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Figure 1. Qualitative results of our proposed method B2-3D for few-shot keypoint detection using back-projected features (red) with
ground truth keypoint annotations (green).

Abstract

With the immense growth of dataset sizes and computing
resources in recent years, so-called foundation models have
become popular in NLP and vision tasks. In this work, we
propose to explore foundation models for the task of key-
point detection on 3D shapes. A unique characteristic of
keypoint detection is that it requires semantic and geomet-
ric awareness while demanding high localization accuracy.
To address this problem, we propose, first, to back-project
features from large pre-trained 2D vision models onto 3D
shapes and employ them for this task. We show that we ob-
tain robust 3D features that contain rich semantic informa-
tion and analyze multiple candidate features stemming from
different 2D foundation models. Second, we employ a key-
point candidate optimization module which aims to match
the average observed distribution of keypoints on the shape
and is guided by the back-projected features. The resulting
approach achieves a new state of the art for few-shot key-
point detection on the KeyPointNet dataset, almost doubling
the performance of the previous best methods.

1. Introduction
Foundation models are finding their way into an increas-
ing number of downstream applications. They show strong

generalization to tasks they were not explicitly trained for
and exhibit surprising zero- or few-shot capabilities. Suc-
cessful approaches have been presented for processing text
or 2D images [8, 28, 33], but there are no prominent 3D
methods yet available that are aimed at local details. The
main reasons for this are the diversity of 3D representations
(i.e., meshes, point clouds, volumetric or implicit represen-
tations) and the comparably low availability of high-quality
3D data.

Recent works using 2D foundation models for shape
analysis, like [19, 25, 49], have focused mainly on global
tasks like shape classification, or segmentation which rep-
resents a middle ground between global and local analy-
ses [2]. This paper builds on this continuum, advancing
from classification to segmentation and now to keypoints,
each stage requiring a more localized understanding of ge-
ometric details.

In this work, we focus on the task of few-shot key-
point detection on 3D meshes. Repeatable keypoints en-
able a wide range of downstream applications, including
rigid and non-rigid shape matching, object tracking, shape
reconstruction, and shape manipulation [9, 12, 21, 29, 43]
to name a few. Furthermore, the complex nature of the key-
point detection problem, which requires both semantic and
geometric shape understanding, has been used in the past
as a fruitful testbed for both exploiting and evaluating var-
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ious local shape descriptors [7, 38] as well as consistency
relations between 3D shapes and their views [45].

A natural approach for keypoint detection is to leverage
dense 3D geometric features or descriptors. Ideally, such
features should capture both global (semantic) and local
(geometric) information at the same time. Previous works
in this domain either focus on axiomatic features or propose
to pre-train models on 3D datasets [3, 5]. Such methods,
however, are limited by both robustness issues and the lack
of diversity and amount of 3D training data. As a result, ex-
isting approaches tend to have limited accuracy on complex
3D models. In contrast, we propose to retrieve informative
features from powerful pre-trained 2D vision encoders that
can be used directly without any further training.

We show, for the first time, that such back-projected fea-
tures enable a localized understanding of shape geometry
while at the same time being able to capture rich global se-
mantic information. Specifically, we demonstrate that these
features are robust against rotations and scaling changes
and can be computed for any point on the shape’s surface
and with any texture type. Through assembling information
from multiple rendered views around the shape, we show
that even coarse 2D features can lead to dense 3D descrip-
tors that vary continuously on the surface.

In addition to the lack of informative features, a com-
mon challenge in keypoint detection is the presence of sym-
metries. A successful method should detect all keypoints
across various symmetries (e.g., different legs of a table)
while avoiding superfluous detections. To address this is-
sue, we introduce a simple yet effective optimization strat-
egy that leverages the back-projected features and ensures
that the detected keypoints have a similar distribution on
the target shapes as on the given few-shot examples.

Our main contributions are (1) the formalization of
feature back-projection, including Gaussian geodesic re-
weighting for handling noisy point visibility information,
(2) the analysis of back-projected features from different re-
cent foundation models and their properties, and (3) an opti-
mization module which aims to match the average observed
distribution of keypoints on the target shape. Our resulting
method achieves state-of-the-art results on the KeypointNet
benchmark, improving over the best-competing method by
over 93% IoU on average over all evaluation distances. We
compare different 2D feature extractors as well as axiomatic
3D descriptors and evaluate further components of our opti-
mization module in an extensive ablation study. As an addi-
tional validation, we demonstrate the strong generalization
of the features to other tasks and achieve state-of-the-art re-
sults in the task of part segmentation transfer.

2. Related Work
The flexibility of the transformer architecture and the in-
crease in data and computing resources have led to the cre-

ation of powerful foundation models. This section gives an
overview of relevant models and their transfer for the anal-
ysis of 3D data, as well as an overview of classic shape
descriptors and previous methods for keypoint detection on
3D shapes.

Foundation Models Large pre-trained models that were
trained on vast quantities of data and exhibit strong gener-
alization to new tasks with no or only little fine-tuning are
referred to as foundation models. Prominent examples in-
clude large language models that exhibit strong zero-shot
generalization through prompting. The success in the tex-
tual domain, as well as the high availability of image data
on the internet, has led to recent advances in vision and
multi-modal models. Models like DINO [10, 28] or masked
autoencoders [18] are, in their essence, just feature extrac-
tors for image data as any other neural network. However,
their self-supervised training on large datasets has led to
a great semantic understanding of scenes that can be uti-
lized using simple linear or nearest-neighbor-based models
to solve downstream tasks. Multi-modal foundation models
like the vision-language model (VLM) CLIP [33] consist of
separate encoder models that aim to map data from differ-
ent modalities, like text and images, to the same meaning-
ful embedding space. By comparing the computed embed-
dings of candidate text prompts with an image embedding,
one can thus perform, e.g., open-vocabulary zero-shot clas-
sification of images. Finally, Kirillov et al. [22] proposed
SAM, a foundation model specifically aimed at performing
various segmentation tasks.

Lifting Knowledge from 2D to 3D Several works have
aimed at replicating the success of self-supervised pre-
training in the 3D domain [30, 48]. However, these ap-
proaches are limited by the lack of high-quality training
data in 3D. Other methods thus try to transfer the mean-
ingful embeddings from pre-trained 2D models like CLIP
to 3D. Several works focus on multi-modal contrastive pre-
training, where they train a new 3D model that should be
aligned with the embeddings computed from the frozen 2D
CLIP encoder [16, 19, 31, 36, 47]. While these methods
could exhibit similar zero-shot properties as VLMs, for ex-
ample, for shape classification, they are limited by the lack
of quantity and variety of 3D data for training. Another
approach is to bypass the training of 3D-specific models
and apply 2D encoders directly to rendered views of the 3D
object or scenes. Several works propose to render shapes
from different viewpoints, process the views with 2D CLIP
encoders, average the resulting image embeddings over all
views, and directly compare them with text prompt embed-
dings for tasks like zero-shot shape recognition [19, 25, 49].
Other recent works propose to use pre-trained 2D segmen-
tation or object detection models for shape part segmen-
tation [2] or subsequently for shape matching [1]. Paral-
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lel to this work, Morreale et al. [27] proposed to use pre-
trained 2D feature extractors to obtain fuzzy matches be-
tween shapes that are then projected onto the 3D shape and
subsequently refined. While their approach is the most sim-
ilar to our work, the core difference is that they propose
to process the features in the 2D domain to obtain seman-
tic correspondences and project these back onto the shapes,
while we propose to back-project and aggregate the mean-
ingful extracted features to the 3D shapes. Our approach is
thus more versatile and allows for various downstream tasks
instead of solely shape matching. A third way of using pre-
trained VLMs is to optimize a separate network on a single
instance, guided by the CLIP model (with frozen weights),
while using differentiable rendering. This approach has
been used for shape stylization [26], localization of seman-
tic regions on shapes [14] or mesh deformation [17].

We render the 3D shape from multiple views and project
features back from 2D encoders onto the surface. As we
demonstrate below, by doing so, we obtain high-quality
pointwise feature descriptors that enable tasks that require
high accuracy, like keypoint detection.

3D Shape Descriptors A significant amount of hand-
crafted shape descriptors is based on spectral methods, uti-
lizing information from Laplacian eigenvalues and eigen-
functions of the shape. The Laplace-Beltrami operator,
as one of the fundamental tools in geometry processing,
gave rise to early, well-established shape descriptors like
HKS [40] and WKS [4]. Another class of hand-crafted fea-
tures is based on local reference frames (LRF). A promi-
nent example is the SHOT descriptor [37]. While spectral
descriptors are often used for shape matching, LRF-based
methods are mainly employed for 3D recognition or regis-
tration tasks. With the rise of learning-based methods, re-
cent attempts aim at using neural networks to learn shape
descriptors [5]. While all neural methods naturally provide
embeddings that can be extracted from their hidden layers,
the difficulties have already been described before; as 3D
data exists in various formats and there are only relatively
small datasets available, such shape descriptors are usually
limited in their quality and steered towards specific tasks,
such as shape matching.

A general weakness of common shape descriptors is
their dependence on mesh triangulation and quality (e.g.,
to compute robust Laplacian information), as well as miss-
ing semantic understanding. Our proposed back-projected
features can be computed for any point on the surface of a
mesh. They provide high-quality semantic information and
can include texture information if available while being ro-
bust to low mesh quality, surface holes, and other common
problems for classic shape descriptors.

3D Keypoint Detection The choice of method for 3D
keypoint detection often depends on the desired down-

stream use. Classic keypoint detection methods are often
hand-engineered methods that mark a (usually high num-
ber) of geometrically salient points on a shape regardless of
their semantic meaning. In a subsequent step, these points
can then be, e.g., matched with a scan at a different point
in time and thus used for tasks such as shape matching or
registration. Tombari et al. [42] provides an overview over
classic 3D keypoint detection methods.

A more challenging task is that of finding a specific set
of keypoints on 3D shapes. KeypointNet [45] is a subset of
the ShapeNet [11] dataset with annotated keypoints for 16
shape categories, where for each model, there are between
five and 23 semantic keypoints. One can employ plain 3D
models, such as PointNet [32], to detect keypoints from
shapes in a supervised manner. However, such approaches
usually require large amounts of training data, which im-
plies high costs for capturing and labeling 3D models when
trying to apply these techniques in practice.

For these reasons, recent works proposed to instead fo-
cus on few-shot keypoint detection. Approaches range from
learning self-supervised 3D features and fitting custom de-
tection modules on them [3, 5] to training unsupervised key-
point detection models on large unlabeled datasets followed
by a few-shot selection of the detected keypoints [46].

3. Method

As mentioned above, we consider the few-shot keypoint de-
tection problem. Thus, we are given a small set of shapes
with known keypoints, and our aim is to detect keypoints on
some new target shape. For this, our overall strategy con-
sists of transferring the keypoints from the labeled (source)
shapes onto the unlabeled (target) one. Our solution com-
prises two main components: a point similarity compo-
nent which measures the similarity between vertices of the
source and target shapes, and an optimization block which
aims to preserve the overall distribution of keypoints and
prevent collapses, e.g., due to symmetries. Crucially, for
point similarity, we propose to back-project features given
by 2D foundation models onto the 3D shapes. Below, we
describe first our feature extraction strategy (Sec. 3.1) and
then the optimization module (Sec. 3.2) before presenting
the analysis of computed features and results in the follow-
ing sections. We call our method B2-3D.

3.1. 3D Feature Extraction

Our proposed pipeline for feature extraction consists of first
rendering the object from multiple viewpoints around the
object, processing the rendered views with a pre-trained 2D
encoder, and back-projecting the computed features onto
the 3D shape (see Fig. 2). While we propose to use the
DINO model [28], we investigate different 2D feature ex-
tractors for shape analysis tasks in our experiments.
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(a) View points used
for rendering.

(b) Back-projection of features computed
from rendered views.

Figure 2. After processing the rendered views of an object with a
large pre-trained vision encoder (e.g., DINO), we back-project the
features onto the 3D shape and aggregate the information from all
views (a) to obtain rich semantic 3D features (b).

As we know the intrinsic camera parameters K, as well
as the exact displacement T and rotation R of the cameras
for all rendered views, we can compute the exact pixel lo-
cation (x, y) of any 3D point (X0 in homogeneous coordi-
nates) in the rendered images as

λ(x, y, 1)T = KC0gX0 with g =

(
R T
0 1

)
, (1)

where we use a normal perspective camera with the stan-
dard projection matrix C0 and the scalar factor λ.

Using PyTorch3D [34] for rendering, we can addition-
ally determine whether a 3D point is visible in a rendered
image. If it is, we assign the feature at the corresponding
computed pixel location (x, y) to it. To aggregate the back-
projected features from all views, we simply average them.

When projecting features only to the points visible in the
rendered views, we observe that for more complex meshes,
the point visibility information is not of sufficient quality
to get a noise-free signal. To bypass this problem, we pro-
pose Gaussian geodesic re-weighting of the back-projected
features which is essentially a Gaussian smoothing of the
features along the surface. The feature fi for a point i on
the surface can then be computed as

fi =
1∑

j w(dij)

∑
j

w(dij)f
(b)
j ,

with w(dij) = exp(−d2ij/2σ
2),

(2)

using the geodesic distance information di,j between pairs
of points (i, j), the back-projected features for visible points
f (b), and a standard deviation σ that is left as a hyperparam-
eter.

3.2. Few-Shot Keypoint Detection

Our goal is to capitalize on the rich semantic features won
through back-projection for the task of keypoint detection.
We aim at doing so in a few-shot setting, where we are given
only a few shapes for a given class with an annotated set of
keypoints and predict corresponding keypoint locations on
a new shape from the same class.

When simply matching features of given keypoints with
features for candidate positions on a new shape, the results
for symmetric keypoints (e.g., the ends of table legs) may
suffer from finding only a subset of the relevant points (e.g.,
all keypoints get matched to the same table leg on the new
shape). To properly handle such symmetries, we propose
an optimization of the keypoint locations that aims to match
the global distribution of keypoints on the new shape to pre-
vent a collapse.

Given the features Fkp ∈ Rk×demb computed for k key-
points and the pairwise relative geodesic distances between
these keypoints Dkp ∈ [0, 1]k×k on a given shape, we
can find the corresponding keypoints on a new shape with
n candidate locations, for which we compute the features
Fcand ∈ Rn×demb and the pairwise relative geodesic dis-
tances Dcand ∈ [0, 1]n×n. Usually, the dimensions are
k ≈ 10 and n = 2048 in our experiments, where the key-
point candidate locations can be simply obtained through
farthest-point sampling from the surface.

We can now define an optimization to find the best loca-
tions among the n keypoint candidates on the new shape.
To do so, we define a right-stochastic selection matrix
S ∈ [0, 1]n×(k+1), where for each candidate point i, the
probability that this point corresponds to the keypoint j is
given by the value Sij . The last, additional column shows
the probability of a point not corresponding to any of the
keypoints. We impose the right-stochastic character on S by
applying a softmax per row at every optimization step. For
convenience, we define Ŝ ∈ [0, 1]n×k = S[1,..,n;1,..,k] as the
first k columns of the matrix S. We then formulate the op-
timization objective L = Lfeature + αLdistance with

Lfeature =
∥∥∥ŜTFcand − Fkp

∥∥∥
2
,

Ldistance =
∥∥∥ŜTDcandŜ −Dkp

∥∥∥
2
.

(3)

To extract the corresponding keypoints, we simply take
the argmax over the columns of Ŝ after our optimization has
finished.

By formalizing the keypoint search as an optimization
problem, we can integrate objectives like matching the rel-
ative geodesic distances between keypoints, besides simply
matching the computed features of given keypoints with the
candidate points. By doing so, we also move from a per-
keypoint solution to a global optimization over all keypoints
at the same time, which we show to be useful in our experi-
ments. Note that our proposed keypoint optimization mod-
ule is agnostic to the used shape descriptor. We ablate the
choice of DINO features in our experiments (Sec. 5.1.2).

We normalize the geodesic distances between different
points to [0, 1] by division through the maximal observed
geodesic distance on the given shape. The use of such pair-
wise relative geodesic distances is more robust than simply
matching average 3D positions of observed key points or
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non-normalized geodesic distances, which are sensitive to
shape alignment and are not rotation- or scale-invariant.

When given multiple labeled samples, one can simply
average the distance matrices and features per keypoint
class over all samples. Additionally, we experiment with
the use of a retrieval module, where we first retrieve the
closest match in the labeled shapes and then only use the
distance and keypoint information from the retrieved shape.
For retrieval, we additionally use the class token of the
DINO model, average it over all viewpoints, and perform a
nearest-neighbor search in the feature space to find the best
match with the unseen shape. We analyze the performance
of this retrieval module in our experiments.

4. Analysis of Back-Projected Features
Before diving deeper into the task of keypoint detection, we
investigate several important properties of back-projected
features. In this section, we focus on the features back-
projected from the DINO model [28], which produces the
best results in our keypoint detection experiments (Sec. 5).

4.1. Feature Stability

We first analyze how stable the found elements behave un-
der changes in certain parameters of the extraction process.
This analysis is of great importance as one of the key limi-
tations of the rendering- and back-projection-based method
is its sensitivity to the quality of rendered images and other
scene and capture parameters.
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Figure 3. Feature stability analysis measuring the mean cosine
similarity (with standard deviation in light blue) of extracted point
features when applying modifications to the rendering process.

One of these crucial parameters is the number of differ-
ent viewpoints from which we render the object. In our
experiments, we use a sampling strategy for the camera po-
sitions that partitions the unit sphere around the object in
n equidistant horizontal slices and spreads 2(n + 1) view-
points equiangular on the circumference of each slice, as
well as one view from the top and one from the bottom of
the object. When varying this sample parameter n, we can
observe that the features seem to converge at around a total
number of 50 views (see Fig. 3). In our further experiments,
we thus use n = 5, resulting in 62 viewpoints around the
object, as shown in Fig. 2a.

Generally, we observe that although the features back-
projected from a single 2D image are coarse, features

assembled from multiple views around the object are
smoother and with a higher detail level, as shown in Fig. 2b.

We visualize the effect of increasing the number of ren-
dering viewpoints in Fig. 4. As can be observed, the fea-
tures get more distinctive and detailed with more rendered
views, while with only a few views, one can clearly identify
the patch-based architecture of the underlying vision trans-
former.

Figure 4. Increase in feature quality and distinctiveness with in-
creasing number of rendering viewpoints. Visualization using a
PCA, as described in Sec. 4.2.

We further analyze the effects of changing the camera
distance during rendering on the features. We find that there
is an almost linear relationship between the increase in dis-
tance and the decrease in similarity to features captured at
the minimal distance where all views capture the full object.
The features are likely to collapse with too large render dis-
tances as more points of the shape are back-projected to the
same patch in the 2D image. In practice, this does not pose
a problem to our method, as shapes can be normalized to a
certain scale in a pre-processing step.

For rendering, we employ PyTorch3D using one light
source at the camera position for each rendering view.
Through doing so, we ensure an even lighting of the shape
for feature extraction, as well as robustness to rotations
around the up-axis of the object, which we assume as given.
In our analysis, we observe that through the high number of
viewpoints spread around the shape, the cosine similarity
of features computed for rotated versions of shapes always
stays above 0.99, thus proving the robustness of our cap-
turing strategy. The three peaks in similarity when rotating
the object can be explained by the perfect alignment of rota-
tion with the viewpoints, with rotations of 90, 180, and 270
degrees, respectively.

4.2. Semantic Awareness

In order to visualize the retrieved features, we can compute
them for all vertices of a given mesh and perform a dimen-
sionality reduction using a PCA to get an interpretable 3-
dimensional color vector for each point. An example is
shown in Fig. 5.

The visualization of the principal components of the fea-
tures suggests that the proposed method of back-projecting
features on the 3D shape produces semantic features as sim-
ilar, e.g., symmetric parts of the objects also get assigned
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Figure 5. Back-projected ViT features on a shape can be visual-
ized after performing a PCA to just three values per vertex. The
extracted features contain rich semantic information and clearly
assign different values to different semantic parts of the object.

similar values. This visualization further highlights that
through this simple back-projection technique, we are able
to lift the powerful features from the 2D encoder to the
three-dimensional shape.

4.3. Geometric Properties

Back-projected features comprise semantic information
about scenes, which can be helpful for various downstream
applications in shape analysis, as this is often a missing
component of geometry-based methods. However, an ad-
ditional important property of shape descriptors is the un-
derstanding of pure geometric information.

To investigate these properties, we analyze the extracted
features for two isometric cubes, where one has an inwards-
dented side which is dented outwards on the other cube (see
Fig. 6). While the two shapes are isometric, they are obvi-
ously not the same, and intuitively, a good shape descriptor
should reflect the local geometry change with a change in
the respective local features.

Classic shape descriptors that are based on the shape
Laplacian, like the HKS [40] and WKS [4], fail to dis-
tinguish the two cubes and assign the exact same features
for all points on the shape, as the geodesic pairwise dis-
tances between any pair of points on the surface stay the
same. The SHOT descriptor [37] is sensitive to triangula-
tion changes and its support radius parameter, resulting in
the noisy behavior shown in Fig. 6. In contrast, our back-
projected DINO features show a strong, localized reaction
to the change in geometry while remaining similar in the
unmodified parts of the shape.

Generally, we observe that the uptake to small local mod-
ifications of the shape is usually also local, with features for
unrelated parts on the shape not being affected. Considering
the global attention mechanism over the whole image in a
ViT, this is an interesting and encouraging finding. Further
examples of this behavior are shown in the supplementary
materials.

Figure 6. We compute different shape descriptors on two isomet-
ric cubes, once with an inward dent and once with an outward
dent. Since the HKS and WKS signatures are based on geodesic
information, the computed features for the different shapes do not
change. The SHOT descriptor is sensitive to changes in triangula-
tion, as well as to its support radius parameter, and results in noisy,
changing features across the cube. Back-projected DINO features
show significantly better performance as they change in the mod-
ified parts of the cube, while the features remain the same for the
unmodified parts of the shape.

5. Experiments

5.1. Few-Shot Keypoint Detection

Setup We evaluate our method B2-3D on the Keypoint-
Net dataset [45]. For each class, we select three ran-
dom models from the KeypointNet dataset and use them
as our few-shot samples. We compare our results to
several baseline methods for few-shot keypoint detection:
SIFT-3D [35], HARRIS-3D [39], ISS [50], D3Feat [5],
USIP [23], UKPGAN [46], and FSKD [3].

We use the same evaluation strategy as You et al. [46],
which computes the IoU of predicted and ground-truth key-
points from KeypointNet with a varying distance threshold
for the evaluation. An intersection is counted if the geodesic
distance between a ground-truth keypoint and a predicted
keypoint is smaller than this distance threshold. We also
stick to the same three classes of the dataset for evaluation:
airplane, chair, and table.
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5.1.1 Quantitative and Qualitative Analysis

On KeypointNet, B2-3D outperforms the previous state-of-
the-art by a very significant margin on all distance thresh-
olds (Fig. 7). It reaches similar IoU levels as FSKD at a
distance threshold of 0.1, already at a threshold of around
0.045. The mean relative improvement over FSKD lies at
93% with over 200% improvement at a distance threshold
of 0.02. Qualitative results are shown in Figure 1.
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Figure 7. Our algorithm reaches a new state-of-the-art in few-shot
keypoint detection by a large margin.

We also include a comparison to farthest-point sampling
with the average number of keypoints observed in the few-
shot samples. Our implementation also uses the maximum
of the average geodesic distance to seed the first point. Sur-
prisingly, this simple strategy, without any understanding of
the underlying semantics or geometry, outperforms many
of the previous works. This can be explained by how we
normally select keypoints: In order to have keypoints that
describe the objects as well as possible, we tend to choose
extreme points that are well distributed over the shape as
keypoints. Nevertheless, such a simple baseline is insuffi-
cient for accurate keypoint detection.

5.1.2 Ablation Studies

We examine the reasons for the success of our method with
several ablation studies on different parts of the proposed
pipeline. Our findings are illustrated in Fig. 8.

We find that changing the large DINO model for a dis-
tilled version [ViT-S] does not significantly harm the per-
formance, but using the given textures of ShapeNet meshes
does [Texture]. This is consistent with the observations
made by Morreale et al. [27]; low-quality texture informa-
tion is more likely to impair performance than to favor it.

We motivated our keypoint candidate optimization mod-
ule with the problem of handling symmetries in an object.
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Figure 8. Relative performance (with standard deviation) com-
pared to our optimization with features extracted from 3 shapes
without textures with the DINO ViT-G model. We observe that
features extracted from the smaller ViT result in almost equal
performance, using (low quality) texture information slightly dis-
tracts the model, and the 1-shot performance has a higher variance
but still always outperforms the previous state-of-the-art 3-shot
method FSKD by a large margin. The reduced performance with
simple nearest-neighbor-based keypoint detection [KNN] stresses
the effectiveness of our optimization module in matching the key-
point distributions.

As we can observe in Fig. 8, the optimization successfully
avoids a collapse in the prediction, which is the reason
for the lower performance of a simple nearest-neighbor-
based selection [KNN]. The retrieval of the most similar
shape from the labeled samples before optimization does
not prove to be effective with this low number of shots [Re-
trieval].

Finally, we also evaluate our proposed method when us-
ing only one labeled sample [1-Shot]. While the perfor-
mance is worse than with three labeled samples and has
a higher variance, it still outperforms the previous state-
of-the-art for keypoint detection with three given labeled
samples by a large margin, thus demonstrating the strength
of our framework. In the supplementary materials, we ad-
ditionally give insights into the hyperparameter search for
α, β and σ.

Other Shape Descriptors We want to evaluate the con-
tribution of the back-projected features and compare our
framework with the same keypoint candidate optimization
but with other shape descriptors. We first compare against
traditional, geometry-based shape descriptors HKS [40],
WKS [4] and SHOT [37]. As these geometry-based descrip-
tors are sensitive to low-quality meshes, we pre-process the
given ShapeNet models to obtain clean watertight mani-
folds [20]. After optimization of hyperparameters, like the
diffusion time for HKS and WKS, we report the results of

7



using our keypoint optimization module together with the
geometry-based descriptors in Fig. 9.

In addition, we compare deep features back-projected
from CLIP [33] and SAM [22]. We extract the features
from the last layer of the respective image-encoding vision
transformers, discarding subsequent layers that no longer
provide significant spatial information. For additional com-
parison, we also extract features from the CNN Efficient-
Net [41]. While all deep methods’ features perform better
than the traditional descriptors, they fall short of the fea-
tures extracted from the DINO model. Our method with
CLIP and EfficientNet features also outperforms the previ-
ous SOTA FSKD.

To our surprise, features extracted from the smaller and
older EfficientNet outperform the CLIP and SAM mod-
els. We attribute this performance potentially to the fact
that CLIP and SAM have specific properties (i.e., the joint
image-text embedding for CLIP and the segmentation de-
coder for SAM) that may not necessarily be relevant in our
setting. However, a more thorough investigation is neces-
sary to fully understand the exact properties of the different
features.

DINO
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SAM
HKS
WKS
SHOT
FSKD
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0
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Figure 9. Experimental results when using different features with
our proposed keypoint optimization module. We find that tradi-
tional shape descriptors cannot reach the performance of back-
projected features of 2D foundation models, while other back-
projected features cannot handle local geometry as well as DINO.

While the HKS performs the best out of the three tra-
ditional shape descriptors, the results are only as good as
simple farthest-point sampling in our experiments. Since
such hand-crafted methods are not aware of semantic infor-
mation, they struggle to provide similar features for similar
points on shapes of the same object class that have a differ-
ent geometry. To validate this conjecture, we compare the
features computed across multiple shapes of the same class
in the supplementary materials.

5.2. Part Segmentation Transfer

As an additional validation of our results, we investigate
the performance of back-projected features for transferring
part segmentation labels between a pair of shapes. Using

the back-projected DINO features and a simple nearest-
neighbor-based classification, we obtain an average IoU
of 71.0% on the ShapeNet part dataset [44], improving
by nearly 2% over the previous state-of-the-art NCP [3]
(69.2% IoU). Further details and results with features back-
projected from other 2D models can be found in the supple-
mentary materials.

6. Conclusions

We presented B2-3D, a novel method for few-shot keypoint
detection on 3D meshes. Our method consists of back-
projecting features from powerful pre-trained 2D vision en-
coders to the 3D shape, which carry strong semantic and
geometric information, as we were able to show in a com-
prehensive feature analysis. In order to transfer keypoints
between shapes, we match the observed keypoint distribu-
tions on the shape with a simple yet effective optimiza-
tion strategy that is agnostic of the specific shape descrip-
tor used. We demonstrated the effectiveness of our for-
mulation by achieving state-of-the-art performance on the
KeypointNet dataset by a large margin in combination with
back-projected DINO features, even outperforming the pre-
vious SOTA with back-projected CNN features. We further
achieve a new state-of-the-art for the task of part segmenta-
tion transfer.

While the proposed feature extraction is learning-free,
the computation cost of features for multiple views around
the object is slightly higher than with pure 3D-based meth-
ods. A remaining difficulty is filtering out non-existent key-
points on new shapes and detecting unseen keypoint classes.
While we propose to solve the first problem using shape
retrieval, the diversity and representativeness of the given
labeled shapes are still essential for these problems.

Back-projected features can serve as a powerful prior
for various other shape analysis tasks where pure geometric
methods currently still fail, which is an exciting avenue for
future research. The back-projection of different 2D fea-
tures for such downstream tasks can also serve as a pow-
erful testbed for comparing the quality of learned features,
especially on photo-realistic datasets [6].
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Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features

Supplementary Material
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Figure 10. Pipeline of B2-3D. Given one or a several labeled
source shapes and an unlabeled test shape, we first back-project
features for ground-truth keypoints on the source shapes and can-
didate locations sampled from the surface of the test shape. In
addition, we compute the pairwise geodesic distances between the
keypoints. With this information at hand we then employ our op-
timization module to detect the keypoints on the test shape. Intu-
itively, our optimization uses the back-projected features as first
order similarity between labeled keypoints and candidate loca-
tions, and uses pairwise geodesic distance information as second
order regularization.

7. Implementation Details
The pipeline of our method is visualized in Fig. 10. The
features and the pairwise geodesic distances of ground-truth
keypoints on the few-shot samples can be computed in ad-
vance. We use PyTorch3D [34] for the rendering of shapes,
and process the rendered views with the pre-trained vision
models. The runtime of the feature extraction thus depends
on various factors, like the number of views, the complex-
ity of the rendered mesh, the amount of points for which
we extract features and the 2D feature extractor that is used.
The feature computation normally takes between 10 to 20
seconds for one shape in our experiments on one NVIDIA
A40 GPU.

As the keypoint candidate optimization is non-linear, we
use PyTorch with gradient descent to solve the optimization
problem. We initialize the matrix S (see Sec. 3.2) with ran-
dom values from a normal distribution and apply a softmax
per row to ensure the right-stochastic character of the matrix
S at every optimization step. Using a GPU, the optimization
process (5000 steps) can be completed in about 10 seconds.
We make our code available under the following URL:
https://github.com/wimmerth/back-to-3d-
few-shot-keypoints.

7.1. Keypoint optimization hyperparameters

To further steer the optimization toward the selection of one
clear correspondence per keypoint, instead of possibly av-

eraging over multiple candidates and their features in the
optimization, we define an optional selection reward

Rselection =
∑
j

(max
i

Ŝij −
1

n

∑
i

Ŝij), (4)

and formulate an extended objective function as

L = Lfeature + αLdistance − βRselection (5)

with two weighting parameters α, β.
• The weighting-parameter α is dependent on the feature

dimensionality and magnitude. We find that setting α =
4 works well with back-projected DINO features (see
Fig. 11), but we also adjust this parameter for the vari-
ous other features used in our experiments.

• In our experiments, we find that setting β = 0 in the op-
timization and thus not taking the selection reward into
account works the best (Fig. 11), as the optimization is
less sensitive to the random initialization of the selection
matrix S without it.

• The choice of σ for Gaussian re-weighting of features
(Eq. 2) depends on the quality and scale of the given
mesh. In the best case, if we work with clean meshes,
we do not need to apply re-weighting since all points
of the shape will be (recognized as) visible from some
viewpoint. However, if this is not the case, as with some
ShapeNet meshes, we find that setting γ ∈ [0.001, 0.005]
works quite well for shapes normalized to a unit box
scale.
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Figure 11. Influence of the weighting terms α, β in the optimiza-
tion objective on the keypoint detection results. The best weights
with DINO features were empirically found to be α = 4 and
β = 0, thus effectively removing the selection reward from the
objective.

7.2. Hungarian method baseline

An alternative baseline to nearest-neighbor matching in the
feature space is using the Hungarian method to solve the

1
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linear assignment problem with the similarity of candidate
features to keypoint features as costs. We show the results
using a variant, the Jonker-Volgenant algorithm, in Tab. 1.
While this method avoids the collapse observed with simple
nearest-neighbor matching in some cases, it is not aware
of the spatial relation between the detected keypoints and
using our proposed optimization module instead improves
over the results by an average of 37%, thus strongly sup-
porting our design choice.

Table 1. Comparison of IoU scores with varying distance thresh-
olds against proposed baseline using Hungarian matching.

Dist. Threshold 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
B2-3D (ours) 0.12 0.20 0.36 0.46 0.53 0.58 0.62 0.64 0.67 0.69 0.71
Hungarian 0.08 0.13 0.23 0.31 0.37 0.42 0.47 0.50 0.53 0.55 0.58

8. Results on real-world scans
In addition to experiments on the KeypointNet dataset, we
qualitatively evaluate our method on real-world scans from
the Objaverse dataset [15]. As there are no ground-truth
keypoint annotations given, we manually annotate key-
points on a few cars and apply B2-3D to a few unlabeled
cars. We observe that, contrary to the experiments on the
KeypointNet dataset, using texture information of the mod-
els slightly improves the results which can be explained
with the higher quality of the texture compared to ShapeNet
meshes.

Figure 12. Few-shot keypoint detection (red) on real-world scans,
given manually annotated source shapes (green).

9. Additional feature analysis and properties
9.1. Uptake of local geometry changes

We investigate the reaction of the back-projected features to
small modifications of the shape. We expect them to slightly
change for the affected regions while remaining similar for
non-affected regions. The visual results of this experiment
can be seen in Fig. 13.

If we slightly stretch the rear part of the aircraft body, we
notice that the features of the aircraft change slightly from
the point where we stretch it to the tail. This is interesting

to observe because only the fuselage was changed, while
the stabilizers in the rear remained untouched. We suspect
that the change in the relative sizes of the different parts
influences these small changes in the features.

Moving the landing gear on the top of the aircraft
changes not only the features of the landing gear, but also
those of the part of the aircraft to which it is attached. While
it could be argued that the coarse patch size of the extracted
features affects this change by ”leaking” onto the area be-
hind the landing gear, features for other regions that are
close to the landing gear did not change drastically. This
leads us to conclude that the features back-projected to the
modified shape also capture the change in semantics for the
affected part of the aircraft.

Figure 13. Change of the computed features (measured in co-
sine similarity) when applying small modifications (indicated with
black arrows) to the original shape (left). The back-projected
DINO features seem to generally react well by changing in the
affected areas while staying the same in unaffected areas.

9.2. Semantic stability with varying shapes

In our experiments with axiomatic shape descriptors, we hy-
pothesize that pure geometry-based descriptors are not con-
sistent and informative enough to provide similar features
for similar points on shapes of the same object class that
have a different geometry. To test this conjecture, we con-
duct another small qualitative experiment. We extract fea-
tures for each shape and apply a PCA to all points together
for visualization, as described in Section 4.2. In order to
have a balanced PCA computation between the meshes with
different numbers of vertices, we sample 2048 points from
each shape’s surface which we use to fit the PCA. For visu-
alization, we then apply the fitted PCA to the feature com-
puted for each mesh vertex to obtain the colored shapes
shown in Fig. 14.

We would want shapes to be colored approximately the
same, as similar parts over different shapes should also have
similar features. The results (Fig. 14) show that this is far
more the case for the back-projected DINO features when
compared to the HKS features. It is remarkable that the fea-
tures are consistent even for shapes that are fairly different,
such as different airplane types.
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Table 2. Back-projected features are a strong backbone for part segmentation transfer. Label transfer results measured with average IoU.

pla. bag cap cha. ear. gui. kni. lam. lap. bik. mug pis. roc. ska. tab. avg.

[24] IDC 60.1 56.2 59.7 72.2 45.3 81.5 66.4 42.6 88.5 40.5 87.5 66.4 37.2 50.7 70.4 61.7
[13] CPAE 61.3 59.3 61.6 72.6 55.5 78.9 71.3 53.2 89.9 55.4 86.5 66.2 40.2 61.8 72.5 65.8
[3] NCP 63.7 66.7 68.7 80.2 59 78.8 72.5 61.9 91.4 57.2 89.5 61.4 44.2 63.6 79.2 69.2

O
ur

s

DINO 64.8 75.1 67.5 72.1 77.3 83.6 71.7 57.9 89.6 64.3 91.0 73.2 47.9 65.8 63.1 71.0
CLIP 59.4 66.9 73.4 62.9 70.9 76.4 68.1 52.8 84.1 57.3 86.4 66.1 43.4 63.6 62.2 66.3
EffNet 56.6 69.5 63.2 64.4 72.1 81.6 70.8 50.6 88.5 59.5 82.6 63.5 44.9 60.2 64.2 66.1
SAM 36.8 65.3 57.1 59.7 56.6 79.0 72.8 51.8 75.8 43.6 49.0 56.6 32.4 46.8 53.8 55.8

(a) HKS features on different shapes of the same class.

(b) Back-projected DINO features on different shapes of the same class.

Figure 14. The back-projected features produce more consistent
and distinctive features for similar points on different shapes.

10. Part Segmentation Transfer
To further validate the strength and generalizability of the
back-projected features, we evaluate them on the task of
part label transfer. In our experiments, we follow the setup
of Cheng et al. [13], where the goal is to transfer part seg-
mentation labels from one shape to another using the labels
from the ShapeNet part dataset [44].

In our experiments, we back-project the features onto the
3D shape, as described in Section 3.1 of the main paper, and
perform a k-nearest neighbor classification in the feature
space, querying the points on the new shape and retrieving
the best matching label for each point.

Using DINO features, we outperform the previous state-
of-the-art methods in 9 of the 15 categories, with an in-
crease of the average IoU over all classes by almost three
percent (see Tab. 2). The semantic information enables
gains of up to 18.3% IoU over previous methods for se-
lected classes. While these results underline the strong per-
formance of back-projected features, we want to emphasize
the simplicity of the used approach: The nearest-neighbor-
based classification in feature space is not informed by the
spatial connectivity of points, etc., and the used approach
is much faster than the previously proposed methods that
require additional optimization [3, 24].

Our experiments on this part segmentation transfer fur-
ther highlight the superiority of DINO features, as the back-

projected DINO features outperform other back-projected
features on this task. As with keypoint detection, CLIP and
EfficientNet features provide fairly similar results. Even
though the SAM model was trained as a foundation model
for segmentation tasks, the extracted features seem to not be
able to provide the necessary distinctiveness between dif-
ferent object parts. We suggest investigating the reasons for
this behavior further, but it could possibly be explained by
the absence of SAM’s powerful decoder that further pro-
cesses the extracted features and is possibly responsible for
the performance increase in the 2D setting.
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