||q) = 0, then p = q (this is the particular case of the first point above).

Therefore, it makes sense to use this divergence to optimize a neural network that attempts
to approximate p(y|x) with pθ(y|x).

Theorem 7 Maximum likelihood will minimize

DKL(pData(y|x)||pθ(y|x))

The proof is quite simple; it is sufficient to write the value of the divergence as

40. NB: The Kullback-Leibler divergence or K-L divergence, also known as relative entropy, is named
after Solomon Kullback and Richard Leibler, two American cryptanalysts from the NSA who invented
this concept in the 1950s.

109

follows:

DKL(pData||pθ) = EpData

(
log pData

pθ

)
= EpData (log pData(y|x)) − EpData (log pθ(y|x)) (159)

and we want to minimize this with respect to θ. Now, only the second term depends on θ,
and minimizing it is equivalent to maximizing its opposite, which is exactly the definition
of maximum likelihood.

Therefore, choosing the parameter θ that maximizes likelihood is equivalent to
finding the probability distribution that best approximates the empirical distribution
(i.e., obtained from the data itself) according to the Kullback-Leibler divergence metric.

8.2.4 Relation with Bayesian Models

8.2.4.1 A Preliminary Comment

In the literature on machine learning, there are consistently two viewpoints:
— A purely deterministic viewpoint that starts from the observation that the network

provides the response y = f̃(x), which should best approximate the function f(x).
This falls into the domain of function approximation, which is entirely deterministic
(i.e., no probability involved).

— A purely probabilistic and inherently Bayesian viewpoint that tries to approximate
probability densities in this context.
In fact, these two viewpoints are equivalent, and researchers often switch between

them within the same publication to identify the right "object" to estimate. For example, in
the case of regression with "well-behaved" functions, there is no need for the probabilistic
viewpoint. However, in classification, where nothing is well-behaved initially, the use of
probability distributions is a way to reformulate the problem in a regular framework.

8.2.4.2 Bayesian Approach vs. Deterministic Approach

In the Bayesian approach, we have data, Data = {xi, yi}i≤n, and parameters θ that
model these data. Furthermore, we would like to obtain θ∗ that maximizes the probability
of θ given the dataset:

θ∗ = argmax
θ

p(θ|Data) (160)

110

This is the maximum a posteriori (MAP) estimation. According to Bayes’ theorem:

p(θ|Data) = p(Data|θ) π(θ)
p(Data) (161)

with p(Data|θ) ≡ L(θ) as the likelihood, π(θ) as the prior on θ, and p(Data) as the
probability of obtaining the data. We want to calculate the max with respect to θ, so only
the numerator matters.

If we have no a priori information about θ, then π(θ) = constant, and therefore, the
value of θ is such that:

θ∗ = argmax
θ

p(Data|θ) (162)

which is nothing but the maximum likelihood principle that maximizes the likelihood.
The Bayesian formulation and the maximum likelihood principle coincide only if π(θ) =
constant.

However, if π(θ) ̸= constant, then maximizing the probability is equivalent to maxi-
mizing the logarithm of the probability. Thus:

θ∗ = argmax
θ

[log p(Data|θ) + log π(θ)] (163)

The term log π(θ) is a penalty that can also be found in neural networks when defining
the cost function. In fact, we can write:

R̃(θ) = 1
n

n∑
i=1

r(fθ(xi), yi) + C(θ) (164)

where the function C(θ) arises from the a priori knowledge about θ and is formulated
as a constraint, such as using L2 regularization on the weights. In other words, imposing
that the L2 norm on the parameter weights is not too large is a prior information (cf.
π(θ) ̸= constant) to constrain the value of θ.

Thus, we can see that expressing a cost function in a purely deterministic do-
main with regularization C(θ) can also be seen as a purely Bayesian version with prior
probability on θ.

111

8.2.4.3 Regression Case

In fact, we come back to the same ideas as before. In this case, we have y = f(x)
that we want to approximate with yθ = fθ(x), and we want to minimize the empirical
quadratic risk in the mean:

min
θ

n∑
i=1

|yi − fθ(xi)|2 (165)

What is the connection with Maximum Likelihood? The network calculates fθ(x),
and we would like to associate it with a probability distribution pθ(y|x). In general, we
use a Gaussian centered on the computed value fθ(x) with an error σ:

pθ(y|x) = 1√
2πσ2

e− (y−fθ(x))2

2σ2 (166)

If we now apply maximum likelihood, which is equivalent to minimizing the Kullback-
Leibler divergence:

min
θ

DKL(pData||pθ) = −min
θ

EpData (log pθ(y|x))

= min
θ

EpData((y − fθ(x))2)

= min
θ

n∑
i=1

|yi − fθ(xi)|2 (167)

So, minimizing a quadratic error (cost) is also equivalent to saying that we take the
maximum of a Gaussian likelihood centered on the network’s output.

Both approaches are therefore equivalent, and in this case, they do not bring much
difference. However, in classification, where there is no a priori metric, we have seen how
the Kullback-Leibler divergence (or Maximum Likelihood) provides the solution.

8.3 Implementation for a Neural Network (Classification)

8.3.1 Introduction

The technique is quite generic and applies to a wide class of classifiers. Recall Figure
53 with θ representing all the coefficients of the linear matrices Wk and all the biases bk

112

(here, we have one layer). However, one property of probabilities pθ(y|x) is that:

∑
y

pθ(y|x) = 1 (168)

But the network’s outputs have no reason to be normalized, so we must add a
normalization step. Once this step is performed, the best ỹ, meaning the best class (for
a given x), is the one that satisfies:

ỹ = argmax
y

[pθ∗(y|x)] (169)

This is an entirely Bayesian approach.

8.3.2 Introduction of Softmax

Now, how can we achieve normalization? The softmax function will associate with
the output, let’s call it zy(x), which is the numerical value z for index y given x, the value:

zy(x) softmax−−−−→ ezy(x)∑
y′ ezy′ (x) = pθ(y|x) (170)

We use this definition and not the simple expression zy/
∑

y′ zy′ because the zy are not
necessarily positive. Moreover, if there is a dominant value, the exponential reinforces this
state. There is another advantage that we will examine now.

According to the previous section, we want to minimize the DKL divergence, which
is expressed as: ∑

i

− log pθ(yi|xi) (171)

where the expression of the probability pθ(yi|x) is given by the softmax. Therefore, we
want to minimize (in fact, zy depends on θ but the notation becomes heavy):

L(θ) =
∑

i

− log
(

ezyi (xi)∑
y′ ezy′ (xi)

)
= −

∑
i

zyi
(xi) − log

∑
y′

ezy′ (xi)

 (172)

This function L(θ), for a given sample i, directly depends on the network’s output

113

thanks to the softmax, and on a normalization term. Having L(θ) directly linked to
zyi

(xi) will allow efficient conditioning of the minimization problem. Indeed, we want
to minimize L(θ), so we want to maximize zyi

(xi), i.e., maximize the probability of the
response yθ(xi) = yi. The other term looks like the maximum of zy′(xi), especially if this
maximum is well separated from the other values:

log
∑

y′
ezy′ (xi)

 ≈ max
y′

[zy′(xi)] (173)

Thus, L(θ) boils down to comparing zyi
(xi) and max

y′
[zy′(xi)]:

L(θ) ≈ −
∑

i

(
zyi

(xi) − max
y′

[zy′(xi)]
)

(174)

Therefore, during an iteration of minimization on θ, if the maximum of zy′(xi) is
achieved for y′ = yi, then the difference is 0, and we have won because there is no need
to update θ. The softmax allows us to do this with a differentiable function.

8.3.3 Optimization: Special Case of Classification by Logistic Regression

Logistic regression (in fact, it is classification) can be viewed as a neural network
with only one unhidden layer whose response z is a linear function of the input x (no
non-linear activation function):

z = Wx + b (175)

If we take the yth row of this matrix, it represents the response zy(x) as follows:

zy(x) = ⟨x, wy⟩ + b (176)

with y an integer as if it were a class index. Furthermore, noting that θ = W, we want
to minimize the following cost function:

L(W) = −
∑

i

(⟨xi, wy⟩ + b) − log
∑

y′
e⟨x,wy′ ⟩+b

 (177)

114

Figure 54 – Schematic representation of the vectors w around which the data aggregates.

The geometric interpretation is as follows: as a first remark, wy has the same dimen-
sion as x, and they both evolve in the same space. So, the wy each represent a direction in
this space. The classifier will try to find the direction wy that coincides for class yi with
the direction wyi

around which the xi aggregate (see Figure 54). This is the effect of the
first term; the other term in the L(W) function will constrain the direction wy to not be
in the direction of the other classes.

What happens if we have an error, i.e., an "outlier" for sample i? For example, if
we have 2 classes {−1, 1}, then w1 = −w−1 (see Figure 55), and suppose that sample i is
classified as −1 instead of 1. The penalty is equal to:

−(zyi
(xi)−max

y′
[zy′(xi)]) = −(z1(xi)−z−1(xi)) = −⟨xi, w1⟩+⟨xi, w−1⟩ = 2⟨xi, w−1⟩ (178)

Now, xi is located in the direction of w−1 relative to the separating plane. So, we
penalize by (2 times) the distance it takes to bring it back to the correct side of the
plane (i.e., we take its symmetry with respect to the plane). This is very similar to what
the SVM algorithm does for the margin term that serves as regularization (see section
5.2.4).

115

Figure 55 – Outlier in the case of 2 classes.

Figure 56 – Schematic representation of the different parts of an MLP.

8.3.4 For a Multi-Layer Perceptron (MLP) Neural Network

In the case of an MLP, there are several hidden layers for which the transformation
between two successive layers involves the following relation:

xj = σ (Wjxj−1 + bj) (179)

up to layer J where we obtain the representation xJ = Φ(x). Then, we aggregate using
logistic regression to obtain a classification vector through the softmax. Finally, we can,
for example, take the max to get ỹ (see Figure 56).

116

We optimize jointly the data representation (Φ(x)) and the classifier (logistic). The
prior information is contained in the architecture. Note that a large number of samples
is also required to learn the representation. In the next section, we will address the algo-
rithmic part of MLPs.

9. Optimization Algorithms for MLPs

We will discuss the "Backprop" algorithm for gradient backpropagation and stochas-
tic gradient descent. Later, we will delve into the proofs.

9.1 Gradient Computation in MLPs (Back-propagation)

See the 1986 article by Rumelhart, Hinton, Williams 41, which exploits gradients of
composite functions—a "simple" idea that proves to be highly effective in the context of
MLPs 42.

9.1.1 Forward & Backward Flow

The multi-layer network can be represented as a stack of layers with inputs, outputs,
and operations F (see Figure 57). The first layer of neurons performs the operation (note
that W often implicitly includes the bias with a convention of adding a 1 for xi):

x1 = F1(x0, W1) = σ(W1x0 + b1) (180)

and so on for F2, F3, etc., up to FJ which produces the output xJ , which is compared by
a loss function (loss) to the output y of a labeled sample. The set of network parameters
(the Wi, bi) is denoted as θ, some of which can potentially be shared by multiple Fi.

41. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) Learning representations by back-
propagating errors. Nature, 323, 533–536.

42. NDJE: I pointed out in 2017 that Werbos discussed this in 1974 and, in 1982, applied it specifi-
cally to neural networks. LeCun and Parker also published related ideas in 1985. However, the ideas of
error minimization through gradient descent date back to Cauchy in 1847 and Hadamard in 1908. So,
determining who first invented the Back-Propagation algorithm is a story in itself.

117

Figure 57 – Schematic representation of the "forward" flow in which we follow a sample
x as it passes successively through the different layers of the network, to be compared to
y in a loss function. The network parameters (denoted θ) come into play in describing the
operations F at each layer.

118

Thus, the global average loss function that depends on θ, denoted ℓ(θ), is calculated over
a batch of labeled samples {xi

0, yi}i≤N as follows:

ℓ(θ) = 1
N

N∑
i=1

ℓ(xi
J , yi) (181)

where θ comes into play in the calculation of xi
J . To find the minimum of this cost function,

we use gradient descent, which, at step n, defines a set of parameters denoted θn, and the
value n + 1 is derived by adding a contribution directed opposite to the gradient of ℓ(θ)
calculated with θn. Thus,

θn+1 = θn − α∇θℓ(θ)

= θn − α
1
N

N∑
i=1

∇θℓ(xi
J , yi) (182)

Therefore, the problem is to calculate ∇θℓ(xi
J , yi) for any input xi

0 ≡ xi. The principle is
as follows: the output of the j-th layer is calculated as

xj = Fj(xj−1, Wj) (183)

If we now know the variation of the loss with respect to this output, i.e., we know ∇xj
ℓ,

then
∇Wj

ℓ = ∇xj
ℓ × ∇Wj

Fj (184)

So, it is interesting to calculate not only ∇Wj
ℓ but also ∇xj

ℓ. This is visualized in the
diagram in Figure 58, where at step j, we distinguish between an "upward" or Forward
flow of inputs/outputs xj and a "downward" or Backward flow of inputs/outputs ∇xj

ℓ,
i.e., the backpropagation of error variations.

9.1.2 Initialization: Calculating ∇xJ
ℓ ?

9.1.2.1 In the Case of Regression

The expression for the loss is typically given by

ℓ(xJ , y) = 1
2(xJ − y)2 (185)

119

Figure 58 – Zoom on the inputs/outputs of layer j of the network 57: we distinguish
between an "upward" or Forward flow of inputs/outputs xj and a "downward" or Backward
flow of inputs/outputs ∇xj

ℓ, i.e., the backpropagation of error variations.

and it easily follows that
∂xJ

ℓ = xJ − y (186)

9.1.2.2 In the Case of Classification

There is no a priori differentiability, and xJ is a K-dimensional vector where xJ(k)
signifies the probability of the k-th class estimated by a softmax; whereas y is a one-hot
vector in which all elements are zero except for one class for which y(k) = 1. To address
the differentiability issue, as seen in the previous lecture, we can use maximum likelihood
or minimize the following loss:

ℓ(xJ , y) = −
K∑

k′=1
y(k′) log(softmax(xJ(k′)))

= − log(softmax(xJ(k)))
= −xJ(k) + log

∑
k′

exJ (k′) (187)

where
softmax(xJ(k)) = exJ (k)∑

k′ exJ (k′) (188)

The gradient is then easily calculated by separating the cases where we consider the

120

k component of xJ and y for which y(k) = 1, or the other components for which y(k′) = 0:

∇xJ
ℓ =

∣∣∣∣∣∣∣∣∣
−1 + exJ (k)∑

q
exJ (q) = ∂xJ (k′)ℓ if k = k′

exJ (k′)∑
q

exJ (q) = ∂xJ (k′)ℓ if k ̸= k′

∣∣∣∣∣∣∣∣∣ = softmax(xJ) − y (189)

The expression is ultimately very simple thanks to the softmax. We realize that this
gradient is the error between a "soft" (or smoothed) maximum of the xJ component that
gives the probability of the corresponding class, and y, which is the "true" probability
(i.e., the component with a value of 1 for the correct class). The big advantage of softmax
is its differentiability.

9.1.3 Gradient Backpropagation

This involves the derivative of function composition:

— 1D: h(x) = g(f(x)) then h′(x) = f ′(x)g′(f(x)) which can be reformulated in terms
of variables z = h(x) and y = f(x):

dz

dx
= dz

dy

dy

dx
(190)

— In higher dimensions: x = {xk}k, y = {yj}j, then

∂z

∂xk

=
∑

j

∂z

∂yj

∂yj

∂xk

(191)

If we introduce the Jacobian

(
∂y

∂x

)
≡



∂y1
∂x1

. . . ∂y1
∂xK

...
∂yM

∂x1
. . . ∂yM

∂xK

 (192)

121

then

∇xz =
(

∂y

∂x

)T

.∇yz (193)

So, when calculating ∇xj−1ℓ and ∇Wj
ℓ, we involve the Jacobians of xj with respect

to xj−1 and Wj, which are

∇xj−1ℓ =
(

∂xj

∂xj−1

)T

.∇xj
ℓ =

(
∂Fj(xj−1, .)

∂xj−1

)T

.∇xj
ℓ (194)

∇Wj
ℓ =

(
∂xj

∂Wj

)T

.∇xj
ℓ =

(
∂Fj(., Wj)

∂Wj

)T

.∇xj
ℓ (195)

So, we (retro)propagate the gradient (cf. we move from layer j−1 to layer j) by multiplying
the Jacobians of the transformation in each "box"/"layer" (cf. the functions Fj) given in the
case of a neural network by a transformation involving input-output by linear combination
and a pointwise non-linearity like ReLU.

9.1.4 The Jacobians of Fj

We can decompose (note the bias)

Fj = Fj(xj−1, Wj) = σ(Wjxj−1 + bj) (196)

into two steps (figure 59):

— A matrix step
xj−1

F 1
j−→ Wjxj−1 (197)

— A step of bias addition and application of non-linearity

x
F 2

j−→ σ(x + bj) (198)

So, we can calculate the Jacobians of F 1 and F 2 quite easily. On one hand,

∂F 1
j

∂Wj

= xj−1 ,
∂F 1

j

∂xj−1
= WT

j (199)

122

Figure 59 – Decomposition into two phases F 1 and F 2 of the transformation in a layer.

and on the other hand, for F 2
j , it is good to note that the variables are not mixed, so the

Jacobian is diagonal and can be expressed as follows:

∂F 2
j

∂x1
j−1

= Diag(σ′(x1
j−1 + bj)) (200)

∂F 2
j

∂bj

= Diag(σ′(x1
j−1 + bj)) (201)

9.1.5 Graphical Representation of the Algorithm

We have already seen from figures 57, 58, and 59 the layered and sub-layered struc-
ture of this backpropagation algorithm, and we can generalize these graphs in the case
of parameter sharing, for example. Graphs that can be modeled in this way have one
constraint: they do not include recursion.

Otherwise, libraries like Keras or pyTorch allow you to define the gradients of dif-
ferent layers (if they are not of already known types) and apply gradient descent methods
via backprop.

123

9.2 Convergence Study of GD

In the previous section, we developed the tools to perform Gradient Descent (GD),
but it is essential that GD converges to a minimum of the error on the training data,
with the goal of achieving the smallest possible generalization error. Note that the latter
depends on the class of functions that can be approximated with the chosen network
architecture a priori, which influences the bias term of the error. So, in what situations
does GD converge? What type of GD is needed for efficient convergence? Ultimately, the
challenge lies in finding a network architecture that aligns with the GD method used and
vice versa. Let’s now consider two GD methods: the Batch version and the Stochastic
version.

9.2.1 Batch or Stochastic GD

If we denote zi = (xi, yi), then the overall loss can be expressed in terms of the
chosen variables as

ℓ(θ) = 1
N

N∑
i=1

ℓ(fθ(xi), yi) = 1
N

N∑
i=1

ℓ(θ, zi) (202)

The t + 1 step of GD can be written using the general method as

θt+1 = θt − α∇θℓ(θt)

= θt − α

(
1
N

∑
i

∇θℓ(θt, zi)
)

(BGD)

= θt − α⟨∇θℓ(θt, zi)⟩i≤N (203)

If it takes D operations to compute ∇θℓ(θ, zi) by backpropagation, then to calculate θt+1,
it roughly takes N × D operations.

The question that arose quite quickly is: is it necessary to use all N samples to
calculate an instance of the average gradient? We can answer this by already considering
only a subset M of the N samples, which is the Batch version. However, there is an
even more drastic version that retains only one sample at a time, which is the Stochastic
version. In this case, it ∈ {1, . . . , N} is a sample chosen at random.

θt+1 = θt − α∇θℓ(θt, zit) (SGD) (204)

124

Randomness is important in this operation because then

E[∇θℓ(θt, zit)] =
N∑

it=1
∇θℓ(θt, zit) × P (it) = 1

N

N∑
it=1

∇θℓ(θt, zit) = ∇θℓ(θt) (205)

which highlights that ∇θℓ(θt, zit) is a noisy gradient that, on average, yields the global
gradient of the loss.

The SGD method is much faster than the BGD method, but it converges much
more slowly, especially towards the end when you are close to the minimum. Therefore, to
make a decision, you need to be able to calculate the respective convergence rates. In the
convex case, the Batch method converges exponentially, while the Stochastic method
converges in 1/N.

It is interesting to note that the SGD method was described by Munro & Robbins in
1951 43, but it had never been put into practice due to its slow convergence, and especially
because of the small size of the databases. The game changed as soon as 1) we tackled
non-convex problems, and 2) we were able to use substantial training datasets.

9.2.2 Example of the Quadratic Function: Convergence of GD

Let’s define the Hessian matrix (called the Hessian) of the loss as

H[ℓ](θ) ≡
(

∂2ℓ

∂θi∂θj

)
(206)

If τ is a unit vector in the θ space, then

∂2ℓ

∂τ 2 = τT H[ℓ](θ) τ (207)

In fact, this can be demonstrated by a brief reminder of "directional derivative". If t ∈ R,
x ∈ Rn, and τ is a unit vector in Rn, then let’s define the function g(t) as

g(t) = f(x + tτ) = f(x1 + tτ1, . . . , xn + tτn) (208)

43. Robbins, H. and Munro, S. “A Stochastic Approximation Method.” Ann. Math. Stat. 22, 400-407,
1951.

125

When calculating the successive derivatives of g(t), it follows that

g′(t) =
n∑

i=1
τi ∂xi

f(x1 + tτ1, . . . , xn + tτn) = τT ∇xf(x + tτ) (209)

and

g′′(t) =
n∑

i=1
τi


n∑

j=1
τj ∂xj

∂xi
f(x1 + tτ1, . . . , xn + tτn)

 = τT ∇2
xf(x + tτ) τ (210)

Therefore, when taking the limit as t → 0, we obtain the definition of directional deriva-
tives of f in the direction τ at point x :

∂f

∂τ
= ∇τ f(x) = τT ∇xf(x) (211)

∂2f

∂τ 2 = ∇2
τ f(x) = τT ∇2

xf(x)τ = τT H[f](x)τ (212)

Now, if we perform a Taylor expansion of ℓ in the vicinity of a point θ0 (note: for notation
simplicity, H[ℓ](θ) is denoted as H(θ)), it follows that:

ℓ(θ) = ℓ(θ0) + (θ − θ0)T ∇ℓ(θ0) + 1
2(θ − θ0)T H(θ0)(θ − θ0) + . . . (213)

If higher-order terms beyond 2 are negligible, the analysis becomes simpler. In fact, one
iteration of gradient descent starting from θ0 gives:

θ = θ0 − α∇ℓ(θ0) (α > 0) (214)

and if we denote ∇ℓ(θ0) = g, then

ℓ(θ) = ℓ(θ0 − αg) = ℓ(θ0) − α||g||2 + α2

2 gT H(θ0)g (215)

Therefore, we can observe that the GD step indeed reduces the function at the first
order (as indicated by the ’-’ sign), and the conditions for the existence of a minimum
can be written as:

||g|| = 0 and gT H(θ0)g ≥ 0 (216)

126

This is the concept of convexity, and if we want this property to be universally defined,
we require that these 2 conditions are met ∀θ0, meaning that the Hessian is a positive
definite matrix (i.e., all eigenvalues are positive). We can even calculate the optimal step,
which is to determine the optimal value of α, namely:

α∗ = ||g||2

gT H(θ0)g
(217)

but this requires being able to compute the Hessian.

Now, what is the order of magnitude of this optimal step? If the convexity condition
is met, we can bound the eigenvalues of the Hessian. Furthermore, if we impose that the
smallest eigenvalue is non-zero, then we obtain the following bound:

0 < µ ≤ gT H(θ0)g
||g||2

≤ L (218)

However, we can find ourselves in the unpleasant situation depicted in Figure 60,
where we keep going back and forth in a narrow corridor. In other words, it must be
realized that the gradient indicates the direction of "steepest ascent". Let’s calculate the
convergence rate. To do this, we want to estimate, step by step, how the distance between
θt and θ∗ (the minimum) behaves. So, during a step t → t + 1:

θt+1 = θt − α∇ℓ(θt) (219)

where
∇ℓ(θ∗) = 0 = ∇ℓ(θt) + H(θt)(θ∗ − θt) (220)

thus
θt+1 = θt − αH(θt)(θt − θ∗) (221)

and
θt+1 − θ∗ = θt − θ∗ − αH(θt)(θt − θ∗) = (1 − αH(θt))(θt − θ∗) (222)

Therefore, through successive iterations, we get

θt+1 − θ∗ = (1 − αH(θt)) . . . (1 − αH(θ0))(θ0 − θ∗) (223)

127

Figure 60 – A scenario where the function that needs to be minimized has a "narrow
gutter" shape. Since the direction of the GD step is opposite to the local gradient, it is
highly likely that starting from θ0, the successive parameter values oscillate on either side
of the gutter’s edges, converging very slowly to the minimum.

128

(note that here α is a constant of the process while we have seen earlier that it can be
adapted for each step t). For convergence to occur, the matrices (1 − αH(θi)) must be
contractive, meaning that the norm of these matrices must be less than 1, i.e.,

∀θ ||1 − αH(θ)|| < 1 (224)

and if we know that the eigenvalues of H(θ) are bounded:

µ < ||H(θ)|| < L (225)

then we have at least the constraint that

α <
1
L

(226)

But the worst case is when the Hessian becomes very small:

maxθ ||1 − αH(θ)|| = 1 − αµ (227)

then
||θt − θ∗|| ≤ (1 − αµ)t||θ0 − θ∗|| (228)

However, we cannot guarantee the condition on α above, which limits the convergence
rate to:

||θt+1 − θ∗|| ≤
(

1 − µ

L

)t

||θ0 − θ∗|| (229)

meaning that we would like the ratio µ/L to be as close to 1 as possible, which constitutes
the conditioning of the Hessian.

However, as is evident, even in the case illustrated in Figure 60, we are not necessarily
going in the "right" direction at each step. Nevertheless, in this quadratic case, if the
Hessian is invertible

∇ℓ(θt) = H(θt)(θt − θ∗) ⇒ θt − θ∗ = H(θt)−1∇ℓ(θt) (230)

129

and therefore, in principle, we can "directly" reach the minimum in 1 step as follows:

θ∗ = θ0 − H(θ0)−1∇ℓ(θ0) (231)

However, we need to 1) be able to calculate the Hessian, and 2) be able to invert
it. This is where the problem lies because in neural networks, first, we have a lot of
parameters, second, we are not in the quadratic case, so even the previous equation is not
exact, and it would require applying the second-order Newton’s algorithm. In practice,
it is not possible at all to compute the Hessian, and we can only rely on the first-order
algorithm.

9.2.3 Mini-Batch Normalization

This is a result from the past 4-5 years that is highly effective in the case of neural
networks, where we typically have

x −→ F (W.x + b) (232)

and we are interested in the Hessian with respect to W . If we denote the Hessian of F

with respect to a variable z, F (z) → Hz[F](z), then the Hessian with respect to W (note:
this is a matrix) can be written as

F (W.x + b) → x Hz[F](Wx + b) xT (233)

Let’s imagine that Hz[F](Wx + b) is, up to a constant, the identity matrix (note:
recall that we want the ratio of min/max eigenvalues to be close to 1), then the Hessian
with respect to W is given by xxT , and if we now sum over all the samples, this will
involve ∑

i

F (W.xi + b) →
∑

i

xi xT
i (234)

We recognize the autocorrelation of the data. Now, this autocorrelation can be represen-
ted as an ellipsoid that "encloses" all the data points. If this ellipsoid has small eigenvalues,
then the Hessian is ill-conditioned. So, we can try to precondition by attempting to make
the autocorrelation as isotropic as possible. However, we don’t want to perform a PCA to

130

find the principal axes of the autocorrelation matrix, especially since this operation would
need to be repeated for each layer of the network. Thus, we will work on the "original"
axes of the data to compute the mean and ensemble variance:

M = 1
N

∑
i

xi S2 = 1
N

∑
i

(xi − M)2 (235)

and for rescaling, we perform the following operation:

xi → x′
i = xi − M

S
(236)

However, in this case, we are changing the variables inside the network. To overcome this
issue caused by the conditioning of the Hessian, what is proposed is that at the output of
a neuron: we perform rescaling as described above, and we add 2 variables α, β such that
αx′

i + β to undo this rescaling.

So, after this rescaling, the Hessian is well-conditioned, and the gradient descent
works well. What we don’t quite understand is why this works so well! Before imple-
menting this technique, we used Drop-out, which randomly destroys a fraction of the
connections between layers.

10. Stochastic Gradient

10.1 Introduction

A quick reminder: in this case, the "average" gradient is computed for one randomly
chosen data point as follows:

θt+1 = θt − α∇θℓ(θ, zit) (237)

and on average,
Eit [∇θℓ(θ, zit)] = ∇θℓ(θ) (238)

The evolution of gradient descent over "time" becomes more chaotic, and there is a
risk of cycling around the minimum because the error between the optimal direction and

131

Figure 61 – Typical difference between batch gradient descent and a stochastic version:
if the stochastic version converges very quickly in the early stages, it becomes much less
effective than the batch version beyond a certain number of iterations.

the chaotic direction will increase as we get closer to the minimum.

If we look at the convergence rate, we have the following behaviors 44 (see Figure
61):

ϵ = |ℓ(θt) − ℓ(θ∗)| =


O((1 − αµ)t) Batch

O(t−1) SGD
(239)

SGD convergence can be faster for the first iterations, but there is a point beyond
which Batch is more efficient. However, in the equations above, the step size α is constant.
In the next section, let’s consider varying it step by step.

10.2 Acceleration of GD and SGD with Variable Steps

If we want to attempt to accelerate the convergence speed of SGD, we need to reduce
the "noise", which is the fluctuations of the gradient from one data point to another. One
way to do this is to use "mini-batches", which means taking a fraction of the N samples,
for example, randomly selecting M variables zi and averaging the gradient over them. If

44. The evolution in Batch is called "linear" in optimization jargon.

132

B = 1, then we are in the case of SGD, and if B → N , then the convergence will tend
towards that of the Batch method.

However, what we would rather have is a method that is like SGD at the beginning
and gradually converges towards the Batch method. But there is a more efficient way:
varying the gradient step α as we go. Let’s see how this works in the case of SGD.

Intuitively, if we go from t → t+1 in 1 step of size α, or if we do the same operation
in 2 steps of size α/2, then we can compare methods (1) and (2) below:

θt+1 = θt − α∇θℓ(θt, zit) (1) (240)

θt+1 = θt − α

2 ∇θℓ(θt, zit1) − α

2 ∇θℓ(θt, zit2)

= θt − α
1
2 (∇θℓ(θt, zit1) + ∇θℓ(θt, zit2)) (2) (241)

By changing α → 2 × α/2, we have reduced the variance in the gradient estimation
by

√
2. Therefore, in the following proof, we will see that in the case of fixed-step SGD,

it does not converge, or more precisely, the values will converge within a ball around the
minimum, whereas in the case of variable-step SGD, the method converges because the
size of the ball tends to 0 as the step also tends to 0.

10.3 Mathematical Framework: Strong Convexity and Regularity

10.3.1 Batch Method

We can demonstrate the "intuitive" result from the previous section in the case of
strong convexity, even though in practice it also works for neural networks where we
have no guarantee of convexity. However, we will place ourselves in a specific framework
outlined in three propositions.

— Prop 1: L-Lipschitz

133

We impose a regularity property on ℓ(θ) that is related to the properties of the
Hessian as discussed earlier. We impose that the gradient is L-Lipschitz, meaning

∀θ, θ′ ||∇θℓ(θ) − ∇θ(θ′)|| ≤ L||θ − θ′|| (242)

Thus, if ℓ is twice differentiable, then L-Lipschitz is equivalent to ||H(θ)|| < L.
However, in the case of a ReLU, its derivative is a Heaviside, so the second deri-
vative is a Dirac. Therefore, to accommodate this case, we will not impose double
differentiability but stick with L-Lipschitz. Here is a property that follows from the
L-Lipschitz constraint:

ℓ(θ′) ≤ ℓ(θ) + (θ′ − θ)T ∇ℓ(θ) + L

2 ||θ′ − θ||2 (243)

So, with this property, we are actually constraining the change in the loss when
moving in the gradient direction.

— Prop 2: Convexity
Imposing the convexity of ℓ means that

∀t ∈ [0, 1] ℓ(t θ + (1 − t)θ′) ≤ t ℓ(θ) + (1 − t)ℓ(θ′) (244)

which means that the value of the loss at a point on the line {(θ, ℓ(θ)), (θ′, ℓ(θ′))} is
smaller than the weighted average of the values ℓ(θ) and ℓ(θ′). If ℓ is twice differen-
tiable, convexity is equivalent to the Hessian being positive, meaning that all of its
eigenvalues are positive, and

∀g, gT H(θ)g ≥ 0

This is a property we used in the case of quadratic loss, but here we are dealing with
losses that are not twice differentiable, so we need to impose something stronger.

— Prop 3: Strong Convexity
We want to avoid cases where the curvature radius at the minimum is very large
(i.e., low curvature). This means that we will constrain the smallest eigenvalue of

134

the Hessian (denoted as µ) to be nonzero. So, consider

ℓ(θ) − µ

2 ||θ||2 to be convex. (245)

In the case where ℓ is twice differentiable, this is equivalent to

µ.Id ≤ H(θ)

which we also used in the quadratic loss case.
Strong convexity implies a lower bound property:

ℓ(θ′) ≥ ℓ(θ) + (θ′ − θ)T ∇ℓ(θ) + µ

2 ||θ′ − θ||2 (246)

With these three properties, we state the following theorem.

Theorem 8 (Batch GD):

If the gradient of ℓ is L-Lipschitz (Prop. 1) and ℓ is µ-strongly convex (Prop.
3), then

∀θ0, ∀α ≤ 1
L

||θt+1 − θ∗||2 ≤ (1 − αµ)t+1||θ0 − θ∗||2 (247)

which means that we recover the result from the quadratic case but without imposing
that specific form of loss.

Corollary:

We easily obtain a constraint on the convergence to the minimum of the loss:

|ℓ(θt+1) − ℓ(θ∗)| ≤ L

2 (1 − αµ)t+1||θ0 − θ∗||2 (248)

In fact, this corollary can be demonstrated using Prop. 1 and Theorem 8 above. Indeed,

ℓ(θt+1) ≤ ℓ(θ∗) + L

2 ||θt+1 − θ∗||2 ≤ ℓ(θ∗) + L

2 (1 − αµ)t+1||θ0 − θ∗||2 (249)

135

10.3.2 SGD Method

Theorem 9 SGD: In the case of stochastic gradient descent, we start with a regular
and strongly convex loss, and we will demonstrate that

E(||θt − θ∗||2) ≤ (1 − αµ)t+1||θ0 − θ∗||2 + α

µ
B2 (250)

where we make the assumption

∀t Ezi
(||∇ℓ(θt, zi)||2) = 1

n

n∑
i=1

||∇ℓ(θt, zi)||2 ≤ B2 (251)

Proof 9. We will proceed with the proof as in the case of Batch:

||θt+1 − θ∗||2 = ||θt − α∇ℓ(θt, zit) − θ∗||2

= ||θt − θ∗||2 − 2α⟨∇ℓ(θt, zit), θt − θ∗⟩ + α2||∇ℓ(θt, zit)||2 (252)

We want to calculate Eit(||θt+1 − θ∗||2), which means taking the expectation with
respect to the choice of zit . We know that

Eit(∇ℓ(θt, zit)) = 1
n

n∑
i=1

∇ℓ(θt, zi) = ∇ℓ(θt) (253)

So, we have

Eit(||θt+1 − θ∗||2) = E(||θt − θ∗||2) − 2α⟨∇ℓ(θt), θt − θ∗⟩ + α2Eit(||∇ℓ(θt, zit)||2) (254)

The term proportional to α is the same as in the Batch case, so we can constrain it in the
same way. Thus, we obtain

Eit(||θt+1 − θ∗||2) ≤ E(||θt − θ∗||2)(1 − αµ) − 2α(ℓ(θt) − ℓ(θ∗)) + α2Eit(||∇ℓ(θt, zit)||2)
≤ E(||θt − θ∗||2)(1 − αµ) + α2Eit(||∇ℓ(θt, zit)||2) (255)

Now, the quadratic term in α does not necessarily tend toward 0, which is why we intro-

136

duce the additional assumption that bounds the gradient norm. We then have:

Eit(||θt+1 − θ∗||2) ≤ E(||θt − θ∗||2)(1 − αµ) + α2B2 (256)

We have a recurrence equation that we can solve exactly:

Eit(||θt+1 − θ∗||2) ≤ E(||θ0 − θ∗||2)(1 − αµ)t+1 + αB2

µ
(1 − (1 − αµ)t+1)

≤ E(||θ0 − θ∗||2)(1 − αµ)t+1 + α

µ
B2 (257)

This concludes the proof of Theorem 9. ■

Therefore, the theorem tells us that the gradient term cannot be controlled and
will, except for accidents, prevent convergence. When t → ∞, the term (1−αµ)t+1 tends
to 0, but we will tend towards an asymptote for the error in the average of ||θt+1 − θ∗||2.
To overcome this, we need to make α decrease towards 0. How should we choose it?

— Prop 5. We will choose α = α(t) such that

α(t) = µ

1 + µ2t
⇒ Eit(||θt+1 − θ∗||2) ≤ C

1 + tµ
= O

(1
t

)
(258)

Indeed, if in the equation of Theorem 9, we identify α as α(t + 1) and we want

(1 − α(t + 1)µ)t+1 ∼ α(t + 1)
µ

(259)

then if α(t)µ ≪ 1 (not fundamentally necessary), we have

α(t) = µ

1 + µ2t
(260)

137

So,

Eit(||θt+1 − θ∗||2) ≤ E(||θ0 − θ∗||2)(1 − αµ)t+1 + αB2

µ
= (E(||θ0 − θ∗||2) + B)α

µ
(261)

≤ C

1 + µ2t
= O(1/t) (262)

This gives us the convergence rate of SGD.

10.4 Generalizations?

Can we generalize the ideas from the previous sections?
— Non-differentiable framework

If we have non-differentiable points (for ℓ(θ)), it’s as if the gradient is not unique
(notion of "sub-gradient"). But these gradients "remain" below the curve, which is convex,
so this doesn’t change the previous proof as long as we constrain that the average of the
"sub-gradients" is smaller than B2.

— Number of operations p. In the case of SGD, the error on θ is typically ϵ ∼ O(1/p),
while in Batch, ϵ ∼ O(1 − αµ)p/n.
Referring to Figure 61, we can see that there is an "optimal" point. If n is large and

we don’t need extreme precision, then the stochastic method is your friend; if n is not too
large, it’s better to use the Batch method.

There are hybrid methods that start with SGD and switch to a Batch-like scaling
after a certain point (see Francis Bach’s work, including the SAG and SAGA methods).

But in the case of neural networks, these methods don’t address the core of the pro-
blem. Why? Mainly due to local minima, and we are not in a strongly convex framework.
However, what we observe experimentally is that we are not blocked by the asymptotic
speed of SGD, but rather by local minima. It’s a much more challenging problem to
control optimization, especially when deciding on the network’s architecture.

10.5 Optimization Problems

Let’s list a number of points that remain unresolved (non-exhaustive):

138

1) The loss function ℓ(θ) is not convex, so it’s necessary to understand the structure
of local minima. For example, what is their profile? Are they narrow or wide? This
underlies the sensitivity to a step in θ. We can try to determine their number, find
out if they are deep, etc. In fact, we encounter problems quite similar to those in
Statistical Physics, where when we lower the temperature of a system, we want to
ensure that it falls into a stable state of minimal energy.

2) Learning rates (α): we know how to control them in the strongly convex case, but
in other cases, it’s often an experimental trial-and-error process.

3) Mini-batches work, but we don’t understand why when we try to comprehend how
this cascades in deep networks.

4) It shouldn’t be believed that convergence is achieved every time, far from it, and
there are many counterexamples. For example, in the article arXiv:1812.01662, it is
shown that the neural network does not converge at all for a simple task of binary
pattern comparison that could a priori be considered a simple task. But there are
misconceptions, for example, "in very high dimensions, there is little chance of falling
into a local minimum" (FALSE).

The strategies to address these problems fall into two categories:

— Either we want (try) to "control everything", including the number and structure of
local minima, etc.

— Or we proceed in the manner of the study of "dynamical systems" that focus on the
trajectory in "real-time" minimization so that the probability of falling into a local
minimum with ℓ(θ) far from ℓ(θ∗) is low.

These reflections conclude this course for the year 2019, and we still have many
unanswered questions. Next year, we will delve into convolutional networks, which seem
to be suitable for capturing very global regularities in high dimensions in all the domains
where they have been introduced.

