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1 Institute for Radiation Protection and Nuclear Safety (IRSN) Paris, France

Abstract

In metrology, the use of decision threshold and detection limit concepts often creates many
problems for metrologists in radioactivity analysis laboratories. It is usual to censor data when
it becomes difficult to discern the presence or absence of the activity, due to noise in the mea-
surement data. This implies that if the measurement results are non significant which are below
critical value of the test statistic which is called the decision threshold (DT) in metrology. The
analysis simply states that the true value (signal) of the radioactivity is below a certain limit
called the detection limit (DL). These problems are frequently related to the incorrect under-
standing of the DT formulas or the wrong choice between several formulas whose numerical
results are significantly different. Moreover, it is often unclear how to generate an appropri-
ate and justified DT. In the current research paper, we elaborate a statistical method of DT
determination, capable of providing DT with a high statistical power, using a smaller number
of repeated measurements. The method is then applied to a real test case. Next, statistical
approaches methods are adopted to estimate the density, the expectation and the variance of
the radioactivity. Some of its asymptotic properties are also discussed. Efficiency and feasibility
of these approaches are corroborated through applications on simulated real data sets.

Key Words: Decision threshold, Likelihood ratio test, Radioactivity, Noise data, Nuisance param-
eters.

1 Introduction

The central aim of radiological environmental monitoring is to contribute to the knowledge of
the radiological state of the environment as well as spatial and temporal evolution, in order to
reduce radiation exposure from contaminated soil, waste storage facilities or other contaminated
infrastructure, groundwater or surface water. Radioactivity measurement rests on characteristic
limits (decision thresholds and detection limits). The decision thresholds is the name given in physics
to the critical value of the hypothesis test (Currie (1968); Lehmann et al (2005)). The detection
limit is the lowest possible value of the parameter that will on average be declared significant.
When an observation is below the decision threshold, the estimation is usually left censored and
this observation is considered as useless. Due to ever-lower levels of environmental activity, the
number of radiological analyses for which metrologists are unable to provide significant results is
increasing. Current standards steadily propose uniquely DT formulas without much justification
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and without taking profit of the statistical literature. For instance, the DT, as defined by the
standard ISO 11929 (2020), is calculated as

y⋆ = k1−αwu(nn = 0),

where k1−α denotes the quantile of the probability density of the measurement result y, for a null
parameter that exceeds the DT with the probability α, w refersts the value of a conversion factor and
u(nn = 0) stands for the null measurement uncertainty of the net indication nn. It is unclear in the
standard ISO 11929 (2020) how the DT is calculated and under which statistical test it is obtained.
Currently, there is no clear method for the determination of DT of the radioactivity in literature.
There is equally an imperious need in metreology for a clear method to determine an optimal DT due
to ever-lower levels of environmental activity. The Institute for Radiological Protection and Nuclear
Safety (IRSN) is thus highly interested in improving DT for radioactivity analyses. The basic aim
of this contribution is to present an efficient statistical method of DT determination, capable of
providing an optimal DT in a particular measurement of the radioactivity, using a smaller number
of repeated measurements. The perfect method of DT determination would involve an infinite
number of real-world measurements, but such a method is in practice impossible, and some realistic
methods need to be used so as to approximate the infinite-measurement cases. As such, large
numbers of repeated measurements will increase the statistical confidence in the determined DT,
but there will always be a trade-off between the number of measurements and the time allocated
to acquire the data, with excessive repetitions of measurements being unnecessarily expensive and
slow. Therefore, determining the DT with minimal repeated measurements is desirable and requires
significant statistical analysis.
The paper is organized as follows. In the next section, we recall the main concepts and definitions
considered throughout this work. In Section 3, we identify the model and the notations. In section 4,
we display the optimal threshold of the radioactivity signal. In section 5, we propose an estimation
of the radioactivity signal. In section 6 we present a non parametric estimator of the radioactivity
and parametric estimators of its expectation and variance. The asymptotic normality properties
of these estimators and their associated confidence intervals are determined. Sections 7 and 8 are
devoted to the application results obtained through simulations and real data analysis. Several
pertinent concluding remarks and potential future perspectives are provided in Section 9. Section
10 exhibits the proofs of the theoretical results.

2 Background

2.1 Statistical test, decision threshold and confidence interval:

A statistical test corresponds to a procedure for deciding whether a hypothesis about a quantitative
feature of a sample is true or false. The decision threshold of the hypothesis test represents the fixed
value of the radioactivity such that, when the measurement result is greater than it, it is decided
that the radioactivity is present. Grounded on Lovric (2011), a 100(1− α)% confidence interval is
an interval estimate around a population parameter ϑ that, under repeated random samples of size
N , is expected to include ϑ’s true value 100(1 − α)% of time. The detection limit is the largest
true value that would have a non-negligible probability of being considered insignificant by the
measurement. It can therefore give rise to observations equal to the decision threshold.

2.2 Distribution estimation:

A set of repeated measurement results represents a sample of the radioactivity that contains all
possible measurement results, with their distribution being a radioactivity distribution. A sum-
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mary statistics of the sample (e.g. mean, maximum or variance) stands for an estimator of the
radioactivity summary statistics. The distribution of the values of estimators calculated on re-
peated samples is a sampling distribution. Due to the central limit theorem (JCGM 100 (2008)), it
is possible for the sampling distribution to be considered normal even if the radioactivity distribu-
tion is not. When using an estimator, there are three main properties that describe their behaviour:
bias, consistency and uncertainty (see Dodge (2003)). Bias corresponds to the difference between
an estimator’s expected value and the true value of the parameter being estimated. Consistency is
the tendency, as the number of sampled data points increases, for an estimator to converge to the
true value of the parameter being estimated. A stated measurement uncertainty is a non-negative
parameter characterising the dispersion of the quantity values being attributed to a measurement,
based on the used information (see De Bièvre (2012)).

2.3 Re-sampling and Bootstrapping:

When attempting to improve the confidence in a measurement, taking more measurements is the
obvious first step. However, there are practical and economic limits on the possible number of
repeated measurements. Therefore, when data have been collected, and it would still be desirable
to reduce the error on the estimator, re-sampling the data can be a solution. Re-sampling is a
method of statistical analysis that uses a fixed number of measurements in order to simulate what
would be expected to happen, if more measurements had been taken. Bootstrapping is a common
re-sampling technique that has been applied to settle metrology problems in literature (for e.g. see
Hiller et al (2014) and Ciarlini and Regoliosi (2000)).

2.4 Uncertainty

Consider a measurement system used to quantify the activity contained in various samples. The
counting procedure is as follows: two measurements of two samples are taken: a ’blank ’ measurement
(no radioactivity) and a ’gross’ (possibility of radioctivity). Departing from the value of the net
count: net = gross− blank, we calculate the measured activity by: A = net/c, where c is a
calibration factor. As for any measurement, it is necessary to estimate the uncertainty of the activity
based on the measured activity A. If we assume that nuclear counting has a Poisson behaviour, we
can write the uncertainties of gross and blank as µgross =

√
gross and µblank =

√
blank, respectively.

If gross and blank are two independent variables, then the uncertainly of the net count is provided

by µnet =
√

µ2
blank + µ2

gross. If we neglect the uncertainty of the calibration factor c, then the final

uncertainty on the measured activity is equal to: µA = µnet/c. The relative uncertainty on the

activity is equal to
µA

A
.

3 Model and notations

To report the method devised for DT determination and the proposed estimators of radioactivity, we
need first to clarify a number of notations and assumptions considered throughout this work.These
concepts are identified in this section. For each given point data of radioactivity A, two measure-
ments of equal duration are taken; namely a blank measurement Cblank and a gross measurement
Cgross, where Cblank is as similar as possible to Cgross but ensures the absence of the signal S. The
Noisy radioactivity data are defined as follows

A = Y (Cgross − Cblank) ,

where
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• Cblank := Cbl: is a random variable that models the noise of the counter: Cbl ∼ P(λ).

• Cgross := Cgr = S + B′: is a random variable that is equal to the sum of two independent
random variables, measured by counter, with S being the random variable of interest that
models the signal and B′ being a random variable that models the noise of the measurement
of Cgr. S ∼ P(θ), B′ ∼ P(λ′), then Cgr ∼ P(µ := θ + λ′).

• Y : is a Gaussian random variable that models the calibration factor (measurement error).

Throughout this paper, we will equally use the following notations:

• X := Cgr − Cbl: is the net count.

• DT : is the decision threshold based on the hypothesis test of θ: H0 : θ = 0 (no signal) / H1 :
θ > 0.

• DL: is the detection limit.

• R := X1{X≥DT} +DL1{X<DT}.

• D := Y R: models the radioactivity used by IRSN which has been so far based on ISO 11929
(2020). There is a loss of information because non significant results have been left censored.

• n: is the size of data.

• ϕ: is the Gaussian distribution of N (0, 1).

Let (A1, . . . , An) and (D1, . . . , Dn) be two samples of i.i.d. of random variables defined as follows:(
Ai = YiXi =

fi
ϵitiVi

(Cgr,i − Cbl,i)

)
1≤i≤n

,

vs(
Di = YiRi =

fi
ϵiti

(
Xi1{Xi>DTi} +DLi1{Xi≤DTi}

))
1≤i≤n

,

where Xi =
1

Ni

Ni∑
k=1

Xk
i , DTi, DLi are constructed by X1

i , . . . X
Ni
i and Ni is the number of repetition

of the measurements of the observed point data Xi. Noting that Yi and Cbl,i are constants for some
i, all the parameters θ, λ, λ′, µ are unknown and θ is the interest parameter. Throughout this
research work, the following assumption will be considered:

A : λ = λ′.

This assumption is usually justified by the fact that metrologists put a great emphasis on ensuring
that the measurements are undertaken in very similar physical conditions (temperature, background
radioactivity, apparatus, etc).
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4 A method for the determination of a DT of θ

The main target of this section is to provide an optimal DT of the parameter θ for each point data
Xi for i = 1 . . . n based on the likelihood ratio test, in order to make a decision about the presence
of the signal. Let us consider the following data for i = 1 . . . n:

- Let C1
bl,i, . . . C

Ni
bl,i be an Ni i.i.d. sample drawn from the random variable Cbl,i ∼ P(λi).

- Let C1
gr,i, . . . C

Ni
gr,i be an Ni i.i.d. sample drawn from the random variable Cgr,i ∼ P(µi =

θi + λi).

It is assumed that Ni ≤ 5 smaller and insufficient to the asymptotic normality of an empirical
estimator of θ. In this section, in order to check the presence of the signal, we need to test the
following pair of hypotheses

H0 : θ = 0 vs H1 : θ > 0,

with a fixed risk α. The following proposition provides the optimal DTi for i = 1 . . . n. For a point

data Xi, a DTi is constructed based on the repeated measurements
(
Cj
bl,i, C

j
gr,i

)
1≤j≤Ni

.

Proposition 1 (DT of θ). Under the hypothesis test H0 −H1 and the assumption A, an optimal
DT of the parameter θ for i = 1 . . . n, denoted by DTi, is generated by the resolution of the following
equation:

α = I1/2(DTi + 1, Cbl,i + 1),

where I is the regularized beta incomplete function. An approximation of DTi is determined by

DTi =
k21−α +

√
k41−α + 8k21−αCbl,i

2
,

where k1−α = ϕ−1(1− α).

The proof of Proposition 1 relies upon the likelihood ratio test devoted to detect the presence
of the signal in context, where the assumption A is held. More details of this proof are supplied in
section 10. The following proposition specifies a decision threshold DTi for i = 1 . . . n in the case
where Cbl is large. We consider that Cbl is large when Cbl > 10.

Proposition 2 (DT when Cbl is large). Consider that Cbl is large. Under the hypothesis test
H0 −H1 and the assumption A , an optimal DT of the parameter θ for i = 1 . . . n, is obtained by
the resolution of the following equation:

α = 1−
Γ(⌊DTi + 1⌋, 2Cbl,i)

⌊DTi⌋
,

where Γ(., .) is the upper incomplete gamma function and ⌊.⌋ is the floor function.

Remark 1. A confidence interval of the signal S is of the form:

[
xi −DTi

√
Xi

Ni
, xi +DTi

√
Xi

Ni

]
.

5 Estimation of θ based on the count term X

Let us consider the following data
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- Cgr,1 . . . , Cgr,n n iid sample drawn from the random variable Cgr ∼ P(µ = λ+ θ).

- Cbl,1 . . . , Cbl,n n iid sample drawn from the random variable Cbl ∼ P(λ).

Proposition 3 (Estimator of θ). If Cbl and Cgr are large, an estimation of the parameter θ is
expressed in terms of

θn =

∑n
i=1Cgr,i − Cbl,i

n
.

Based on the central limit theorem, the estimator θn is asymptotically unbiased with a variance
going to zero when n → ∞.

6 Estimation of the radioactivity

Consider that A = XY , where Y ∼ N (a, b2). Noting that, in the count term X = Cgr −Cbl, we are
basically interested in the law of Cgr = cgr|{Cbl = cbl}. Since X and Y are independent, then

E(A) = E(X)E(Y ) = θa.

VAR(A) = VAR(X)VAR(Y ) + VAR(X)E(Y )2 + VAR(Y )E(X)2 = b2(θ + 2λ) + a2(θ + 2λ) + b2θ2.

The following proposition provides estimators of the density of A; fA, E(A) and VAR(A) based on
the iid data Cgr,1 . . . , Cgr,n and Cbl,1 . . . , Cbl,n.

Non parametric estimation of fA: Let z be the observation of A = XY . We can consider the
kernel non parametric estimator of the density fA(z) defined by Rosenblatt (1956) as follows:

f̂A,n(z) =
1

nhn

n∑
p=1

K

(
z − Zp

hn

)
, ∀x ∈ R,

where (hn) is a sequence of positive real numbers that goes to zero dependent, which is on the size
n (smoothing parameter) called the bandwidth and K is the kernel function.

Proposition 4 (Estimation of the radioactivity). The considered estimators of the expectation
E(A) := µA and the variance VAR(A) := σ2

A are indicated by µA,n and σ2
A,n as follows

µA,n = X × Y ,

and σ2
A,n = Y

2
σ2
X,n +X

2
σ2
Y,n,

where X =
1

n

n∑
i=1

Xi, Y =
1

n

n∑
i=1

Yi, σ
2
X,n =

1

n− 1

n∑
i=1

(Xi −X) and σ2
Y,n =

1

n− 1

n∑
i=1

(Yi − Y ).

These approaches are asymptotically unbiased with a variance that goes to zero when n → ∞.
The following proposition demonstrates the asymptotic normality of the previous estimators. It is
worth noting here that the mean estimator µA,n is a function of the mean estimator of E(X) and
the one of E(Y ). Likewise, the uncertainty estimator σ2

A,n is a function of the uncertainty estimator

of σ2
X and the one of σ2

Y , which is similar to the uncertainty approach in BIPM et al (2008) in
Equation (10). The following proposition provides the asymptotic normality of the estimators in
Proposition 4 and the associated confidence intervals. A confidence interval is constructed based
on the repeated measurements (Xi, Yi)1≤i≤n.
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Proposition 5 (Asymptotic normality and confidences intervals of the radioactivity:).
The asymptotic normality of the estimators fA,n(z) and µA,n are expressed by

√
nhn(f̂A,n(z)− fA(z))

L−→
n→+∞

N
(
0, fA(z)

∫
K(u)du

)
and

√
n (µA,n − µA)

L−→
n→+∞

N
(
0, σ2

)
,

where σ2 = µ2
Xσ2

X + µ2
Y σ

2
Y . Then the confidence intervals of fA(z) and µA are provided by

IfA =

(
f̂A,n(z)±

z1− δ
2
σf,n(z)
√
n

)
and IµA =

(
µA,n ±

z1− δ
2
σn

√
n

)
,

where z1− δ
2
is the normal

(
1− δ

2

)
quantile, σf,n(x) =

√
fn,A(z)

∫
K(u)du and σn =

√
µ2
Xσ2

Y,n + µ2
Y σ

2
X,n.

7 Simulations

In this section, we investigate the performance of the theoretical results. In the simulation study,
three sample sizes are considered, n = 50, n = 100, and n = 200, as well as the following models:

a) S ∼ P(n, 2), B ∼ P(n, 50), Cblank ∼ P(n, 50) and N = 5.

b) S ∼ P(n, 15), B ∼ P(n, 10), Cblank ∼ P(n, 10) and N = 5.

c) S ∼ P(n, 15), B ∼ P(n, 9), Cblank ∼ P(n, 10) and N = 5.

7.1 Comparison between the estimations of θ using X and R

In this subsection of the simulation study, three proposed estimators of θ are considered, with
reference to Proposition 3. They are defined as follows:

• Based on the sample X1, . . . , Xn, we consider θ̃n =
1

n

n∑
i=1

Xi.

• Based on the sample R1,irsn, . . . , Rn,irsn, we consider θn =
1

n

n∑
i=1

Ri,irsn, where for i = 1 . . . n,

Ri,irsn = Xi1{Xi≥DTi,irsn} +DLi,irsn1{Xi<DTi,irsn},

DTi,irsn = k1−α

√
2Cbl,i, and DLi,irsn = DTi,irsn + 0.5(k1−α)

2

1 +√1 +
4DT 2

i,irsn

k41−α

 .

• Based on the sample R1,opt, . . . , Rn,opt, we consider θ̂n =
1

n

n∑
i=1

Ri,opt, where for i = 1 . . . n,

Ri,opt = Xi1{Xi≥DTi,opt} +DLi,opt1{Xi<DTi,opt},

α = 1−
Γ(⌊DTi,opt + 1⌋, 2Cbl,i)

⌊DTi,opt⌋
, and DLi,opt = DTi,opt + 0.5(k1−α)

2

1 +√1 +
4DT 2

i,opt

k41−α

 .
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For each model of a), b) and c), we compute the Integrated Squared Error (ISE) and the Integrated
Absolute Error (IAE) of θ̃n, θn and θ̂n:

ISE(θn) = (θn − θ)2 and IAE(θn) = |θn − θ|,

where θn ∈ {θ̃n, θn, θ̂n}.

n

Model 50 100 1000

X 0.0196 0.0067 0.0002
a) ISE(θn) Rirsn 55.587 0.1799 1.1104

Ropt 0.2979 0.0599 0.1015

X 0.1400 0.0820 0.0148
IAE(θn) Rirsn 7.4556 0.4242 1.0537

Ropt 0.5458 0.2449 0.3186

X 0.0023 0.0032 0.0014
b) ISE(θn) Rirsn 0.04812 0.0055 0.0082

Ropt 0.0023 0.0032 0.0014

X 0.0485 0.0566 0.0378
IAE(θn) Rirsn 0.2193 0.0744 0.0910

Ropt 0.0485 0.0566 0.0378

X 1.7742 2.0563 0.8273
c) ISE(θn) Rirsn 1.7742 2.0563 0.9367

Ropt 1.7742 2.0563 0.8273

X 1.3320 1.4340 0.9096
IAE(θn) Rirsn 1.3320 1.4340 0.9678

Ropt 1.3320 1.4340 0.9096

Table 1: Results for ISE and IAE for N = 5 trials of the proposed estimators of θ (θ̃n, θn, θ̂n) for
n = 50, n = 100, n = 1000.
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Figure 1: Results for the Signal distribution estimators of P(θ) using X, Rirsn and Ropt for n = 50,
N = 5 for high values of Cbl and Cgr for model a) (left) b) (center) and c) (right).
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Figure 2: Results for the boxplots using X, Rirsn and Ropt for n = 50, N = 5 for high values of Cbl

and Cgr for model a) (left) b) (center) and c) (right).

Departing from Table 1 and Figures 1 and 2, we infer that:

• For all cases, ISE(θn) and IAE(θn) based on the model X and Ropt are smaller than those
obtained by the model Rirsn.

• The ISE and the IAE decrease as the sample size increases.

• The Poisson law estimators P(θ̃n) and P(θ̂n) based on the models X and Ropt respectively,
can yield better results compared to the Poisson law estimator P(θn) grounded on the Rirsn

model.

• The value rate of Ropt is closer to the value rate of X compared to that of Rirsn.

In addition, the performed simulations reveal that the proposed DT defined in Proposition 1 can
entail satisfactory estimates of the signal θ, better than the DT defined in ISO 11929 (2020).
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7.2 Performance of the Kernel density estimator
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Figure 3: Results of the non parametric kernel density estimator of the fA density and its confidence
interval for n = 50, N = 100 for high values of Cbl for model a) (left up) b) (right up) and c) (down).

n

50 100 1000

a) MSE(fA,n(z)) 0.003040 0.001463 0.000131

b) MSE(fA,n(z)) 0.000561 0.000287 2.237e−05

c) MSE(fA,n(z)) 0.000277 0.000230 2.415e−05

Table 2: Results for ISE and IAE for N = 5 trials of the kernel denity estimator of fA(z) for n = 50,
n = 100, n = 1000.

8 Real data analysis

The monitoring of the environment is carried out by measuring the main radionuclides released into
water, air and soil. In our research work, in order to illustrate the proposed theoretical results, we
used a data set of measurements of radionuclides released into water. In particular, we considered
the data set consisting of n = 360 observations within the period 2019 − 2022 of the following
variables

• S: the measurement of tritium in water by Bq/L.

• Cbl: pure water (deep water)

• Cgr = S +B′, where B′ ∼ Cbl.

• Y : calibration factor.
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Figure 4: Results for the non parametric kernel density estimator of the density of fA for the
radioactivity data within 2019-2022 (left → right)
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Figure 5: Results for the non parametric confidence bands of the density fA, based on the kernel
density estimator for the radioactivity data within 2019-2022 (left → right)
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Figure 6: Results of boxplot for the radioactivity data within 2019-2022 (left → right)
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Figure 7: Results for DT of the count part for the radioactivity data within 2019-2022 (left → right)
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2019 2020 2021 2022

ISE(µA,n) 0.021049 0.121666 0.092424 0.105236

IAE(µA,n) 0.145083 0.348807 0.304014 0.324401

Table 3: Results for ISE and IAE of the proposed estimator of E(A) (Taylor method) for the
radioactivity data (reference: A).

2019 2020 2021 2022

ISE(f̂A,n(z)) 0.000910 0.001543 0.000146 7.175e−06

IAE(f̂A,n(z)) 0.026128 0.034026 0.010487 0.002319

Table 4: Results for ISE and IAE of the kernel estimator f̂A,n(z) for the radioactivity data (reference:
histogram).
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Figure 8: Comparison of the ratio of real/theoretical false positives..
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Result of ISO Proposed method

Activity 6.08 6.08

DT 0.735 3.84

CI [6.08± 0.94] = [5.13, 7.02] [6.08± 1.89] = [4.18, 7.97]

Conclusion A > DT A > DT

Table 5: Example 1

Result of ISO Proposed method

Activity 1.08 1.08

DT 0.737 3.32

CI [1.08± 0.77] = [0.30, 1.85] [1.08± 1.22] = [−0.14, 2.30]

Conclusion A > DT A < DT

Table 6: Example 2

Figure 4 displays the results of density kernel estimators within 2019−2022. The density curves
in Figure 4 are closer to the histogram of data. This figure shows that kernel estimator is a good
approach of radioactivity density. Grounded on Table 4, we deduce that ISE and IAE of fA,n(z)
are closer to zero and decrease as the sample size increases. Hence, it can be concluded that the
kernel estimators are robust and perform well in terms of estimating the density of the radioactivity,
as it is theoretically expected. Table 3 shows that ISE and IAE of the proposed estimator of E(A)
are closer to zero and decrease as the sample size increases. Figure 7 demonstrates that the proposed
DT is higher than the DT defined in ISO 11929 (2020), which implies that certain radioactivity
values are declared significant with the standard when in fact they are not (see for instance Tables
5 and 6). With reference to Tables 5 and 6, we infer that the confidence interval of ISO 11929
(2020) converge to the proposed confidence interval which is based on the proposed DT. In figure
8, we tested the DT determined in Proposition 1. We determined the ratio of the false positive rate
between the observed risk αpractice and the theoretical risk test αtheoritical = 0.05 for a given value
of parameter λ. We have made 1000 draws of the random variable Y . For each draw, we determine
the DT, then we make a new draw which we compare to the previously DT calculated. Figure 8
shows that ratio of real/theoretical false positives αthoeretical/αpractice is closer to 1 especially when
Cblank is large, which implies the Decision threshold is optimal, as it is theoretically expected.

9 Conclusion

In this research paper, we proposed an optimal decision threshold based on Neyman-Pearson Lemma
in order to detect the signal of the radioactivity. Several theoretical results related to the model of
the radioactivity; in particular to the density estimator and the confidence interval of the activity
signal, are presented. The application of our method was illustrated with the study on real datasets
of tritium in water. In this respect, we would assert that this synthesis can be regarded as a
preliminary study for further investigations on the decision threshold of the activity signal. Indeed,
our work provides a theoretical foundation of the optimal decision theshold in the case of the
alpha/beta/gamma spectrometry.
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10 Proofs

Proof of Proposition 1 : For i = 1 . . . n, the predictive likelihood ratio for testing H0 vs H1 is
determined by

l(θ1, (Cgr,i|Cbl,i))

l(θ0, (Cgr,i, |Cbl,i))
=

l(θ, (Cgr,i|Cbl,i))

l(0, (Cgr,i|Cbl,i))

=

λ
Cbl,i exp(−λ)

Cbl,i!
× (λ+θ)Cgr,i exp(−λ−θ)

Cgr,i!

λ
Cbl,i exp(−λ)

Cbl,i!
× λCgr,i exp(−λ)

Cgr,i!

= exp(θ)

(
1 +

θ

λ

)Cgr,i

.

Since θ > 0, the likelihood ratio is increasing in a monotonic way with Cgr,i. Then based on Lemma
of Neyman-Pearson in Lehmann et al (2005), the test using variable Cgr,i will be the uniformly

most powerful test, and the set of Cgr,i where
l(θ1, (Cgr,i|Cbl,i))

l(θ0, (Cgr,i|Cbl,i))
> k is equivalent to the set of Cgr,i

where Cgr,i > DTi. The best test to determine whether θ > 0 will be in the form of Cgr,i > DTi.
In order to determine DTi, the level constraint

PH0(Cgr,i > DTi|Cbl,i = cbl,i) = α

must be satisfied. Or, knowing the measure of Cbl,i, based on Manificat (2024), the probability of
having Cbl,i in Cgr,i is a negative binomial NB(cgr,i + 1, 1/2, 1/2). Then

PH0(Cgr,i = cgr,i|Cbl,i = cbl,i) = P(Cgr,i = cgr,i|Cbl,i = cbl,i, θ = 0) =
(cgr,i + cbl,i)!

cgr,i!cbl,i!

(
1

2

)cgr,i+cbl,i+1

.

Since we have Ni observation of Cgr,i and Cbl,i, then DTi is defined as follows:

P
(
Cgr,i > DTi|Cbl,i = cbl,i

)
= α

= P
(
Cgr,i > DTi|Cbl,i = cbl,i

)
= 1− P

(
Cgr,i ≤ DTi|Cbl,i = cbl,i

)
= 1− F (DTi)

= 1−
[
1− I1/2

(
Cbl,i + 1, DTi + 1

)]
= I1/2

(
Cbl,i + 1, DTi + 1

)
,

where I is the regularized beta incomplete function and F is the cumulative distribution of the
negative binomial. Based on Abramowitz and Stegum (1988), the approximation of I for large
Cgr,i and Cbl,i, is expressed as

Ix(a, b) = ϕ

3(bx)1/3(1− 1
9b)− (a(1− x))1/3(1− 1

9a)√
(a(1−x))2/3

a + (bx)2/3

b

+O

(
1

min(a, b)

)
,

for a, b > 0 and x ∈ [0, 1]. Therefore, in our context, we obtain

1− α ∼ ϕ

 DTi − Cbl,i√
Cbl,i +DTi

 .
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Hence,

ϕ−1(1− α)
√
Cbl,i +DTi = DTi − Cbl,i.

Through solving the second degree equation,

−DT 2
i +DTi

(
k21−α + 2Cbl,i

)
+ k21−αCbl,i − Cbl,i

2
,

where k1−α = ϕ−1(1− α), we obtain ∆ > 0 and we can choose

DTi = Cbl,i +
k21−α +

√
k41−α + 8k21−αCbl,i

2
.

We equally find DTi based on numerical Newton Raphson method using package rootSolve with the
R software.

Proof of proposition 2 : It is be noted, knowing the measure of Cbl,i, the probability of having
Cbl,i in Cgr,i is a negative binomial NB(cgr,i + 1, 1/2, 1/2).

P(Cgr,i = cgr,i|Cbl,i = cbl,i, θ = 0) =
(cgr,i + cbl,i)!

cgr,i!cbl,i!

(
1

2

)cgr,i+cbl,i+1

.

If Cbl,i → ∞, then

P(Cgr,i = cgr,i|Cbl,i = cbl,i, θ = 0) → 1√
4πcbl,i

exp

[
−
(cgr,i − cbl,i)

2

4cbl,i

]
=

1√
4πcbl,i

exp

[
−
(cgr,i + cbl,i − 2cbl,i)

2

4cbl,i

]
.

In addition, we have
lim
n→∞

P(α) = N (α, α).

Thus, when Cbl → ∞, we get

αx exp(−x)

x!
∼ 1√

2πα

exp(−(x− α)2)

2α
.

Then, we have in our context,

1√
4πcbl,i

exp

[
−
(cgr,i + cbl,i − 2cbl,i)

2

4cbl,i

]
∼

(2cbl,i)
cgr+cbl,i exp(−2cbl,i)

(cgr,i + cbl,i)!
,

which is a Poisson distribution of parameter 2cbl,i. Then DTi is defined as follows:

P
(
Cgr,i > DTi|Cbl,i

)
= α

= P
(
Cgr,i > DTi|Cbl,i

)
= 1− P

(
Cgr,i ≤ DTi|Cbl,i

)
= 1− F (DTi)

= 1− cumulative distribution of P(2cbl)

= 1−
Γ(⌊DTi + 1⌋, 2Cbl,i)

⌊DTi⌋
,

where Γ(., .) is the upper incomplete gamma function and ⌊.⌋ is the floor function (see Barbour et
al (1992)). We equally find DTi based on numerical methods using package rootSolve with the R
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software.

Proof of Proposition 3 : It is to be noted that the Delaporte law is a convolution between
the negative binomial law and the Poisson.

P(Cgr = d|Cbl = c, θ) =
∑
c′∈N

θd−c′ exp(−θ)

(d− c′)!

(c′ + c)!

c′!c!

(
1

2

)c′+c

=

d∑
c′=0

P(N1 = d− c′)P(N2 = c′)

= P(N1 +N2 = d)

= g1 ⋆ g2(d),

where N1 ∼ P(θ), N2 ∼ NB
(
c, 12 ,

1
2

)
and g1 stands for the Poisson law and g2 corresponds to the

negative binomial law.
The negative binomial law is a sum of geometric laws. Therefore according to the TLC theorem,
the negative binomial law converges to the normal distribution of mean c and variance 2c, when
Cblank (observation c) → ∞:

g2(c
′) =

(c′ + c)!

c′!c!

(
1

2

)c′+c

→
exp

(
−(c′−c)2

4c

)
√
4πc

=
exp

(
−(c′+c−2c)2

4c

)
√
4πc

.

It is noteworthy that, if a Gaussian distribution has a large variance, it can be considered equivalent
to a Poisson distribution P(2c):

exp
(
−(c′+c−2c)2

4c

)
√
4πc

∼ (2c)c
′+c exp(−2c)

(c′ + c)!
.

As a matter of fact, we can write the Delaporte law as a convolution of two Poisson distributions
with a parameter given by the sum of the Poisson parameters. Thus, we obtain

P(Cgr = d|Cbl = c, θ) =

d∑
c′=0

P(N1 = d− c′)P(N2 = c′ + c)

=
(θ + 2c)d+c

(d+ c)!
exp(−θ − 2c).

In order to determine the estimator of θ, we calculate the predictive likelihood function

l(Cgr,1, . . . , Cgr,n|Cbl,1, . . . , Cbl,n, θ) =
n∏

i=1

(θ + 2ci)
di+ci

(di + ci)!
exp(−θ − 2ci).

Since we need to use the logarithm in order to turn multiplication into addition, the log-likelihood
L is provided by

L(Cgr,1, . . . , Cgr,n|Cbl,1, . . . , Cbl,n, θ) = log l(Cgr,1, . . . , Cgr,n|Cbl,1, . . . , Cbl,n, θ)

=

n∑
i=1

log

(
(θ + 2ci)

di+ci

(di + ci)!
exp(−θ − 2ci)

)
.
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Therefore, we need to resolve the following equation

∂L(Cgr,1, . . . , Cgr,n|Cbl,1, . . . , Cbl,n, θ)

∂θ
= 0.

Hence,

n∑
i=1

di − ci − θ

θ + 2Cbl,i
= 0. (10.1)

Since Cgr,i is large, then (10.1) implies
n∑

i=1

Cbl,i −
n∑

i=1

Cgr,i + nθ = 0. Thus,

θn =

∑n
i=1Cgr,i − Cbl,i

n
.

Proof of Proposition 4 : We first state the radioactivity as follows:

A =
f

ϵtV
(Cgross − Cblank)

= Y X

= g(Y,X)

where X = Cgr − Cbl, Y = f
ϵtV ∼ N (a, b2) and g(u, v) = uv. For any g(x; y), the bi-variate first

order Taylor expansion about any a = (ax, ay) is

g(x, y) = g(a) +
∂g

∂x
(a)(x− ax) +

∂g

∂y
(a)(y − ay) +Rest.

Switching to random variables with finite means E(X) := µx and E(Y ) := µy, we can choose the
expansion point to be a = (µx, µy). In that case, the first order Taylor series approximation for
g(X,Y ) is

g(X,Y ) = g(a) +
∂g

∂x
(a)(X − µx) +

∂g

∂y
(a)(Y − µy) +Rest.

The approximation for E(g(X,Y )) is therefore

E(g(X,Y )) ∼ E(g(a)) +
∂g

∂x
(a)E((X − µx)) +

∂g

∂y
(a)E((Y − µy))

= g(µx, µy) + 0 + 0.

Relying on the definition of variance, the variance of g(X,Y ) is

VAR(g(X,Y )) = E
[
(g(X,Y )− E(g(X,Y )))2

]
∼ E

[
(g(X,Y )− g(µx, µy))

2
]
.
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In this respect, using the first order Taylor expansion for g(X,Y ) expanded around a:

VAR(g(X,Y ))

∼ E

[(
g(µx, µy) +

∂g

∂x
(µx, µy)(X − µx) +

∂g

∂y
(µx, µy)(Y − µy)− g(µx, µy)

)2
]

= E

[(
∂g

∂x
(µx, µy)(X − µx) +

∂g

∂y
(µx, µy)(Y − µy)

)2
]

= E

[(
∂g

∂x
(µx, µy)

)2

(X − µx)
2 + 2

∂g

∂x
(µx, µy)(X − µx)

∂g

∂y
(µx, µy)(Y − µy) +

(
∂g

∂y
(µx, µy)

)2

(Y − µy)
2

]

=

(
∂g

∂x
(µx, µy)

)2

VAR(X) + 2
∂g

∂x
(µx, µy)

∂g

∂y
(µx, µy)COV(X,Y ) +

(
∂g

∂y
(µx, µy)

)2

VAR(Y ).

For our case g(x, y) = xy, the Taylor approximation is indicated as follows:

A = g(X,Y )

= E(X)E(Y ) +
∂g

∂x
(E(X),E(Y ))[X − E(X)] +

∂g

∂y
(E(X),E(Y ))[Y − E(Y )] +Rest.

The approximation of E(A) = E(g(X,Y )) is:

E(A) ∼ E(X)E(Y ) ∼ XY .

We therefore have

∂g

∂X
= Y ,

∂g

∂Y
= X,

(
∂g

∂X
(E(X),E(Y ))

)2

= E(Y )2,

∂g

∂X
(E(X),E(Y ))

∂g

∂Y
(E(X),E(Y )) = E(X)E(Y )

(
∂g

∂Y
(E(X),E(Y )

)2

= E(X)2.

Then, as X and Y are independent, the approximation of VAR(A) = VAR[g(X,Y )] is:

VAR(A) ∼ E(Y )2VAR(X) + E(X)2VAR(Y ).

Hence,

µA,n = XY =
1

n

n∑
i=1

Xi
1

n

n∑
i=1

Yi.

σ2
A,n =

(
1

n

n∑
i=1

Yi

)2
1

n− 1

n∑
i=1

(Xi − µX,n)
2 +

(
1

n

n∑
i=1

Xi

)2
1

n− 1

n∑
i=1

(Yi − µY,n)
2.
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Proof of Proposition 5 : Asymptotic properties and confidence interval of µA,n: Based on TLC
Theorem, we get

√
n(X − µX)

L−→
n→+∞

N (0, σ2
X) and

√
n(Y − µY )

L−→
n→+∞

N (0, σ2
Y ).

Since X and Y are independent, then

√
n

[(
X

Y

)
−
(
µX

µY

)]
L−→

n→+∞
N
((

0
0

)
,Σ

)
,

where Σ the variance covariance matrix is

Σ =

(
σ2
X 0
0 σ2

Y

)
.

Based on Delta method, we obtain

√
n (µA,n − µA) =

√
n
(
g(X,Y )− g(µX , µY )

) L−→
n→+∞

N
(
0, Dg(µX , µY )ΣDg(µX , µY )

t
)
,

where Dg(µX , µY ) =
(

∂g
∂µX

, ∂g
∂µY

)t
= (µY , µX)t stands for the Jacobian matrix of g(µX , µY ). Since

Dg(µX , µY )ΣDg(µX , µY )
t = µ2

Xσ2
Y + µ2

Y σ
2
X ,

then the previous result allows us to build up the confidence interval of E(A) = µA which has the
following form

IµA =

(
XY ±

z1− δ
2
σn(x)

√
n

)
,

where z1− δ
2
is the normal

(
1− δ

2

)
quantile and σn(x) =

√
X

2
σ2
Y,n + Y

2
σ2
X,n.

Based on Rosenblatt (1956), it follows that

√
nhn(f̂A,n(z)− fA(z))

L−→
n→+∞

N
(
0, fA(z)

∫
K(u)du

)
.

Then, the confidence interval based on kernel density estimator is given by

IfA(z) =

(
f̂A,n(z)±

z1− δ
2
σf (z)

√
n

)
,

where z1− δ
2
is the normal

(
1− δ

2

)
quantile and σf (z) =

√
f̂n,A(z)

∫
K(u)du.
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