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ABSTRACT:

The presence of clouds often causes detection errors in automatic optical satellite images analysis. Cloud detection is thus an
important pre-processing step. This work exploits the apparent movement of clouds relative to the ground that is observed between
bands due to the parallax effect in push-broom satellites. A simple optical flow is computed by correlation of the gradient direction on
a local window. Then, a statistical validation test based on the a-contrario theory is used to reject spurious detections. The proposed
method achieves performances in the same order of magnitude as the state of the art, while relying on less input information.

1. INTRODUCTION

Assessing ground visibility is an important step in optical satel-
lite images analysis. Indeed, the presence of clouds and haze
concealing the surface of the Earth often causes detection errors
in automatic image analysis. This task is usually addressed as a
cloud detection problem, where the image pixels are classified
into classes such as ground, clouds, cirrus, snow, haze, cloud
shadows, etc. (Chandran and Jojy, 2015, Mahajan and Fataniya,
2019). Satellite cloud detection often exploits spectral bands
specifically designed for cloud detection (Irish, 2000, Zhang et
al., 2001, Irish et al., 2006, Scaramuzza et al., 2012, Chandran
and Jojy, 2015, Taravat et al., 2015, Hollstein et al., 2016).

Another approach for cloud detection is based on temporal in-
formation (Hagolle et al., 2010, Goodwin et al., 2013, Zhu and
Woodcock, 2014, Frantz et al., 2015, Dagobert et al., 2019b,
Dagobert et al., 2020c, Grompone von Gioi et al., 2020). How-
ever, time-series-based method are not adapted, for example,
to change detection, as changes can be mis-classifed as clouds.
Relying on yet another technique, the cloud detectors proposed
in (Rodriguez et al., 2021) uses a convolutional neural network
to detect clouds in satellite images with a single band.

In push-broom satellites, the inter-band delay allows cloud detec-
tion by parallax analysis of the spectral bands (Shin and Pollard,
1996, Panem et al., 2005, Manizade et al., 2006, Wu et al., 2016,
Sinclair et al., 2017, Frantz et al., 2018, Dagobert et al., 2020a).
In this kind of satellite, the different bands are acquired by linear
captors placed at slightly different physical positions in the focal
plane; thus, the same point on Earth is acquired with a short time
delay between bands, corresponding to different viewpoints, see
Figure 1. The bands are then registered to produce a coherent
multi-band image. Clouds are at different height than the ground;
by the parallax effect, they will appear as displaced relative to the
ground, and the more the higher the altitude. As a consequence,
clouds appear as objects with an apparent displacement between
bands. The general idea to detect clouds by inter-band parallax
is thus to estimate an optical flow between spectral bands and
then to identify regions with a coherent apparent movement, see
Figure 2.

The United States Geological Survey (USGS) classification maps
distributed for Landsat products are currently generated by the
∗ Corresponding author (grompone@ens-paris-saclay.fr)

PARALLAX DISPLACEMENT

Figure 1. The clouds, at higher altitude than the ground, result in
an apparent displacement relative to the ground due to parallax.

Fmask algorithm. It was introduced in 2012 (Zhu and Woodcock,
2012) for the Landsat satellites and improved on the ACCA
algorithm (Irish, 2000, Irish et al., 2006). It consists in a series
of tests on the bands values, on band ratios, or on normalized
difference indices. It was then revised and improved in a series
of papers. In (Zhu et al., 2015), the threshold were refined and
support for Landsat-8 and Sentinel-2 was added, notably with
the inclusion of the cirrus band. The Cloud Displacement Index
(CDI) was later introduced for Sentinel-2 (Frantz et al., 2018)
using bands B07, B08 and B8A. Bands B08 and B8A are closer
spectrally than bands B07 and B8A, but have a stronger parallax
effect. The ratio B08/B8A is thus expected to be uniform and
close to one on the ground but not on the clouds; on the contrary,
the ratio B07/B8A is expected to be uniform and close to one on
the clouds but not on the ground. The authors therefore proposed
a normalized difference index based on the local variations of
these ratios. The latest updates (Qiu et al., 2017, Qiu et al.,
2019) revised the thresholds and included auxiliary data: a water
occurrence map, and a digital elevation model used to normalize
the cirrus values and improve detection in mountainous areas.

The Sentinel-2 products at level 2A distributed by the Euro-
pean Space Agency (ESA) contain cloud masks generated by
the Sen2cor processor (Müller-Wilm, 2012, Main-Knorn et al.,
2017). Similarly to Fmask, the method classifies the pixels in
several classes including three for clouds (medium probability,
high probability, and thin cirrus), cloud shadow, vegetation, wa-
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Figure 2. Steps of the proposed method.

ter, snow, and other classes for unclassified or unusable pixels.
Using top-of-atmosphere reflectance values, a series of thresh-
olds are applied on the bands values and bands ratios. The
parallax effect is not exploited for the cloud detection.

The Sentinel-2 cloud detector proposed in (Dagobert et al.,
2020b) uses five criteria, including three based on the paral-
lax effect. Optical flow is used to estimate the inter-band dis-
placement. Empirical distributions are obtained on the Hollstein
dataset (Hollstein et al., 2016), features are merged and the
a-contrario framework is used to set a single detection threshold.

Here we propose and algorithm for cloud detection relying en-
tirely on the parallax effect between bands, see Figure 2. The
method is contrast-invariant, so it can be used on any set of
bands, regardless of whether they share the same spectral profile
or not, provided that the parallax effect is indeed present.

Cloud parallax is not the only possible source of apparent dis-
placement between bands. Any high altitude object, such as
mountains, will also produce apparent motion by parallax. In
addition, really moving objects such as airplanes or cars result
in displacement between bands. (Clouds could also be moving
due to wind and in very rare cases these two effects cancel one
another out.) Finally, the band registration is not perfect; the
residual registration error is a constant spatial shift of bands, and
thus equivalent to an inter-band displacement. The fundamen-
tal hypothesis is thus that the bands are well registered up to a
certain precision; observed inter-band displacements larger than
the registration precision are considered parallax effects.

There are two key aspects in cloud detection by parallax: the
computation of the optical flow and the criterion for deciding
whether the displacement of a region is coherent enough. There
is a large literature on optical flow; this application requires an
efficient (given the large size of satellite images) and accurate
method. An additional requirement in our case is to obtain spa-
tially decorrelated values (as needed for the proposed statistical
validation). We propose to use a simple optical flow computed
by gradient direction correlation on a local window.

Concerning the control of false detections, the a-contrario statis-
tical approach (Desolneux et al., 2000, Desolneux et al., 2008)
was introduced to provide a well founded mechanism for setting
detection thresholds while producing few false detections. The
method described here uses a new a-contrario statisitcal test to
decide whether a group of pixel shows a coherent movement
from one band to another.

This paper is organized as follows. Section 2 describes the sim-
ple optical flow method used to assess the apparent inter-band
movement. Then, Section 3 introduces briefly the a-contrario
approach which is then applied in Section 4 for deciding whether
a group of pixels shows a coherent apparent movement between
bands. The proposed method is illustrated with some experi-
ments in Section 5. Finally, Section 6 concludes the paper.

2. OPTICAL FLOW

The optical flow is the distribution of apparent motion between
two images (Horn and Schunck, 1981). There is an extensive lit-
erature and variety of methods to compute the optical flow (Gara-
mendi et al., 2019, Dagobert et al., 2019a, Gamonal et al., 2019,
Monzón et al., 2016, Garrido and Kalmoun, 2015, Jara-Wilde
et al., 2015, Meinhardt-Llopis et al., 2013, Sánchez Pérez et al.,
2013). In our case, there are two characteristics of the present
problem which determine our choice.

Most optical flow methods use some kind of regularization,
which helps to compute an accurate result. However, the val-
idation criterion described below to decide whether a cloud is
present or not is based on the coherence of the apparent move-
ment directions. Using regularization in the computation of the
optical flow makes this criterion harder, as it requires deciding
if an observed coherence is due to image contents, or to the
imposed regularization. To simplify our setting, the proposed
approach uses a simple optical flow computed independently at
each point, without any regularization.

The second characteristic of our setting is that we need to com-
pute optical flow between different spectral bands, while most
optical flow methods are designed to work on successive frames
of a video. The usual setting allows to assume that the images
to be compared have a similar dynamic. In our case, however,
bands are specially designed to capture different information,
which implies that the dynamics are usually different. One pos-
sible solution is to normalize bands before applying the optical
flow. Instead, we decided to use a simple approach by computing
the optical flow with a contrast-invariant similarity measure.

This similarity measure is the correlation of the gradient direc-
tion on a window. Given a single band image I , the normalized
gradient at pixel (x, y) is the unit vector g⃗(x, y) given by

g⃗(x, y) =
∇I(x, y)

|∇I(x, y)| . (1)

The gradient is computed by centered differences. Given two
bands of an image Ia and Ib, the corresponding normalized
gradients are noted g⃗a and g⃗b, respectively. Given a window size
(2W + 1)× (2W + 1), the correlation between position (x, y)
of band a and position (x′, y′) of band b is defined by

cab(x, y, x
′, y′) =

W∑
i=−W

W∑
j=−W

g⃗a(x+i, y+j)·g⃗b(x′+i, y′+j),

where · denotes the dot product. As the dot product of two unit
vectors takes values in [−1, 1], the correlation at each point takes
values between −(2W+1)2 and (2W+1)2. A value (2W+1)2

corresponds to a perfect match, when the gradients g⃗a and g⃗b
have exactly the same directions in the whole window. A value
−(2W + 1)2 would be observed in case of a perfect contrast
inversion. A correlation close to zero indicates a bad match. On
digital images this correlation is only defined for coordinates
(x, y) and (x′, y′) in the discrete domain of the images; here we
will assume that these coordinates are integer values.

The optical flow, or apparent movement, at (x, y) is now ob-
tained as the displacement (∆x,∆y) with the best correlation:

m⃗ab(x, y) = argmax
(∆x,∆y)∈N2

cab(x, y, x+∆x, y +∆y). (2)
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In practice, we are only interested in the displacement produced
by parallax, which is limited by the speed and height of the
satellite, and by the maximal possible height of clouds. This
allows to restrict the search to (∆x,∆y) ∈ [−D,D]2, for an
appropriate D, greatly reducing the computational cost.

Notice that the computed correlation coefficient, and thus the
apparent movement, only depends on the gradient direction and
not on its magnitude. Thus, it is contrast-invariant provided that
there is no inversion of contrast. This is particularly important
here to handle the different spectral response of different bands.

A final step is to compute a simple sub-pixel refinement on the
apparent movement m⃗ab(x, y). This interpolation is performed
independently for the horizontal and vertical components. As-
suming that (x, y) are the integer coordinates of the maximal
correlation, the sub-pixel interpolation is given by:

Mx
ab = mx

ab +
mx

ab(x− 1, y)−mx
ab(x+ 1, y)

2mx
ab(x− 1, y)− 4mx

ab(x, y) + 2mx
ab(x+ 1, y)

My
ab = my

ab +
my

ab(x, y − 1)−my
ab(x, y + 1)

2my
ab(x, y − 1)− 4my

ab(x, y) + 2my
ab(x, y + 1)

where (mx
ab,m

y
ab) are the components of m⃗ab and the estimated

sub-pixel apparent movement is M⃗ab = (Mx
ab,M

y
ab). This cor-

responds to the addition, to the initial estimation, of a second
term computed as a quadratic interpolation; this sub-pixel inter-
polation was used for example by Devernay in the context of
gradient magnitude interpolation (Devernay, 1995).

The sub-pixel interpolation step is mainly used to reject dis-
placements with magnitude smaller than the accuracy of the
registration between bands, which we note T . Indeed, those dis-
placements could be just the result of an imprecise registration
of bands, and in such a case, the apparent movement vectors
m⃗ab(x, y) will be of course coherent. When |M⃗ab(x, y)| < T
the apparent movement is declared undefined at position (x, y).

On multiple-band images, the apparent movement can be com-
puted between any pair of bands sharing the same resolution. A
pair of bands of different resolution can also be used by down-
sampling the one with higher resolution or by up-sampling the
one with lower resolution. More exploration is needed to deter-
mine the relative performances of these options.

3. THE A-CONTRARIO APPROACH

The a-contrario theory (Desolneux et al., 2000, Desolneux et al.,
2008) is a statistical framework used to set detection thresholds
automatically in order to control the number of false detec-
tions. It is based on the non-accidentalness principle (Witkin
and Tenenbaum, 1983, Lowe, 1985) which informally states
that an observed structure is meaningful only when the relation
between its parts is too regular to be the result of an accidental
arrangements of independent parts. In the words of D. Lowe,
“we need to determine the probability that each relation in the im-
age could have arisen by accident, P (a). Naturally, the smaller
that this value is, the more likely the relation is to have a causal
interpretation” (Lowe, 1985, p. 39).

A stochastic background model H0 needs to be defined, where
the structure of interest is not present and can only arise as an ac-
cidental arrangement. For example, many image matching meth-
ods are based on the orientation of the image gradient (Lowe,
2004, Cao et al., 2008, Rabin et al., 2009, Grompone von Gioi

and Pătrăucean, 2015). Some geometrical feature detection
methods such as line segments (Grompone von Gioi, 2014) are
also based on the image gradient. In our present case we will
evaluate the orientation of the apparent movements. In all these
cases, a good background model H0 assumes that the orienta-
tions at each pixel are independent random variables, uniformly
distributed in [−π, π). Under this background model, a region
of the image where the orientation follows a regular structure
would be a rare accident and is detected as such.

We also need to define a family of events of interest T . For
feature detection the family of events is the set of all the geomet-
rical events considered, i.e., all the line segments considered in
the image domain. Then, we need to assess the accidentalness
of a candidate feature. For example, if a line segment is present
in an image, the gradient orientation at the corresponding posi-
tion would be orthogonal to the line segment (Grompone von
Gioi, 2014). Given a candidate line segment, one measures how
well the image gradient corresponds to the candidate event, and
evaluates the probability of observing such a good agreement
by chance in the background model H0. A rough agreement
could arise just by chance and thus does not correspond to an
interesting event; conversely, a very good agreement would be
rare and suggests the presence of a structure instead of just a
lucky accident. In other words, when this probability is small
enough, there exists evidence to reject the null hypothesis and
declare the event meaningful. However, one needs to consider
that multiple candidates are tested. If 1000 tests were performed,
for example, it would not be surprising to observe among them
one event that appears with probability 0.001 under random con-
ditions. The number of tests NT (i.e., the size of the family T )
needs to be included as a correction term, as it is done in the
statistical multiple hypothesis testing framework (Gordon et al.,
2007).

Following the a-contrario methodology (Desolneux et al., 2000,
Desolneux et al., 2008), we define the Number of False Alarms
(NFA) of an event e observed up to a given precision ρ as

NFA(e, ρ) = NT · PH0(eρ), (3)

where the right hand term is the probability of obtaining the event
e up to precision ρ in the background model H0. The smaller the
NFA, the more unlikely the event e is to be observed by chance
in the background model H0; thus, the more meaningful. The
a-contrario approach prescribes accepting as valid detections the
candidates with NFA < ε for a predefined value ε. It can be
shown (Desolneux et al., 2000, Desolneux et al., 2008) that under
H0, the expected number of tests with NFA < ε is bounded by
ε. As a result, ε gives an a priori estimate of the mean number
of false detections under H0. In many practical applications,
including the present one, the value ε = 1 is adopted. Indeed, it
allows for less than one false detection on an image or on a set
of images, which is usually quite tolerable.

4. CLOUD DETECTION

Given an apparent movement M⃗ab between bands a and b, we
would like to know whether the direction of movement is coher-
ent in the connected region of pixels R. As we will see, regions
with coherent apparent movement according to the proposed
approach are large enough and usually correspond to clouds.

For this, we will consider regions R in which all the pixels share
a given apparent movement orientation θ, up to a given angu-
lar tolerance ρ. This is the event eρ to be considered in our
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a-contrario formulation using Eq. 3. As explained before, a nat-
ural background model H0 for this problem is that the apparent
movement orientations at each pixel are independent random
variables, uniformly distributed in [−π, π). Nevertheless, given
that the apparent movement M⃗ab was computed by the proce-
dure described in Section 2, there is some correlation between
neighboring pixels. To ensure that the independence hypothesis
is reasonable, the apparent movement M⃗ab field will be sub-
sampled at distances W (half of the correlation window size). If
the original images were of size X × Y , then the sub-sampled
ones are U × V , with U = X/W and V = Y/W .

In this setting, the probability under H0 that all the pixels of a
region R have an orientation coherent to θ up to precision ρ is

PH0(eρ) =
( ρ

π

)|R|
, (4)

where |R| is the number of pixels in R counted considering the
sub-sampling at distance W . Following the a-contrario frame-
work, and according to Eq. 3, we will define the NFA associated
to a candidate region R as

NFA(R, θ, ρ) = NT · PH0(eρ) = NT ·
( ρ

π

)|R|
. (5)

To complete the formulation we still need to specify the family
of tests T and the corresponding number of tests NT . Our
aim is detecting clouds, which have connected shapes. We
will use the notion of 4-connectivity, in which a pixel (x, y) is
connected to the pixels at coordinates (x± 1, y) and (x, y± 1).
Groups of pixels connected under 4-connectivity correspond to
the figures called polyominoes (Golomb, 1994, Gardner, 1960),
see Figure 3. The exact number bn of different polyomino
configurations of given size n is not known in general, but there
are good approximations of this number (Jensen and Guttmann,
2000). In our case, it is enough to use an estimate of the order
of magnitude, so the approximate formula given in (Jensen and
Guttmann, 2000) is sufficient for our needs. It reads

bn ≈ α
βn

n
, (6)

where α ≈ 0.316915 and β ≈ 4.062570. We need to consider
that each particular polyomino may be placed at any position
in the image; thus we need to multiply bn by UV to consider
all possible placements (this estimation is not exact as it counts
some polyominoes extending outside the image domain; nev-
ertheless, it gives the order of magnitude). Also, we consider
connected regions of different sizes, from 1 to UV , the latter
being the case where all the pixels are part of one polyomino.
This calculation is not exact due to the restrictions imposed by
the total size of the image; e.g., among the bUV polyominoes
of size UV , only one is actually possible, the one using all the
pixels in the images; again, this rough estimation is useful for
our case. The number of tolerated false detections ε is divided
into UV categories, and to each one we allow to produce ε

UV

false detections. In this way, the total number of false detections,
including the ones obtained for polyomino regions of size from
1 to UV , will add up to

∑UV
n=1

ε
UV

= ε, as desired. Thus, for a
given region size, the test becomes

UV b|R| · PH0(eρ) <
ε

UV
. (7)

This is equivalent to setting the number of tests to U2V 2b|R| and

tetrominoes

pentominoes hexominoes

Figure 3. Polyominoes of four (tetrominoes), five (pentominoes)
and six (hexominoes) elements. When rotations and reflections
are not considered, there are 5 tetrominoes, 12 pentominoes and
35 hexominoes, as shown here. When rotations and reflections are
also considered distinct, there are 19 tetrominoes, 63 pentominoes

and 216 different hexominoes. Eq. (6) gives the right order of
magnitude of these numbers: 21.6 for tetrominoes, 70.1 for

pentominoes, and 237.4 for hexominoes.

comparing directly to ε. The final number of tests is then

NT = U2V 2b|R|. (8)

The NFA of a candidate region R is thus computed by

NFA(R, θ, ρ) ≈ U2V 2 · αβ|R|

|R| ·
( ρ

π

)|R|
. (9)

As mentioned before, we set ε = 1. When a regions has
NFA(R, θ, ρ) < 1, we say that its orientations are significantly
coherent. Each such regions is declared as a cloud detection.

As described, all possible connected regions R in the image
should be evaluated, which would take an impossible amount of
time. Instead, a greedy algorithm is used. Starting from a given
pixel, the 4-connected neighbors are added when they agree with
the orientation θ up to precision ρ. This process is iterated until
no further pixel is added. Then, the NFA is computed and the
region is kept as a detection or not depending on the NFA test
described above. To accelerate the algorithm, after a region is
evaluated, regardless of whether it is validated or not, its pixels
are marked and they cannot be used again in further regions.

There are several options to specify the reference angle θ. When
the direction of the satellite trajectory is known, then this should
determine the reference angle θ. But this angle is not always
easy to obtain. In that case, several angles could be tried, which
would correspond to further testing in the a-contrario framework.
A simple solution is to use the angle of the first pixel as the
reference angle. In such a case, the first pixel cannot be counted
in Eq. 4, where |R| must be replaced by |R| − 1, counting all
pixels in the region but excluding the first one.

Concerning the angular tolerance ρ, instead of selecting a par-
ticular value, we propose to use several values. After the opti-
cal flow is computed, which is the most expensive part of the
method, the greedy search for regions is repeated for several
values of ρ. In our implementation and experiments we use
ρ
π
∈ { 1

40
, 1

20
, 1

10
, 1

5
, 0.3, 0.4}. The regions found on all those

iterations are then merged to produce the final detection. In the
a-contrario formulation, regions evaluated with different angular
tolerance ρ must be counted as different tests. Then, the number
of angular tolerance P (in our implementation P = 6) needs to
be added as additional factor to the number of tests NT .
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The algorithm can also use more than two bands. If bands a, b
and c are available, we can compute, for instance, the apparent
movement fields M⃗ab and M⃗bc. To comply with the indepen-
dence assumption on the computed apparent movement vectors,
each apparent movement field should use at least one band not
used on the others. In the previous example, the apparent move-
ment field M⃗ac would be correlated with other two and should
be excluded. The decision of which band pairs to use depends on
characteristics of each satellite. First, the resolution of the bands
should be the same (or be properly re-sampled). Second, the
inter-band delay of different pairs are to be evaluated. If bands
a, b, c, d, e and f are available and are captured in that order,
we could compute the apparent movement fields M⃗ab, M⃗cd and
M⃗ef ; this results in three apparent movement fields with simi-
lar inter-band delay. Another option is computing the apparent
movement fields M⃗ab, M⃗ac, M⃗ad, M⃗ae and M⃗af , in which the
inter-band delay is larger except in the first one. Nevertheless, it
is important to compute the apparent movement in all pairs in a
coherent order, as M⃗ab and M⃗ba will have opposite directions.

Given a set of N band pairs and the corresponding apparent
movement fields M⃗1 to M⃗N , the same greedy algorithm is used
but now verifying that all the N apparent movements are coher-
ent with θ before adding a pixel to the region R. This implies
two changes to the NFA formulation. First, as N apparent move-
ment vectors need to agree with θ up to precision ρ for every
pixel of |R|, the probability of the event in H0 is now

PH0(eρ) =
( ρ

π

)N|R|
. (10)

(Notice that there is no need to multiply |R| by N in the count
of polyominoes; the region size is the same.) Second, each of
the N apparent movements of the initial pixel could be used as
the reference angle θ, so the number of band pairs N needs to
be multiplied to the number of tests NT .

All in all, the general formulation of the NFA is

NFA(R, θ, ρ) ≈ U2V 2 ·N · P · αβ|R|

|R| ·
( ρ

π

)N|R|−1

, (11)

when one pixel of one pair determines the reference θ, or

NFA(R, θ, ρ) ≈ U2V 2 · P · αβ|R|

|R| ·
( ρ

π

)N|R|
, (12)

when the reference angle θ is provided by the known direction
of satellite’s movement.

There is a minimal region size |R| which can lead the detection
condition NFA < 1 which depends on U , V , P , N and ρ. Let
consider an image of size 10000 × 10000 and W = 10; then
U = 1000 and V = 1000. Using P = 6, N = 1 and the very
fine precision ρ

π
= 1

40
, the minimal region size |R| leading to a

detection is 12 pixels. This corresponds to a region of about 3×4
pixels on the sub-sampled image, or a region of size 30 × 40
pixels on the actual image. At Sentinel-2 resolution of 10m
this corresponds, in turn, to a region of about 300× 400 meters,
which is a large object to have a coherent movement. This is an
extremely precise case; in more typical cases, regions leading
to detections are much larger. Such large objects with coherent
apparent movement are almost always clouds.

As a final step, holes in the detection map are filled-in using a
morphological closing (a dilation followed by an erosion) (Serra,

Recall Precision B. Accuracy Accuracy
Fmask 4.4 91.6 88.2 94.4 96.1
CDI 61.7 84.5 79.6 90.7
Dagobert 70.3 97.6 84.9 94.1
Ours 88.0 81.4 91.7 94.0

Table 1. Recall, Precision, Balanced Accuracy and Accuracy (all
in %) of cloud detectors evaluated on 20 Sentinel-2 tiles with

mainly opaque clouds from the dataset of (Baetens et al., 2019).

Recall Precision B. Accuracy Accuracy
Fmask 4.4 80.9 90.0 89.0 93.3
CDI 40.5 85.1 69.1 84.4
Dagobert 50.4 97.9 75.0 87.9
Ours 61.2 83.0 78.6 87.7

Table 2. Recall, Precision, Balanced accuracy and Accuracy (all
in %) of cloud detectors evaluated on the 31 Sentinel-2 tiles from

the dataset of (Baetens et al., 2019).

1982), see Figure 2. The structuring element is a square of width
2(W + 1) + 1 (two pixels larger than the correlation window).

5. EXPERIMENTS

We evaluated our method on the Sentinel-2 cloud dataset
from (Baetens et al., 2019). This dataset has seven classes:
high clouds, low clouds, cloud shadows, land, water, snow, and
no data. For the evaluation we merged the high and low clouds
into one single cloud class, and all other categories into a sec-
ond non-cloud class. We evaluated the Fmask 4.4 (Qiu et al.,
2019) method and also measured the performance of the CDI
criterion alone, which is used in Fmask and exploits the par-
allax effect in Sentinel-2 images. This index takes values in
[−1, 1]; so as to get a binary map, all pixels with CDI<−0.8
were assigned to the cloud category. The same threshold is used
in Fmask. In addition, we evaluated the parallax-based cloud
detector from (Dagobert et al., 2020a). We evaluated the pro-
posed algorithm with band pairs (B08,B07) and (B08,B8A).
The parameters used were W = 10, D = 20 and T = 0.2. The
code of the proposed method is publicly available1.

We evaluated the different methods in terms of precision and
recall. These measures are also called, respectively, user’s accu-
racy and producer’s accuracy. They are defined by

precision =
TP

TP + FP
, recall =

TP
TP + FN

, (13)

where TP, FP are the true and false positives, and TN, FN the
true and false negatives. As a global measure of performance we
use the balanced accuracy, as is appropriate when the population
are unbalanced (Sokolova et al., 2006). We also provide the
Accuracy, since it is often used in the literature.

B. Accuracy =
TPR + TNR

2
, Accuracy =

TN + TP
P + N

, (14)

where TPR is the true positive rate (the recall) and TNR the true
negative rate TN/N, with N = TN + FP and P = TP + FN.

Quantitative results are reported in Table 1. Since our detector
cannot detect transparent clouds, we evaluated all methods only
on tiles containing a majority of opaque clouds. We manually
selected tiles that met this criterion. We nevertheless provide

1 https://github.com/rafael-grompone-von-gioi/pcd
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Figure 4. From top to bottom: True Color preview of the Sentinel-2 tile (TCI), Fmask, CDI, Dagobert, and our result. The true positives
are displayed in white, and the true negatives in black. The false positives are in red and the false negatives in green. Gray indicates
detections not accounted for in the evaluation (nodata class in the ground truth). Details are displayed next to each of the three tiles.

the metrics obtained with the entire dataset in Table 2. The
definition Baetens et al. use to differentiate high from low clouds
is not equivalent to opaque and transparent clouds. Indeed,
clouds are classified high if they can be seen in band 10. This
is true for transparent clouds but also for a large part of opaque
clouds. Since the ground truth classification is given at 60 m/px,
we downsampled all detection masks at this resolution. We
used average downsampling and a binarization threshold at 0.5.
Furthermore, a margin of a few pixels from the image borders
was masked in the evaluation. This is because the proposed
method cannot make detections on the borders as the optical
flow needs at least the size of half window (W ) and of the
maximal displacement (D) to operate (W +D pixels on each
side, which become 5 pixels in the 60 m/px masks with the
parameters used).

According to Table 1, our method does not perform as well as
Fmask. This is expected, as Fmask relies on many criteria (in-
cluding the cirrus band specifically designed for cloud detection).
Nonetheless, the algorithm described in this paper achieved a
reasonably high balanced accuracy. It is notable that the recall
of our method is significantly higher than the recall of the CDI.
This suggests that the index proposed in (Frantz et al., 2018)
does not fully exploits the parallax effect.

We present three tiles (and some detailed views) and the associ-
ated cloud masks in Figure 4. Each tile is 10980× 10980 pixels
at a resolution of 10 m/px. Columns A, C and F show full tiles
from dates 2017-05-01, 2017-08-15 and 2017-12-21, respec-
tively. In the first tile (column A), Fmask detected bright sand in

many places (detail on column B). Neither CDI nor the proposed
parallax cloud detector produced these false positives. In the
second tile (column C), Fmask detected snow on mountains (see
detail on column D), as well as many small and bright regions,
including an airport (see detail on column E). The CDI does
not have false positives on the snow, but has false positives in
surprising stripe patterns on the right of the image. Our method
does not have false positives on the snow nor on bright areas.
However, we miss the transparent clouds (see detail on column
D). In the third tile (column F), Fmask classified some coastal
regions as clouds (see detail on column G). The other parallax-
based methods did not produced these false positives. Compared
to Dagobert detector, our method has fewer false negatives.

Although our algorithm does not struggle with bright regions on
the ground (e.g. snow, sand), we noticed some mis-classification
of opaque clouds at very low altitude; in particular, clouds in val-
leys of mountainous areas. These clouds had almost no parallax.
Also, Sentinel-2 images are composited from several detectors,
whose orientation alternate; this yields parallax with opposite
directions, creating some errors near the frontiers. Another lim-
itation is that transparent clouds are not detected because the
optical flow step correlates the ground and not the clouds.

The proposed method can also be applied to Sentinel-2 bands
B02, B8A and B12, which are the ones with the largest ac-
quisition delay (excluding bands at 60 m/px). The results are
comparable to those obtained with bands B07, B08 and B8A.
Cloud detection on Landsat-8 and 9 is also possible, since they
use push-broom sensors. Preliminary experiments showed good
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detection results. Likewise, good results were obtained with
images from the PlanetScope constellation. Proper exploration
and evaluation of our method on these other data sources is left
for future work.

6. CONCLUSION

An algorithm for cloud detection by inter-band parallax was
described. The method computes inter-band optical flow by
correlation of the gradient direction on a window. This contrast-
invariant procedure does not require any normalization for differ-
ent band dynamics provided that there is no contrast inversion.
Then, regions with coherent movement, as validated by a statis-
tical test according to the a-contrario framework, are detected as
clouds. The algorithm presented can be applied to images of any
push-broom sensor, with any number of band pairs. The results
are better than other parallax based methods and only slightly
inferior to other state of the art methods. This suggests that the
proposed approach could improve on the state of the art when
using complementary information.
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