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Abstract
The quantitative modeling of voltammograms obtained with
molecular redox catalysts is important for mechanistic studies
and benchmarking. Most kinetic models developed for that
purpose were based on unidirectional reaction mechanisms,
but many redox enzymes work in both directions of the reac-
tion, and chemists have recently successfully designed bidi-
rectional, synthetic, molecular catalysts. An important
conclusion from recent work is that unidirectional kinetic
models should not be used to interpret bidirectional electro-
chemical responses. Understanding the latter will require much
more work than simply adapting unidirectional models.
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Bidirectionality versus reversibility
The term “reversibility” is sometimes used in chemistry
as a synonym for “bidirectional,” as in “the reversible
MichaeliseMenten equation” [1] or when one refers to
a particular chemical step being reversible. In thermo-
dynamics, reversibility refers instead to a quasistatic
transformation, where the system remains so close to
equilibrium that no entropy is created. By analogy, we

use the expression “catalytic reversibility” to describe
the subset of bidirectional catalysts that can function
with minimal overpotential and energy dissipation. In
Figure 1, the catalytic cyclic voltammograms (CVs) J and
K are irreversible according to this definition, and the
rightmost column shows unidirectional CVs.
www.sciencedirect.com
Many redox enzymes that have been wired to electrodes
are efficient catalysts in both directions of the reaction
they catalyze. This is, for example, the case of certain
enzymes that convert Hþ and H2 [3,4] (Figure 2aed),
succinate/fumarate [5,6], CO2/CO [7], CO2/formate [8],
NADH/NADþ [9], or tetrathionate/thiosulfate [10].
The vast majority of synthetic molecular redox catalysts
studied in the literature are unidirectional, but various

groups of chemists recently designed bidirectional mo-
lecular catalysts for the conversion between Hþ and H2

[11e13] (Figure 2e), CO2/formate [14e16], CO2/CO
[17], and O2/H2O (9), and a subset of these bidirectional
catalysts function in either direction of the reaction in
response to a small departure from equilibrium [18,19].
The definition of overpotential
In electrochemical studies of unidirectional reactions,
the difference between the standard reduction potential
of the reaction to be catalyzed (oxidized substrate S þ
ne- ⇔ reduced product P) and that of the catalyst (E0

cat,
the redox couple that triggers catalysis) is related to the
standard free energy of the homogeneous reaction be-
tween the catalyst and the substrate [22]. This ther-
modynamic descriptor may correlate with the maximal
turnover frequency (TOFmax) [23]. Any reference to the
equilibrium (Nernst) potential of the S/P couple under

the conditions of the experiment (Eeq) is meaningless
because Eeq depends on the concentration of the
product of the irreversible reaction, which is unreactive
and often not even present in the bulk solution [22].

Only when the catalyst is bidirectional does it make
sense to consider the traditional definition of the over-
potential h as the “additional potential (beyond the
thermodynamic requirement) applied to drive the re-
action” [24,25]. This overpotential h equates to E-Eeq,
and the current is zero when h = 0.

Molecular catalysts usually switch on and off over a
narrow potential range. In the simplest case, where the
catalytic response is S-shaped, the catalytic potential
Ecat is easily defined as the mid-point potential of the
catalytic wave. Unlike the onset potential widely used in
the benchmarking of electrocatalytic surfaces, this cat-
alytic potential is independent of the magnitude of the
current and thus, on the concentration of the catalyst in
Current Opinion in Electrochemistry 2024, 46:101489
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Figure 1

Simulated voltammograms for 1-electron (a–c) and 2-electron (d– l) cat-
alytic cycles. The leftmost column shows voltammograms with equal
limiting currents in the two directions. The rightmost column shows uni-
directional voltammograms in the direction of oxidation. The middle
column illustrates intermediate situations. For the 2-electron catalytic
cycle, the uppermost row (d– f) shows voltammograms simulated with a
negative (−100 mV) difference between the two catalytic potentials
(DEcat), while the middle (g– i) and lowermost (j– l) rows show voltam-
mograms with more positive DEcat, +100 and +200 mV, respectively. The
effect of slow interfacial electron transfer and the distribution thereof is
described in fig. 1 of Ref. [2].

Figure 2

Experimental catalytic voltammograms showing H2 oxidation and evolu-
tion (positive and negative current, respectively) and recorded with
different hydrogenases adsorbed onto a rotating disc electrode or an
inorganic catalyst diffusing in solution: the FeFe hydrogenases from
Clostridium acetobutilicum, HydA1 [20] (a), Clostridium pasteurianum
hydrogenase II (b), Thermoanaerobacter marthranii, HydS [21] (c); the
NiFe hydrogenase 1 from E. coli [21] (d); the “Dubois” catalyst [Ni(P2

Cy-

N2
Arg)]6+ in (e) [13]. Conditions: 30 �C, pH 7, 100% H2 in (a–c); 40 �C, pH

6, 0.3% H2 in (d); 40 �C, pH 1, 12.5% H2 in (e).

2 Bioelectrochemistry (2024)
solution or adsorbed on the electrode. We have called
“catalytic overpotential,” hcat, the difference Ecat-Eeq.

For a two-electron bidirectional catalyst, two catalytic
potentials must be defined, one for each direction (Eox

cat

and Ered
cat ) [26,27].
Electrochemical models of bidirectional
molecular catalysis
Table 1 lists the models that have theoretically
described the voltammetry of bidirectional catalysts that
are either adsorbed onto an electrode or that diffuse in
solution. They differ by the sequence of redox (E) and
chemical (C) steps in the catalytic cycle. We assume
that the rate constants of the latter are first-order or
Current Opinion in Electrochemistry 2024, 46:101489
pseudo-first-order, so that concentrations of reactants
are considered only implicitly.

In theNernstian limit, on the condition that the catalytic
cycle is “ordered” (meaning that the cycle is the same for
the two directions of the reaction [19]), irrespective of

the number and order of the steps in the catalytic cycle
and whether the catalyst is attached or diffuses, the
steady-state catalytic response is [22,26,27]:
www.sciencedirect.com
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Bidirectional molecular redox catalysis Fasano et al. 3
i ¼ ioxlim eFðE�Eox
catÞ=RT eFðE�Ered

catÞ=RT � iredlim

1þ eFðE�Ered
cat Þ=RT

�
1þ eFðE�Eox

catÞ=RT
� (1)
Table 1

The bidirectional kinetic cycles considered for the modeling of the v

Mechanism (a) Kinetic scheme

One-electron models ECr

ECr + relay

Two-electron models EE

EECr

EECr + relay

ECrECr

EECrCr, EECrCrCr

(a) The catalytic cycles considered in the papers listed here consist of an ordere
electrode potential, and reversible chemical steps (“Cr”), whose rate constant
symbols: light green, dark green, and blue circles for the oxidized, one-electro
(green) or reduced (blue), is shown as a square. “X” and “Y” are other cata
catalytic cycles operate in each direction of the reaction [19,27,35]. (b) Molin
catalyst beyond the steady-state regime [29]. (c) Slow interfacial electron tran
are considered in Refs. [26,2,29,30,31]. (d) The models in Refs. [26,32] explic
and either a one- or a two-electron active site. In contrast, the models in Re
model is applied in the context of electrocatalysis, but the equations are the sa

www.sciencedirect.com
The current tends to �iredlim at low potential and to ioxlim at
high potential. The shape of the signal depends on the
difference between the values of the two catalytic poten-
tials (top to bottom in Figure 1). Note that irreversibility
oltammetry of bidirectional molecular catalysts.

Diffusing catalyst Adsorbed catalyst Comment

[28,29] [2,30,31] (b,c)

[32] (d)

[33] (e)

[22,26,27,29] [26,27,2] (b,c)

[26] (d)

[13,27] [27,21]

[27] [27,34,21]

d series of redox steps (“E”), whose rate constants depend exponentially on
s are independent of potential. The cycles are drawn using the following
n reduced, and two-electron reduced catalysts. The redox relay, oxidized
lytic intermediates. Note that irreversibility does not require that distinct
a et al. considered the ECr and EECr catalytic responses of a diffusing
sfer (iET) and the possibility that the rate constants of iET are distributed
itly consider intramolecular electron transfer between a one-electron relay
fs. [30,31] consider a one-electron relay and no other redox site. (e) This
me for a molecular catalyst adsorbed onto an electrode.

Current Opinion in Electrochemistry 2024, 46:101489
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canbeobservedeven in this situation,where interfacialET
is assumed to be infinitely fast [27].

The simpler equation below is obtained when a single
redox step is considered in the bidirectional catalytic
cycle [28].

i ¼ ioxlime
FðE�EcatÞ=RT � iredlim

1þ eFðE�EcatÞ=RT (2)

predicts shapes that are very different from those of eq. (1)

(Figure 1), and in most cases, it does not apply to two-

electron reactions. Therefore, the models of bidirectional

two-electron reactions have to explicitly include the two

redox transitions of the active site. This contrasts with the

case of unidirectional catalysis, where many multistep

multielectron catalytic cycles can be described by the

“ECi” model [36].

Another difference between uni and bi-directional cat-
alytic cycles is that the rate constants of any bidirec-
tional catalytic cycle are related by a Haldane equation

[37], obtained by equating the net current to zero when
E= Eeq. As a consequence, if one wants to consider the
free energy of any step of the bidirectional catalytic
cycle as a thermodynamic descriptor, it is not possible to
examine the effect of changing it independently of the
other steps.
Measuring the reversibility
Higher reversibility corresponds to a higher slope of the
current versus potential response at E = Eeq, but this
slope cannot be used for measuring the reversibility
because it is proportional to the magnitude of the cur-
rent response, and therefore it is dependent on how
much catalyst is in solution or on the electrode.

When the response is so irreversible that distinct

oxidative and reductive waves are observed, a better
measure of the (ir)reversibility is the difference be-
tween the catalytic potentials defined in eq. (1). These
can be determined by visual inspection if the S-shaped
oxidative and reductive waves are sufficiently separated
from one another or obtained by fitting [2]. The more
positive Eox

cat � Ered
cat , the more irreversible the response.

When Eox
cat � Ered

cat is small or even negative, the signal
consists of a single, sharp sigmoid (Figure 1d), and the
two catalytic potentials cannot be measured (just like in
noncatalytic two-electron redox systems, only the

average two-electron standard potential can be
measured when potential inversion occurs [38]).
The foot of the wave analysis is not useful
for bidirectional responses
The popular foot of the wave analysis (FOWA) is used to
extrapolate the value of the limiting current when
catalysis is unidirectional [39]. It assumes that the
Current Opinion in Electrochemistry 2024, 46:101489
steady-state current response that would be obtained in
the “pure kinetic region” without substrate depletion
[40] is a one-electron sigmoid centered on the potential
of the catalyst (Ecat ¼ E0

cat). From the signal at the
onset of the current, where the current increases
exponentially and interfacial electron transfer is not
limiting, it is possible to reconstruct this sigmoidal
response to obtain the limiting current. Interpreting the

foot of the wave is not trivial for multielectronic unidi-
rectional reactions [41,29], and even less so for bidi-
rectional voltammetry.

Indeed, when reversibility is approached, the two cata-
lytic waves merge, and the onset of current atEzEeq is
linear, not exponential. Therefore, the FOWA can only
be carried out in situations where the response is very
irreversible [29].

The second problem arises even in the irreversible sit-

uation: if the catalytic scheme includes successive
reversible steps, the catalytic potentials depart from the
E0 of the catalyst measured in the absence of catalysis
[27,34], whereas directly extrapolating the current
plateau from the onset potential requires that this cat-
alytic potential be known a priori.

And last, when catalysis is bidirectional, the plateau
current that may be observed with diffusing catalysts is
not simply related to TOFmax, as explained below.
Measuring maximal turnover frequency in
each direction
The turnover frequency (TOF) is the ratio of the
number of moles of the product generated per unit of
time divided by the number of moles of the active form
of the catalyst involved in the reaction (adsorbed onto
the electrode or contained in the reaction-diffusion
layer) [22]. The TOF depends on the electrode po-
tential and tends to a maximal value at large over-
potentials, TOFmax, which is achieved when the redox
steps in the catalytic cycle are infinitely fast in one di-
rection or the other.

For adsorbed catalysts, if there is no complication by the
mass transport of the substrate or a dispersion of inter-
facial electron transfer rate constants, the current tends
towards a plateau value at high or low potential (ilim),
which is simply proportional to TOFmax, irrespective of
the kinetic mechanism [26,27].

ilim ¼ nFAG�TOFmax (3)

(A is the electrode surface, and G is the electroactive sur-

face coverage).

For diffusing catalysts, the current also tends to plateau
under certain conditions (called pure kinetic conditions,
www.sciencedirect.com
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in the absence of complications by the diffusion of the
substrate [29]). According to the popular Nicholson and
Shain equation, the plateau current is related to the
square root of TOFmax [42]

ilim ¼ nFACcat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� TOFmax

p
(4)

where Ccat is the concentration of catalyst in solution and D
is its diffusion coefficient. However, this equation is not

always applicable.

Equation (4) is exact only for very simple kinetic
schemes (e.g. ECi, EECi, ECiECi, where subscript i
means “irreversible” [43]). It may still be useful for
other mechanisms; for example, the rate equation of the
ECiCi mechanism reduces to that of the ECi mechanism
if one of the two chemical reactions is much faster than
the other (table 2 in Ref. [43]). With schemes that
consist of only irreversible chemical steps, eq. (4) seems
to never be very wrong. Considering the ECiCi scheme,
for example, in the worst case where k1 ¼ k2,
TOFmax ¼ k1k2=ðk1 þ k2Þ ¼ k1=2 and ilim ¼
2FACcat

ffiffiffiffi
D

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4k1=9Þ
p

, so the maximal error on the value
of TOFmax that is made by interpreting the limiting
current with eq. (4) is only 10%.

However, the situation is much less favorable when the
chemical steps are reversible: equation (4) is not cor-
rect, and using it may lead to a significant error. We take
two examples.

For the ECr model [28] (the subscript r indicates a
reversible step), the values of TOFmax in the two di-

rections are k2 and k�2, but the expressions of the
limiting currents are

ioxlim ¼ 2FA
ffiffiffiffi
D

p
Ccat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22

k2 þ k�2

s
(5)

iredlim ¼ 2FA
ffiffiffiffi
D

p
Ccat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2

k2 þ k�2

s
(6)

The TOFmax in the faster direction that is measured
using eq. (4) is only slightly underestimated, but in
the slower direction, the TOFmax is underestimated
by a factor equal to the ratio of the two TOFmax. The

reason the current in the “þ” direction at very high
overpotential depends on both k2 and k�2, when the
catalyst diffuses in solution, is that the steady-state
current depends on the compensation between the
diffusion of the catalyst and its reaction in the diffu-
sion layer, and the latter is bidirectional, so that the
catalyst equilibrates with the substrate/product in the
www.sciencedirect.com
solution [22]. All things being equal, at high over-
potential, where the catalyst is entirely oxidized near
the electrode, increasing the backward rate constant
k�2 (for the homogeneous reoxidation of the catalyst)
decreases the size of the diffusion layer, hence the
number of catalyst molecules that participate in
the reaction.
Last, we emphasize that for multistep mechanisms,
there is no simple relationship between ilim and TOFmax

when the catalyst diffuses. For example, in the EECrCr

mechanism, the limiting current of the adsorbed catalyst
is simply proportional to TOFmax

iredlim ¼ 2FAG
k1k2

k1 þ k2 þ k�1

but the limiting current calculated for a diffusing catalyst is

a very complex combination of the same rate con-

stants [27]:

iredlim ¼
�
1

2
FA

ffiffiffiffi
D

p
k2k1ða1ðb1 þ a3b2Þ þ a2ðb1 � a3b2Þ Þ

�

�
�

h
ð � k1þ k�2Þðk2þ k1þ k�2k�1þ k�2k1Þ

ffiffiffi
k

p

þ k�1k�2ðk1 þ k2 þ k�1Þ2þ k1k2ðk2 þ k�2Þ2

þ k2k�1

�
k�2

2þ 2k1k2þ k1k�1þ k1
2
	i

where

k ¼ k2k1 þ k�2k1 þ k�2k�1

a21 ¼ 2½k1þ k2þk�1þ k�2 � a3�

a22 ¼ 2½k1þ k2þk�1þ k�2þa3�

a23 ¼ ðk1 þ k2þk�1 þ k�2Þ2 � 4k

b1 ¼ ðk1 þ k�2Þ2 � k2k1þ k1k�1þ k�2
2 þ 2k2k�2 � k1k�2

b2 ¼ k�1 þ k2 þ k�2

It may be possible to extract the values of some of the
rate constants in the catalytic cycle from a thorough
inspection of the voltammetry [13], but clearly, the
actual value of the limiting current has no
simple meaning.
Current Opinion in Electrochemistry 2024, 46:101489
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Conclusion
Recent results regarding the modeling of the bidirec-

tional response of two-electron molecular redox cata-
lysts show that the electrochemical literature on
unidirectional reactions cannot be used to interpret
bidirectional systems. This is because, in contrast to
unidirectional catalysis, the onset of current is not
exponential, the two redox transitions of the catalyst
must be explicitly included in the model, the Nernst
potential of the reaction to be catalyzed in a relevant
parameter, thermodynamics constrains the rate con-
stants of the catalytic cycle, and the different forms of
the catalyst equilibrate in the diffusion layer.
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