
HAL Id: hal-04550117
https://hal.science/hal-04550117

Submitted on 17 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient GPU computation of large protein
Solvent-Excluded Surface

Cyprien Plateau-Holleville, Maxime Maria, Stéphane Mérillou, Matthieu
Montes

To cite this version:
Cyprien Plateau-Holleville, Maxime Maria, Stéphane Mérillou, Matthieu Montes. Efficient GPU com-
putation of large protein Solvent-Excluded Surface. IEEE Transactions on Visualization and Computer
Graphics, inPress, �10.1109/TVCG.2024.3380100�. �hal-04550117�

https://hal.science/hal-04550117
https://hal.archives-ouvertes.fr

1

Efficient GPU computation of large protein
Solvent-Excluded Surface

Cyprien Plateau–Holleville, Maxime Maria, Stéphane Mérillou, Matthieu Montes

Fig. 1: Path-traced images of the entire HIV-1 capsid’s (PDB: 3J3Q) Solvent-Excluded Surface. It is composed of more than
2.4M atoms and its surface is computed in 700ms on an NVIDIA RTX 2080 with our method. As shown in the right image,
the surface is fully defined and can be rendered with a transmissive material giving an overview of its inner part.

Abstract—The Solvent-Excluded Surface (SES) is an essential representation of molecules which is massively used in molecular modeling and
drug discovery since it represents the interacting surface between molecules. Based on its properties, it supports the visualization of both large
scale shapes and details of molecules. While several methods targeted its computation, the ability to process large molecular structures to address
the introduction of big complex analysis while leveraging the massively parallel architecture of GPUs has remained a challenge. This is mostly
caused by the need for consequent memory allocation or by the complexity of the parallelization of its processing. In this paper, we leverage the
last theoretical advances made for the depiction of the SES to provide fast analytical computation with low impact on memory. We show that our
method is able to compute the complete surface while handling large molecular complexes with competitive computation time costs compared to
previous works.

Index Terms—Scientific visualization, Massively parallel algorithms.

✦

1 Introduction

Computer science, and especially computer graphics, is widely
used by computational biochemists to support molecular

modeling, drug discovery and design applications. From the
development of enhanced shading to the implementation of
hardware accelerated computation tools passing by specialized
user interfaces, computer graphics research contributed many times
to the improvements of molecular visualization software [1].

With the recent developments in molecular simulation and ex-
perimental structure resolution techniques, molecular datasets now
include larger and more complex structures including molecular
motion. Their studies are thus challenging the available tools in

• Cyprien Plateau–Holleville, Maxime Maria and Stéphane Mérillou are with
the XLIM Laboratory, UMR CNRS 7252, University of Limoges, France,
E-mail: cyprien.plateauholleville@unilim.fr, maxime.maria@unilim.fr,
stephane.merillou@unilim.fr

• Matthieu Montes is with the GBCM - Laboratoire Génomique,
Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire
National des Arts et Métiers, Hésam Université, France and Institut
Universitaire de France (IUF). E-mail: matthieu.montes@cnam.fr

terms of memory, performance, and visualization clarity. Even
if recent works were able to leverage the repetitive patterns in
complex synthetic systems to provide visualization from molecular
to cellular structures and thus demonstrate the ability to handle very
large amounts of data [2], [3], they are not compatible with motion
and molecular dynamics simulation data. Indeed, motion induces
structural conformational changes in the molecular scene which rely
on atom-level forces prohibiting the use of procedural generation
or instancing. Additionally, recent developments in HPC allowed
the generation of massive simulations at the atomic scale [4] that
would benefit from appropriate illustration methods.

Scientific visualization has been oriented toward the develop-
ment of tools supporting interactive analysis. While giving valid and
insightful visualization is a mandatory feature of scientific software,
the addition of high-quality illustration techniques supports both the
understanding and the popularization of scientific knowledge [5],
[6]. However, the adoption of the last computer graphics strategies
and the creation of dedicated ones to handle the targeted domain’s
concepts are required to deliver adequate methods.

Richards [7] introduced the Solvent-Accessible Surface (SAS)
and the Solvent-Excluded Surface (SES), both built from the atomic

2

Fig. 2: The different molecular surfaces introduced by Richards [7].
Both the SAS and the SES describe the probe’s interaction with the
vdW surface and give insights on its interactions with the protein.

structure of a molecule using a spherical probe representing the
solvent. As illustrated in fig. 2, the spherical probe is rolling over
the van der Waals (vdW) surface and describes the SAS as the
path of its center, an inflated version of the vdW surface, and
the SES as its reachable frontier. While the SAS is especially
studied for its area giving hydrophobia insights [8], the SES is
the interacting surface in molecular interactions which guides the
analysis of molecular complexes (protein-small molecule, protein-
protein, etc.). For instance, it can support the identification of
cavities based on the extracted geometry [9].

Several methods showed the ability for fast computation and
visualization of the analytic exterior SES. However, the most used
softwares [10]–[12] only offer triangulated approximation of the
surface which level of detail is strongly linked to its memory
consumption. This may be explained by the complexity to handle
large structures and the complete surface, especially on applications
targeting GPU computation and a wide variety of hardware. Indeed,
the embedding of the geometry in the restricted GPU memory is a
challenge strengthened by the complexity of its construction. Even
if recent works [13] have been conducted to allow the handling
of large proteins on graphic hardware, this was often at the cost
of additional computation time and without the complete surface
acquisition. This is not only limiting the support of large structures
on dedicated software, but also the availability of these methods.

This paper presents a method for GPU computation of the SES
with reduced memory consumption, without trade-offs between
surface quality and processing time. Our contributions are:

• Based on the last SES depiction [8], we provide a dedicated
data structure targeting a compute-over-store pattern for
both memory and computation efficiency.

• We tackle one of the main memory consumption issues in
previous works by leveraging a classification scheme which
is strongly reducing the runtime memory footprint.

• To overcome the additional computation induced by mem-
ory footprint reduction features, we propose significant
improvements to the parallelism of SES processing steps
that we identified as important computation bottlenecks.

• We show that thanks to our development, the computation
of the complete surface can be made in competitive
computation time and without strong memory footprint
which was not possible before.

To our knowledge, our method is the first to be able of fast GPU
computation of large molecular structures complete surface. The
data produced could thus be employed for various processes on the
GPU such as area and volume computation, geometry processing,

or illustration. We study its use for illustrative rendering benefiting
from the quality and clarity of the generated surface, as illustrated
in fig. 10, and decreased surface acquisition times. Finally, we show
that the last developments made in the analytical depiction of the
SES [8] suits especially well the rendering of this surface thanks to
its implicit singularity handling.

In the following sections, we give the previous works on
SES computation which are followed by the surface geometric
definition. We then present the key steps of our algorithm and its
GPU-oriented optimizations. Finally, we provide an analysis of the
pipeline performance, its limitations and conclude this paper.

2 Related works
Since the first studies made by Richards [7] and Connolly [14],
many works improved the SES computation under different
orientations. To provide a reliable presentation of the related works,
we propose to group these methods by their goals. We first present
the several works providing fundamental approach to the depiction
of the surface which are followed by those focusing on its fast
approximating and analytical generation. For more information
regarding visualization of biomolecular data, we orient the reader
toward previous wider studies [15].

Fundamental works and analytic depiction. Based on
Richards [7] and Connolly [14]’s works, several algorithms have
been developed mostly relying on the links between the SES and
the SAS. Reduced Surface [16] is a sequential algorithm producing
an 𝛼-shape [17] structural representation which has been widely
used for its robustness and availability in the software MSMS [16].
It is based on an iterative computation of the structure validating
and appending part of it. It has then been leveraged to allow
rebuilding from previous computation [18]. The same year, another
structural algorithm, Contour-Buildup [19], has been presented. It
relies on SAS contours construction by modifying incrementally its
arcs based on intersection points. In Connolly [14]’s analysis, the
processing of the surface requires to handle singularities. Quan &
Stamm [8] presented an analytic Signed Distance Function (SDF)
representation of the surface, implicitly handling singularities for
a more precise calculation. This representation has then been
leveraged to offer accurate meshing of the surface [20].

Approximating applications. While several fundamental
works have presented analytical studies of the surface, the need for
fast visualization led to the development of approximating and/or
discrete space methods mostly based on a signed distance field. The
latter can be built by classifying every voxel depending on their
belonging to the vdW surface or the SAS. It allows the introduction
of complex surfaces such as the Ligand-Excluded Surface [21],
which takes into account the geometry of the ligand for the surface
approximation. Hermosilla et al. [22] presented an interactively
refining method based on the ray-marching of a grid, which has
then been leveraged by Martinez et al. [23] to provide a stand-
alone library for SES mesh GPU computation. Parulek et al. [24]
presented an SDF representation of the SES, which can directly
be ray-casted but suffered from numerical errors. Bruckner [25]
proposed a Gaussian surface-based approach that enables on-the-fly
computation for real-time visualization of large molecular complex
surface thanks to its simpler structure. However, it does not offer
the SES features and insights.

Analytic exterior molecular surface applications. Analytic
computation of the surface has been leveraged several times to
provide an accurate representation of the exterior molecular surface

3

Fig. 3: Rendering of the SES of a molecule (PDB: 3DIK) with emphasized patches. The different types of patches, spherical convex 𝑃+,
spherical concave 𝑃− , toroidal segment 𝑃𝑡 and complete circle 𝑃𝑡 𝑓 compose the complete SES and are defined in section 3.

after its structural computation. This is achieved by hiding unwanted
geometry parts to the user within the surface. This is made for
faster rendering but is thus not compatible with the visualization
of the inside of the surface. Krone et al. [26] proposed a Reduced-
Surface [16] based method providing interactive visualization
by ray-casting. This work has then been improved with a GPU
implementation of Reduced-Surface [27] and Contour-Buildup [28],
allowing the parallelization of both algorithms. However, the first
method suffers from artifacts due to its view-dependent nature while
the second requires consequent memory allocation, limiting its use
for large structures. Schäfer et al. [13] demonstrated a reduced
allocation scheme at the cost of a slower computation.

Analytic complete surface applications. While the exterior
molecular surface computation can be sufficient for some ap-
plications, users can need the complete surface to obtain more
information such as tunnels and pocket visualization. For this
purpose, Kauker et al. [29] presented a framework allowing
transparent visualization by using Reduced Surface’s primitives
and cutting planes. This allowed to provide a rendering of the
complete exterior molecular surface but not its inner part which
can remain inside the volume. Jurcik et al. [30] proposed a method
relying on a GPU implementation of Contour-Buildup [19], ray-
casting, and cutting geometries which suffered from numerical
errors and difficulties to handle large structures. Manak et al. [31]
proposed a method based on Apollonius diagram, the Voronoı̈
diagram of spheres and Euclidean distance, allowing fast probe
radius update but requiring heavy pre-computation time. Finally,
Rau et al. [32] presented an improved CPU ray-tracing method
based on Contour-Buildup handling large complex at the cost of
an order of magnitude longer computation times compared to the
original GPU implementation.

The fast computation of the complete SES remains a challenge.
We identified that the main difficulties are closely related to the
amount of memory that can be needed to store the data structure,
and the complexity to parallelize its exploration. In this paper, we
propose to tackle both issues based on the last theoretical and
technical advances made in SES depiction and GPU architectures
as well as our improvements to the processing of the surface parts.

3 Geometric definition

Before going into the details of the SES computation, we recall the
theory at the basis of our method, and how it can be leveraged for
rendering purposes. The nomenclature used throughout this article
are listed in table 1.

Symbol Signification

M A molecule.

𝑎𝑖 , 𝑐𝑖 , 𝑟𝑖 , N (𝑎𝑖) The 𝑖th atom, its center, vdW radius and
neighborhood.

𝑟𝑝 The probe radius.

𝒞𝑖 𝑗 , 𝑐𝑖 𝑗 , 𝑟𝑖 𝑗 , 𝑛𝑖 𝑗
A SAS circle between 𝑎𝑖 and 𝑎 𝑗 , its center,
radius and normal.

I The set of intersected SAS circles.
𝑥, X An SAS intersection and their set.

X (𝒞) The set of SAS intersections of a given
SAS circle.

𝑃+ A convex patch.
𝑃− , 𝑇 A concave patch and its tetrahedron.
𝑃𝑡 , 𝑃𝑡 𝑓 Segment and full toroidal patches.

TABLE 1: Nomenclature

3.1 SES patches
To offer a homogeneous presentation, we rely on Quan &
Stamm [8]’s depiction to present the parts of the surface, refer to as
patches. Its implicit geometric singularity handling and structural
simplification make it an appropriate foundational design which is
also adequate for rendering purposes.

As previously stated, the SES is described as the interaction
surface of a spherical probe rolling on the vdW surface. The latter
is composed of spheres defined by the center 𝑐𝑖 and vdW radius [7]
𝑟𝑖 of every atom 𝑎𝑖 belonging to the molecule M. The surface
accessible to the probe is the SAS and is defined as the union of
the inflated vdW spheres where every atom’s radius is increased
by the probe’s radius 𝑟𝑝 . As demonstrated by Quan & Stamm [8],
the individual component types of the SES can be described as
distance functions from their corresponding parts on the SAS. They
aim at giving the distance from a point 𝑝 ∈ R3 to the surface which
can be used for rendering with sphere-tracing [33] for instance. In
this paper, we refer to values less than 0 as inside the surface and
values greater than 0 as outside of the surface. An illustration of
these patches for a given molecule is provided in fig. 3. They are
based on SAS geometry bits created from the intersection of SAS
spheres: SAS circles and intersections. SAS circles, noted 𝒞, are
small circles delimiting the intersection of two SAS spheres while
SAS intersections, noted 𝑥, are points coming from the intersection
of three SAS spheres or two SAS circles.

Convex Spherical Patches P+. As illustrated in fig. 4, a SAS
sphere can be intersected by other spheres. The resulting geometry

4

Fig. 4: Illustration of a convex patch 𝑃+. We can notice its
corresponding set of small circles at the basis of its composing
sector list. In red: convex patch 𝑃+. In green: full SAS circles. In
yellow: intersected SAS circles. In blue: 𝒞𝑖 𝑗0 , a circle buried in 𝑎 𝑗1 ,
which does not contribute to the surface.

is a partial sphere which frontier is derived from intersecting SAS
circles delimiting its surface. Then, the point 𝑝 is on the SES if it
is on the vdW sphere and if it does not belong to an SAS circle
𝑝 ∉𝒞𝑖 𝑗 , ∀𝑎 𝑗 ∈ N (𝑎𝑖) with N (𝑎𝑖) as 𝑎𝑖’s neighborhood creating
SAS circles 𝒞𝑖 𝑗 . This test was originally performed by maintaining
circle intersection topology in Quan & Stamm [20]’s data structure.
However, such construction is computationally expensive as well
as being heavy. To alleviate this cost, we rely on per-patch sets
of spherical sector as used by previous works [32]. A sector is
composed of an orientation from the sphere’s center and an angle
derived from its corresponding circle. It can then be used to test if
𝑝 is part of the surface and allow to simplify Quan & Stamm [20]’s
data structure. Ours is composed of the atom position and radius
as well as a list of vectors and radii representing its sectors.

Toroidal Patches P𝑡 and P𝑡 𝑓 . As depicted in fig. 5, the
intersection of two SAS spheres is an SAS circle. If 𝑝 is located
in the triangle △

(
𝑝′𝑐𝑖𝑐 𝑗

)
described by both 𝑎𝑖 and 𝑎 𝑗 centers and

𝑝′ the projection of 𝑝 onto their resulting SAS circle 𝒞𝑖 𝑗 , then it
belongs to an SES toroidal patch 𝑃𝑡 . Hence, its distance 𝑑 (𝑃𝑡 , 𝑝)
to the SES is its signed distance to 𝑝′ adding 𝑟𝑝:

𝑑 (𝑃𝑡 , 𝑝) = −||𝑝′ − 𝑝 | | + 𝑟𝑝 , 𝑝 ∈ △
(
𝑝′𝑐𝑖𝑐 𝑗

)
𝑝′ = 𝑐𝑖 𝑗 + 𝑟𝑖 𝑗

𝑣

| |𝑣 | |
𝑣 = 𝑝 + (

(
𝑐𝑖 𝑗 − 𝑝

)
· 𝑛𝑖 𝑗)𝑛𝑖 𝑗 − 𝑐𝑖 𝑗

(1)

with 𝑐𝑖 𝑗 , 𝑛𝑖 𝑗 and 𝑟𝑖 𝑗 as respectively the center, normal and radius
of 𝒞𝑖 𝑗 and 𝑣 as the vector from 𝑐𝑖 𝑗 to 𝑝′.

Circles become segments when intersected by other circles.
The SDF remains the same but its enclosing shape is bounded by
𝑥𝑙 and 𝑥𝑚, the two bounding intersections creating an arc that must
be taken into account during evaluation. This can be achieved by
testing if 𝑝′ is located between 𝑥𝑙 and 𝑥𝑚:

∡
(
𝑥𝑙 − 𝑐𝑖 𝑗 , 𝑝′ − 𝑐𝑖 𝑗

)
< ∡

(
𝑥𝑙 − 𝑐𝑖 𝑗 , 𝑥𝑚 − 𝑐𝑖 𝑗

)
(2)

with ∡ (®𝑣, ®𝑤) as the angle between ®𝑣 and ®𝑤. To ease the differen-
tiation between both shapes, we use 𝑃𝑡 𝑓 for patches belonging
to complete circles and 𝑃𝑡 for those belonging to segments,
respectively in green and yellow in fig. 5.

In contrast with previous depictions [14], this representation
is not suffering from the spindle torus singularity and does not
require the use of a solver leading to instabilities [32]. Moreover,
while previous works store cutting geometry planes, we use
Quan & Stamm [20]’s data structure to avoid these additional
costs on memory and computation. It was originally including,
in addition to both atoms and intersections indices, the circle
center and radius as well as the angle of the segment. Based on
the presented equations these data can be quickly recomputed on
demand with both atoms and intersections. Our data structure for
𝑃𝑡 and 𝑃𝑡 𝑓 is then simplified by only storing the two atoms indices
as well as the intersection indices for 𝑃𝑡 .

Concave Spherical Patches P− . The intersection of three SAS
spheres leads to one or two SAS intersections, as illustrated in
fig. 6. 𝑝 belongs to an SES concave spherical patch 𝑃− if it is
located within the SAS cavity and is not belonging to any other
type of patch. In such context, the point is then positioned in the
union of every tetrahedron 𝑇 described by the three atoms centers
𝑐𝑖 , 𝑐 𝑗 , 𝑐𝑘 and their resulting SAS intersection point 𝑥 ∈ X, with X
as the set containing all intersections belonging toM.

The distance between 𝑝 and the SES 𝑑 (𝑃− , 𝑝) is the distance
to the closest probe sphere of radius 𝑟𝑝 . While this allows to
completely define the SES cavity, it is not sufficiently compact
to fit a rendering algorithm. We can then add that, deriving these
statements, a concave patch 𝑃𝑣

− can be more compactly rendered
as a sphere centered in its SAS intersection 𝑥𝑣 , of radius 𝑟𝑝 ,
intersected by the three planes describing the sides of its tetrahedron
𝑇 𝑣 and by refining the distance based on neighboring 𝑃− . Moreover,
such test is only required if the sphere is intersecting the plane
of 𝑇 𝑣 described by 𝑐𝑖 , 𝑐 𝑗 and 𝑐𝑘 [16], [31]. In our data structure,
these patches are represented by their position, the indices of
their corresponding atoms, and the position of their potential
neighbors. This is heavier than Quan & Stamm [20]’s data structure
since we directly provide 𝑃−’s neighbors to meet rendering speed
requirements as in previous works [28], [31].

By using our data structures, we are able to render the SES
without additional data or preprocessing. Then, they represent the
target of the pipeline described in the following sections.

Fig. 5: Illustration of toroidal patches 𝑃𝑡 and 𝑃𝑡 𝑓 . On the illus-
tration, we can see three toroidal patches and their corresponding
SAS structures. Both kinds of patches are defined by the SAS circle
coming from the intersection of the SAS spheres of their atoms,
while 𝑃𝑡 are also bounded by their corresponding intersections. In
green: a complete circle patch 𝑃𝑡 𝑓 with its circle. In yellow: two
segments patches 𝑃𝑡 on the same circle.

5

Fig. 6: Illustration of the concave patches 𝑃− . We can notice two
intersecting concave patches 𝑃− and their respective tetrahedra. As
illustrated, two 𝑃−’s spheres can intersect resulting in a hole in the
surface.

3.2 Computation of circles and intersections
To acquire the previously presented patches, several key geometry
parts need to be computed. We chose to rely on the set of equations
provided by Totrov et al. [19] and Quan & Stamm [20] in their
implementation which ally ease of execution and compactness in
terms of data. More details regarding these equations can be found
in the supplemental materials.

We especially rely on the circle classification provided by Quan
& Stamm [20]. As illustrated in fig. 7, we can test if a circle 𝒞𝑖 𝑗

is occluded by the SAS sphere of an atom 𝑎𝑘 by comparing the
distance between 𝑐𝑘 and its furthest point on 𝒞𝑖 𝑗 to the radius of
the SAS sphere. If the distance is smaller, the circle is fully inside
the sphere. In the same way, we can test for an intersection between
𝒞𝑖 𝑗 and 𝑎𝑘’s SAS sphere by testing if the distance between 𝑐𝑘 and
its closest point on 𝒞𝑖 𝑗 is smaller than the radius of the sphere.

In the following sections of this paper, we show that these
computations can be the basis of a strong diminution of the memory
consumption.

4 Structural SES computation
In this section, we present the main steps of the processing pipeline.
As many previous works [13], [28], [30]–[32], it takes place
during the construction of the SAS structural information. Once
the geometry is produced, it can be used for various purposes,
including rendering or geometry analysis that can be required
for in-depth surveys. Our pipeline mostly features a SAS circle
classification and two processing dedicated to SAS intersection and
segment computation. The processing pipeline, the hierarchy of its
main steps, and their corresponding novelties compared to previous
works are given in fig. 8.

4.1 SAS circles computation and classification
The circle acquisition process is divided into two main parts:
computation and classification. The first one aims at finding the
intersection between all SAS spheres while the other is oriented
toward the identification of circles that will be used to produce SES
data. This last part is essential since it allows to strongly reduce the
memory used in the following stages.

To compute every atom’s neighborhood N (𝑎), we find the
set of SAS spheres intersecting the current atom by checking if

the distance between 𝑐𝑖 and their center is less than 𝑟𝑖 + 𝑟 𝑗 +2𝑟𝑝 .
This spatial query is achieved by using a uniform acceleration
grid as usually performed in the related works [13], [28], [32]
and in GPU algorithm relying on neighborhood queries [34], [35]
for both its competitive construction and query performance. The
acceleration structure is built by first computing the hash value of
each atom describing their corresponding grid cell, sorting atoms
on this basis, and finally compute for each cell their start and end
atom sorted indices. We rely on an empirical dynamic cell size
𝑔 = min

(
2𝑚 > ⌈log2 (#M)⌉

)
which slowly grows in power of two

with the atom number #M.
Once atoms’ neighborhood has been discovered, the challenge

is located in its processing. Indeed, as the neighbor search is
achieved on an atom basis, it contains a lot of duplicated circles
or buried into neighboring atoms. Even if some previous works
were using intersection discovery to find the limited set of useful
circles [13], we rely on a circle classification scheme as performed
by other works [19], [28]. However, whereas the latter compute
hidden atoms and circles, we leverage this process to provide an
additional refinement. As further studied in fig. 11 they can directly
serve to gather the neighborhood by circle type.

For every circle 𝒞𝑖 𝑗 we check if a neighbor SAS sphere
associated with an atom 𝑎𝑘 ∈ N (𝑎𝑖) is occluding or intersecting
the circle. While the computation can be directly stopped if the
circle is occluded, it is mandatory to test every neighboring sphere
to know if a visible circle is full or intersected. These operations
can be achieved in a single step since they rely on the same data.
From these tests, a circle can be classified as:

• Buried: 𝒞𝑖 𝑗 is located inside another atom and is not
contributing to the surface.

• Full: 𝒞𝑖 𝑗 is creating a sector in 𝑃𝑖
+ and will produce a 𝑃𝑡 𝑓 .

• Intersected: 𝒞𝑖 𝑗 is creating a sector in 𝑃𝑖
+ and may produce

several SAS intersection points and segments.

We refer to I as the set of intersected circles. It is also important
to note that all intersected circles may not result in intersections
and segments. Indeed, their detected intersections can be hidden
by other atoms which case will be handled in the next part of this
section. Based on this classification scheme, we can directly derive

Fig. 7: Circle classification tests. The left schema represents the
occlusion test while the right represents the intersection test. 𝛾 is
the distance that is compared to the radius of 𝑎𝑘’s SAS sphere.

6

Fig. 8: Illustration of the computation pipeline giving the geometry of the complete SES. The schema also emphasizes the modification
we made to the state-of-the-art SES computation method on GPUs [28].

both 𝑃𝑡 𝑓 and 𝑃+ patch data. The set of 𝑃𝑡 𝑓 is composed of full
circles, while the set of 𝑃+ is created from each atom by creating a
sector for every visible 𝒞𝑖 𝑗 . Its axis is equal to the circle’s normal
𝑛𝑖 𝑗 and its radius can be derived with:

cos−1
(
𝑛𝑖 𝑗 ·

𝑜− 𝑐𝑖
𝑟𝑖 + 𝑟𝑝

)
, 𝑜 ∈ 𝒞𝑖 𝑗 (3)

4.2 SAS intersections
SAS intersections are built from I since it represents the restricted
set of visible circles which are intersected by neighboring atoms.
However, as a part of the complex molecular structure, we must
verify that every discovered intersection is not occluded by an atom
next to the three spheres at the origin of its creation.

To do so, for every intersected circle, we test if intersections
occur with every neighboring intersected circle 𝒞𝑖𝑘 ∈ I, 𝑎𝑘 ∈
N (𝑎𝑖) ∩N

(
𝑎 𝑗

)
and compute the two possible SAS intersections

𝑥0 and 𝑥1 accordingly. The resulting intersection points can then
be filtered by checking if they are hidden by a neighboring atom as
achieved in previous works [8], [13], [27].

As stated in section 3, even if 𝑃−’s singularities are implicitly
handled in Quan & Stamm [8]’s work thanks to their SDF
formulation, we still rely on neighborhood search to alleviate the

Fig. 9: Illustration of the 𝑃𝑡 construction process. 𝒞𝑖 𝑗 ’s intersection
list is processed starting at intersection 𝑥

𝑖 𝑗𝑘0
1 and by sorting

according to the sign used for its computation. In this context, 𝑥𝑖 𝑗𝑘0
1

leads to a trigonometric ordering from 𝑐𝑖’s perspective. Based on
this statement, we know that black parts of the circle are occluded
while yellow parts yield to segments.

cost of our method for rendering. This can be achieved in a similar
way as the circle discovery discussed in section 4.1 by finding the
neighboring ones whose center is closer than 2𝑟𝑝 .

4.3 SAS segments
SAS segments result from intersected circles found during the SAS
intersections computation. Then, as every segment is created from
two intersections, we can assert that:

#P𝑡 =
∑︁ #X

(
𝒞𝑖 𝑗

)
2

, ∀𝒞𝑖 𝑗 ∈ I (4)

with #X
(
𝒞𝑖 𝑗

)
as the number of intersections of 𝒞𝑖 𝑗 .

In previous works [13], [14], [28], [32], intersections and
segments were sometimes established together producing re-
dundancy. However, segments can be directly created from the
circle intersection list by applying an angle-wise sort as used
by alternative methods [8], [31]. Finally, intersection equations
describe the relative position of the intersection point compared to
the sphere triplet [20]. It can thus be used to recover the occluded
part of 𝒞𝑖 𝑗 .

As illustrated in fig. 9, we can select a first intersection, no
matter its position on the circle, and retrieve its angular ordering
to avoid creating segments in the occluded region. We also have
to take into account the order of the circle’s indices in the triplet
{𝑖, 𝑗 , 𝑘} since the angular ordering is based on a circle perspective.
Hence, if the circle is indexed as 𝒞𝑖𝑘 the ordering is inverted
compared to 𝒞𝑖 𝑗 and 𝒞 𝑗𝑘 . The sorting algorithm is then performed
on the angle of every intersection compared to the first one. Every
intersection couple can then be gathered as a resulting segment.

To avoid storing the angular ordering used after the segment
computation, we inverse both segment intersections if the picked
direction is reversed. Every segment can then be processed with
the same operations without relying on other information.

5 GPU Implementation
Our method is designed to benefit from parallel environments such
as modern GPU’s SIMT. We then describe several optimizations
performed in our implementation regarding the memory manage-
ment process as well as the computation load distribution.

We rely on CUDA 11.6 for its available features like its memory
pool to limit temporary allocation costs and libraries such as
Thrust and CUB [36]. However, any other GPU APIs supporting
these characteristics could be used. In the following section, we
refer to CUDA vocabulary and its two hierarchical categories:

7

Fig. 10: Rendering of the SES of the complete model of phage Qbeta virion (PDB: 7LHD) which capsid is partially removed through
plane culling to allow visualization of RNA and the maturation protein. It also emphasizes the completeness of the acquired surface,
allowing tunnels and pocket visualization. The left image illustrates how the SES can be useful to give a proper visualization of the
overall shape of this large complex, especially with RNA’s twists, while the right image shows that it remains true with thinner details
regarding structural interactions.

block and warp. When a computation is launched, threads are
grouped into blocks sharing characteristics such as memory level
and synchronization behavior. These blocks are themselves split
into small groups of few threads (32 or 64) called warps. Inside a
block, warps can be executed both sequentially and in parallel while,
within a warp, threads are fully concurrent and support special
instructions allowing cooperative processing. In this section, we
present the improvements we made regarding the two highly parallel
and cooperative processing of both intersections and segments
leveraging these GPU characteristics.

5.1 Circle types handling
The first optimizations are based on the classification presented
in section 4.1. Due to their respective types, circles require very
different processing which would introduce execution divergence.

Fig. 11: Ratios of the number of circles 𝒞𝑖 𝑗 where 𝑖 < 𝑗 and
classified as buried, full 𝑃𝑡 𝑓 , intersected without visible intersec-
tions (I ∩¬𝑃𝑡) or intersected with visible intersections (I ∩𝑃𝑡)
out of their total and generated with a probe radius 𝑟𝑝 = 1.4Å.
Almost 50% of the circles are buried. 𝑃𝑡 𝑓 and (I ∩𝑃𝑡) are the
only categories of circles really creating surface patches, in contrast
with (I ∩¬𝑃𝑡) circles which contributes through sectors to 𝑃+,
and represents a small portion of the overall number of circles.

To address this issue, we handle each circle types through a
dedicated process. Since 𝑃𝑡 𝑓 only represent a very small part of
the total amount of circle as shown in fig. 11, they can be directly
saved during the classification using atomic operations. In contrast,
the intersected circles set I is efficiently built by removing other
circle types through stream compaction. From these operations, we
derive the set of visible circles I∪𝑃𝑡 𝑓 at the basis of 𝑃+ patches
construction.

5.2 Cooperative intersection processing
One of the most critical steps of the SES computation is to find
SAS intersections. This is mainly caused by the need to traverse
the neighborhood. As illustrated in fig. 11, the ratio of intersected
circle I out of the total number of circles is about 50% and remains
steady across all the samples of our test dataset, even with strongly
varying atom number and positional density. The complexity of
the processing is then located in the number of tests required
to compute and validate intersections with neighboring circles.
Based on these statements, we can assert that the parallelization
of this exploration allows better throughput. Furthermore, the
processing of a single circle is by itself heavy and a dedicated
processing is interesting. Thus, we introduce a cooperative and
parallel processing strategy of the neighborhood of every atom 𝑎𝑖 ,
which is described in a high-level language in algorithm 1.

We start with the construction of a per atom task list composed
of its set of intersected circles. Each warp then fetches a circle
𝒞𝑖 𝑗 of the block for processing. For each 𝑎𝑘 ∈ N (𝑎𝑖) , 𝑘 ≠ 𝑗 , we
test sequentially with the entire warp if there exists an intersected
circle 𝒞 𝑗𝑘 where 𝑖 < 𝑗 < 𝑘 (l.8-10 in algorithm 1). In order to
efficiently compare both neighborhoods N (𝑎𝑖) and N

(
𝑎 𝑗

)
, we

process subsets of N (𝑎𝑖) of the size of the warp to benefit from its
local compute power. We also rely on a bit mask K of the size of
the warp to keep track of intersections requiring further processing
as illustrated in fig. 12. After the neighborhood exploration, threads
directly calculate resulting intersection data which allows to further
refined the mask K based on the existence of each intersection
(l.11-13 in algorithm 1). Finally, we perform the visibility test (l.14-
18 in algorithm 1) by assigning a subset of N (𝑎𝑖) to each threads
of the warp. Intersections are tested for occlusion sequentially with

8

an intra-warp parallel test. Visible intersections are saved to shared
memory before block-wise saving to device memory. These steps
are repeated until all 𝑎𝑖’s neighborhood N (𝑎𝑖) has been processed
for a given circle 𝒞𝑖 𝑗 .

This process allows a more uniform distribution of the workload
as well as making memory access more coherent at warp level
while reducing the amount of high-level synchronization. Moreover,
it benefits from efficient use of caching strategies thanks to the
processing locality. Indeed, N (𝑎𝑖) is shared between the full block
while N

(
𝑎 𝑗

)
is loaded at warp level. This cache helps the search

across different parallelism levels strengthening its value.
Finally, to reduce the cost of the following processing, we refine

the number of 𝑃− patches that actually require a neighbor search.
Intersections with neighbors are then placed at the beginning of
their buffer which allows us to directly operate on contiguous data.

5.3 Cooperative segment processing
The segment creation process requires to retrieve for a given circle
its set of intersection. While it can be simply achieved by appending
to a list in a sequential implementation, this interleaved pattern is a
major concern in a concurrent system. Previous work [28] solved it
by computing all the intersections of a given circle at the cost of
repeated computation. This allows avoiding synchronization but it
also increases a lot the workload.

To address this issue, we compute for each circle its intersection
count #X

(
𝒞𝑖 𝑗

)
and corresponding intersection indices X

(
𝒞𝑖 𝑗

)
through a two-step process. During the intersection computation
(fig. 8), we only record their circle indices and increment atomically
the three corresponding counts #X (𝒞) (l.22-24 in algorithm 1). A
second process, intersection gathering (fig. 8) is then launched to
create the mapping between circles and intersections X (𝒞). This
is made by using a thread per intersection to reserve a writing
location within X (𝒞) through an atomic operation on its element
count #X (𝒞) which is done for its three corresponding circles. The
atomic operations only produce a low amount of thread concurrency
since they only happen on a circle basis. This fast processing not
only reduces overlapping dependencies but also allows to postpone
the allocation of the intersection position buffer which is only

Fig. 12: Schema of the cooperative SAS intersection process used
in algorithm 1. The warp is refining intersections that must be
computed by iteratively modifying the bit mask K. Dotted lines:
intra-warp operation processed in parallel with all warp’s threads
but iteratively for each entry in K set to one.

Algorithm 1: Intersections cooperative processing
Data: N (𝑎), I
Result: SAS Intersections X

1 block.load(N (𝑎𝑖)) ⊲ To shared memory

2 X′← ∅ ⊲ To shared memory

3 𝑡← thread.id() ⊲ Relative index in warp

4 block.sync()
5 forall 𝒞𝑖 𝑗 ∈ N (𝑎𝑖) ∩I, 𝑖 < 𝑗 do ⊲ A circle per warp

6 warp.load(N
(
𝑎 𝑗

)
) ⊲ From device memory

7 K ←¬0 ⊲ Initialize bit mask

8 forall 𝑘 ∈ {0, . . . , size(warp)} and K[k] ≠ 0 do
9 K [𝑘] ← warp.test(𝑎𝑘 ∈ N

(
𝑎 𝑗

)
)

10 end
11 if K[t] ≠ 0 then
12 K[t]← exists(𝑥𝑖 𝑗𝑘𝑡)
13 end
14 forall 𝑘 ∈ {0, . . . , size(warp)} and K[k] ≠ 0 do
15 if warp.test(visible(𝑥𝑖 𝑗𝑘 , N (𝑎𝑖))) then
16 X′←X′∪

{
𝑥𝑖 𝑗𝑘

}
⊲ Temporary save

17 end
18 end
19 end
20 block.sync()
21 forall 𝑥𝑖 𝑗𝑘 ∈ X′ do ⊲ To device memory

⊲ Per circle atomic operation

22 #X
(
𝒞𝑖 𝑗

)
← #X

(
𝒞𝑖 𝑗

)
+1

23 #X (𝒞𝑖𝑘) ← #X (𝒞𝑖𝑘) +1
24 #X

(
𝒞 𝑗𝑘

)
← #X

(
𝒞 𝑗𝑘

)
+1

25 X ←X∪
{
𝑥𝑖 𝑗𝑘

}
26 end

performed when the exact intersection number is known, between
intersections computation and gathering.

Thanks to the previous step, we know the intersections of
every circle at the origin of their segments. However, before their
actual computation, we find the indices of the intersected circles
which contribute to some intersections. As previously stated, I
contains the circles that are able to produce an intersection but
we don’t know before the computation step if this intersection is
visible. As shown in fig. 11, only a small part of these circles
actually contribute to the surface. By only launching threads on
circles producing intersections, we avoid unnecessary overhead.
Furthermore, based on SAS circles intersection count #X

(
𝒞𝑖 𝑗

)
, we

can compute the exact memory required to store segments data.
Once circles intersections are retrieved, we directly proceed to

the angular sorting, as illustrated in algorithm 2. If applied on a
circle basis, this step could result in highly divergent processing
due to sorting algorithm properties. However, direct use of parallel
cooperative sorting algorithms would lose the locality of the
computation or give poor levels of parallelism. To address this issue,
we perform the sorting of multiple circles at once. This is made
possible by applying an offset to the data (l.12 in algorithm 2). This
allows reserving a specific range for a given circle while benefiting
from the parallelism offered by cooperative sorting algorithms.
Circles intersection indices and relative angles are stored in threads
memory to execute the sorting at warp level. After this computation
and based on previous stream compaction, we are able to store
segments data fully concurrently on a per-circle basis.

This part of the processing strongly benefits from the data

9

structure derived from Quan & Stamm [8]’s depiction and allows
creating 𝑃𝑡 geometry in a fast and efficient parallel scheme.

5.4 Estimating the required memory
Even if we chose to closely compact arrays used during the
computation, the allocation scheme remains a challenging aspect
of large structure processing. This is especially true regarding the
intersections which were often one of the most consuming geometry
bits of the surface. In previous works, this was solved with pre-
allocation from the base circle number [37] or with an estimated
percentage of the possible triplets [13]. While the latter allowed
to improve the memory consumption process, we rely on the
properties determined during circles classification which fit more
the architecture of our pipeline and allows a thinner configuration.

Since the number of circles able to produce an intersection
is theoretically known, we can bound the maximum number of
intersections by:

#X ≤ #I max
(
#X

(
𝒞𝑖 𝑗

))
(5)

with #I as the number of visible and intersected circles and
max

(
#X

(
𝒞𝑖 𝑗

))
as a constant bounding the maximum number of

intersections per intersected circle.
As illustrated in fig. 11, more than half of the intersected circles

are not contributing to the surface. max
(
#X

(
𝒞𝑖 𝑗

))
is then set by

taking into account this ratio of unused circles and serve as a mean
of the possible count of intersection per circle. It allows to strongly
reduce the size of the pre-allocated buffer since the size of I is
significantly smaller than the size of N .

From our experiments, we have bound the maximum size
of the neighborhood of an atom to 128 (for a standard probe

Algorithm 2: Segments cooperative processing
Data: X

(
𝒞𝑖 𝑗

)
Result: SAS Segments S

1 𝑥←X
(
𝒞𝑖 𝑗

)
2 reversed← isReversed

(
𝒞𝑖 𝑗 , 𝑥 [0]

)
3 𝑡← thread.id() ⊲ Relative index in warp

4 𝛿𝑡 ← 𝑡𝛿, 𝛿 > 2𝜋
5 angles← {0} ⊲ To thread memory

6 indices← {0} ⊲ To thread memory

7 for 𝑎 ∈
{
1, . . . , #X

(
𝒞𝑖 𝑗

)
−1

}
do

8 𝛼, 𝛽← 𝑥 [𝑎−1], 𝑥 [𝑎]
9 if reversed then

10 𝛼, 𝛽← 𝛽,𝛼

11 end
12 \← 𝛿𝑡 + angleBetween(𝛼, 𝛽)
13 angles← angles ∪{\}
14 indices← indices ∪{𝑎}
15 end
16 indices← warp.sortByKey(angles, indices)
17 for 𝑠 ∈

{
0, . . . , #X

(
𝒞𝑖 𝑗

)
/2−1

}
do

18 𝑎, 𝑏← indices[2𝑠], indices[2𝑠+1]
19 𝛼, 𝛽← 𝑥 [𝑎], 𝑥 [𝑏]
20 if reversed then
21 𝛼, 𝛽← 𝛽,𝛼

22 end
23 S ←S∪{𝑖, 𝑗 , 𝛼, 𝛽} ⊲ To device memory

24 end

radius 𝑟𝑝 = 1.4Å) as well as the mean intersection number per
intersected circles to 2. This allows to handle large molecules
without parameter change. Circles intersections bound is in practice
not restricting since it only aims to be an overall mean. We do allow
each circle to contain up to 16 intersections during 𝑃𝑡 creation
process in our implementation.

After the execution of this pipeline, we have obtained all patches
data presented in section 3 which can be directly rendered as
presented by previous works [26], [31].

6 Performance and discussion
To compare the performance of our pipeline against previous works,
we chose the GPU Contour-Buildup implementation [28] publicly
available in the framework Megamol [37]. While several methods
presented many improvements, none of them provided similar or
faster computation time [13], [32]. We also present the results of our
method by only producing the exterior molecular surface which can
be preferred for fast visualization and computation. This is made by
replacing 𝑃+ with complete vdW spheres and unifying 𝑃𝑡 𝑓 and 𝑃𝑡

processing which result in a simplification of the algorithm and its
memory requirements. However, this implementation respects the
final data structure used by the original algorithm and can thus be
rendered with the same overall strategy. Unlike the original method,
we use a dedicated buffer rather than limited texture memory
allowing larger allocation without impact on the rendering time.

Experiments were conducted on an AMD Ryzen 5 1600, an
NVIDIA RTX 2080 and with a dataset of fifteen molecules from
hundreds to millions of atoms, gathered from the RCSB Protein
Data Bank (PDB) [38]. Rendered views of the dataset molecules
are given as supplemental material. All benchmarks have been
achieved with a probe radius equal to the water molecule radius
1.4 Å [39], as it is a common solvent. However, as illustrated in
fig. 13, our implementation remains stable with larger probe radius.

Performance benchmarks are presented in table 2. First, we
can notice that our method provides similar computation times
compared to the parallel Contour-Buildup while acquiring the
complete surface information. The exterior molecular surface

Fig. 13: Comparison of two SES (PDB: 1AON) computed with
our method, using a standard probe radius (top: 1.4 Å) and a larger
one (bottom: 2.4 Å). The surface is emphasized by the patches
corresponding chains color to provide structural information. On
the bottom image, we can notice typical 𝑃− intersections.

10

PDB Id #Atom
Krone et al. [28] Ours Ours exterior

Time (ms) Mem. (MB) Time (ms) Mem. (MB) Time (ms) Mem. (MB)
1AGA 126 4.50 11.92 3.22 0.39 2.21 0.15
101M 1413 4.51 133.55 3.75 4.50 2.51 1.76
1VIS 2531 4.64 238.66 3.67 8.01 2.65 3.52
7SC0 11638 5.64 1108.02 4.70 36.17 3.54 16.16
3EAM 13505 6.44 1282.09 5.20 42.69 4.01 19.63
7DBB 17733 7.00 1675.43 5.80 56.18 4.49 25.50
1A8R 45625 11.14 4307.71 9.48 144.92 7.36 65.79
7O0U 55758 12.39 5263.23 10.71 177.25 8.49 80.29
1AON 58870 11.95 5552.49 10.75 185.33 8.37 86.86
7RGD 65008 16.86 6123.51 18.06 214.33 14.64 105.35
3JC8 107640 - - 14.99 324.03 11.60 147.57

7CGO 335722 - - 47.64 1054.85 36.34 486.03
4V4G 717805 - - 104.72 2249.47 81.64 1130.35
6U42 1358547 - - 200.79 4287.12 157.23 2162.99
3J3Q 2440800 - - 700.17 7631.24 324.22 3744.73

TABLE 2: Comparison of our method compared to the publicly available implementation of GPU Contour-Buildup [28] in Megamol [37].
Times are given in milliseconds (ms) and represent the mean of 1000 iterations per case, while maximum memory use is given in
megabytes (MB). Every experiment has been conducted with 100 warm-up iterations which were not considered in the final results.

computation remains consistently and moderately faster in all
experiments. However, the compared method is bound in our test
dataset to the protein 7RGD composed of 65 008 atoms while ours
is capable of handling more than 2 million atoms thanks to its
optimized memory consumption scheme. We can notice that the
memory consumption of all methods grows linearly depending on
the number of atoms. However, our exterior computation consumes
almost 60 times less memory than the compared method on the
largest complex (PDB Id: 7RGD) while the complete one uses 30
times less. These results illustrate how the parallelization of the
process as well as the precise allocation scheme help to provide fast
results while handling large molecular complexes. The complete
surface acquisition can thus be made in low computation time and
consumer-like hardware. On larger complexes, the exterior-only
molecular surface computation remains almost constantly twice
more memory efficient. These improvements mostly come from
the lack of 𝑃+ processing as well as the unification of 𝑃𝑡 and
𝑃𝑡 𝑓 . Based on these results, our method can compute the complete
surface of large complexes coming from small viruses, as illustrated
in fig. 10, or part of larger ones, as illustrated in fig. 1, which was
not possible before on GPUs. This is made without trade-offs
regarding the computation time and/or the surface quality. These
improvements could then lead to wider use of analytic computations
for molecular geometry study or visualization and illustration.
Moreover, the consequent memory consumption improvements
could also be at the basis of larger availability across the various
user configurations that would not be restricted anymore to high-
end hardware. Experiments have also been re-conducted with an
NVIDIA Titan RTX and an Intel i9 9900K and are given as
supplemental material as well as a plot comparing the memory
scalability of the studied methods.

To give a deeper analysis of our algorithm costs, we produced
detailed GPU benchmarks given in fig. 14. First of all, we
can estimate the additional costs such as allocation and CPU-
GPU transfers required for the precise patch number estimation
from the difference between GPU times and those presented in
table 2. The proportions of these additional costs out of the total
computation are, however, decreasing from approximately 60%
for the smallest molecule of the dataset to 25% for the largest,
as expected. Secondly, our method’s costs are mainly shared by

the first two stages. The 𝑃𝑡 discovery and the construction of 𝑃−
neighborhoods are made in a short fraction of the total computation
thanks to the highly concurrent scheme as well as the identification
of intersecting probes resulting in complexity reduction. Even if
our parallel implementation demonstrates fast computation time
compared to previous works, the creation of 𝑃− is still one of the
most consuming part of the computation. As shown in fig. 11, a
consequent part of this process is dedicated to intersected circles
without visible intersection. Finally, we can notice that the molecule
and its geometrical properties have an impact on the different stages.
As presented in other works, the ratio between the initial number
of atoms compared to the ones contributing to the surface results in
different computational cost at similar atom counts. This explains
the varying ratios across the dataset regarding the different stages.

To test the data produced by our method, we implemented two
rendering engines targeting different purposes. The first one is a
path-tracer implemented with OptiX [40] which has been used to
produce the molecule illustrations of this paper and demonstrates
that it is suitable for high-quality rendering. The second one
targets real-time visualization purposes with rasterization using
impostors and geometry intersection in screen space as in previous
works [26], [31], [41]. Both engines were built based on the
expressions described in section 3 which are analytically intersected
or sphere-traced [33]. The data produced by the pipeline is then
directly accessed at rendering time. Even if the scope of this
paper is oriented toward the construction of the SES, we provide
performance benchmarks of our real-time rendering engine for
information purposes only as supplemental material.

7 Limitations and future works
As previously presented, our method can compute the complete
surface of large proteins with reduced impact on the computation
time. However, it can suffer from limitations in specific cases.

First, to compute the surface of a single protein with varying
probe radius, a full re-computation is needed and no previously
computed data could be re-employed. Indeed, as the radius changes,
all circle data may change due to non-uniform impacts on atoms
radius ratio. Therefore, the complete pipeline must be re-executed.
Additional parameter changes can also be needed regarding the

11

Fig. 14: Detailed GPU benchmarks of the full surface computation with a probe radius 𝑟𝑝 = 1.4Å on a subset of our test dataset. As
illustrated, respective relative computation times are correlated to the molecule geometry influencing stage complexity. A similar analysis
performed for Krone et al. [28]’s method is given as supplemental material.

maximum neighbor per atom [42]. Even if this might not be a
drawback in the context of illustration since the probe radius may
not vary too often, it could slow down a cavity visualization process.

Second, even if we rely on a circle classification to bound the
number of circles able to produce an intersection, an important
part of the computation is still dedicated to circles without visible
intersections. A meaningful enhancement could then be made from
a fast identification of these circles.

Deriving Quan & Stamm [8]’s SDF, evaluations of both 𝑃𝑡

and 𝑃𝑡 𝑓 are achieved through sphere-tracing. This allows varying
precision and quality settings, but it may also be slower than direct
ray-surface intersection computation. In this case, the exterior-only
molecular surface representation could represent a good fallback.

Our implementation is based on a hierarchical pipeline as it
was commonly achieved in the related works, allowing dynamic
allocation thanks to computed information. However, even if we
improved the parallelization of the algorithm as well as the memory
access coherency and allocation scheme, improvements could also
be achieved by performing the computation without the need for
CPU-GPU synchronization.

Finally, a mesh is often required in simulations. Thus, producing
such geometry from the result of our pipeline could be interesting.
This could be achieved by adapting Quan & Stamm [20]’s work on
GPU.

8 Conclusion
In this paper, we have presented a method targeting GPU com-
putation of the complete SES by leveraging the last theoretical
advances made for its depiction. This allowed us to strongly reduce
the data structure footprint on GPU dedicated memory. To alleviate
its impact on the computation time, we have also proposed several
additions for a better parallelization of the overall process. Our
method achieves competitive time compared to the previous fastest
method while being able to handle large molecular entities and
without being restricted to the exterior molecular surface which
was not possible before. Based on these improvements, our strategy
could be used for illustration and visualization purposes as well
as geometry processing, all strongly benefiting from the quality of
the acquired surface. The progress made for the amelioration of
the memory consumption might also support the use of analytical
methods in hardware constrained applications.

Acknowledgments
Cyprien Plateau–Holleville is supported by institutional grants
from the National Research Agency under the Investments for the
future program with the reference ANR-18-EURE-0017 TACTIC.
Matthieu Montes is supported by the European Research Council
Executive Agency under the research grant numbers 640283 and
101069190. The authors thank NVIDIA for providing a Titan RTX.

References
[1] A. J. Olson, “Perspectives on structural molecular biology visualization:

From past to present,” Journal of Molecular Biology, vol.
430, no. 21, pp. 3997–4012, Oct. 2018. [Online]. Available:
https://doi.org/10.1016/j.jmb.2018.07.009

[2] G. T. Johnson, L. Autin, M. Al-Alusi, D. S. Goodsell, M. F. Sanner, and
A. J. Olson, “cellPACK: a virtual mesoscope to model and visualize
structural systems biology,” Nature Methods, vol. 12, no. 1, pp. 85–91,
Dec. 2014. [Online]. Available: https://doi.org/10.1038/nmeth.3204

[3] T. Klein, L. Autin, B. Kozlı́ková, D. S. Goodsell, A. Olson, M. E.
Gröller, and I. Viola, “Instant Construction and Visualization of Crowded
Biological Environments,” IEEE Transactions on Visualization and
Computer Graphics, vol. 24, no. 1, pp. 862–872, Jan. 2018.

[4] J. Jung, W. Nishima, M. Daniels, G. Bascom, C. Kobayashi, A. Adedoyin,
M. Wall, A. Lappala, D. Phillips, W. Fischer, C.-S. Tung, T. Schlick,
Y. Sugita, and K. Y. Sanbonmatsu, “Scaling molecular dynamics beyond
100, 000 processor cores for large-scale biophysical simulations,” Journal
of Computational Chemistry, vol. 40, no. 21, pp. 1919–1930, Apr. 2019.
[Online]. Available: https://doi.org/10.1002/jcc.25840

[5] E. Sunden and T. Ropinski, “Efficient volume illumination with multiple
light sources through selective light updates,” in 2015 IEEE Pacific
Visualization Symposium (PacificVis). IEEE, Apr. 2015. [Online].
Available: https://doi.org/10.1109/pacificvis.2015.7156382

[6] B. Johnston, “Bradyajohnston/molecularnodes: Molecularnodes v2.2.0
for blender 3.4.x,” 2023. [Online]. Available: https://zenodo.org/record/
7498428

[7] F. M. Richards, “AREAS, VOLUMES, PACKING, AND PROTEIN
STRUCTURE,” Annual Review of Biophysics and Bioengineering,
vol. 6, no. 1, pp. 151–176, Jun. 1977. [Online]. Available:
https://doi.org/10.1146/annurev.bb.06.060177.001055

[8] C. Quan and B. Stamm, “Mathematical analysis and calculation of
molecular surfaces,” Journal of Computational Physics, vol. 322, pp.
760–782, Oct. 2016. [Online]. Available: https://doi.org/10.1016/j.jcp.
2016.07.007

[9] M. Krone, B. Kozlı́ková, N. Lindow, M. Baaden, D. Baum, J. Parulek,
H.-C. Hege, and I. Viola, “Visual analysis of biomolecular cavities: State
of the art,” Computer Graphics Forum, vol. 35, no. 3, pp. 527–551, jun
2016.

[10] L. Schrödinger and W. DeLano, “Pymol,” May 2020. [Online]. Available:
http://www.pymol.org/pymol

https://doi.org/10.1016/j.jmb.2018.07.009
https://doi.org/10.1038/nmeth.3204
https://doi.org/10.1002/jcc.25840
https://doi.org/10.1109/pacificvis.2015.7156382
https://zenodo.org/record/7498428
https://zenodo.org/record/7498428
https://doi.org/10.1146/annurev.bb.06.060177.001055
https://doi.org/10.1016/j.jcp.2016.07.007
https://doi.org/10.1016/j.jcp.2016.07.007
http://www.pymol.org/pymol

12

[11] E. F. Pettersen, T. D. Goddard, C. C. Huang, E. C. Meng, G. S.
Couch, T. I. Croll, J. H. Morris, and T. E. Ferrin, “Ucsf chimerax:
Structure visualization for researchers, educators, and developers,” Protein
Science, vol. 30, no. 1, pp. 70–82, Oct. 2020. [Online]. Available:
https://doi.org/10.1002/pro.3943

[12] D. Sehnal, S. Bittrich, M. Deshpande, R. Svobodová, K. Berka, V. Bazgier,
S. Velankar, S. K. Burley, J. Koča, and A. S. Rose, “Mol∗ viewer:
modern web app for 3d visualization and analysis of large biomolecular
structures,” Nucleic Acids Research, vol. 49, no. W1, pp. W431–W437,
May 2021. [Online]. Available: https://doi.org/10.1093/nar/gkab314

[13] M. Schäfer and M. Krone, “A massively parallel cuda algorithm
to compute and visualize the solvent excluded surface for
dynamic molecular data,” Workshop on Molecular Graphics and
Visual Analysis of Molecular Data, 2019. [Online]. Available:
https://diglib.eg.org/handle/10.2312/molva20191094

[14] M. L. Connolly, “Analytical molecular surface calculation,” Journal of
Applied Crystallography, vol. 16, no. 5, pp. 548–558, Oct. 1983. [Online].
Available: https://doi.org/10.1107/s0021889883010985

[15] B. Kozlı́ková, M. Krone, M. Falk, N. Lindow, M. Baaden, D. Baum,
I. Viola, J. Parulek, and H.-C. Hege, “Visualization of biomolecular
structures: State of the art revisited,” Wiley, vol. 36, no. 8, pp. 178–204,
Online 2016.

[16] M. F. Sanner, A. J. Olson, and J.-C. Spehner, “Reduced surface: An
efficient way to compute molecular surfaces,” Biopolymers, vol. 38, no. 3,
pp. 305–320, Mar. 1996. [Online]. Available: https://doi.org/10.1002/
(sici)1097-0282(199603)38:3⟨305::aid-bip4⟩3.0.co;2-y

[17] H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes,”
ACM Transactions on Graphics, vol. 13, no. 1, pp. 43–72, jan 1994.

[18] M. Sanner and A. Olson, “Real time surface reconstruction for moving
molecular fragments,” Pacific Symposium on Biocomputing. Pacific
Symposium on Biocomputing, p. 385—396, 1997.

[19] M. Totrov and R. Abagyan, “The contour-buildup algorithm to
calculate the analytical molecular surface,” Journal of Structural
Biology, vol. 116, no. 1, pp. 138–143, Jan. 1996. [Online]. Available:
https://doi.org/10.1006/jsbi.1996.0022

[20] C. Quan and B. Stamm, “Meshing molecular surfaces based on
analytical implicit representation,” Journal of Molecular Graphics
and Modelling, vol. 71, pp. 200–210, Jan. 2017. [Online]. Available:
https://doi.org/10.1016/j.jmgm.2016.11.008

[21] N. Lindow, D. Baum, and H.-C. Hege, “Ligand excluded surface: A
new type of molecular surface,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, no. 12, pp. 2486–2495, dec 2014.

[22] P. Hermosilla, M. Krone, V. Guallar, P.-P. Vázquez, À. Vinacua, and
T. Ropinski, “Interactive GPU-based generation of solvent-excluded
surfaces,” The Visual Computer, vol. 33, no. 6-8, pp. 869–881, may
2017.

[23] X. Martinez, M. Krone, and M. Baaden, “Quickses: A library for fast
computation of solvent excluded surfaces,” Workshop on Molecular
Graphics and Visual Analysis of Molecular Data, 2019.

[24] J. Parulek and I. Viola, “Implicit representation of molecular surfaces,” in
2012 IEEE Pacific Visualization Symposium. IEEE, Feb. 2012. [Online].
Available: https://doi.org/10.1109/pacificvis.2012.6183594

[25] S. Bruckner, “Dynamic visibility-driven molecular surfaces,” Computer
Graphics Forum, vol. 38, no. 2, pp. 317–329, May 2019. [Online].
Available: https://doi.org/10.1111/cgf.13640

[26] M. Krone, K. Bidmon, and T. Ertl, “Interactive visualization of molecular
surface dynamics,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, no. 6, pp. 1391–1398, nov 2009.

[27] M. Krone, C. Dachsbacher, and T. Ertl, “Parallel computation and
interactive visualization of time-varying solvent excluded surfaces,” in
Proceedings of the First ACM International Conference on Bioinformatics
and Computational Biology. ACM, Aug. 2010. [Online]. Available:
https://doi.org/10.1145/1854776.1854840

[28] M. Krone, S. Grottel, and T. Ertl, “Parallel contour-buildup algorithm
for the molecular surface,” in 2011 IEEE Symposium on Biological
Data Visualization (BioVis). IEEE, Oct. 2011. [Online]. Available:
https://doi.org/10.1109/biovis.2011.6094043

[29] D. Kauker, M. Krone, A. Panagiotidis, G. Reina, and T. Ertl, “Rendering
Molecular Surfaces using Order-Independent Transparency,” in Euro-
graphics Symposium on Parallel Graphics and Visualization, F. Marton
and K. Moreland, Eds. The Eurographics Association, 2013.

[30] A. Jurcik, J. Parulek, J. Sochor, and B. Kozlikova, “Accelerated
visualization of transparent molecular surfaces in molecular dynamics,”
in 2016 IEEE Pacific Visualization Symposium (PacificVis). IEEE,
Apr. 2016. [Online]. Available: https://doi.org/10.1109/pacificvis.2016.
7465258

[31] M. Manak, L. Jirkovsky, and I. Kolingerova, “Interactive analysis of
connolly surfaces for various probes,” Computer Graphics Forum, vol. 36,
no. 6, pp. 160–172, may 2016.

[32] T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl, “Interactive cpu-based
ray tracing of solvent excluded surfaces,” Eurographics Workshop on
Visual Computing for Biology and Medicine, 2019. [Online]. Available:
https://diglib.eg.org/handle/10.2312/vcbm20191249

[33] J. C. Hart, “Sphere tracing: a geometric method for the
antialiased ray tracing of implicit surfaces,” The Visual Computer,
vol. 12, no. 10, pp. 527–545, Dec. 1996. [Online]. Available:
https://doi.org/10.1007/s003710050084

[34] R. Hoetzlein, “Fast fixed-radius nearest neighbors: Interactive million-
particle fluids,” in GPU Technology Conference (GTC), 2014.

[35] J. Basselin, L. Alonso, N. Ray, D. Sokolov, S. Lefebvre, and B. Lévy,
“Restricted power diagrams on the GPU,” Computer Graphics Forum,
vol. 40, no. 2, pp. 1–12, may 2021.

[36] NVIDIA, “Cuda toolkit documentation v11.6.0,” 2022. [Online].
Available: https://docs.nvidia.com/cuda/archive/11.6.0/

[37] P. Gralka, M. Becher, M. Braun, F. Frieß, C. Müller, T. Rau, K. Schatz,
C. Schulz, M. Krone, G. Reina, and T. Ertl, “MegaMol – A Comprehensive
Prototyping Framework for Visualizations,” The European Physical
Journal Special Topics, vol. 227, no. 14, pp. 1817–1829, Mar 2019.

[38] H. M. Berman, “The protein data bank,” Nucleic Acids Research, vol. 28,
no. 1, pp. 235–242, jan 2000.

[39] J. S. D’Arrigo, “Screening of membrane surface charges by divalent
cations: an atomic representation,” American Journal of Physiology-Cell
Physiology, vol. 235, no. 3, pp. C109–C117, sep 1978.

[40] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich, “OptiX,”
ACM Transactions on Graphics, vol. 29, no. 4, pp. 1–13, Jul. 2010.

[41] C. Sigg, T. Weyrich, M. Botsch, and M. Gross, “GPU-Based Ray-
Casting of Quadratic Surfaces,” in Symposium on Point-Based Graphics,
M. Botsch, B. Chen, M. Pauly, and M. Zwicker, Eds. The Eurographics
Association, 2006.

[42] A. Varshney, F. Brooks, and W. Wright, “Computing smooth molecular
surfaces,” IEEE Computer Graphics and Applications, vol. 14, no. 5, pp.
19–25, sep 1994.

Cyprien Plateau–Holleville is a PhD candidate at the XLIM laboratory
and the Université de Limoges, France. His main research interests are
visualization and illustration of complex molecular systems. Plateau–Holleville
received his engineering diploma in computer science from the Université de
technologie de Belfort Montbéliard, France.

Maxime Maria is an Associate Professor at the XLIM laboratory and the
Université de Limoges, France. His main research interests are visualization
and interactive simulation of complex molecular structures. Maria received his
PhD from the Université de Poitiers, France.

Stéphane Mérillou is a Professor at the XLIM laboratory and the Université
de Limoges, France. His research interests include aging and weathering,
physically-based rendering, natural phenomena, and visualization of complex
molecular systems. Mérillou received his PhD in computer science from the
Université de Limoges, France.

Matthieu Montes is a Professor of bioinformatics and head of the molecular
modeling and drug discovery team of the GBCM laboratory at Conservatoire
National des Arts et Métiers, Paris, France. His research interests include
molecular modeling, drug discovery and design, interactive simulation methods
and computational geometry. Montes received his PhD in pharmaceutical
sciences from Paris Descartes University and a habilitation in structural
biochemistry from Paris Sud University. In 2014 and 2022, he was a fellow
of the European Research Council. He is a senior member of the Institut
Universitaire de France (IUF).

https://doi.org/10.1002/pro.3943
https://doi.org/10.1093/nar/gkab314
https://diglib.eg.org/handle/10.2312/molva20191094
https://doi.org/10.1107/s0021889883010985
https://doi.org/10.1002/(sici)1097-0282(199603)38:3<305::aid-bip4>3.0.co;2-y
https://doi.org/10.1002/(sici)1097-0282(199603)38:3<305::aid-bip4>3.0.co;2-y
https://doi.org/10.1006/jsbi.1996.0022
https://doi.org/10.1016/j.jmgm.2016.11.008
https://doi.org/10.1109/pacificvis.2012.6183594
https://doi.org/10.1111/cgf.13640
https://doi.org/10.1145/1854776.1854840
https://doi.org/10.1109/biovis.2011.6094043
https://doi.org/10.1109/pacificvis.2016.7465258
https://doi.org/10.1109/pacificvis.2016.7465258
https://diglib.eg.org/handle/10.2312/vcbm20191249
https://doi.org/10.1007/s003710050084
https://docs.nvidia.com/cuda/archive/11.6.0/

	Introduction
	Related works
	Geometric definition
	SES patches
	Computation of circles and intersections

	Structural SES computation
	SAS circles computation and classification
	SAS intersections
	SAS segments

	GPU Implementation
	Circle types handling
	Cooperative intersection processing
	Cooperative segment processing
	Estimating the required memory

	Performance and discussion
	Limitations and future works
	Conclusion
	References
	Biographies
	Cyprien Plateau–Holleville
	Maxime Maria
	Stéphane Mérillou
	Matthieu Montes

