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Abstract
Contract scheduling is a widely studied framework
for designing real-time systems with interruptible
capabilities. Previous work has showed that a pre-
diction on the interruption time can help improve
the performance of contract-based systems, how-
ever it has relied on a single prediction that is
provided by a deterministic oracle. In this work,
we introduce and study more general and realistic
learning-augmented settings in which the predic-
tion is in the form of a probability distribution, or
it is given as a set of multiple possible interruption
times. For both prediction settings, we design and
analyze schedules which perform optimally if the
prediction is accurate, while simultaneously guar-
anteeing the best worst-case performance if the pre-
diction is adversarial. We also provide evidence
that the resulting system is robust to prediction er-
rors in the distributional setting. Last, we present
an experimental evaluation that confirms the theo-
retical findings, and illustrates the performance im-
provements that can be attained in practice.

1 Introduction
A central requirement in the design of real-time and intelli-
gent systems is the provision for anytime capabilities. Many
applications, such as motion-planning and medical diagnosis,
require systems that are able to output a reasonably efficient
solution even if they are interrupted at arbitrary points in time.
This motivates the design and evaluation of anytime systems
given, as building component, more rudimentary systems that
are not interruptible. Questions related to trade-offs between
resources (e.g., computational time) and performance are at
the heart of AI applications, and the topic of early influen-
tial works on flexible computation, resource-bounded algo-
rithms and time-depending planning [Boddy and Dean, 1994;
Horvitz, 1988; Zilberstein and Russell, 1996].

We are interested, in particular, in a paradigm introduced
by [Russell and Zilberstein, 1991], in which the building
component is a contract algorithm, namely an anytime al-
gorithm that is given the exact amount of allowable compu-
tation time as part of its input. A contract algorithm will al-
ways output the correct result if it is allowed at least its pre-

scribed computation time (hence its name), otherwise it may
very well return a meaningless result if it is queried prior to
its promised contract time. Thus, contract algorithms are not
interruptible; however [Russell and Zilberstein, 1991] pro-
posed a methodology for obtaining interruptible systems via
scheduling consecutive executions of the contract algorithm
with increasing computation times. As an example, consider
a schedule in which the i-th execution of the contract algo-
rithm is allowed time 2i, for all i ∈ N. This yields a system
in which, at any time t, the contract algorithm has completed
at least one execution of time t/4. The factor 4 quantifies the
performance of the schedule, and is the multiplicative loss
due to the repeated executions of the contract component.

More generally, given a contract algorithm A, a contract
schedule is defined as an increasing sequence X = (xi)i≥0,
where xi is the length of the i-th execution of A. To evalu-
ate the performance of a schedule X , we rely on a worst-case
measure known as the acceleration ratio [Russell and Zilber-
stein, 1991]. Let ℓ(X,T ) denote the largest contract length
completed by time T in X , then the acceleration ratio of X is
defined formally as

acc(X) = sup
T

T

ℓ(X,T )
. (1)

It is easy to show that the optimal acceleration ratio is equal
to 4, and that it is obtained by the doubling schedule xi = 2i.
However, contract scheduling becomes far more challenging
in more complex settings that have been studied in the litera-
ture. This includes schedules that are run on multiple proces-
sors [Bernstein et al., 2002], on multiple instances [Zilber-
stein et al., 2003], or combinations of these seeings [Bern-
stein et al., 2003; López-Ortiz et al., 2014]; soft interrup-
tions where the query time is not a hard deadline [Angelopou-
los et al., 2008]; performance measures beyond the acceler-
ation ratio [Angelopoulos and López-Ortiz, 2009]; adaptive
schedules [Angelopoulos and Panagiotou, 2023]; schedules
with end-guarantees on completion time [Angelopoulos and
Jin, 2019]; and learning-augmented schedules [Angelopou-
los and Kamali, 2023]. Furthermore, contract scheduling is
an abstraction of resource allocation under uncertainty, hence
it has connections to other optimization problems under un-
certainty, such as searching for a hidden target in a known
environment under the competitive ratio, as shown in [Bern-
stein et al., 2003; Angelopoulos, 2015].



1.1 Contract scheduling with predictions
The standard formulation of contract scheduling assumes that
the scheduler has no prior information on the interruption
time, hence the acceleration ratio evaluates the system per-
formance at worst-case interruptions. In practice, however,
one expects that the scheduler should be able to benefit from
a prediction on the interruption, that may be available via a
ML oracle. This motivated the recent study [Angelopoulos
and Kamali, 2023] of the problem, in a setting in which an
imperfect oracle provides the system with a single, determin-
istic prediction (advice) τ concerning the interruption time T .
[Angelopoulos and Kamali, 2023] showed that there exists a
schedule with acceleration ratio equal to 4 even if the predic-
tion is adversarial, and which also yields a much improved
ratio equal to 2 if the prediction is correct (i.e., error-free).
Moreover, they showed that this is result is optimal. Using the
terminology of learning-augmented online algorithms [Lyk-
ouris and Vassilvitskii, 2021; Purohit et al., 2018], we say that
there exist schedules of consistency equal to 2, and robustness
equal to 4, whereas no 4-robust schedule can be better than 2-
consistent1. We emphasize that the prediction is assumed to
be single, i.e., it consists of a unique predicted interruption
time, and deterministic, in that the oracle does not incorpo-
rate any stochastic aspects.

In practice, however, the above model may not adequately
capture the information content of the anticipated prediction.
For instance, in motion-planning algorithms, the system may
operate under a certain probabilistic knowledge of the terrain,
hence specific actions may have to be triggered according to
a (stochastic) belief about the environment [Zilberstein and
Russell, 1993]. For a different example, a medical diagnostic
system may have to be queried at multiple anticipated times
(e.g., depending on the availability of various facilities and
specialists). Note that such settings are not captured by the
model of [Angelopoulos and Kamali, 2023], in which the
schedule is fine-tuned according to a single prediction, and
may have consistency as high as 4 if the prediction includes
as few as two possible interruption times.

1.2 Contribution
Motivated by the above applications, and the limitations
of single/deterministic prediction oracles, we study contract
scheduling under more general models that incorporate dis-
tributional and multiple advice. As in [Im et al., 2023a],
which studied the learning-augmented dynamic acknowledg-
ment problem, we aim to simultaneously optimize the consis-
tency and the robustness of the system. For both settings, we
show that the results we obtain are tight.

We begin with the distributional setting, in which the ad-
vice oracle provides the scheduler with a distribution on the
anticipated prediction. Here, the consistency is evaluated, in
expectation, relative to the distributional advice (see Section 2
for the formal definition). We show how to construct a col-
lection of n schedules for any given n ∈ N∗, such that each
schedule in the collection is 4-robust, and the best schedule

1[Angelopoulos and Kamali, 2023] also studied a query-based
setting in which the prediction is elicited via responses to binary
queries, however, this query model is not relevant to our work.

has consistency at most 4n(2
1
n − 1). In particular, we show

that as n grows, the consistency of the system is arbitrarily
close to 4 ln 2 ≈ 2.77, and that the best schedule can be com-
puted in time polynomial in n. We show that this bound is op-
timal, in that there exists a distributional prediction for which
the consistency of any 4-robust schedule is at least 4 ln 2.
Furthermore, we demonstrate an interesting disconnect be-
tween deterministic and distributional predictions. Namely,
we prove that, given the distributional prediction that maxi-
mizes the consistency, the performance of the optimal sched-
ule deteriorates smoothly as function of the prediction error,
measured by the Earth Mover’s Distance, or EMD [Rubner
et al., 1998]. In contrast, no consistency-optimal 4-robust
schedule can exhibit smoothness against deterministic predic-
tions. This disconnect shows that distributional predictions
can help mitigate pathological situations, which can be of in-
terest in other learning-augmented optimization problems.

In the second part of this work, we study the model in
which the advice oracle provides the scheduler a set P of
k potential interruption times (e.g., provided by k experts).
Here, the consistency is measured as the worst-case per-
formance ratio among interruptions in P , and we refer to
Section 2 for the formal definition. We show how to de-
rive a 4-robust schedule of optimal consistency 22−

1
k in time

O(k log k). We conclude with an experimental evaluation of
our schedules, in both the distributional and multiple advice
settings, that demonstrates the performance improvements
that can be attained in practice.

1.3 Other related work

Motivated by the capacity of ML predictions to improve al-
gorithmic performance, the field of learning-augmented al-
gorithms has been growing rapidly in the recent years. We
refer to the survey [Mitzenmacher and Vassilvitskii, 2020]
and the online repository [Lindermayr and Megow, 2023] that
lists several works over the last five years. The vast majority
of works have focused on single, deterministic predictions.
Multi-prediction oracles were first studied in the context of
ski rental [Gollapudi and Panigrahi, 2019], followed by works
on multi-shop ski rental [Wang et al., 2020], facility loca-
tion [Almanza et al., 2021], matching and scheduling [Dinitz
et al., 2022], online covering [Anand et al., 2022] and k-
server [Antoniadis et al., 2023]. Distributional predictions
were first studied in [Diakonikolas et al., 2021] in problems
such as ski rental and prophet inequalities.

Contract scheduling is related to the online bidding prob-
lem [Chrobak and Kenyon-Mathieu, 2006], which is used a
building block in many online algorithms, e.g., for schedul-
ing on related machines, both non-preemptive [Aspnes et
al., 1997], and preemptive [Ebenlendr and Sgall, 2009], k-
median problem [Chrobak et al., 2008], or multi-level aggre-
gation [Bienkowski et al., 2021]. A reduction between the
contract scheduling and online bidding problems for the sin-
gle prediction setting was shown in [Angelopoulos and Ka-
mali, 2023]. Consistency/robustness tradeoffs for online bid-
ding with a single prediction were shown in [Anand et al.,
2021; Angelopoulos et al., 2020; Im et al., 2023b].



2 Preliminaries
A contract schedule is defined as a sequence of the formX =
(xi)i∈N, where xi is the length of the i-th contract, and recall
that the acceleration ratio of X is given by (1). In a learning-
augmented setting, the acceleration ratio of X is equivalently
called the robustness of X , and we say that X is r-robust if
it has robustness at most r. From [Russell and Zilberstein,
1991] we thus know that r ≥ 4, and that for X = (2i)i∈N,
we have that r(X) = 4.

The consistency of X is defined according to the specifics
of the prediction oracle, hence we make a distinction between
the two learning-augmented settings we study. In the distri-
butional setting, the advice consists of a distribution µ on the
anticipated interruption time, and the consistency of a sched-
ule X with advice µ is defined as

c(X,µ) =
Ez∼µ[z]

Ez∼µ[ℓ(X, z)]
, (2)

and recall that the random variable ℓ(X, z) denotes the largest
contract completed in X by time z. We will call ℓ(X, z) the
profit of X , where z is drawn from distribution µ.

In the multiple-advice setting, the prediction consists of a
set P = {τ1, . . . , τk} of k possible interruption times (e.g.,
provided by k experts). Here, we measure the consistency
c(X,P ) of a schedule X with prediction set P as its worst-
case performance relative to the prediction in P , i.e., we de-
fine

c(X,P ) = sup
τ∈P

τ

ℓ(X, τ)
. (3)

Note that without any assumptions, no schedule can have
bounded robustness, if the interruption time is allowed to be
arbitrarily small. There are two types of assumptions that
can be applied to circumvent this technical issue. The first
is to assume that the interruption can only occur after the
first contract has completed its execution. The second is to
assume that the schedule is bi-infinite, in that it starts with
an infinite number of infinitesimally small contracts. For in-
stance, the doubling schedule can be described as (2i)i∈Z,
and the completion time of contract i ≥ 0 is defined as∑i
j=−∞ 2j = 2i+1. We choose the second assumption since

it simplifies the calculations, but we note that the two assump-
tions can be used interchangeably; see, e.g., the discussion
in [Demaine et al., 2006].

For a given λ ∈ [0, 1), define the schedule X(λ) ≜
(2i−λ)i∈Z. The following proposition shows that it suffices
to focus on the set of schedules ∪λ∈[0,1){X(λ))}.
Proposition 1 (Appendix). For any λ ∈ [0, 1), X(λ) is 4-
robust. Conversely, every 4-robust schedule must belong in
the class ∪λ∈[0,1){X(λ)}.

3 Distributional advice
We begin with the setting in which the advice is in the form
of a given distribution µ. We first define an appropriate col-
lection Sn of n schedules which will be instrumental towards
finding an optimal schedule.
Definition 2. For any n, let Sn denote the following col-
lection of n schedules X0 . . . , Xn−1, defined as Xj =

X(j/n) = (2i−j/n)i∈Z.

Figure 1: Illustration of the computation of ℓ(Xj , z) for n = 3 and
j = 1. Note that the time scale is logarithmic. Fix an interruption
point z ∈ [22, 23). Then z is contained in Ik2 for some value of
k ∈ {0, . . . , n − 1}. If k ≥ n − j = 2, then the largest completed
contract is c2 (of length 22−1/3), and otherwise, the largest com-
pleted contract is c1 (of length 21−1/3).

Theorem 3. For any n ∈ N+, there exists a 4-robust schedule
in Sn that has consistency at most 4n · (21/n − 1).

Proof. First, observe that any scheduleXj satisfies the condi-
tions of Proposition 1, and hence is 4-robust. Thus, it remains
to show that for any distribution µ over (0,+∞), there exists
a schedule in Sn with the desirable consistency.

We define the intervals Iki for i ∈ Z and k ∈ {0, . . . , n −
1} as Iki = [2i+k/n, 2i+(k+1)/n). Note that the intervals Iki
are disjoint and their union is equal to the support of µ, i.e.,⊎
i∈Z
⊎

0≤k≤n−1 I
k
i = (0,+∞).

If the interruption time z is drawn from distribution µ, then
its expected value is

Ez∼µ[z] ≤
∑
i∈Z

n−1∑
k=0

2i+(k+1)/n · µ(Iki )

≤
∑
i∈Z

2i ·
n−1∑
k=0

µ(Iki ) · 2k/n · 21/n.

We now estimate the expected value of ℓ(Xj , z) for each
schedule Xj with j ∈ {0, . . . , n − 1}. To this end, we con-
sider a fixed value of interruption time z and let Iki be the
interval containing z. We note that if k ≥ n − j, then
2i+1−j/n ≤ z < 2i+2−j/n, and thus ℓ(Xj , z) = 2i−j/n.
Otherwise, i.e., if k < n − j, we have ℓ(Xj , z) = 2i−1−j/n.
See Figure 1 for a pictorial description of this computation.

Hence,

Ez∼µ[ℓ(Xj , z)] =
∑
i∈Z

n−j−1∑
k=0

2i−1−j/n · µ(Iki )

+
∑
i∈Z

n−1∑
k=n−j

2i−j/n · µ(Iki ).

Next, we compute the sum of the largest contracts over all
schedules Xj , as follows:
n−1∑
j=0

Ez∼µ[ℓ(Xj , z)]

=

n−1∑
j=0

∑
i∈Z

n−j−1∑
k=0

2i−1− j
n · µ(Iki ) +

n−1∑
k=n−j

2i−
j
n · µ(Iki )


=
∑
i∈Z

2i ·
n−1∑
k=0

µ(Iki ) ·

1

2

n−k−1∑
j=0

2−j/n +

n−1∑
j=n−k

2−j/n





=
∑
i∈Z

2i ·
n−1∑
k=0

µ(Iki ) ·
(
1

2
· 1− 2

k−n
n

1− 2−
1
n

+ 2
k−n
n · 1− 2

−k
n

1− 2−
1
n

)

=
∑
i∈Z

2i ·
n−1∑
k=0

µ(Iki ) ·
2k/n−2

1− 2−1/n

=
Ez∼µ[z]
21/n

· 2−2

1− 2−1/n
=

Ez∼µ[z]
4(21/n − 1)

.

We can now use an averaging argument, and deduce that
there exists a schedule Xj∗ in Sn such that

Ez∼µ[ℓ(Xj∗ , z)] ≥
1

n
·
n−1∑
j=0

Ez∼µ[ℓ(Xj , z)]

≥ Ez∼µ[z]
4n(21/n − 1)

.

Hence, the consistency of the schedule Xj∗ is c(Xj∗ , µ) =

Ez∼µ[z]/Ez∼µ[ℓ(Xj∗ , z)] ≤ 4n(21/n − 1).

We observe that 4n(21/n − 1) is decreasing and tends to
4 ln 2 as n → ∞. Indeed, 4n(21/n − 1) = 4n(eln 2·(1/n) −
1) = 4n(ln 2 · (1/n) + O(1/n2)) = 4 ln 2 + O(1/n). This
means that for any ϵ > 0, there exists an integer n = O(1/ϵ)
such that 4n(21/n − 1) ≤ 4 ln 2 + ϵ. Assuming that we can
evaluate the probability associated with an interval in constant
time, we obtain the following corollary.

Corollary 4. For any arbitrarily small ϵ > 0, there is an al-
gorithm with runtime polynomial in O(1/ϵ) for devising a 4-
robust schedule that has consistency at most 4 · ln 2 + ϵ.

We now show that the upper bound of Theorem 3 is tight.

Theorem 5. For any n ∈ N, there exists a distributional
prediction for which every collection Cn that consists of n
4-robust schedules cannot contain a schedule of consistency
smaller than 4n · (21/n − 1).

Proof. Using Proposition 1, let us denote, without loss
of generality, the 4-robust schedules in Cn by X(λk) =
(2i−λk)∞i=−∞ for k ∈ [0, n− 1] and 0 ≤ λk < λk+1 < 1.

We will define a distribution µ that has an n-point support,
and where the k-th point occurs at time 22−λk−ε with proba-
bility pk, for ε > 0 arbitrarily small. For k < n−1, we define
pk = 2λk+1−λ0 − 2λk−λ0 , and define pn−1 = 2− 2λn−1−λ0 .
Let Pk =

∑
j≤k pj , so Pk = 2λk+1−λ0 − 1.

We have that Ez∼µ[ℓ(X(λ0), z)] = 2−λ0 as the support of
µ is in the interval [21−λ0 , 22−λ0 ]. Therefore, if an interrup-
tion occurs at any point in the support of µ, the last completed
contract of X(λ0) is of length 2−λ0 .

Similarly, for any k > 0, we have:

Ez∼µ[ℓ(Xλk
, z)] = Pk−12

1−λk + (1− Pk−1)2
−λk

= 21−λ0 − 21−λk + 21−λk − 2−λ0 = 2−λ0 . (4)

The expected value of µ is (defining λn = λ0 + 1):

Ez∼µ[z] =
∑
j<n

(2λj+1−λ0 − 2λj−λ0) · 22−λj

= 2−λ0 ·
∑
j<n

(22+λj+1−λj − 22)

= 22−λ0 ·
(
− n+

∑
j<n

2λj+1−λj

)
. (5)

From (4) and (5), the consistency of any X(λk) is:

c(X(λk), µ) = 4 ·
(
− n+

∑
j<n

2λj+1−λj

)
.

c(X(λk), µ) is minimized when the λj are chosen so as to
minimize the sum term, while respecting the constraint that
the sum of all the exponents equals λn − λ0 = 1 and each
exponent belongs to [0, 1). By the convexity of the function
x 7→ 2x, this occurs when all terms are equal to 21/n, hence

c(X(λk), µ) ≥ 4 ·
(
−n+ n · 21/n

)
= 4n · (21/n − 1).

By allowing n → ∞, Theorem 5 shows that no 4-robust
schedule can have consistency better than 4 ln 2. Note that
the theorem relies on a probability distribution with n mass
points. However, we can obtain the same lower bound by
relying to a prediction given as a continuous distribution.
Theorem 6 (Appendix). For any D > 0, there is a contin-
uous distribution µD over the interval [D, 2D] such that, for
every 4-robust schedule X , c(X,µD) ≥ 4 ln 2.

3.1 Smoothness with prediction errors
We will now discuss an interesting disconnect between de-
terministic and distributional predictions that arises in con-
tract scheduling. Consider first the setting of a single, de-
terministic prediction, for which we know that there exist
4-robust, 2-consistent schedules [Angelopoulos and Kamali,
2023]. Given such prediction, say τ , let η = |T − τ | denote
the prediction error associated with τ , where T denotes the
actual interruption.
Proposition 7 (Appendix). For any arbitrarily small ϵ > 0,
and any schedule X with prediction τ that is 4-robust and
2-consistent, there exists T such that η = |T − τ | = ϵ and
ℓ(X,T ) ≤ 1

4T + ϵ
4 .

Proposition 7 shows that, in the single prediction setting,
any schedule that simultaneously optimizes the consistency
and the robustness is extremely fragile with respect to predic-
tion errors. Informally, in the presence of a tiny prediction er-
ror, the proposition shows that the consistency of the schedule
becomes as large as the robustness, namely arbitrarily close
to 4, hence the single prediction leads to no improvement in
any practical situation.

In contrast, we will show that this is not the case for the
worst-case distributional prediction of Theorem 6. Specifi-
cally, in Theorem 8, we will show that the performance of
the schedule degrades smoothly as a function of the predic-
tion error. For some intuition behind the proof, we will use
the fact that worst-case distributional predictions require that



a large time interval contributes to the schedule’s expected
profit, and that the distribution is rather “balanced” over that
interval. Therefore, if an adversary were to change substan-
tially the performance of the schedule, by altering the pre-
dicted distribution, it would have to shift a large amount of
probability mass over a long time span. This motivates the
choice of the well-known Earth Mover’s Distance (EMD) as
a metric of the prediction error. We will show that a small
EMD error has a likewise small effect on the performance.

Given two probability distributions µ and µ′ over R+, the
Earth Mover’s Distance (EMD) [Rubner et al., 1998] intu-
itively represents the minimum cost incurred in order to ob-
tain µ′ from µ, where moving an infinitesimal probability
mass costs its amount multiplied by the distance moved. For-
mally, let Ψ(µ, µ′) ⊂ (R+ × R+) → R+ be the set of func-
tions ψ such that ∀x ∈ R+,

∫
R+ ψ(x, y)dy = µ(x) and

∀y ∈ R+,
∫
R+ ψ(x, y)dx = µ′(y). Here, ψ(x, y) describes

the amount of mass that is moved from point x in µ to point
y in µ′. The distance EMD(µ, µ′) is then defined as

EMD(µ, µ′) = inf
ψ∈Ψ(µ,µ′)

∫
R+

∫
R+

|x− y|ψ(x, y)dxdy.

Theorem 8. Given D ∈ R+, let µD be the probability distri-
bution of Theorem 6. Then, for, any probability distribution
µ′ such that EMD(µD, µ

′) ≤ η, for sufficiently small η, any
4-robust schedule X with prediction µD satisfies

Ez∼µ′ [ℓ(X, z)] ≥ Ez∼µ′ [z]

4 ln 2 +O(
√
η/D)

.

Proof Sketch . We give the main elements of the proof, and
defer some technical parts to the appendix.

Recall that the distribution µ = µD is defined over [D, 2D]
by the density function x 7→ 2D/x2. This density function
takes values in the interval [1/(2D), 2/D]. From Proposi-
tion 1, we know that any 4-robust schedule X is of the form
X(λ) = 2i−λ, for some λ ∈ [0, 1). For given η > 0, let µ′ be
any probability distribution such that EMD(µ, µ′) ≤ η.

By the definition of EMD, let ψ ∈ Ψ(µ, µ′) be a function
such that

EMD(µ, µ′) =
∫
R+

∫
R+

|x− y|ψ(x, y)dxdy.

We decompose ψ in two functions ψ+ and ψ− satisfying
the following conditions. For x < y, ψ+(x, y) = ψ(x, y)
and ψ−(x, y) = 0. For x > y, ψ−(x, y) = ψ(x, y)
and ψ+(x, y) = 0. Last, we require that ψ+(x, x) =∫
z≤x ψ(x, z)dz, and ψ−(x, x) =

∫
z≥x ψ(x, z)dz. Intu-

itively, ψ+ denotes the probability mass moved towards
higher values, and, likewise, ψ− denotes the probability mass
moved towards lower values. Let µ+ be the probability
obtained after applying ψ+; namely, we define µ+(y) =∫
R+ ψ

+(x, y)dx. Note that

η ≥ EMD(µ, µ′) = EMD(µ, µ+) + EMD(µ+, µ′).

In the first part of the proof (details in the appendix), we
focus on the effect of ψ+ and bound the expected profit of
X(λ) under the distribution µ+, as well as the expectation of

the distribution µ+. The intuition here is that the expected
profit of X(λ) cannot decrease, and that the growth of the
expected value of the distribution is bounded by the EMD.
We show

Ez∼µ+ [ℓ(X(λ), z)] ≥ Ez∼µ[ℓ(X(λ), z)], (6)

Ez∼µ+ [z] ≤ Ez∼µ[z] + η. (7)

In the next part of the proof (details in the appendix), we
focus on the effect of ψ−. Here, the expected value of the
distribution cannot increase, and the expected profit of X(λ)
decreases by an amount which can be bounded using η and
D. This last bound is the most technical step of the proof and
uses the fact that minx∈[D,2D] µ(x) ≤ 4 ·maxx∈[D,2D] µ(x).
We show

Ez∼µ′ [z] ≤ Ez∼µ+ [z], (8)

Ez∼µ′ [ℓ(X(λ), z)] ≥ Ez∼µ+ [ℓ(X(λ), z)]− 8
√
2ηD. (9)

To conclude the proof, note that Ez∼µ[z] = 2D ln 2 and
Ez∼µ[ℓ(X(λ), z)] = D/2, from the proof of Theorem 6.
Combing Equations (6), (7), (8) and (9), we arrive at the de-
sired result, for η < D/512 (to ensure there is no division by
zero). See Appendix for details.

4 Multiple advice
In this section, we study the setting in which the prediction
oracle provides a set P that consists of k (potential interrup-
tion) times, denoted by τ0, . . . , τk−1. Recall that the consis-
tency of a schedule is given by (3). For every j ∈ [0, k − 1],
we denote by δj ∈ [0, 1), and by ij ∈ N the unique values
such that τi = 2ij+δj . We assume, without loss of generality
that 0 ≤ δ0 ≤ δ1 . . . ≤ δk−1 < 1.

We first show that we can find, in time polynomial in k, a
schedule that simultaneously minimizes the consistency and
the robustness.
Theorem 9. Given a prediction set P of size k, we can find a
4-robust schedule of optimal consistency in time O(k2).

Proof. We first argue that there exists a 4-robust schedule of
optimal consistency X∗ = (x∗i )i∈Z, such that X∗ contains
at least one contract whose execution is completed at time
τj , for some τj ∈ P . By way of contradiction, suppose
this is not the case. From Proposition 1, the last contract
completed by X∗ by time t finishes at time 2ℓ(X∗, t). De-
fine a = minj∈[0,k−1]

τj
2ℓ(X∗,τj)

, and consider the schedule
X ′ = (2log2 a · x∗i )i∈Z. From Proposition 1, X ′ is also 4-
robust. Moreover, we have that ℓ(X ′, τj) ≥ ℓ(X∗, τ), there-
fore X ′ is also optimal, a contradiction.

The above observation leads to the following algorithm for
finding an optimal schedule. For every j ∈ [0, k − 1], define
the schedule Xj = (2i+δj )i∈Z, and note that, by definition,
Xj has a contract that terminates at time τj . Thus, among
schedules in the collection {Xj}k−1

j=0 , the schedule Xl∗ with
best consistency is such that

l∗ = argmin
j∈[0,k−1]

αj , where αj = max
i∈[0,k−1]

τi
ℓ(Xj , τi)

.
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Figure 2: Illustration of the definitions of δj and Dj .

From Proposition 1, it follows that the above algorithm yields
a 4-robust schedule of optimal consistency.

The complexity of this algorithm is O(k2), since each αj
can be computed in time O(k). However, we can reduce the
complexity to O(k log k), using an argument that will also be
useful in the proof of Corollary 11, and which is illustrated
in Figure 2. Consider the circle of unit perimeter, with an
arbitrary point O fixed, and let p0, . . . , pk−1 be points in the
circle, such that the clockwise (arc-length) distance between
O and pj is dc(O, pj) = δj . Given i ∈ [0, k − 1], define
Di as the clockwise distance between the consecutive points
p(i−1) mod k and pi in the circle. We show the following:

Lemma 10. For j ∈ [0, k − 1], let Xj denote the schedule
(2i+δj )i∈Z. Then Xj has consistency at most 22−Dj .

Proof. From construction, it readily follows that the maxi-
mum consistency c(Xj , P ) is attained when the interruption
occurs at time τ(j−1) mod k ∈ P . We consider two cases. If
j ̸= 0, then (j − 1) mod k = j − 1, and by definition, we
have that ℓ(Xj , τj−1) = 2ij−1−2+δj . Therefore,

c(Xj , P ) ≤
2ij−1+δj−1

2ij−1−2+δj
= 22−Dj .

For the second case, suppose that j = 0, thus (j − 1) mod
k = k − 1. Then, ℓ(X0, τk−1) = 2ik−1+δ0−1. Therefore,

c(X0, P ) ≤
2ik−1+δk−1

2ik−1+δ0−1
= 21+(δk−1−δ0) = 22−D0 ,

which concludes the proof.

Lemma 10 implies that we can improve the complexity
of the algorithm of Theorem 9, by finding the index j for
which Dj is minimized. This can be accomplished in time
O(k log k) by sorting.

An interesting question is finding the exact value of the
worst-case consistency of optimal schedules. The following
corollary answers this question.

Corollary 11. The schedule of Theorem 9 has consistency at
most 22−

1
k , where k is the size of P . Furthermore, this bound

is tight, in that there exists a prediction P such that every
4-robust schedule has consistency at least 22−

1
k .

Proof. From Lemma 10, since the smallest clockwise dis-
tance between two consecutive points in the unit circle can-
not exceed 1/k, we obtain that the worst-case consistency is
at most 22−

1
k . This is tight, if the k points are equidistantly

distributed, i.e., if δj = j/k, for every j ∈ [0, k − 1].

Note that Corollary 11 subsumes the known results for the
extreme cases k = 1 (for which the consistency is equal
to 2 [Angelopoulos and Kamali, 2023]), and k → ∞ (for
which the consistency reduces to the worst-case acceleration
ratio [Russell and Zilberstein, 1991]).

5 Experimental evaluation
We present an experimental evaluation of our schedules, for
both advice settings. We report the main findings, and we
refer to the Appendix for additional results and discussion.

5.1 Distributional advice
We evaluate our algorithm of Theorem 3, to which we refer as
SELn, and recall that this algorithm selects the best schedule
in class Sn, for some given n ∈ N. We first consider, as
distributional advice µ, a normal distribution that is truncated
at zero, with mean m, and standard deviation σ.

Figure 3 depicts the experimental performance of SELn, as
function of m, for n ∈ [1, 4], σ = 0.05m and m ∈ [1, 1024].
Note that for all sufficiently large m, e.g., m≥ 100, the ex-
pected interruption time is extremely close to m. We observe
that the consistency of SELn improves as n increases, by
design of the algorithm. In particular, for n = 4, the em-
pirical consistency is 2.51. This value is, as expected, be-
low the anticipated worst-case bound of Theorem 3 (namely,
16(20.25−1) ≈ 3.03) and above the lower bound of 2, which
applies to single, deterministic predictions.

The shape of the consistency is a saw-like function of the
mean, which is explained by the fact that the consistency
(as the acceleration ratio) has transitions at “critical” times,
i.e., right after the completion of a contract. As n increases,
we note that the transitions become more smooth. This is
because the number of candidate schedules in Sn becomes
larger, hence the probability that the interruption is critical
for some schedule in Sn decreases. This also explains why
the number of peaks increases as function of n.

We also report results for a uniform distributional advice.
Specifically, Figure 4 depicts the consistency of SELn with
advice chosen according to U [0.95t, 1.05t], as function of t.
For n = 4, we observe a similar empirical consistency value
as in the case of the normal distribution, namely 2.44. The
shape of the plot has sharper transitions, relatively to the nor-
mal distribution, which can be explained by the fact that the
latter spreads the random interruption over a larger interval
than the uniform one, in this experimental setup. This also
explains why the difference between the peaks and valleys is
more pronounced in Figure 4 than in Figure 3.

5.2 Multiple advice
We evaluate our algorithm from Section 4, to which we re-
fer as MULTk, where k is the cardinality of the prediction set
P . Specifically, for every k ∈ [1, 10], we generate P as k
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Figure 3: Plot of the consistency of SELn with advice a truncated normal distribution as function of the mean m.
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Figure 4: Plot of the consistency of SELn with advice a uniform distribution in [0.95t, 1.05t], as function of t.
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Figure 5: Experimental evaluation of MULTk.

values chosen independently and uniformly at random in the
interval [1, 1024]. For each such prediction set, we compute
the worst-case consistency, as evaluated by (3). We compute,
in addition, the average-case consistency, namely the average
of the ratios τ/ℓ(MULTk, τ), where τ is chosen uniformly at
random from P . The latter is a much more relaxed perfor-
mance measure that treats each of the k predictions in P as
equally likely. We repeat this experiment 1000 times, and we
report the average of the corresponding ratios.

We observe that for all values of k, both the worst-case
and the average consistency are below the upper bound of
22−

1
k , which confirms the result of Corollary 11. The ratios,

as expected, are increasing functions of k, since the larger the
size of P , the more noisy the quality of the prediction.

6 Conclusion
We studied a classic optimization problem related to
bounded-resource reasoning, namely contract scheduling, in
novel learning-augmented settings that capture distributional
and multiple predictions. In both settings, we gave analyti-
cally optimal schedules that simultaneously optimize the con-
sistency and the robustness. As discussed in Section 1, con-

tract scheduling has been studied in a variety of settings, in-
cluding multiple instances that must be solved concurrently,
in a single or multiple processors. Future work will ad-
dress these more complex variants under similar learning-
enhanced models. It will be also interesting to perform a
multi-objective analysis, in the multiple-advice model, that
addresses the average expected consistency or trade-offs be-
tween the worst-case and the average-case metrics. The
techniques of Section 4 can be applicable, by showing first
tradeoffs between average and worst-case distances between
points on the unit circle.

Another direction for future work is searching for a hid-
den target, with distributional or multiple predictions about
its position in the environment. This setting has applica-
tions in robotic search and exploration, and has been stud-
ied with single, or no prediction e.g., [Eberle et al., 2022;
Sung and Tokekar, 2019]. In particular, the techniques we de-
veloped in this work will be very useful in the context of the
line and star search environments [Jaillet and Stafford, 1993],
given the connections between contract scheduling and com-
petitive search [Bernstein et al., 2003; Angelopoulos, 2015].
Last, our work is the first to bring attention to the fact that sin-
gle predictions may be fragile for certain problems, a finding
that can have implications in other domains and applications
such as learning-augmented online conversion problems [Sun
et al., 2021].
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Appendix

A Omitted proofs and proof details

Proof of Proposition 1. For the first part of the proposition,
we know from [Russell and Zilberstein, 1991] that the robust-
ness of a schedule (i.e., its acceleration ratio) is maximized
for interruptions that occur infinitesimally prior to the com-
pletion time of a contract in the schedule. Thus, an equivalent
expression of the robustness of a schedule X is given by

r(X) = sup
i

∑i
j=−∞ xj

xi−1
. (10)

It is then straightforward to confirm that any schedule X(λ)
is 4-robust, since it is a scaled variant of the doubling sched-
ule, which is 4-robust. For the second part of the proposition,
the result follows from the study of the linear recurrence in-
equality

∑
j≤i xj ≤ 4xi−1, and in particular Theorem 9.4

in [Alpern and Gal, 2003], with M = 2. The result is de-
scribed in terms of a search problem, but the same recurrence
inequality applies, and hence the same conclusion.

Proof of Theorem 6. From Proposition 7, letX(λ) denote the
4-robust schedule, for some λ ∈ [0, 1). Consider any value
D > 1. We will define a distribution function µD over
[D, 2D] such that c(X(λ), µD) ≥ 4 ln 2.

Specifically, let the density function of µD equal fD(x) =
2D/x2 on [D, 2D] and 0 elsewhere. Note that

∫
fD = 1, so

µD is indeed a distribution. We have

Ez∼µD
[z] =

∫ 2D

D

2D

x
dx = 2D ln 2.

Let k be such that 2k−λ ∈ [D, 2D). The last completed
contract ofX(λ) is of length 2k−λ−2 if an interruption occurs
betweenD and 2k−λ, and of length 2k−λ−1 if an interruption
occurs between 2k−λ and 2D. So

Ez∼µD
[ℓ(X(λ), z)]

= 2k−2−λ
∫ 2k−λ

D

2D

x2
dx+ 2k−1−λ

∫ 2D

2k−λ

2D

x2
dx

= 2k−2−λ (2−D · 21−k+λ + 2(2D · 2λ−k − 1)
)

= 2k−2−λ(D · 21−k+λ)
= D/2.

Therefore, we have c(X(λ), µD) = 4 ln 2.

Proof of Proposition 7. Let X denote a 4-robust, 2-
consistent schedule X . Then for any given prediction τ ,
from [Angelopoulos and Kamali, 2023] we know that X
must complete a contract C of length τ/2 at time τ , as
τ → ∞. Consider now the actual interruption T = τ − ϵ,
i.e., the interruption occurs right before C terminates. Then

ℓ(X,T ) =
τ

4
=
T + ϵ

4
.

Omitted details of the proof of Theorem 8. In the first part of
the proof, we will focus on the effect of ψ+. By construction
of ψ+, we have:

EMD(µ, µ+) =

∫
x∈R+

∫
y>x

(y − x)ψ(x, y)dydx.

For any x, we have Pz∼µ+(x > z) ≥ Pz∼µ(x > z), therefore
we obtain Equation (6) from the main paper:

Ez∼µ+ [ℓ(X(λ), z)] ≥ Ez∼µ[ℓ(X(λ), z)]. (6)

Moreover,

Ez∼µ[z] =
∫
R+

x · µ(x)dx =

∫
R+

∫
R+

x · ψ+(x, y)dydx,

hence, we obtain Equation (7) from the main paper:

Ez∼µ+ [z] =

∫
R+

∫
R+

y · ψ+(x, y)dxdy

= Ez∼µ[z] + EMD(µ, µ+)

≤ Ez∼µ[z] + η. (7)

In the next part of the proof, we focus on the effect of ψ−.
By similar arguments, we can see that, as Pz∼µ′(x > z) ≤
Pz∼µ+(x > z), we derive Equation (8) from the main paper:

Ez∼µ′ [z] ≤ Ez∼µ+ [z]. (8)

We now give a lower bound on Ez∼µ′ [ℓ(X(λ), z)]. We
have

η ≥ EMD(µ+, µ′) =
∫
x∈R+

∫
y<x

(x− y)ψ(x, y)dydx.

Let k such that 2k−λ ∈ [D, 2D). As µ+(x) = 0 for any
x < D, the last completed contract of X(λ) is of length
D if the interruption is in the interval [2k−λ, 2D] and of
length D/2 if the interruption is in the interval (0, 2k−λ].
We now give a lower bound on Ez∼µ′ [ℓ(X(λ), z)] based on
Ez∼µ+ [ℓ(X(λ), z)]. For that, we upper bound, by D, the loss
in the potential profit due to probability mass crossing the end
of a contract of X(λ) because of ψ−. Indeed, any contract
completed by X(λ) before time 2D has length at most D.

Ez∼µ′ [ℓ(X(λ), z)] ≥ Ez∼µ+ [ℓ(X(λ), z)]

−D ·
∫ 2k−1−λ

y=0

∫ 2k−λ

x=D

ψ−(x, y)dxdy

−D ·
∫ 2k−λ

y=0

∫ 2D

x=2k−λ

ψ−(x, y)dxdy.

(11)

Fixing the value of EMD(µ+, µ′), the RHS of (11) is min-
imized if ψ−(x, 2k−1−λ) = µ(x) for x ∈ [D,D + δ1] and
ψ−(x, 2k−λ) = µ(x) for x ∈ [2k−λ, 2k−λ + δ2], for some
δ1, δ2, and ψ−(x, y) = 0 for any other x ̸= y. We now



upper bound δ1 (resp. δ2), using η ≥ EMD(µ+, µ′). Since
µ(x) ≥ µ(2D) = 1/(2D), we have:

η ≥
∫ D+δ1

D

|x− 2k−1−λ| · ψ−(x, 2k−1−λ) dx

≥
∫ D+δ1

D+δ1/2

δ1
2

· µ(2D) dx

≥ δ1
2

· δ1
2

· 1

2D

δ1 ≤
√
8ηD. (12)

We have the same result for δ2, so both δ1 and δ2 are smaller
than

√
8η ·D.

We now upper bound the decrease in Ez∼µ′ [ℓ(X(λ), z)]
that follows from Equation (12). We can bound the integral:∫ 2k−1−λ+δ1

2k−1−λ

µ(x) ≤ δ1 · µ(D)

≤ 2

D
·
√
8η ·D

≤ 4

√
2η

D
,

and equivalently for δ2. Therefore, using Equation (11), we
obtain Equation (9) from the main paper:

Ez∼µ′ [ℓ(X(λ), z)] ≥ Ez∼µ+ [ℓ(X(λ), z)]− 2D · 4
√

2η

D

≥ Ez∼µ+ [ℓ(X(λ), z)]− 8
√
2ηD. (9)

To conclude the proof, note that Ez∼µ[z] = 2D ln 2 and
Ez∼µ[ℓ(X(λ), z)] = D/2, from the proof of Theorem 6.
Combing Equations (6), (7), (8) and (9), we obtain for η <
D/512 (to ensure there is no division by zero):

Ez∼µ′ [z]

Ez∼µ′ [ℓ(X(λ), z)]
≤ Ez∼µ+ [z]

Ez∼µ+ [ℓ(X(λ), z)]− 8
√
2ηD

≤ Ez∼µ[z] + η

Ez∼µ[ℓ(X(λ), z)]− 8
√
2ηD

≤ 2D ln 2 + η
D
2 − 8

√
2ηD

≤ 4 ln 2 + 2η/D

1− 16
√
2η/D

.

Finally, for small values of η/D, we have:

Ez∼µ′ [z]

Ez∼µ′ [ℓ(X(λ), z)]
≤ 4 ln 2 +O(

√
η/D),

which concludes the proof.

B Additional experimental results
We report additional experimental results concerning the dis-
tributional advice model.

B.1 Time horizon
We repeated the experiments of Section 5.1 for larger time
horizons, namely [1, 20000], shown in Figure 6 and Figure 7.
The plots have the same overall shape as those reported in the
main paper, which is expected, considering that the schedule
follows a scaled doubling strategy.

B.2 Fixed variance
We considered again the setting of Section 5.1, with the dif-
ference that the variance of the distributional advice is now
fixed, instead of being a function of time (or the mean m).
This captures the situation in which the window of time in
which we expect the interruption to occur is prespecified.
Specifically, Figure 8 depicts the consistency of SELn given
a normal distributional advice of mean m, and standard devi-
ation σ = 10.

We observe that as the time increases, the transitions of
the plot become sharper, relatively to the setting in which the
variance is fixed. This is because, as the time increases, the
variance becomes less significant in relation to the mean of
the distributional advice. This implies, in turn, that the advice
has decreasing spread as function of time, and becomes more
and more close to a single-valued prediction for large t. This
also explains why for the same value of n, the consistency of
SELn is worse in this setting than in the setting of Figure 3,
in the main paper. The values reported for very small values
of m are outlier, and are due to the high variance (relative to
the small values of m).

B.3 Time-dependent variance
We did experiments with a distributional advice whose mean
is variable, and function of time, and whose variance is larger
or smaller than the values of the main paper. Figure 9 and
Figure 10 depict the experimental consistency with normal
distributional advice for a setting as in the main paper, and
standard deviation σ = 0.01m and σ = 0.2m, respectively.
For small σ, we observe sharper transitions, and a larger gap
between the peaks and valleys, which can be explained along
the same lines as in the discussion of Section B.2. For large
σ, we observe that the consistency increases to values close
to 2.7, and that the plots become relatively “flat”, with much
smoother transitions. This is because, with large variance,
the setting becomes highly random, and the prediction less
crucial or useful, which also explains the much smaller gap
between the various values of n.

Similar observations and conclusions can be drawn for uni-
form advice, as depicted in Figure 11.

B.4 Error analysis
We conducted experiments to test the resilience of the algo-
rithm SELn to errors in the distributional advice. In partic-
ular, we considered the setting in which the advice is a nor-
mal distribution with mean m and standard deviation fixed to
σ = 25, whereas the interruption time is drawn according to
a normal distribution with actual, but unknown mean m′ (in
general, m′ ̸= m) and standard deviation equal to 25. We
choose n = 16.
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Figure 6: Plot of the consistency of SELn with time horizon [1, 20000], for normal distributional advice as in the main paper.
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Figure 7: Plot of the consistency of SELn with time horizon [1, 20000], for uniform distributional advice as in the main paper.
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Figure 8: Plot of the consistency of SELn for normal distributional advice with mean m and fixed standard deviation σ = 10.
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Figure 9: Plot of the consistency of SELn for normal distributional advice with mean m and standard deviation σ = 0.01m.

In Figure 12, the blue curve depicts the performance of our
schedule as function of the actual meanm′ (and thus, as func-
tion of the error, defined as η = |m′ −m|). In contrast, the
red curve depicts the consistency of the schedule with error-
free advice. We observe that as long as the error is relatively
small, the schedule remains fairly robust to prediction errors,
and shows smooth degradation. We also observe an asym-
metry on the performance, depending on whether the error is
“positive”, i.e., m′ > m or “negative”, i.e., m′ < m). This
is expected, since a positive error does not have as critical an
effect as negative error: positive error implies that a large con-
tract in the schedule will still likely terminate, whereas nega-
tive error implies that the schedule is running a large contract
which likely will not terminate by the interruption.

Figure 13 depicts the same plots for much larger values of
error. We note that the performance plot exhibits, informally,
a certain periodicity, which can be explained by the nature of
the problem. Namely, even if the error becomes large, it is
possible that the advice may have a beneficial effect to the
schedule, if the latter happens to complete a large contract

close to the actual, expected interruption time. This explains
why the blue and red curves meet not only for m′ = m, but
also for other values of m′. This finding is also an unavoid-
able situation: any schedule will perform very well for some
outlier values of large error, which implies that it is impossi-
ble to find a schedule that strictly dominates all other sched-
ules across any error domain.

Figure 14 depicts the same plot for normal distributional
advice with m = 700. We observe similar performance and
findings as discussed above.
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Figure 10: Plot of the consistency of SELn for normal distributional advice with mean m and standard deviation σ = 0.2m.
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Figure 11: Plot of the consistency of SELn for uniform distributional advice U [0.9t, 1.1t], as function of time t.
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Figure 12: Plot of the consistency of SEL16 with normal distributional advice of mean m = 500, as function of the actual mean m′.
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Figure 13: Plot of the consistency of SEL16 with normal distributional advice of mean m = 500, as function of the actual mean m′ (larger
range of error).
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Figure 14: Plot of the consistency of SEL16 with normal distributional advice of mean m = 700, as function of the actual mean m′ (larger
range of error).
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