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A VIRO–ZVONILOV-TYPE INEQUALITY
FOR Q-FLEXIBLE CURVES OF ODD DEGREE

ANTHONY SAINT-CRIQ

We define an analogue of the Arnold surface for odd degree flexible curves,
and we use it to double branch cover Q-flexible embeddings, where Q-
flexible is a condition to be added to the classical notion of a flexible curve.
This allows us to obtain a Viro–Zvonilov-type inequality: an upper bound
on the number of nonempty ovals of a curve of odd degree. We investigate
our method for flexible curves in a quadric to derive a similar bound in two
cases. We also digress around a possible definition of nonorientable flexible
curves, for which our method still works and a similar inequality holds.

Let F ⊂ CP2 be a flexible curve of odd degree m. We denote as ℓ± and ℓ0 the
number of ovals of the curve RF ⊂ RP2 that bound from the outside a component
of RP2 ∖RF which has positive, negative or zero Euler characteristic, respectively.
In particular, ℓ+ is the number of empty ovals, and ℓ0

+ ℓ− is that of nonempty
ones. O. Viro and V. Zvonilov [1992] proved the following upper bound for the
number of nonempty ovals:

ℓ0
+ ℓ− ⩽ (m−3)2

4
+

m2
−h(m)2

4h(m)2
,

with h(m) denoting the biggest prime power that divides m. Their proof relied
on taking a branched cover of CP2, ramified over the surface F . Usually, it is a
good choice to take doubly sheeted branched covers, but this is not possible in this
setting where m is odd. Odd degree curves are a different story compared to even
degree ones, one reason being the nonexistence of the Arnold surface in S4 (RF is
not null-homologous in H1(RP2

;Z/2), and neither is F in H2(CP2
;Z/2)). In the

present paper, we give a definition of an analogue of the Arnold surface in CP2 for
odd degree curves. This means that, under a certain condition of being Q-flexible
(up to taking another conic Q with empty real part and pseudoholomorphic, this is
always satisfied by pseudoholomorphic curves), we are allowed to take the double
branched cover of CP2 ramified over a perturbation of this Arnold surface. This
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condition is also always satisfied by algebraic curves. We will show the following
result, by methods analogous to Viro and Zvonilov.

Theorem 3.11. Let F be a Q-flexible curve of odd degree m. Then

ℓ0
+ ℓ− ⩽ (m−1)2

4
.

If equality holds, then the curve is type I.

It is worth mentioning that this is not quite Zvonilov’s bound (m− 1)(m− 3)/4
[1979], which works for any flexible curve that intersects a real line generically
(this condition being the degree-one analogue of our Q-flexibility), and in particular
for any pseudoholomorphic curve. However, it appears that Q-flexibility and this
condition by Zvonilov are independent for general flexible curves.

In Section 1, we discuss some constructions in CP2 and CP2 seen as 2-fold
branched covers of the standard 4-sphere. In Section 2, we construct the Arnold
surface for odd degree curves, and we describe the behavior of the real part of the
curve under this construction. In Section 3, we prove the inequality. In Section 4,
we review our method for curves in a quadric to produce a result which, to our
knowledge, is new even for algebraic curves. In Section 5, we compare our inequality
to Viro and Zvonilov’s, and we investigate the possible notion of nonorientable
flexible curves, for which our method still applies to derive a similar bound.

1. Preliminaries

Throughout this paper, all surfaces will be assumed to be connected, and all embed-
dings are smooth.

The complex conjugation conj : CP2
→ CP2 is defined in homogeneous coor-

dinates by conj([z0 : z1 : z2]) = [z0 : z1 : z2], and RP2
⊂ CP2 is the fix-point set

Fix(conj). Here, Q will always denote a generic real conic with empty real part (for
instance, the Fermat conic given by the equation z2

0+ z2
1+ z2

2 = 0). In particular, it
is a smoothly embedded 2-sphere Q ⊂ CP2 which represents the homology class
[Q] = 2[CP1

] in H2(CP2
;Z)∼= Z, the choice of a generator being the homology

class of any complex line.

Flexible and Q-flexible curves. A real plane algebraic curve is a real nonsingular
homogenous polynomial X ∈R[x0 : x1 : x2]. By the real part of the curve, we mean
the set

RX = {[x0 : x1 : x2] ∈ RP2
| X (x0, x1, x2)= 0},

and by the complexification of the curve, we mean

CX = {[z0 : z1 : z2] ∈ CP2
| X (z0, z1, z2)= 0}.
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Evidently, CX is invariant under complex conjugation. If m = deg(X) ⩾ 1, then
we see that [CX ] = m [CP1

] ∈ H2(CP2
;Z), and that CX is a surface of genus

g = (m− 1)(m− 2)/2. Also, the tangent space of the complex curve is related to
that of the real curve in the following sense:

for all x ∈ RX, Tx CX = Tx RX ⊕ i · Tx RX.

We define a flexible curve, in the sense of Viro [1984], as follows:

Definition 1.1. Let F be a closed oriented surface embedded in CP2. The surface F
is called a degree m ⩾ 1 flexible curve if

(i) conj(F)= F ;

(ii) χ(F)=−m2
+ 3m;

(iii) [F] = m [CP1
] ∈ H2(CP2

;Z);

(iv) for all x ∈ RF , Tx F = Tx RF ⊕ i · Tx RF , where RF = F ∩RP2.

The following classical results are known for flexible curves (see [Rokhlin 1978]):

(i) If b0 denotes the 0-th Betti number, then b0(RF)⩽ g+1= (m−1)(m−2)/2+1.
Curves with b0(RF)= g+ 1 are called M-curves. On the other hand, curves
with b0(RF) = 0 if m is even and b0(RF) = 1 if m ⩾ 3 is odd are called
minimal curves (note that there are no minimal curves in degree one).

(ii) If m is even, then each component of RF is contractible in RP2, and if m is
odd, all but one components of RF are. Contractible components of RF are
called ovals. An odd degree curve can never have RF =∅ (it always has the
noncontractible component).

(iii) A flexible curve F is said to be a type I (resp. type II) curve if F ∖RF has
two connected components (resp. is connected). An M-curve is always type I,
and a minimal curve is always type II.

What makes flexible curves so different from algebraic curves is the lack of
rigidity, mainly seen with the Bézout theorem, which, in particular, implies that a
degree m algebraic curve generically intersects Q transversely in exactly 2m points.

Definition 1.2. A flexible curve F of degree m ⩾ 1 is called Q-flexible if F ⋔ Q
consists of 2m points, necessarily swapped pairwise by complex conjugation.

Two double branched covers. There is a well-known diffeomorphism between
CP2/conj and S4 (see [Kuiper 1974]). We denote the associated (cyclic) 2-fold
branched cover as p : (CP2, RP2)→ (S4, R), with R= p(RP2) an embedded RP2

in S4. We also let Q = p(Q), the image of the preferred conic under that branched
cover. From the fact that Q does not intersect the branch locus RP2, we see that the
restriction p : Q→Q is an unbranched 2-fold cover, with the conjugation being
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an orientation-preserving involution generating the group of deck transformations.
As such, we see that Q is also an embedded RP2 in S4.

Given a closed embedded surface F2 in a (closed oriented) 4-manifold X4, we
denote as e(X, F) the normal Euler number of the embedding F ⊂ X ; that is,
the Euler class of the normal bundle νF . It is also equal to the self-intersection
number F · F , which is defined by counting signed intersection points between F
and a small perturbation F ′ of F in the normal direction. If F is oriented, then it
corresponds to the intersection form of X evaluated on [F] ∈ H2(X;Z).

Proposition 1.3. We have the following normal Euler numbers:

e(CP2, RP2)=−1, e(CP2, Q)=+4, e(S4, R)=−2 and e(S4, Q)=+2.

Proof. The conic Q is oriented and [Q] = 2[CP1
] ∈ H2(CP2

;Z), so we obtain
e(CP2, Q)=+4. Next, because RP2 is Lagrangian in CP2, we have that the normal
bundle νRP2 and the tangent bundle T RP2 are anti-isomorphic, and thus, for the
Euler class, e(νRP2)=−e(T RP2)=−χ(RP2)=−1. Finally, the computations
of e(S4, R) and e(S4, Q) come from the next lemma. □

Lemma 1.4. Given a 2-fold branched cover f : (Y 4, B̃2)→ (X4, B2), and given
F an embedded closed surface in X , we denote as F̃ the lift p−1(F).

(i) If F ⋔ B, possibly with F ∩ B =∅, then e(Y, F̃)= 2e(X, F).

(ii) If F ⊂ B, then e(Y, F̃)= 1
2 e(X, F).

Proof. One has to inspect what happens in each case individually. In the first, note
that the lift of a perturbation is a perturbation of the lift, and one can ensure that the
self-intersection points occur away from the ramification locus B. As such, each
of these points lifts to two intersections, and the orientations agree because f is
orientation-preserving.

The second case can be deduced from the first. Let F̃ ′ be a small transverse
perturbation of F̃ . Letting τ : Y → Y denote the involution that spans Aut( f ), and
letting F ′ = f (F̃ ′), we see that F ′ is a perturbation of F and F̃ ′ ∪ τ(F̃ ′) is the lift
of F ′. By the first case, we obtain e(τ (F̃ ′))= e(F̃ ′)= 2e(F ′)= 2e(F). Moreover,
we have 2e(F̃)= e(F̃ ′ ∪ τ(F̃ ′))= e(F̃ ′)+ e(τ (F̃ ′))= 4e(F). □

We now wish to consider the 2-fold branched cover of S4, ramified over Q this
time. It is possible to make some computations to find an orientation-reversing
involution of S4 which swaps R and Q. Alternatively, taking any orientation-
reversing free involution of S4, this maps R to a projective plane with normal Euler
number +2, and this is always isotopic to Q in S4. Tracking this isotopy produces
the involution needed. As such, we see that the smooth 4-manifold obtained as the
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RP2 CP2 Q

R S4 Q

Q CP2 RP2

p̃

p||

||

⊂ ⊃

⊃⊂

⊂ ⊃

Figure 1. The two branched coverings of interest and their associ-
ated branch loci. The arrows marked −→→ denote an unbranched
2-fold cover from a 2-sphere to a real projective plane.

double branched cover of S4 ramified along Q is diffeomorphic1 to CP2. We let
p̃ : CP2

→ S4 denote that double branched cover.
Define Q= p̃−1(R). We see that RP2 and Q are respectively embeddings of RP2

and S2 in CP2. Using Lemma 1.4 again, we can compute the normal Euler numbers.

Proposition 1.5. We have e(CP2, RP2)=+1 and e(CP2, Q)=−4.

In Figure 1 we depict a summary of the different maps in play.

2. The Arnold surface of an odd degree flexible curve

For a flexible curve F ⊂ CP2, let A+(F) = F/conj = p(F). It is an embedded
surface in S4 with boundary ∂ A+(F)⊂R identified with RF , and it is orientable
if and only if F is type I.

If the curve has even degree, then RF is null-homologous, and thus exactly one
component of RP2 ∖ RF is nonorientable (it is a punctured Möbius band). Let
RP2
±

be the closure of the two possible subsets of RP2∖RF that have ∂RP2
±
= ∂ F .

We choose RP2
−

to be the one containing the punctured Möbius band (i.e., RP2
+

is
orientable, and RP2

−
has exactly one nonorientable component). In the case where

F is an algebraic curve of even degree, the polynomial P defining it can be chosen
in such a way that

RP2
±
= {[x0 : x1 : x2] ∈ RP2

| ±P(x0, x1, x2) ⩾ 0}.

In Figure 2, we depict such an example for an algebraic curve.

Definition 2.1. Given a flexible curve F of even degree, we let

A(F)= A+(F)∪ p(RP2
+
)⊂ S4,

and we call it the Arnold surface of F .

1In fact, it is sufficient to obtain that the double branch cover of S4 ramified over Q is a homol-
ogy CP2, as will be the case for curves on quadrics in a later section.
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Figure 2. The set RP2
+

, shaded, for Gudkov’s M-sextic.

In odd degrees, it is not possible to define a surface in this way; we need to go
to CP2 first. Take F to be a flexible curve of odd degree. We denote as J ⊂ RP2

the noncontractible component of RF and as o an oval of RF . Let J+ = p(J ),
o+ = p(o), and set J = p̃−1(J+) ⊂ Q and ō = p̃−1(o+) ⊂ Q. Observe that p̃
restricts to an unbranched 2-fold covering p̃ : J → J+ and p̃ : ō→ o+.

Proposition 2.2. We have J ∼= S1 and ō∼= S1
⊔S1, and the unbranched coverings

p̃ : J → J+ and p̃ : ō→ o+ are respectively the nontrivial and the trivial 2-fold
coverings of the circle.

Proof. Isotope J in RP2 to be J = RX with X ∈ R[x0 : x1 : x2] a degree-one
nonsingular homogeneous polynomial. Note that we do not need to look at what
happens outside of RP2 for the claim. In particular, CX ⋔ Q is two points. Letting
G+ = p(CX) and G = p̃−1(G+), we obtain

J+ = ∂G+ and J = ∂G.

Moreover, G+ ⋔Q is one point, for the two points in CX ⋔ Q are swapped pairwise
by conjugation. In particular, the covering p̃ : G→ G+ is a 2-fold branched cover
of the disc G+ (for in degree one, CX is a sphere and RX is type I), with one
branch point in its interior. This is unique, and it is known to induce the nontrivial
cover on the boundary, so the first claim follows (see Figure 3).

For the other claim, an oval o bounds a disc D embedded in RP2, and is thus
disjoint from Q. Therefore, the disc D/conj ⊂ R bounded by o+ lifts in CP2 to
two disjoint discs in Q. This means that p : ō→ o+ is the trivial covering, and ō is
two circles. □

We let RF be the set
J ∪

⋃
o oval

ō⊂ Q.

The previous statement implies that every oval of RF gets doubled in RF , whereas
the noncontractible component J does not.
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p
−→

p̃
←−

J

CX ⋔ Q

J+ J

Figure 3. The restrictions p : CX → G+ and p̃ : G→ G+, the
second one being a branched covering. On the right, the rotation
by 180◦ generates the group of deck transformations.

Proposition 2.3. Let o1 and o2 be ovals of RF.

(i) The set Q ∖ J is two open discs, each containing one of the two components of
ō1.

(ii) If o1 ⊂ o2 (where inclusion means that o1 is contained in the orientable
component of RP2 ∖ o2), then o1 ⊂ o2, in the following sense: Q ∖ o2 has
three components, one being a cylinder containing J , and the other two being
discs each containing a component of o1.

Proof. This comes from the observation that the covering p̃ : Q→Q is the quotient
of the 2-sphere Q by a fixed-point free involution (that is, the antipodal map), as well
as the fact that p : (RP2, RF)→ (R, p(RF)) is a diffeomorphism of the pair. □

This means that the real scheme RF can be seen doubled in RF , as Figure 4
depicts. Now, define A+(F) = p̃−1(A+(F)) = p̃−1(F/conj). For the analogue
of RP2

+
, there are two subsets Q± of Q ∖RF that have ∂ Q± = RF , and those are

diffeomorphic, exchanged by “symmetry” of Q along J . To be more precise, we

p̃
←−

p(RF)⊂R RF ⊂ Q

Figure 4. The set Q+, shaded, for an algebraic curve of degree 7
with real scheme ⟨J ⊔ 2⊔ 1⟨1⟩⟩ (in Viro notation), obtained as a
perturbation of three ellipses and a line.
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denote as Q± the closure of these two sets, with a choice involved in labeling one
Q+ and the other Q−.

Definition 2.4. The Arnold surface of a flexible curve F of odd degree is the surface
A(F)= A+(F)∪ Q+ ⊂ CP2.

3. Proving the inequality

The idea is that we would like to take the 2-fold branched cover of CP2 ramified
along the Arnold surface. This is not yet possible in this odd degree setting, for the
surface A(F) is not null-homologous in H2(CP2

;Z/2) (we will see that it has an
odd self-intersection number). In fact, this limitation is what led Viro and Zvonilov
to consider h(m)-sheeted branched covers, where h(m) denotes the highest prime
power that divides m. However, in our favorable setting, we can perturb the Arnold
surface, with the important feature that it preserves the structure of the curve RF
inside Q. One last remark is that we could not apply the same construction to a
Q-flexible curve F ⊂CP2 directly, because the conic Q has an even homology class.

Branching over the Arnold surface. We are first interested in computing the
normal Euler number of A(F)⊂ CP2. Recall that if F ⊂ X is a closed surface in a
closed oriented 4-manifold, then the Euler class e(νF) ∈ H 2(F;Zw) corresponds
to the self-intersection of F (here, Zw means coefficients twisted by w1(νF), and
w1(X)= 0 implies w1(νF)= w1(F), from which twisted Poincaré duality readily
gives H 2(F;Zw)∼= Z).

In the case where ∂ F ̸=∅ however, one needs to choose a fixed nonvanishing
section θ of νF |∂ F , and consider a relative Euler class (see [Sharafutdinov 1973]):

eθ (X, F)= eθ (νF) ∈ H 2(F, ∂ F;Zw)∼= Z.

This Euler class corresponds to the integer obstruction to extend this section θ to
the whole νF . However, if one needs to glue two surfaces F1 and F2 along their
common boundary ∂ F1 = ∂ F2 and compute the Euler number of F1 ∪∂ F2 in terms
of relative Euler numbers of F1 and F2, there are two things to be careful about:

(1) The bundle 3= (νF1 ∩ νF2)|∂ Fi over ∂ Fi needs to be rank one.

(2) This bundle 3 needs to have a nonvanishing section θ .

If both conditions are satisfied, the section θ gives rise to the same section of
νF1|∂ F1 and νF2|∂ F2 . This can be used to define relative Euler numbers eθ (X, Fi ).
Since, in the closed case, the number e(X, F) does not depend on the choice of the
(possibly vanishing) global section of νF , we obtain the relation

e(X, F1 ∪∂ F2)= eθ (X, F1)+ eθ (X, F2).
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For instance, if F ⊂ CP2 is a flexible curve of even degree m = 2k with nonempty
real part RF , one sees that 3= (νRP2

+
∩νF)|RF is the trivial line bundle over RF .

If θ denotes a section of the normal bundle RF in RP2, then iθ is a section of 3,
and letting R+ = RP2

+
/conj and A+(F) = F/conj, it also induces a section θ̂ of

(νR+ ∩ ν A+(F))|∂ A+(F). By a careful examination, one can use Lemma 1.4 to
compute

eθ̂ (S
4, A+(F))= 1

2 eiθ (CP2, F)= 1
2 F · F = 2k2,

because F is closed, and

eθ̂ (S
4, R+)= 2eiθ (CP2, RP2

+
)=−2χ(RP2

+
),

because RP2 is Lagrangian. This means that the Arnold surface A(F) ⊂ S4 has
normal Euler number

e(S4,A(F))= 2k2
− 2χ(RP2

+
).

If F ⊂ CP2 is now a flexible curve of odd degree, the normal bundle of RF in
RP2 is a nontrivial line bundle over RF (to be more precise, exactly one connected
component of this bundle is the nonorientable line bundle over the circle: the
component associated to the pseudoline J ⊂RF). As such, there is no nonvanishing
section θ of 3, and it does not give rise to a section iθ of νF |RF . However, the
subbundle i3⊂ νF |RF can be seen as a field of lines of νF |RF (instead of a section
being a vector field).

In general, let 3⊂ νF |∂ F be a line subbundle. As done in [Guillou and Marin
1980, §3], one can still consider the integer obstruction

ẽ3(X, F) ∈ H 2(F, ∂ F;Zw)

to extend this field of line to the whole νF . In the case where 3 does have a
section θ , we have ẽ3(X, F)= 2eθ (X, F).

Back to where F is a flexible curve of odd degree, and letting A+(F)= F/conj,
we see that i3 induces a line subbundle 3̂ of ν A+(F)|∂ A+(F). From an application
of Lemma 1.4,

ẽ3̂(S4, A+(F))= 1
2 ẽi3(CP2, F)= 1

2 · 2e(CP2, F)= m2,

because F is closed. This means that, in the above sense, we have e(S4, A+(F))=

m2/2, although this is a noninteger value.
To ease out the exposition, we will allow ourselves to write half-integer Euler

numbers and to use Lemma 1.4 with half-integers. It will be understood that we
use the obstruction ẽ when needed. We will also omit the choice of the field of
lines in the subscript, as all surfaces will ultimately become closed at the end of
computations.
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Proposition 3.1. We have e(CP2,A(F))= m2
− 2.

Proof. Recall that we defined A+(F)= p̃−1(A+(F)), and A(F)= A+(F)∪ Q+.
Using Lemma 1.4 twice, we compute that e(CP2, A+(F))= m2. Now, we simply
make use of the fact that e(CP2, Q+)=−2. Indeed, Q = Q+ ∪ Q−, thus

−4= e(CP2, Q)= e(CP2, Q+)+ e(CP2, Q−),

and because Q+ and Q− are swapped by the (orientation-preserving) involution of
CP2 spanning Aut( p̃), we obtain

e(CP2, Q+)= e(CP2, Q−),

from which we derive e(CP2, Q±)=−2. Alternatively, this can be obtained from
the following lemma. □

Lemma 3.2. Let X be a submanifold of Q. Then e(CP2, X)=−2χ(X).

Proof. The submanifold RP2
⊂CP2 being Lagrangian, and the covering p :CP2

→

S4 being branched exactly on p(RP2), we observe that νR∼=−T R in S4. However,
the covering p̃ : CP2

→ S4 is unbranched in a regular neighborhood of R, whence
νQ ∼=−2T Q. In particular, for the Euler classes, we have e(CP2, X)= e(νX)=

−2e(T X)=−2χ(X). □

Because A(F) has an odd self-intersection, we see that it cannot be null-
homologous in H2(CP2

;Z/2). In fact, because this group has rank one, being
Z/2-null-homologous is equivalent to having an even self-intersection. There is
another surface, however, which is not null-homologous and transverse to A(F): the
surface RP2. If F is a Q-flexible curve of odd degree m, the transverse intersection
F ⋔ Q is 2m points. This implies that A(F) intersects RP2 transversely in m points.
The surface A(F)∪RP2 is therefore immersed with m transverse crossings only.
We will describe how to resolve those double points to obtain an embedded surface.

Firstly, in a closed oriented 4-manifold X , let 6 ⊂ X be the image of a closed
surface through an immersion, with only one transverse self-intersection point
x ∈ 6. Take B ⊂ X to be a small 4-ball around x , which meets 6 in two disks
intersecting transversely at their common center x . The boundary of those discs is
a Hopf link ∂ B ∩6 ⊂ ∂ B ∼= S3, which bounds a Hopf band H ⊂ B. We call the
surface 6′ defined by a choice of a gluing of a Hopf band H to 6∖ B a smoothing
of the singularity of the immersed surface 6 ⊂ X .

Lemma 3.3. The resulting surface 6′ is an embedded surface in X with χ(6′)=

χ(6)− 1, e(X, 6′)= e(X, 6)± 2, and we have freedom in the choice.

Proof. Regarding the claim about the normal Euler numbers, we use similar
arguments as in [Yamada 1995, §5]. Note that if B is a small 4-ball around the
double point x ∈6, then the Hopf link ∂ B ∩6 comes with two possible choices of
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e(6′)= e(6)± 2 e(6′)= e(6)∓ 2

Figure 5. The two possible smoothings of a singularity of an
immersion, given by both choices of orientation of the Hopf link.

orientations. Each determines a unique (up to isotopy fixing the boundary) oriented
Hopf band H inducing that orientation. A transverse push-off s(6) of 6 can be
assumed to be parallel to 6 near x , and the intersection s(6)∩6∩H is two points
with the same sign. Finally, we see that those signs are opposite to one another in
both choices of orientations of ∂ B ∩6 (see Figure 5).

The fact that χ(6′)=χ(6)−1 is simply a matter of using the formula χ(A∪B)=

χ(A)+χ(B)−χ(A∩ B) twice (here, all the sets involved are cellular subspaces).
Indeed, if H denotes the Hopf band that is glued to 6 ∖ B, then

χ(6′)= χ(6 ∖ B ∪∂ H)= χ(6 ∖ B)+χ(H)−χ(S1
⊔S1)= χ(6 ∖ B),

and

χ(6)=χ(6∖B∪∂ B∩6)=χ(6∖B)+χ(B∩6)−χ(S1
⊔S1)=χ(6∖B)+1,

by noting that B ∩6 is topologically a wedge of two discs. □

Consider F ⊂ CP2 a Q-flexible curve of odd degree m. The Arnold surface
A(F) needs not be orientable, and as said before, there is no 2-fold branched cover
of (CP2,A(F)). Recall that A(F) ⋔ RP2 is m points, and as such, A(F)∪RP2 is
an immersed surface with m double points. Applying the previous smoothing of
the singularities at each of those m points, this yields a surface X (F)⊂ CP2, with

χ(X (F))= χ(A(F)∪RP2)−m;

e(CP2,X (F))= e(CP2,A(F)∪RP2)+ 2r, r ∈ {−m, . . . , m}.

Here, r is not free to take all the possible values in {−m, . . . , m}. However, the
extremal values ±m are always realizable. Define X (F) to be the one where we
pick up a +2 every time (that is, r = +m). Two applications of the topological
Riemann–Hurwitz formula give χ(A(F))= χ(F)−m+ 1. Therefore, we have

χ(X (F))=−m2
+ 2.
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Next, we compute

e(CP2,X (F))= e(CP2,A(F)∪RP2)+ 2m = m2
+ 2m− 1.

Take Y 4 to be the 2-fold cover of CP2 branched over X (F). This has been
made possible because the surface X (F) has zero homology mod 2: [X (F)] =

0 ∈ H2(CP2
;Z/2) (see [Gompf and Stipsicz 1999, §6.3] or [Nagami 2000, Corol-

lary 2.10]). Indeed,
H2(CP2

;Z/2)= {0, [RP2
]},

and A(F) intersects RP2 in an odd number m of points. Therefore, we deduce
that [A(F)] = [RP2

] in H2(CP2
;Z/2). Now, adding RP2 and smoothing the

singularities means that X (F)∩RP2
=∅, and as such [X (F)]=0 in H2(CP2

;Z/2).
We denote as 2 : Y 4

→ (CP2,X (F)) the 2-fold branched cover. The previous
computations of χ(X (F)) and e(CP2,X (F)) will allow us to obtain homological
information about the 4-manifold Y .

Proposition 3.4. The homology groups H1(Y ;Z) and H3(Y ;Z) are torsion. In
particular, for Betti numbers, we have b1(Y )= b3(Y )= 0.

Proof. In order to show that H1(Y ;Z) is torsion, it is sufficient to know that
H1(Y ;Z/2)= 0, for any free part Zp < H1(Y ;Z) would give p copies of Z/2 in
H1(Y ;Z/2). We use a generalization of the Gysin sequence, as stated in [Lee and
Weintraub 1995, Theorem 1]:

H1(CP2,X (F);Z/2)→ H1(Y, ∗;Z/2)→ H1(CP2,X (F);Z/2).

Here, H1(Y, ∗;Z/2) ∼= H̃1(Y ;Z/2) the reduced homology group, and we have
H1(CP2,X (F);Z/2)= 0, by looking at the homology long exact sequence of the
pair (CP2,X (F)). This provides H1(Y ;Z/2)= 0, as claimed. For b3(Y )= 0, this
is a consequence of b1(Y )= 0 and Poincaré duality. □

An educated guess is that Y may be simply connected, just like the usual branched
cover of CP2 branched over an algebraic curve {P(x0, x1, x2)= 0}, given as the
algebraic surface {P(x0, x1, x2) = w2

} ⊂ CP(1, 1, 1, m/2), is simply connected
(see [Wilson 1978]). However, we have enough information to compute all the
homological invariants of Y that will be useful. We recall the Hirzebruch formula
for the signature of 2-fold branched covers.

Theorem 3.5 [Hirzebruch 1969, Section 3]. Let f : (Y, B)→ (X, A) be a cyclic
2-fold branched cover, with X and Y both closed oriented 4-manifolds, A a closed
surface and f orientation-preserving. Then, we have

σ(Y )= 2σ(X)− 1
2 e(X, A).
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Proposition 3.6. We have

χ(Y )= m2
+ 4, b2(Y )= m2

+ 2, σ (Y )=
−m2
−2m−3
2

,

b+2 (Y )=
(m−1)2

4
and b−2 (Y )=

3m2
+2m+7

4
,

where b+2 (Y ) and b−2 (Y ) respectively denote the maximal ranks of the subspaces of
H2(Y ;Z) on which the intersection form QY is positive and negative definite.

Proof. First, the topological Riemann–Hurwitz formula again yields

χ(Y )= 2χ(CP2)−χ(X (F))= m2
+ 4.

Next, we use the Theorem 3.5 with the branched cover 2 to obtain

σ(Y )= 2σ(CP2)− 1
2 e(CP2,X (F))=−2− m2

+2m−1
2

=
−m2
−2m−3
2

.

Now, because of Proposition 3.4, we see that χ(Y )= 2+ b2(Y ). This provides

b+2 (Y )+ b−2 (Y )= b2(Y ) and b+2 (Y )− b−2 (Y )= σ(Y ),

which we can easily solve for b±2 (Y ). □

Proving the inequality. We will now mostly mimic the proof of Viro and Zvonilov
[1992]. Note that the construction of X (F) from A(F)∪RP2 happens away from
a neighborhood Q. In particular, we still see RF embedded inside X (F). Given an
oval o⊂RF , recall that RP2 ∖o has two connected components, one of which is a
punctured disc (the other being a punctured Möbius band). Letting C(o)⊂R be
the image of that component under p : CP2

→ S4, we see that p̃−1(C(o))⊂ Q is
diffeomorphic to two disjoint copies of C(o). We denote as C±(o) each of these
copies, with the property that C±(o)⊂ Q± (see Figure 6).

C−(o)⊂ Q− C+(o)⊂ Q+

Figure 6. Using the same scheme ⟨J ⊔2⊔1⟨1⟩⟩ as in the example
of Figure 4, we take o to be the only nonempty oval. In the shaded
regions, we depict C±(o), where part of the boundary ∂C±(o) is ō.
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2
←−

χ(o)=−1 e(Y, C̃(o))=+4

C−(o) C̃(o)

Figure 7. The “pseudo” branched cover C̃(o)→ C−(o).

We see that C+(o) is totally included in the ramification locus of the branched
cover 2 : Y → CP2, and that C−(o) intersects this ramification locus only at its
boundary ∂C−(o) ⊃ ō. We let C̃(o) = 2−1(C−(o)). The restriction 2 : C̃(o)→

C−(o) is not a branched cover, but it is close enough: it maps the boundaries
∂C̃(o)→ ∂C−(o) diffeomorphically, and is two-to-one on the interior. Because
C−(o) is planar (that is, a sphere with holes), we have that C̃(o) is obtained as
gluing two spheres with holes along their boundary components. Additionally,
Aut(2) is a Z/2 spanned by τ : Y → Y an orientation-preserving involution. This
involution τ swaps those two planar surfaces in Y that glue to C̃(o) and fixes their
common boundary. As such, we have shown the next result.

Proposition 3.7. For any oval o⊂ RF , C̃(o) is an oriented surface in Y of genus
b the number of ovals directly contained in o. The restriction 2 : C̃(o)→ C−(o),
shown in Figure 7, is the result of the quotient of the surface 6b by reflection along
a plane of symmetry that cuts it into two planar surfaces. □

The same construction works for J : there are two path-connected subsets D±(J )

of Q± that have J as a part of their boundary. Letting D̃(J )=2−1(D−(J )), we
have that D̃(J ) is a surface of genus e the number of exterior ovals in RF (those
not included in any other), and the restriction 2 : D̃(J )→ D−(J ) is again the
quotient of 6e by reflection along a plane in the middle.

Given an oval o⊂ RF , we denote as χ(o)= χ(C−(o)) the Euler characteristic
of the connected subset of RP2 ∖RF bounded by o from outside. Similarly, we let
χ(J ) = χ(D−(J )). One remarks that χ(o) ⩽ 1, with equality if and only if o is
empty, and that χ(J )= 1− e with e the number of exterior ovals.

Proposition 3.8. Let o, o′⊂RF be ovals, and denote again by J the noncontractible
component of RF.

(1) We have QY (C̃(o), C̃(o))=−4χ(o) and QY (D̃(J ), D̃(J ))=−4χ(J )=4(e−
1).

(2) We have QY (C̃(o), D̃(J ))= 0. If o ̸= o′, then QY (C̃(o), C̃(o′))= 0.
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Proof. For the first claim, observe e(CP2, C−(o))=−2χ(o) and e(CP2, D−(J ))=

−2χ(J ), by using Lemma 3.2. Next, from Lemma 1.4, we can see that

e(Y, C̃(o))= 2e(CP2, C−(o)) and e(Y, D̃(J ))= 2e(CP2, D−(J )).

To derive QY (C̃(o), C̃(o)) and QY (D̃(J ), D̃(J )), we remark that C̃(o) and D̃(J )

are orientable surfaces, so the self-intersection and the evaluation of the intersection
form agree.

For the second claim, distinct ovals o and o′ cannot satisfy C−(o)∩C−(o′) ̸=∅,
even if one is included inside the other (but it is possible that C−(o)∩C+(o′) ̸=∅).
The same goes for C−(o)∩ D−(J ) = ∅. As such, the surfaces C̃(o), C̃(o′) and
D̃(J ) are nonintersecting in Y . □

The homology classes of the surfaces C̃(oi ), i ∈ [[1, ℓ]], and D̃(J ) were respec-
tively denoted as βi and β0 by Viro and Zvonilov (where ℓ denotes the number of
ovals in RF). They showed the following result.

Lemma 3.9 [Viro and Zvonilov 1992, Lemma 1.3]. Let h = pr be a prime power.
Let ν : Y → X be an h-sheeted cyclic covering between two n-manifolds, branched
over a codimension-two subset A ⊂ X. Let B ⊂ X be a membrane, let b be the
class in Hk(X, A) determined by B, and let β be the class in Hk(Y ) determined by
ν−1(B), oriented coherently with B. Let τ : Y → Y be a generator of Aut(ν), and
let ϱ = 1− τ ∈ (Z/p)[Aut(ν)]. Recall the Smith long exact sequence in homology
(with coefficients in Z/p):

· · · → Hϱ

k+1(Y )
∂
−→ Hk(X, A)⊕ Hk(A)

αk
−→ Hk(Y )

ϱ∗
−→ Hϱ

k (Y )→ · · · .

Then, the restriction α̃k : Hk(X, A)→ Hk(Y ) maps b to β, and

(1) αn−1 is monic if Hϱ
n (Y )= 0;

(2) α̃n−2 is monic if X is connected and Hn−1(Y )= 0;

(3) if ⌊(n+ 1)/2⌋⩽ k < n− 2, then αk is monic if X and A are connected and if
Hi (Y )= 0 for all k+ 1 ⩽ i ⩽ n− 1.

We can now prove an analogue to their Corollary 1.5.C.

Corollary 3.10. The set {C̃(oi ) | 1 ⩽ i ⩽ ℓ} ∪ {D̃(J )} has rank at least ℓ (where ℓ

is the number of ovals o1, . . . , oℓ of the curve). If the family has rank ℓ+ 1, then
the curve is type I.

Proof. We can apply Lemma 3.9 in our setting, where ν =2 : Y → (CP2,X (F))

and h = 2. We then see that

α̃2 : H2(CP2,X (F);Z/2)→ H2(Y ;Z/2)
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is injective, because CP2 is connected and H3(Y ;Z/2)=0 (Proposition 3.4). Noting
that α̃2(C−(o))= C̃(o) and α̃2(D−(J ))= D̃(J ), the claim follows from the very
same arguments as in [Viro and Zvonilov 1992, §2.4]. □

Recall that ℓ± and ℓ0 denote the number of ovals of the curve that bound from the
outside a component of RP2∖RF with positive/negative or zero Euler characteristic,
respectively. The previous results finally wraps up to yield our main theorem.

Theorem 3.11. Let F be a Q-flexible curve of odd degree m. Then

ℓ0
+ ℓ− ⩽ (m−1)2

4
.

If equality holds, then the curve is type I.

Proof. Take the maximal subset P of {C̃(oi ) | 1 ⩽ i ⩽ ℓ} ∪ {D̃(J )} that spans a
subspace of H+2 (Y ), and let r = rank(P). Then, we obtain r ⩽ b+2 (Y ). Moreover,
because of QY (C̃(o), C̃(o)) = −4χ(o) and similarly for D̃(J ), observe that P
has exactly ℓ0

+ ℓ−+ 1 elements (assuming that there is at least one oval to have
D̃(J ) ∈ P; if there are none, the theorem is vacuous). Therefore, because of
Corollary 3.10, we deduce r ⩾ #P − 1= ℓ0

+ ℓ−. This produces

ℓ0
+ ℓ− ⩽ b+2 (Y ),

which is the claimed inequality. The extremal case also follows from an almost
word-for-word proof as in [Viro and Zvonilov 1992]. □

4. Curves on a quadric

We investigate our method for flexible curves in CP1
× CP1, with either of its

antiholomorphic involutions c1(x, y)= (x̄, ȳ) or c2(x, y)= (ȳ, x̄). This is motivated
by recent work from Zvonilov [2022], which generalizes [Viro and Zvonilov 1992]
to flexible curves on almost-complex 4-manifolds. For a survey of results regarding
curves in CP1

×CP1, we refer the reader to [Matsuoka 1991] or [Gilmer 1991].
We will also need the following result.

Theorem 4.1 [Letizia 1984, §3]. There are diffeomorphisms CP1
×CP1/c1 ∼= S4

and CP1
×CP1/c2 ∼= CP2.

More precisely, the differential structure on CP1
×CP1 ∖ Fix(ci )/ci extends to

the standard one on S4 or CP2, respectively.
Note that in the present work, we do not make any assumption regarding gcd(a, b)

with [F] = (a, b) ∈ H2(CP1
×CP1), contrary to [Zvonilov 2022] where there is

no result if gcd(a, b)= 1.
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Curves on a hyperboloid. Consider the space X = CP1
×CP1 with its involution

c1 : ([x0 : x1], [y0 : y1]) 7→ ([x̄0 : x̄1], [ȳ0 : ȳ1]). We call (X, c1) the hyperboloid. Let
R= Fix(c1)= RP1

×RP1. We consider Q to be a generic real algebraic curve of
bidegree (2, 2) and with empty real part RQ=∅⊂R. We will prove the following
result.

Theorem 4.5. Let F be a Q-flexible curve in the hyperboloid with bidegree (a, b)

where both a and b are odd. Let ℓ± and ℓ0 denote the number of ovals of the
curve that bound from the outside a subset with positive, negative or zero Euler
characteristic, respectively. Then

ℓ−+ ℓ0 ⩽ ab+1
2

.

Note that H2(X;Z) is a Z⊕ Z spanned by the homology classes of algebraic
curves of bidegree (1, 0) and (0, 1). We have a notion of a (Q-)flexible curve in
this setting too.

Definition 4.2. Let F ⊂ X be a closed, connected and oriented surface. We call F
a bidegree (a, b) flexible curve if the following conditions hold:

(1) conj(F)= F .

(2) [F] = (a, b) in H2(X;Z)= Z⊕Z.

(3) χ(F)= 2− 2(a− 1)(b− 1).

(4) If RF = F ∩R, then for all x ∈ RF , Tx F = Tx RF ⊕ i · Tx RF .

If, additionally, F ⋔Q is 2(a+ b) points, then F is said to be Q-flexible.

Note that if both a and b are odd, then RF is some number of ovals (null-
homologous curves in R), and some nonzero number of parallel copies of a curve
with homology class (α, β) in H1(R;Z)∼= Z⊕Z, where 0 ⩽ α ⩽ a and 0 ⩽ β ⩽ b
are both odd and coprime, and π1(R)= H1(R;Z)∼= Z⊕Z is spanned by the real
parts of bidegree (1, 0) and (0, 1) algebraic curves. In the case of an oval o, the
complement R∖ o has two connected components, one of which is a disk and is
called the interior of that oval, and we say that o bounds it from the outside.

We observe that R is a null-homologous torus, and Q is a torus with homology
class (2, 2), both in H2(X;Z). Therefore

e(X,R)= 0 and e(X,Q)= 8.

Denoting as p : X → X/c1 ∼= S4 the 2-fold branched cover, we set R = p(R)

and Q = p(Q). Observe that R is a torus and Q is a Klein bottle. Finally, letting
p̃ : X → S4 be the 2-fold branched cover of S4 ramified along Q (which exists
because [Q] = 0 ∈ H2(S

4
;Z/2) ∼= 0), we set R = p̃−1(Q) and Q = p̃−1(R).



174 ANTHONY SAINT-CRIQ

R X Q

R S4 Q

Q X R

p̃

p||

||

⊂ ⊃

⊃⊂

⊂ ⊃

Figure 8. The branched covers in the case of CP1
×CP1 with its

hyperboloid structure, with the same notation conventions as in
Figure 1.

Consecutive applications of Lemma 1.4 yield

e(S4, R)= 0, e(S4, Q)= 4, e(X ,R)= 2 and e(X ,Q)= 0.

The situation is depicted in Figure 8.
The topological Riemann–Hurwitz formula gives χ(X)= 4, and Theorem 3.5

provides σ(X) = −2. A similar reasoning as in Proposition 3.4 ensures that
H1(X;Z/2)= 0, and thus that H1(X;Z) is torsion. In particular,

b1(X)= b3(X)= 0 and b2(X)=−σ(X)= 2.

This suggests that X may be diffeomorphic to CP2#CP2, but this will not be needed.
Consider a Q-flexible curve F ⊂ X of bidegree (a, b), where a and b are both

odd. In particular,

χ(F)=−2ab+ 2a+ 2b and e(X, F)= 2ab.

Letting A+(F)= p(F) and A+(F)= p̃−1(A+(F)), one checks that

χ(A+(F))=−2ab+ a+ b and e(A+(F))= 2ab.

In order to understand RF = p̃−1(∂ A+(F)) ⊂ Q, it is necessary to describe the
unbranched 2-fold covering p̃ :Q→R, which is a nontrivial 2-fold cover of the
torus (nontriviality can be deduced by the same argument as in the proof of the next
proposition). There are only three such coverings, each given by the subgroups
2Z⊕Z, Z⊕ 2Z and G = {(x, y) ∈ Z2

| x + y ≡ 0 mod 2}.

Proposition 4.3. The covering p̃ :Q→R corresponds to the subgroup G.

Proof. Assume it corresponds to the subgroup 2Z⊕Z (the argument is the same
with the other). Let γ be a curve with homology class (0, 1) in R. Its preimage is
therefore two parallel copies of it. The situation is depicted in Figure 9.

Now, let C be a generic bidegree (0, 1) algebraic curve, so that ∂ A+(C) = γ .
Then A+(C) ⋔ Q is one point, so that the map p̃ : A+(C)→ A+(C) is a branched
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p̃−1(γ )

−→
p̃ γ

Figure 9. The unbranched 2-fold covering of the torus correspond-
ing to the subgroup 2Z⊕Z, and its effect on the curve with homol-
ogy class (0, 1).

covering that restricts to an unbranched covering of the boundary. An application
of the Riemann–Hurwitz formula gives χ(A+(C))= 1, and A+(C) has at most two
boundary components. Therefore, there is no other choice but the same situation as
depicted in Figure 3. That is, A+(C) is a disk, and p̃−1(γ )= ∂ A+(C) is connected.
This is excluded, by assumption. The same argument with a bidegree (1, 0) algebraic
curve works for the subgroup Z⊕ 2Z. □

The covering corresponding to the subgroup G is depicted in Figure 10. If a
curve γ ⊂R has homology class (α, β) with both α and β odd (and coprime), then
its preimage is two parallel copies p̃−1(γ )⊂Q.

Recalling that RF is some ovals and some number of parallel copies of an (α, β)

curve with α and β coprime and odd, we have the following immediate facts:

(1) Each copy of the (α, β) curve is doubled (indeed, the homotopy class of that
curve belongs to the subgroup G).

(2) Each oval is doubled.

−→
p̃

Figure 10. The unbranched covering p̃ :Q→R corresponding
to the subgroup G = {(x, y) ∈ Z2

| x + y ≡ 0 mod 2} ⊂ Z2. On
the left, the preimage of the (3, 1) curve is two parallel copies of a
(1,−2) curve. It is understood that the two tori are represented by
the two squares, whose opposite sides are identified.



176 ANTHONY SAINT-CRIQ

←−−→

Figure 11. In the middle, a curve with real scheme ⟨(1, 1), 1⊔1⟨2⟩⟩.
On the left and on the right, the two possible choices Q±.

(3) The preimage respects mutual position of ovals, as in Proposition 2.3 (that is,
an oval inside another lifts to two copies inside the other two copies).

Hence, we see that Q∖RF has two diffeomorphic subsets Q± with the property
∂Q± = RF (we provide an example in Figure 11). We therefore have

χ(Q+)= χ(Q−) and χ(Q)= χ(Q+)+χ(Q−),

so that χ(Q±)= 0. The same argument gives e(X ,Q±)= 0.
Therefore, we can define the Arnold surface of the curve as A(F)= A+(F)∪Q+.

Note that A(F) ⋔R is a+ b points (coming from the 2(a+ b) points in F ⋔Q).
We consider the immersed surface A(F)∪R, and we let X (F) be the smoothing
of its singularities, as provided by Lemma 3.3, where we choose the smoothing that
satisfies

e(X ,X (F))= e(X ,A(F)∪R)+ 2(a+ b).

Proposition 4.4. Let F ⊂ X be a Q-flexible curve of bidegree (a, b) with both a
and b odd. The surface X (F) has zero homology in H2(X;Z/2) and satisfies

χ(X (F))=−2ab− a− b and e(X ,X (F))= 2ab+ 2a+ 2b+ 2.

Proof. Computing χ(X (F)) and e(X ,X (F)) is straightforward. To prove that
[X (F)] = 0 ∈ H2(X;Z/2), it suffices to show that A(F) and R are homologous
mod 2. Note that by the previous computations, b2(X) = −σ(X) = 2, so that X
is a negative definite smooth 4-manifold. By virtue of Donaldson’s theorem, this
means that the intersection form of X is, up to a change of basis, that of CP2#CP2.
We consider a basis of H2(X , Z/2)∼= Z/2⊕Z/2 that diagonalizes this intersection
form, and we will show that A(F) and R both realize the homology class (1, 1) in
H2(X;Z/2).
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Because e(X ,A(F)) and e(X ,R) are both even, this rules out the two classes
(1, 0) and (0, 1). As such, it suffices to show that A(F) and R are both not null-
homologous in H2(X;Z/2) (if A(F) was null-homologous, we could directly take
the 2-fold covering of X ramified along A(F), without adding R).

By Theorem 5.5, we have the congruences

e(X ,A(F))+ 2χ(A(F))≡ q([A(F)]) mod 4,

e(X ,R)+ 2χ(R)≡ q([R]) mod 4,

for some quadratic function q :H2(X;Z/2)→Z/4. From the previous computations,
this yields

2ab ≡ q([A(F)]) mod 4 and 2≡ q([R]) mod 4.

Since a and b are both odd, this means that 2ab ̸≡ 0 mod 4. As such, we cannot
have q([A(F)])= 0 and q([R])= 0, thus implying [A(F)] ̸= 0 and [R] ̸= 0. □

Let Y denote the 2-fold covering of X ramified along X (F). By Proposition 3.4,
H1(Y ) is torsion, and computations of χ(Y ) = 2ab + a + b + 8 and σ(Y ) =

−ab− a− b− 5 yield

b+2 (Y )=
ab+1

2
.

This implies the following result.

Theorem 4.5. Let F be a Q-flexible curve in the hyperboloid with bidegree (a, b)

where both a and b are odd. Let ℓ± and ℓ0 denote the number of ovals of the
curve that bound from the outside a subset with positive, negative or zero Euler
characteristic, respectively. Then

ℓ−+ ℓ0 ⩽ ab+1
2

.

Proof. We denote as 2 : Y → X the double branched cover of (X ,X (F)). For any
oval o ⊂ RF , R∖ RF has exactly two path-connected components that have o
as a part of their boundary. One is a punctured disc, and the other is a punctured
torus. We denote as C(o)⊂R the image under p : X→ S4 of the punctured disc
component, and as C±(o)⊂Q± the preimages under p̃ : X→ S4 of C(o). We set
C̃(o)=2−1(C−(o)). For an analogue of D̃(J ), there is a subtlety. Indeed, in RF ,
there may be several parallel copies of an (α, β)-curve in H1(R;Z), where α and
β are both odd and coprime. Each of these curves will lift in Q to two copies.
If RF contains ovals, then it is possible to choose one connected component D−
of Q∖ RF that has one of those curves as a boundary component, and at least
one oval as another boundary component, and which is included in Q−. Define
D̃=2−1(D−). By computations analogous to the CP2 case, we have the following:
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(1) If o⊂ RF is an oval, then e(Y, C̃(o))=−4χ(o), where χ(o)= χ(C−(o)). In
particular, e(Y, C̃(o)) ⩽ 0 if and only if o is a nonempty oval.

(2) QY (D̃, D̃) ⩽ 0.

(3) If o ̸=o′ are two distinct ovals, then QY (C̃(o), C̃(o′))=0 and QY (C̃(o), D̃)=0.

We can now apply Lemma 3.9 to the family composed of the collection of the C̃(o)

and of D̃. □

Curves on an ellipsoid. We now consider the other antiholomorphic involution
c2 : ([x0 : x1], |y0 : y1]) 7→ ([ȳ0 : ȳ1], [x̄0 : x̄1]) on X =CP1

×CP1. This time, we have

R= Fix(c2)= {(x, x̄) | x ∈ CP1
} ∼= S2,

and X/c2 ∼= CP2. Algebraic curves in (X, c2) necessarily have a bidegree of the
form (m, m) for some m ⩾ 1. Consider a purely imaginary bidegree (2, 2) algebraic
curve Q, and define flexible curves and Q-flexible curves as before. Note that we
still keep the same basis for H2(X;Z) as in the case of the hyperboloid.

Theorem 4.6. Let F be a bidegree (m, m) Q-flexible curve on the ellipsoid, with m
odd. Let ℓ± and ℓ0 denote the number of connected components of R∖RF with
positive, negative or zero Euler characteristic. Then

ℓ0
+ ℓ− ⩽ m2

+1
2

.

We have
e(X,R)=−2 and e(X,Q)= 8,

because [R] = (±1,∓1) ∈ H2(X;Z) (depending on a choice of orientation) and
[Q] = (2, 2). Denoting the branched cover as p : X → CP2, we see that, letting
R = p(R) and Q = p(Q),

e(CP2, R)=−4 and e(CP2, Q)= 4.

In particular, Q is a null-homologous Klein bottle in H2(CP2
;Z/2), because it has

even normal Euler number. This means that there is a well-defined 2-fold branched
cover p̃ : X→CP2 ramified along Q. We let R= p̃−1(Q) and Q= p̃−1(R), so that

e(X ,R)= 2 and e(X ,Q)=−8.

A direct computation provides

χ(X)= 6 and σ(X)=−4,

with H1(X) torsion. This is evidence to think that X ∼= 4CP2. What will be
useful is knowing that X is negative definite, and so has intersection form −I4 by
Donaldson’s theorem.
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←−
p̃

−→
p̃

Q+ Q−

p(RF)⊂R

Figure 12. The two possible subsets Q±, shaded. It is understood
that the two spheres in the first row are Q1, and the two in the
second are Q2.

This time, the restriction p̃ :Q→R is a two-fold covering of the 2-sphere, and
is necessarily trivial. We set Q = Q1 ⊔ Q2. Let τ : X → X be the involution of
X spanning Aut( p̃). Denote as R1 and R2 the two subsets of R ∖ p(RF) with
∂ Ri = p(RF), and define

Q+ = Q1 ∩ p̃−1(R1)⊔ Q2 ∩ τ( p̃−1(R1)),

Q− = Q2 ∩ p̃−1(R1)⊔ Q1 ∩ τ( p̃−1(R1)).

We refer to Figure 12 for a representation. Of course, this definition depends on the
choices of the labeling Qi of the two components of Q, as well as the choice of
the labeling of the Ri . But ultimately, the inequality we obtain will not depend on
these choices.

This allows for a definition of A(F) such that e(Q+) = 1
2 e(Q) and χ(Q+) =

1
2χ(Q). We obtain

χ(A(F))=−2m2
+ 2m+ 2 and e(A(F))= 2m2

− 4.

Another key difference from the cases of CP2 and of the hyperboloid is that the
second homology H2(X;Z/2) now has rank four (the intersection form of X is−I4).
To show that A(F) and R are homologous mod 2 and not null-homologous, we
need to eliminate more cases. We consider a basis of H2(X;Z) that diagonalizes the
intersection form of X . It also descends to a basis of H2(X;Z/2). If (a, b, c, d) ∈

H2(X;Z/2) denotes the homology class of A(F) or R, with a, b, c, d ∈ {0, 1}, then
the fact that e(X ,A(F)) and e(X ,R) are even implies that a+b+c+d ≡ 0 mod 2.
There are 8 remaining cases: (0, 0, 0, 0), (1, 1, 1, 1), and the six cases of the type
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ℓiRi ∖ Di

Di

Figure 13. The core of a Möbius strip can be seen as a real line in
the associated real projective plane.

(1, 0, 1, 0) with two nonzero coefficients. Theorem 5.5 rules out the zero homology
class, as well as the (1, 1, 1, 1) one. Let X (F) be A(F)∪R with all 2m singularities
removed accordingly to Lemma 3.3. This gives

χ(X (F))=−2m2
− 2m+ 2 and e(X ,X (F))= 2m2

+ 4m− 2.

One last application of Theorem 5.5 provides q([X (F)])≡ 0 mod 4. In particular,
if, without loss of generality, we have [R] = (1, 1, 0, 0), then this means that there
are only two choices:

[A(F)] = (1, 1, 0, 0) or (0, 0, 1, 1).

That is, either X (F) is null-homologous, in which case [R] = [A(F)], or it is a
characteristic surface if [R] ̸= [A(F)]. Assuming that X (F) is characteristic, the
Guillou–Marin congruence (Theorem 5.10) applies and gives

β(X ,X (F))≡−(m+ 1)2
≡ 0 or 4 mod 8,

by inspection of the squares of odd integers mod 8. Because the surface X (F) has
high genus, this method will a priori not yield any contradiction.

Proposition 4.7. The surface A(F) is homologous to R mod 2.

Proof. We start by describing the generators of the homology H2(X;Z/2). Consider
a complex line CP1

⊂ CP2 such that CP1
∩Q =∅. This means that CP1 lifts to

two spheres S1 and S2 in X , each with e(X , Si )=−1. Moreover, because they are
disjoint, we have Q X ,Z/2(S1, S2) ≡ 0 mod 2, i.e., they are linearly independent.
There are two more generators that come from the following construction.

Q is a Klein bottle, which can be seen as the desingularization of two real
projective planes R1 and R2, with R1 ⋔ R2={∗} and e(CP2, Ri )=1. By Lemma 3.3,
we see that this is possible from the computation e(CP2, Q)= 4. Let x ∈ R1 ⋔ R2 be
the transverse intersection, and let Di ⊂ Ri be a small disc centered at x . Ri ∖Di is a
Möbius strip, whose core ℓi can be seen as a real projective line in Ri (see Figure 13).
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This real line separates a complex line L i into two components L±i with ∂L±i = ℓi .
Let 6i = p̃−1(L+i ). From L+i ⋔Q= ℓi = ∂L+i , we see that 6i is a sphere in X with
e(X , 6i )=−1. Moreover, QZ/2(61, 62)≡ 0 mod 2 because 61∩62=∅. Finally,
because L±i ∩CP1

⊂ CP2 ∖Q, we have 6i ⋔ SJ is an even number of points, and
thus QZ/2(6i , S j )≡0 mod 2. As such, (S1, S2, 61, 62) is a basis for the homology
H2(X;Z/2). From [Nagami 2000, Lemma 3.4], the surface p̃−1(CP1)∪R is mod 2
characteristic in X , and as such, we have [R]Z/2= [S1]+[S2]. In order to show that
A(F) and R are homologous mod 2, it suffices to prove that Q X ,Z/2(A(F), 6i )≡

0 mod 2 for i = 1, 2. Equivalently, we need to show that A(F) ⋔ 6i is an even
number of points for i = 1, 2. Intersection points in A(F) ⋔ 6i come in two types:

(1) intersections between p̃−1(F+) and 6i ; this number equals that of intersection
points between F+ and CP1, which is itself even because e(CP2, F+)= 2m2;

(2) intersections between Q+ and 6i , itself also equal to #R ⋔ CP1, which is
even because e(CP2, R)=−4. □

To prove Theorem 4.6, we apply the same method as before. Given a connected
component U ⊂R∖RF (or equivalently, U ⊂R∖ p(RF)), the lift p̃−1(U ) is two
disjoint copies of U . We let C±(U ) denote those copies, with the condition that
C±(U ) ⊂Q±. As before, let C̃(U ) =2−1(C−(U )), with 2 : Y → X the double
branched cover of X ramified over X (F). We have

e(Y, C̃(U ))=−4χ(U ).

If QY is the intersection form of Y , and if U and V are two distinct components of
R∖RF , then there are two possibilities:

(1) U∩V =∅, in which case C−(U )∩C−(V )=∅, and thus QY (C̃(U ), C̃(V ))=0.

(2) U ∩ V is a component of RF , in which case C−(U )⊂ Qi and C−(V )⊂ Q j ,
with {i, j} = {1, 2}. In particular, we still have C−(U )∩C−(V )=∅.

Finally, one applies the same arguments as before to the family {C̃(U )}χ(U )⩽0

to obtain the claimed bound.

5. Further comments

Other ways to resolve the singularities. In order to take the 2-fold branched cover,
we added RP2 to A(F). This led us to resolve the m singularities that arose. As
suggested by Zvonilov in a personal communication, one could be tempted to use
blow-ups and see what effect this has. But in order to ensure that the new surface
X (F) is still connected, we cannot blow-up all m singularities. Doing this procedure
to m− 1 of those, and gluing a Hopf band for the last as we did previously, leads
to the very same bound. That is, the 4-manifold Y which is the double branched
cover of (mCP2,X (F)) still has b+2 (Y )= (m− 1)2/4.



182 ANTHONY SAINT-CRIQ

Comparisons of our inequality. Given a prime number p and an integer m ∈ N⋆,
we denote as νp(m)=max{n ∈N | pn divides m} the p-adic valuation of m. Define
the function h : N⋆

→ N by

h(m)= max
p prime

pνp(m).

That is, h(m) is the largest prime power that divides m. Viro and Zvonilov’s
inequality, which holds for flexible curves, is

ℓ0
+ ℓ− ⩽ (m−3)2

4
+

m2
−h(m)2

4h(m)2
.

We denote as V Z(m) and S(m) the bounds obtained by Viro and Zvonilov and
ours, respectively. That is,

V Z(m)=
(m−3)2

4
+

m2
−h(m)2

4h(m)2
and S(m)=

(m−1)2

4
.

For infinitely many degrees m, one has S(m) < V Z(m). But in infinitely many
others (e.g., when m is a prime power), the converse holds. However, both are far
from sharp estimates that can be obtained from considerations for algebraic curves
that come from Bézout theorem computations. That is, there are degrees m for
which V Z(m) and S(m) are both not realized as upper bounds for ℓ0

+ ℓ−. For
instance, Zvonilov [1979] has the sharper estimate, valid for pseudoholomorphic
curves,

ℓ0
+ ℓ− ⩽ (m−1)(m−3)

4
.

If one starts with Viro and Zvonilov’s inequality in the case where m + 2 is a
prime power and the curve is Q-flexible of degree m, then one can perturb its union
with the conic Q into a nonsingular degree m+ 2 flexible curve (which will have
the same real set, for RQ =∅), and obtain

ℓ0
+ ℓ− ⩽ (m−1)2

4
+

(m+2)2
−h(m+2)2

4h(m+2)2
=

(m−1)2

4
.

That is, one can derive our Theorem 3.11 from Viro and Zvonilov’s when m+ 2 is
a prime power. On a side note, if the famous twin prime conjecture happens to be
true, this means that there are infinitely many degrees m for which V Z(m) < S(m)

and the bound S(m) is a corollary of their bound.
By some easy number-theoretic considerations, one can show that there are

infinitely many odd degrees m such that neither of m and m+ 2 are prime powers,
and for which S(m) < V Z(m). Indeed, the difference of the upper bounds in both
inequalities is

V Z(m)− S(m)=
1
4

([
m

h(m)

]2
− 4m+ 7

)
.
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With m p=1287×42912p+1, one has 5 |m p+2 and 7 | p+2, and h(m p)∈o(m19/40
p ).

In particular, the difference diverges to +∞ on the degrees m p.
The same conclusion can be derived when comparing the inequalities of The-

orems 4.5 and 4.6 with Zvonilov’s work [2022]. It turns out that, for a curve of
bidegree (a, b) with a and b coprime, Zvonilov has no possibility to take a cyclic
covering, and there is no inequality in those cases.

Nonorientable flexible curves. There is a new object that could be interesting to
study: nonorientable flexible curve. The motivation comes from the observation that
in the operation of taking double branched covers, orientability of the ramification
locus is disregarded. This is not the case for other cyclic branched covers (and the
methods from [Viro and Zvonilov 1992] cannot apply to nonorientable surfaces).
We propose the following nonorientable analogue of Definition 1.1.

Definition 5.1. Let F ⊂ CP2 be a closed, connected and nonorientable surface.
We call F a nonorientable degree m and genus h flexible curve if the following
conditions hold:

(i) χ(F)= 2− h.

(ii) conj(F)= F .

(iii) e(CP2, F)= m2.

(iv) For any x ∈ RF = F ∩RP2, we have Tx F = Tx RF ⊕ i · Tx RF .

What plays the role of asking that the integral homology class of F is m times a
generator [CP1

] in H2(CP2
;Z) is the condition e(CP2, F)=m2. In the traditional

orientable case, we also had the condition that χ(F) = −m2
+ 3m. This was a

requirement of extremality in the genus bound proved by Kronheimer and Mrowka.

Theorem 5.2 (Thom conjecture, [Kronheimer and Mrowka 1994]). Let F ⊂ CP2

be a smoothly embedded oriented and connected surface with [F] =m [CP1
]. Then

χ(F) ⩽−m2
+ 3m.

One could ask whether the implication

e(CP2, F)= m2
=⇒ χ(F)≤−m2

+ 3m

holds for closed, connected, nonorientable surfaces F smoothly embedded in CP2.
In fact, self-intersection numbers of nonorientable surfaces need not be squares.
Given any m ∈Z, set 6(m) to be the collection of all smoothly embedded, connected
and nonorientable surfaces F ⊂ CP2 with e(CP2, F) = m. We can define the
following nonorientable genus function of CP2:

g̃ : Z→ Z⩽1,

m 7→ max
F∈6(m)

χ(F).
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We will later prove the following result.

Theorem 5.3. Here, k ∈ N⋆ denotes a nonnegative integer.

(1) We have g̃(0)= 0.

(2) Let ℓ ∈ {0, 1} have the same parity as k. Then, on negative integers, we have

g̃(−k)= 2− k+ℓ

2
.

(3) On even positive integers, we have

g̃(4k)= 4− 2k (for k ⩾ 2) and g̃(4k+ 2)= 3− 2k.

We also have the special values g̃(2)= 1 and g̃(4)= 0.

(4) On odd positive integers, we have the bounds

g̃(4k+ 1) ⩾ 2− 2k and g̃(4k+ 3) ⩾ 1− 2k.

We also have the special values g̃(1)= 0, g̃(3)= 1, g̃(5)= 0, g̃(7)=−1 and
g̃(9)=−2.

In the previous theorem, one can now look at the values of g̃(m2). We obtain{
g̃(m2)= 8−m2

2 if m is even,
g̃(m2) ⩾ 5−m2

2 if m is odd.

In particular, we see that the nonorientable analogue g̃(m2) ⩽ −m2
+ 3m of

Theorem 5.2 has the quadratic term off by 50%. Nonorientable flexible curves still
share some properties with traditional flexible curves. More precisely, we show the
following.

Proposition 5.4. Let F ⊂ CP2 be a nonorientable flexible curve of degree m. Then

(1) χ(F) is an even integer;

(2) RF realizes the nontrivial homology class in H1(RP2
;Z) if and only if m is

odd, and it has exactly one pseudoline in this case;

(3) F satisfies the Harnack bound: b0(RF) ⩽ 3−χ(F).

Proof. The first claim is a consequence of the following result, which is a general-
ization of the well-known Whitney congruence.

Theorem 5.5 [Yamada 1995, Theorems 1.2 and 1.4]. Let X be a closed, connected,
oriented 4-manifold.

(1) If H1(X;Z)= 0, define q : H2(X;Z/2)→Z/4 by setting, for ξ ∈ H2(X;Z/2),
q(ξ)=Q X (ξ̃ , ξ̃ ) mod 4, where ξ̃ ∈ H2(X;Z) is any integral lift of ξ . Then, for
any embedded, closed, connected (not necessarily orientable) surface F ⊂ X ,

e(X, F)+ 2χ(F)≡ q([F]) mod 4.
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(2) Without the assumption that H1(X;Z)= 0, the map

q : H2(X;Z/2)→ Z/4

defined by q([F])= e(X, F)+ 2χ(F) is a well-defined Z/4-quadratic map.

Indeed, if e(CP2, F)=m2, then one inspects two cases, depending on the parity
of m. If m is even, then [F] = 0 ∈ H2(CP2

;Z/2), and if m is odd, then [F] is the
generator of H2(CP2

;Z/2). Both cases yield χ(F)≡ 0 mod 2.
For the other claims, the classical proofs for flexible curves, found, for instance,

in Viro’s lecture notes, work word for word. □

We call a nonorientable flexible curve of degree m Q-flexible if, as before, the
intersection F ⋔ Q is 2m points. Then, we have the following result.

Theorem 5.6. Let F ⊂ CP2 be a nonorientable Q-flexible of odd degree m. Then

ℓ0
+ ℓ− ⩽−χ(F)

2
−

m2
−1
4
+m.

Proof. The only difference with traditional flexible curves is that one needs to do all
the computations in terms of χ(F). Indeed, starting at the level of S4, the surface
F/conj needs not be orientable anymore. One checks that, for the Arnold surface,
we have

χ(A(F))= χ(F)−m+ 1 and e(CP2,A(F))= m2
− 2,

and for the smoothing X (F), we obtain

χ(X (F))= χ(F)− 3m+ 2 and e(CP2,X (F))= m2
+ 2m− 1.

This gives, denoting as Y the double branched cover of (CP2,X (F)),

b+2 (Y )=−
χ(F)

2
−

m2
−1
4
+m.

Note that χ(F) ⩽ 0 is necessarily even, as seen in Proposition 5.4. □

In regards to Theorem 5.3, we conjecture the following.

Conjecture 5.7. The lower bounds for g̃ over nonnegative odd integers are equali-
ties.

If this holds, then one may add to the definition of a nonorientable flexible
curve F of degree m that they must satisfy the extremal bound χ(F)= g̃(m). In
this case, Theorem 5.6 becomes

ℓ0
+ ℓ− ⩽ m− 1,

whereas the Harnack bound gives

b0(RF) ⩽ m2
+1
2

.
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This is to be compared to

b0(RF) ⩽ m2
−3m+4

2
∼

m2

2
and ℓ0

+ ℓ− ⩽ m2
−2m+1

4
∼

m2

4

for traditional Q-flexible curves.

Proof of Theorem 5.3. The two steps of the proof are to

(1) obtain upper bounds for χ(F) given e(CP2, F)= m, and

(2) construct a surface realizing that upper bound.

To this end, we will use the following.

Theorem 5.8 [Levine et al. 2015, Theorem 10.1]. Let X be a closed, connected,
oriented, positive definite 4-manifold with H1(X;Z)= 0, and let F ⊂ X be a closed,
connected, nonorientable surface with nonorientable genus h(F) = 2 − χ(F).
Denote as ℓ(F) the minimal self-intersection of an integral lift of [F] ∈ H2(X;Z/2).
Then

e(X, F)≥ ℓ(F)− 2h(F).

This allows us to obtain the upper bounds

g̃(−k) ⩽ 2− k+ℓ

2

for k ∈ N⋆ and ℓ ∈ {0, 1} having the same parity as k. Indeed, if F ⊂ CP2 has
e(CP2, F) = −k, then ℓ(F) = ℓ, because [F] ̸= 0 ∈ H2(CP2

;Z/2) if and only
if −k is odd, in which case a complex line is an integral lift of F with minimal
self-intersection.

Another method (which worked for the orientable Thom conjecture in degree 4,
for instance) is to make use of homological information of the double branched
cover of CP2 ramified along F . More precisely, we have the following.

Proposition 5.9. Let F ⊂ CP2 be a closed, connected surface such that [F] = 0 ∈
H2(CP2

;Z/2) (or equivalently, such that e(CP2, F) is even). Then

χ(F) ⩽ 4− e(CP2, F)

2
.

Proof. Let Y denote the double branched cover of CP2 ramified over F . We
compute

χ(Y )= 6−χ(F) and σ(Y )= 2− e(CP2, F)

2
.

Moreover, by reasoning analogous to the proof of Proposition 3.4, we have b1(Y )=

b3(Y ) = 0, so that b2(Y ) = 4− χ(F). If one considers any orientable surface
6 ⊂ CP2 which is not null-homologous in H2(CP2

;Z), and which is transverse
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to F , we see that e(CP2, 6) > 0, and 6 lifts in Y to a surface 6̃ with e(Y, 6̃)=

2e(CP2, 6) > 0. This implies that

b+2 (Y )=
b2(Y )+σ(Y )

2
⩾ 1,

yielding the inequality that was claimed. □

Note that unless e(CP2, F) ⩾ 8, the previous result only gives trivialities, since
χ(F) ⩽ 1 for a nonorientable surface. This is enough to obtain the upper bounds

g̃(4k) ⩽ 4− 2k and g̃(4k+ 2) ⩽ 3− 2k

for k ∈ N⋆. Note that if k = 1, then the bound g̃(4) ⩽ 2 is vacuous.
What remains to do is

(1) compute the special values of g̃ at 0, 1, 2, 3, 4, 5, 7 and 9;

(2) construct surfaces F ⊂ CP2 that realize the upper bounds for g̃(−k), g̃(4k)

and g̃(4k+ 2);

(3) construct surfaces F ⊂CP2 to derive lower bounds for g̃(4k+1) and g̃(4k+3).

To obtain upper bounds for g̃ on odd integers ⩽ 9, we will need the following.

Theorem 5.10 [Guillou and Marin 1980]. Let F ⊂ X be a mod 2 characteristic
surface in a closed, connected, oriented 4-manifold with H1(X;Z)= 0. Then

σ(X)− e(X, F)≡ 2β(X, F) mod 16,

where β(X, F) is the Brown invariant of the embedding.

We shall recall what β(X, F) is. The Guillou–Marin form

ϕ : H1(F;Z/2)→ Z/4

is defined as follows. Because H1(X;Z)= 0, any immersed circle C ↬ F bounds
an immersed orientable surface D ↬ X . Isotope D (relatively to its boundary)
such that it is transverse to F . The normal bundle νD of D in X is trivial, and as
such, so is νD |C . Considering the normal bundle νC of C in F as a subbundle
νC < νD |C , count the number n(D) of right-handed half-twists with respect to the
fixed trivialization νD |C ∼= C ×R2. Define

(∗) ϕ(C )= n(D)+ 2D · F + 2e(F, C ) mod 4,

where D · F is the number of transverse intersection points F ⋔ D taken mod 2.
Then this definition does not depend on any of the choices made, and ϕ(C ) depends
only on the homology class [C ] ∈ H1(F;Z/2). This defines a quadratic map

ϕ : H1(F;Z/2)→ Z/4,
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b
a

Figure 14. The standard basis for the first homology of the Klein bottle.

to which one can regard its Brown invariant

(∗∗) β(X, F)
def.
=

(
1
√

2

)b1(F;Z/2) ∑
x∈H1(F;Z/2)

√
−1

ϕ(x)
.

For instance, we can compute the possible values of β(CP2, K ) where K ⊂CP2

is a Klein bottle. We refer to Figure 14 for a choice of generators a and b of
H1(K ;Z)= {0, a, b, a+ b}.

From ϕ(a+ b)= ϕ(a)+ϕ(b)+ 2a · b= ϕ(a)+ϕ(b)+ 2, it suffices to compute
ϕ(a) and ϕ(b). One checks that ϕ(a) ∈ {1, 3} and ϕ(b) ∈ {0, 2}, by computing each
term in (∗). Therefore, it suffices to inspect each of the four cases individually, and
plug the values in (∗∗) to obtain

β(CP2, K ) ∈ {0, 2, 6}.

Proposition 5.11. We have g̃(1)⩽ 0, g̃(3)⩽ 1, g̃(5)⩽ 0, g̃(7)⩽−1 and g̃(9)⩽−2.

Proof. Note that Theorem 5.5 gives

e(CP2, F) ∈ {1, 5, 9} =⇒ χ(F) is even,

e(CP2, F) ∈ {3, 7} =⇒ χ(F) is odd.

In particular, from χ(F) ⩽ 1 always, we see that the only nontrivial bounds are for
g̃(7) and g̃(9).

(1) Assume that F ⊂CP2 has e(CP2, F)= 7 and χ(F)= 1 (that is, F is diffeomor-
phic to a projective plane). Then, the Guillou–Marin congruence (Theorem 5.10)
gives

1− 7≡ 2β(CP2, F) mod 16.

A simple calculation as before for the possible values of β(CP2, K ) gives that, in
the case of the projective plane, β(CP2, RP2)= 1, a contradiction.
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(2) If F now has e(CP2, F) = 9 and χ(F) = 0 (that is, F is a Klein bottle), we
can use the Guillou–Marin congruence again to derive

β(CP2, F)≡ 4 mod 8.

The previous calculations gave β(CP2, K ) ∈ {0, 2, 6}, which is a contradiction. □

Now, the only things that remain to do are to construct surfaces that realize the
upper bounds obtained thus far, and compute upper bounds for g̃ in the special
cases not covered yet. For constructions of surfaces, we will make use of local
surfaces. Recall the so-called Whitney–Massey theorem.

Theorem 5.12 [Massey 1969]. Let F ⊂ S4 be a closed, connected, nonorientable
surface. Then

e(S4, F) ∈ {2χ(F)− 4, 2χ(F), . . . , 4− 2χ(F)}.

All tuples (e, χ) satisfying this condition are realizable by a closed, connected,
nonorientable surface.

A surface F embedded in the 4-ball B4 that realizes an admissible tuple (e, χ)

will be called a local surface. Note that the previous theorem ensures that those
always exist for any admissible tuple.

Proposition 5.13. All upper bounds obtained for g̃ so far are sharp. We have

g̃(4k+ 1) ⩾ 2− 2k and g̃(4k+ 3) ⩾ 1− 2k.

Proof. Fix k ∈ N⋆ a nonnegative integer.

(1) If k = 2p is even, consider a local surface F ⊂ B4
⊂ CP2 of genus p and

self-intersection −2p. Then χ(F)= 2− p= 2− k/2 and e(CP2, F)=−k. If now
k= 2p+1 is odd, choose F ⊂B4 a local surface of genus p+1 and self-intersection
−2(p+ 1). Embed the 4-ball B4 in CP2 away from a fixed complex line L ⊂ CP2,
and consider the surface F#L obtained by connecting F and L with a small tube.
Then, by noting that L is a 2-sphere with self-intersection +1, we have

χ(F#L)= χ(F)= 2− (p+ 1)= 2− k+1
2

and

e(CP2, F#L)=−2(p+ 1)+ 1=−k.

In both cases, this implies that

g̃(−k) ⩾ 2− k+ℓ

2
.
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(2) Assume that k ⩾ 2. Let F ⊂ B4 be a local surface of genus 2(k − 1) and
self-intersection 4(k− 1). Embed the 4-ball away from the conic Q, and consider
the surface F#Q (again, by connecting them with a small tube). We compute, using
that Q is a 2-sphere with self-intersection +4,

χ(F#Q)= 4− 2k and e(CP2, F#Q)= 4k,

yielding the lower bound g̃(4k) ⩾ 4− 2k. Note that in the case k = 1, this works,
but gives an orientable surface (the 2-sphere Q).

(3) Let F ⊂ B4 be a local surface of genus 2k − 1 and self-intersection 4k − 2.
Tubing with the conic Q gives

χ(F#Q)= 3− 2k and e(CP2, F#Q)= 4k+ 2,

which provides us with g̃(4k+ 2) ⩾ 3− 2k.

(4) One can do the same to derive the bounds

g̃(4k+ 1) ⩾ 2− 2k and g̃(4k+ 3) ⩾ 1− 2k.

Indeed, taking F to be a local surface of genus 2k (resp. 2k+1) and self-intersection
4k (resp. 4k+ 2), this can be embedded away from a complex line L . Looking at
the surface F#L gives the lower bounds. The special cases for g̃(5), . . . , g̃(9) are
covered by this construction. For g̃(1), it suffices to consider a local Klein bottle
with self-intersection 0 and tubing it with a complex line, and for g̃(3), the conic Q
can be tubed to RP2

= Fix(conj). □

To conclude the proof of Theorem 5.3, there only remains to compute three
special values that have not been covered yet:

(1) g̃(0) = 0, because the Euler characteristic must be even, and a local Klein
bottle with zero self-intersection gives a lower bound.

(2) g̃(2)= 1, since a local projective plane with self-intersection +2 works.

(3) g̃(4) = 0, as the Euler characteristic must be even, and a local Klein bottle
with self-intersection +4 suffices.
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