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Abstract In this paper we derive the asymptotic distributions of residual and normal-

ized residual empirical autocovariances and autocorrelations of (parsimonious) periodic

autoregressive moving-average (PARMA) models under the assumption that the errors

are uncorrelated but not necessarily independent. We then deduce the modi�ed port-

manteau statistics. We establish the asymptotic behavior of the proposed statistics. It

is shown that the asymptotic distribution of the modi�ed portmanteau tests is that of a

weighted sum of independent chi-squared random variables, which can be di�erent from

the usual chi-squared approximation used under independent and identically distributed

(iid) assumption on the noise. We also propose another test based on a self-normalization

approach to check the adequacy of PARMA models. A set of Monte Carlo experiments

and an application to �nancial data are presented.
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1. Introduction

Time series with periodic means and autocovariances frequently arise in various �elds, such

as meteorology, hydrology or economics, amongst others (see for instance Jones and Brelsford

(1967), (Hipel and McLeod, 1994, Chapter 14) and Holan et al. (2010)). Modeling methods

for periodic series focus on the important class of periodic autoregressive moving-average

(PARMA) models as its second moment structure is periodic. PARMAmodels are an extension

of autoregressive moving average (ARMA) models allowing parameters to vary with respect

to time. A second order stationary process X = (Xt)t∈Z with mean such that µt = µt+T is

said to be a PARMA model with period T (T is assumed to be known) if it is a solution to

the periodic linear di�erence equation

(Xt − µt)−
p∑
i=1

φi(t)(Xt−i − µt−i) = εt −
q∑
j=1

θj(t)εt−j , (1)

where the coe�cients satisfy φi(t+T ) = φi(t) for 1 ≤ i ≤ p and θj(t+T ) = θj(t) for 1 ≤ j ≤ q.

A notation that emphasizes seasonality uses XnT+ν as the data point during the ν-th season

of the n-th cycle of data. Here ν is a seasonal su�x that satis�es 1 ≤ ν ≤ T ; we allow a 0-th

cycle of data so that X1 denotes the �rst observation (season 1 of cycle 0). One can also allow

p and q to vary periodically if needed (see Lund and Basawa (2000); Francq et al. (2011)).

Formally the PARMA model in (1) during a season ν with p and q varying periodically is

equivalently written as

(XnT+ν − µν)−
pν∑
k=1

φk(ν)(XnT+ν−k − µν−k) = εnT+ν −
qν∑
l=1

θl(ν)εnT+ν−l (2)

and is denoted by PARMAT (p1, . . . , pT ; q1, . . . , qT ). Process (εt) = (εnT+ν)n∈Z can be in-

terpreted, as in Francq et al. (2011), as the linear innovation of (Xt) = (XnT+ν)n∈Z, i.e.

εt = Xt − E[Xt|HX(t − 1)], where HX(t − 1) is the Hilbert space generated by (Xs, s < t).

This linear periodic innovation process is assumed to be a stationary sequence satisfying

(A0): E [εt] = 0, Var (εt) = σ2
ν > 0 and E(εtεt′) = 0, ∀ t 6= t′.

Under the above assumptions the process (εnT+ν)n∈Z is called a weak periodic white noise. An

example of weak periodic white noise is the periodic generalized autoregressive conditional het-

eroscedastic (PGARCH) model (see for instance Bollerslev and Ghysels (1996)). Many other
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examples can also be found in Francq et al. (2011). It is customary to say that (XnT+ν)n∈Z

is a strong PARMAT (p1, . . . , pT ; q1, . . . , qT ) representation and we will do so if in (1) or (2)

(εnT+ν/σν)n∈Z is a strong periodic white noise, namely an independent and identically dis-

tributed (iid for short) sequence of random variables with mean 0 and variance 1. A strong

white noise is obviously a weak white noise because independence entails uncorrelatedness. Of

course the converse is not true. In contrast with this previous de�nition, the representation

(1) or (2) is said to be a weak PARMAT (p1, . . . , pT ; q1, . . . , qT ) if no additional assumption is

made on (εnT+ν)n∈Z, that is if (εnT+ν)n∈Z is only a weak periodic white noise (not necessarily

iid). As mentioned by Francq et al. (2011) a weak PARMA processes can be viewed as an

approximation of the Wold decomposition of periodically stationary processes of the form:

XnT+ν =
∑
i≥0

ζi(ν)εnT+ν−i and
∑
i≥0

ζ2
i (ν) <∞, (3)

where (εnT+ν)n∈Z is the linear periodic innovation of (XnT+ν)n∈Z. The linear model (3), which

consists of the PARMA models and their limits is very general under the noise uncorrelated-

ness, but can be quite restrictive if the assumption of strong noise is made. Note that many

time series encountered in practice can't be described by strong PARMA models (see for

instance Wang et al. (2006), Francq et al. (2011)).

When the order of both the autoregressive and moving average components are not allowed

to vary with season, i.e., when p1 = · · · = pT = p and q1 = · · · = qT = q we simply

write PARMAT (p; q) instead of PARMAT (p, . . . , p; q, . . . , q). In the sequel we suppose that

the process (XnT+ν)n∈Z is centered, that is µ1 = · · · = µT = 0. Thus (2) becomes

XnT+ν −
pν∑
k=1

φk(ν)XnT+ν−k = εnT+ν −
qν∑
l=1

θl(ν)εnT+ν−l. (4)

After identi�cation and estimation of the PARMA processes, the next important step in

the modeling consists in checking if the estimated model �ts the data satisfactorily. Thus,

under the null hypothesis that the model has been correctly identi�ed, the residuals ε̂nT+ν are

approximately a periodic white noise. This adequacy checking step validates or invalidates the

choice of the orders (p1, . . . , pT ; q1, . . . , qT ).

It is important to check the validity of a PARMAT (p1, . . . , pT ; q1, . . . , qT ) model, for given

orders (p1, . . . , pT ; q1, . . . , qT ) because the number of parameters quickly increases with the
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orders (p1, . . . , pT ; q1, . . . , qT ) which entails statistical di�culties. Based on the residual em-

pirical autocorrelations, Box and Pierce (1970) derived a goodness-of-�t test, the portmanteau

test, for univariate strong ARMA models (i.e. under the assumption that the error term is

iid). Ljung and Box (1978) proposed a modi�ed portmanteau test which is nowadays one of

the most popular diagnostic checking tool in ARMA modeling of time series. Since the article

by Ljung and Box (1978), portmanteau tests have been important tools in time series analysis,

in particular for testing the adequacy of an estimated ARMA model. See also Li (2004) for a

reference book on the portmanteau tests.

This paper is devoted to the problem of the validation step of the PARMA representations

(4) processes. The former works on the portmanteau statistic of PARMA models are generally

performed under the assumption that the errors εnT+ν are independent (see McLeod (1994,

1995) or Ursu and Duchesne (2009); Duchesne and Lafaye de Micheaux (2013)). This indepen-

dence assumption is often considered too restrictive by practitioners. It precludes PGARCH

and/or other forms of periodic nonlinearity (see Francq et al. (2011)). All these above results

have been obtained under the iid assumption on the periodic noise and they may be invalid

when the periodic series is uncorrelated but dependent. In any case, the standard portmanteau

test needs to be adapted to take into account the possible lack of independence of the errors

terms. In this framework we relax the standard independence assumption on the periodic error

terms in order to be able to cover PARMA representations of general nonlinear models and

to extend the range of application of the PARMA models. For such models we show that

the asymptotic distributions of the proposed statistics are no longer chi-squared distributions

but a mixture of chi-squared distributions, weighted by eigenvalues of the asymptotic covari-

ance matrix of the vector of autocorrelations as in Francq et al. (2005). We also proposed

another modi�ed statistics based on a self-normalization approach which are asymptotically

distribution-free under the null hypothesis (see Boubacar Maïnassara and Saussereau (2018)

for a reference in a weak ARMA case). Contrary to the standard tests the proposed tests can

be used safely form small, wherem is the number of autocorrelations used in the portmanteau

test statistic. Another contribution is the improvement the results concerning the statistical

analysis of weak PARMA models by considering the adequacy problem.
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The article is organized as follows. In Section 2 we recall the results on the least squares

estimator (LSE) asymptotic distribution of a weak PARMA model obtained by Francq et al.

(2011) under ergodic and mixing assumptions. We also propose an extension of these results to

weak parsimonious PARMA models. Section 3 presents our mains results. Then we study the

asymptotic behaviour of the residuals autocovariances and autocorrelations of a weak PARMA

model in Section 3.1.1. In Section 3.1.2 we derive the asymptotic distribution of residuals au-

tocovariances and autocorrelations using self-normalization approach and we establish the

asymptotic behaviour of the proposed statistics. Section 3.2 presents the goodness-of-�t port-

manteau tests in PARMA models under the standard assumption that the innovations are iid.

Examples are also proposed in order to illustrate our results in the online supplementary ma-

terials. Section 4 proposes numerical illustrations. The empirical power are also investigated.

Section 5 illustrates the portmanteau test for PARMA models applied to stock market indices.

The proofs of the main results are available in the online supplementary materials.

2. Preliminaries

We recall in this section some technical results which we are need on weak PARMA and are

contained in Francq et al. (2011).

2.1. Causality and invertibility of PARMA models

There is no loss of generality in taking that p1 = · · · = pT = p and q1 = · · · = qT = q in (4)

by adding coe�cients equal to zero (see Lund and Basawa (2000) for more details). Thus the

PARMAT (p; q) process (XnT+ν)n∈Z satis�es the following di�erence equations

XnT+ν −
p∑

k=1

φk(ν)XnT+ν−k = εnT+ν −
q∑
l=1

θl(ν)εnT+ν−l. (5)

We denote by bac the integer part of the real a. Let p∗ = b(p−1)/T c+1 and q∗ = b(q−1)/T c+1.

As in Vecchia (1985) the di�erence equations (5) can be written in the following T -dimensional

vector ARMA (VARMA) form:

Φ0Xn −
p∗∑
k=1

ΦkXn−k = Θ0εn −
q∗∑
l=1

Θlεn−l (6)
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where Xn = (XnT+1, . . . , XnT+T )′ and εn = (εnT+1, . . . , εnT+T )′. The (T × T )−matrices

coe�cients Φk, k = 0, . . . , p∗ and Θl, l = 0, . . . , q∗, are de�ned by

(Φ0)i,j =


1 if i = j

0 if i < j

−φi−j(i) if i > j

, (Θ0)i,j =


1 if i = j

0 if i < j

−θi−j(i) if i > j

,

and (Φk)i,j = φkT+i−j(i), k = 1, . . . , p∗ and (Θl)i,j = θlT+i−j(i), l = 1, . . . , q∗. Here it is

implicit that φh(ν) = 0, for h /∈ {1, . . . , p} and θh(ν) = 0, for h /∈ {1, . . . , q}. The covariance

matrix of the T -dimensional white noise εn is Σε = Diag(σ2
1, . . . , σ

2
T ) > 0. We denote by L

the back-shift operator such that Lkεn = εn−k. It is important to note that the lag operator

L operates on the cycle index n. Equation (6) can be written more compactly as

Φ(L)Xn = Θ(L)εn (7)

where Φ(z) = Φ0 −
∑p∗

i=1 Φiz
i and Θ(z) = Θ0 −

∑q∗

i=1 Θiz
i. From (6) we can in princi-

ple deduce the properties of weak PARMA parameters estimation, identi�cation and valida-

tion from existing results on parameters estimation, identi�cation and validation of the weak

VARMA models (see for instance Boubacar Mainassara and Francq (2011); Boubacar Maï-

nassara (2012); Boubacar Maïnassara and Kokonendji (2016); Boubacar Mainassara (2011);

Boubacar Maïnassara and Saussereau (2018); Katayama (2012)). Therefore we have preferred

to work in the univariate PARMA setting for various reasons. In particular the results obtained

directly in terms of the univariate PARMA representation are more directly usable because

fewer parameters are involved and their estimation is easier (see Francq et al. (2011) for more

details).

We denote by det(A) the determinant of a matrix A. We assume that the PARMAT (p; q)

process (XnT+ν)n∈Z corresponds to stable and invertible representations, namely

(A1): we have det Φ(z) det Θ(z) 6= 0 for all |z| ≤ 1. Furthermore as in Boubacar Mainassara

and Francq (2011) we assume that the weak VARMA model (7) is identi�able (see for

instance Brockwell and Davis (1991); Lütkepohl (2005); Reinsel (1997)).
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2.2. Estimating weak PARMA models

In this section we recall the results which we need on the weighted least squares (WLS)

asymptotic distribution obtained by Francq et al. (2011) when (εnT+ν) satis�es α−mixing

assumptions. For notation, let φ(ν) = (φ1(ν), . . . , φp(ν))′ and θ(ν) = (θ1(ν), . . . , θq(ν))′ re-

spectively denote the vectors of autoregressive and moving average parameters for a speci�ed

season ν. The T (p+ q)-dimensional collection of all PARMA parameters is denoted by

α =
(
φ(1)′, . . . , φ(T )′, θ(1)′, . . . , θ(T )′

)′ ∈ R(p+q)T .

The periodic white noise variances σ2 =
(
σ2

1, . . . , σ
2
T

)′
will be treated as a nuisance parameter.

Let X1, . . . , XNT be a data sample from the causal and invertible PARMA model (5) with

the true parameter value α = α0 and σ2 = σ2
0. The sample contains N full periods of data

which are indexed from 0 to N − 1. Indeed when 0 ≤ n ≤ N − 1 and 1 ≤ ν ≤ T , nT + ν goes

from 1 to NT . The unknown parameter of interest α0 is supposed to belong to the parameter

space

∆ =
{
α =

(
φ(1)′, . . . , φ(T )′, θ(1)′, . . . , θ(T )′

)′
such that (A1) is veri�ed

}
.

For α ∈ ∆, let εnT+ν(α) be the periodically second-order stationary solution of

εnT+ν(α) = XnT+ν −
p∑

k=1

φk(ν)XnT+ν−k +

q∑
l=1

θl(ν)εnT+ν−l(α). (8)

The variable εnT+ν(α) can be approximated, for 0 < nT + ν ≤ NT , by enT+ν(α) de�ned

recursively by

enT+ν(α) = XnT+ν −
p∑

k=1

φk(ν)XnT+ν−k +

q∑
l=1

θl(ν)enT+ν−l(α), (9)

where the unknown initial values are set to zero: e0(α) = · · · = e1−q(α) = X0 = · · · = X1−p =

0. As showed by (Francq et al., 2011, Lemma 7) these initial values are asymptotically negligible

uniformly in α.

Let δ be a strictly positive constant chosen so that the true parameter α0 belongs to the

compact set

∆δ =
{
α ∈ R(p+q)T ; the zeros of det Φ(z) = 0 and det Θ(Z) = 0 have modulus ≥ 1 + δ

}
.
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The random variable α̂OLS is called the ordinary least squares (OLS) estimator of α if it

satis�es, almost surely,

SN (α̂OLS) = min
α∈∆δ

SN (α) where SN (α) =
1

2N

N−1∑
n=0

T∑
ν=1

e2
nT+ν(α).

Because of the presence of heteroscedastic innovations, the OLS estimator might be ine�cient.

Given some vectors of weights ω2 = (ω2
1, . . . , ω

2
T )′, Francq et al. (2011) and Basawa and Lund

(2001) showed that the OLS estimator is asymptotically outperformed by the weighted least

squares (WLS) estimator α̂WLS = α̂ω
2

WLS de�ned by

Qω
2

N (α̂WLS) = min
α∈∆δ

Qω
2

N (α) where Qω
2

N (α) =
1

2N

N−1∑
n=0

T∑
ν=1

ω−2
ν e2

nT+ν(α).

Francq et al. (2011) and Basawa and Lund (2001) showed that an optimal WLS estimator is

the generalized least squares (GLS) estimator de�ned by

α̂GLS = α̂σ
2

WLS, where σ
2 = (σ2

1, . . . , σ
2
T )′. (10)

As mentioned by Francq et al. (2011) the GLS estimator assumes that σ2 is known. In practice

this parameter has also to be estimated. Given any consistent estimator σ̂2 = (σ̂2
1, . . . , σ̂

2
T )′ of

σ2, a quasi-generalized least squares (QLS) estimator of α0 is de�ned by

α̂QLS = α̂σ̂
2

WLS. (11)

One possible consistent estimator of σ2
ν can be obtained by

σ̂2
ν =

1

N

N−1∑
n=0

e2
nT+ν(α̂OLS).

To establish the consistency of the least squares estimators (LSE), an additional assumption

is needed.

(A2): The T -dimensional white noise {εn = (εnT+1, . . . , εnT+T )′ , n ∈ Z} is ergodic and

strictly stationary.

For the asymptotic normality of the LSE, additional assumptions are also required. It is

necessary to assume that α0 is not on the boundary of the parameter space ∆δ.

(A3): We have α0 ∈
◦
∆δ, where

◦
∆δ denotes the interior of ∆δ.
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To control the serial dependence of the stationary process (εn), we introduce the strong mixing

coe�cients αε(h) de�ned by

αε (h) = sup
A∈Fn−∞,B∈F

+∞
n+h

|P (A ∩B)− P(A)P(B)| ,

where Fn−∞ = σ(εu, u ≤ n) and F+∞
n+h = σ(εu, u ≥ n+h). We use ‖ · ‖ to denote the Euclidian

norm of a vector. We will make an integrability assumption on the moment of the noise and

a summability condition on the strong mixing coe�cients (αε(k))k≥0.

(A4): We have E‖εn‖4+2κ <∞ and
∑∞

k=0 {αε(k)}
κ

2+κ <∞ for some κ > 0.

In all the sequel we denote by
d−→ the convergence in distribution. The symbol oP(1) is used

for a sequence of random variables that converges to zero in probability. Under the above

assumptions, Francq et al. (2011) showed that α̂OLS → α0, α̂WLS → α0, α̂GLS → α0 and

α̂QLS → α0 a.s. as N →∞ and

√
N (α̂LS − α0)

d−−−−→
N→∞

N
(
0,ΩLS

α0

)
, (12)

where the exponent LS stands for OLS, WLS, GLS and QLS with

ΩOLS
α0

= Ω(α0, (1, . . . , 1)′), ΩWLS
α0

= Ω(α0, ω
2), ΩGLS

α0
= Ω(α0, σ

2), ΩQLS
α0

= Ω(α0, σ̂
2)

and

Ω(α0, ω
2) =

(
J(α0, ω

2)
)−1

I(α0, ω
2)
(
J(α0, ω

2)
)−1

.

The matrices I(α0, ω
2) and J(α0, ω

2) are de�ned as

J(α0, ω
2) =

T∑
ν=1

ω−2
ν E

[(
∂εnT+ν(α)

∂α

)(
∂εnT+ν(α)

∂α

)′]
α=α0

, (13)

I(α0, ω
2) =

T∑
ν=1

T∑
ν′=1

ω−2
ν ω−2

ν′

∞∑
k=−∞

E
[
εν(α)εkT+ν′(α)

(
∂εν(α)

∂α

)(
∂εkT+ν′(α)

∂α

)′]
α=α0

.(14)

2.3. Estimating weak parsimonious PARMA models

The PARMA model in (5) has (p+ q)T autoregressive and moving average parameters. This

parameter total can be large for even moderate T , making some PARMA inference matters

unwieldy. Consequently, many authors have investigated parsimonious versions of (5) (see for
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instance Lund et al. (2006), Dudek et al. (2016)). Thus we suppose that: α0 is function of

a parameter vector β0 of lower dimension s0 ≤ (p + q)T . Note that the dimension s0 can

be considerably smaller than (p + q)T . The notations φk(ν;β0) and θl(ν;β0) will explicitly

emphasize dependence of the autoregressive and moving average parameters on β0, we then

write α0 = α(β0) when s0 = (p+ q)T . Therefore we can rewrite, respectively, (8) and (9) as:

εnT+ν(β) = XnT+ν −
p∑

k=1

φk(ν;β)XnT+ν−k +

q∑
l=1

θl(ν;β)εnT+ν−l(β), (15)

enT+ν(β) = XnT+ν −
p∑

k=1

φk(ν;β)XnT+ν−k +

q∑
l=1

θl(ν;β)enT+ν−l(β). (16)

Let β̂LS be the LS estimator of β0 and α̂LS := α(β̂LS) the estimator of α0 when s0 = (p+ q)T .

From a practical point of view, it may be worth studying the asymptotic distribution of β̂LS.

To ensure the asymptotic properties of the LS estimator of β0, we need assumptions sim-

ilar to those we assumed in the previous case that α0 is not parsimonious. We will assume

Assumptions (A0), (A1), (A2), (A3) and (A4) with parameter α0 replaced by β0 and the

space parameter ∆δ replaced by Bδ (the parameter space of β).

Proposition 1. Suppose that (XnT+ν)n∈Z is a PARMAT (p; q) process satisfying (15). Under

the assumptions (A0), (A1), (A2), (A3) and (A4), we have: β̂LS
a.s−−−−→

N→∞
β0 and

√
N
(
β̂LS − β0

)
d−−−−→

N→∞
N
(
0,ΩLS

β0

)
, (17)

where the exponent LS stands for OLS, WLS, GLS and QLS with

ΩOLS
β0 = Ω(β0, (1, . . . , 1)′), ΩWLS

β0 = Ω(β0, ω
2), ΩGLS

β0 = Ω(β0, σ
2), ΩQLS

β0
= Ω(β0, σ̂

2)

and

Ω(β0, ω
2) =

(
J(β0, ω

2)
)−1

I(β0, ω
2)
(
J(β0, ω

2)
)−1

.

The matrices I(β0, ω
2) and J(β0, ω

2) are de�ned as

J(β0, ω
2) =

T∑
ν=1

ω−2
ν E

[(
∂εnT+ν(β)

∂β

)(
∂εnT+ν(β)

∂β

)′]
β=β0

, (18)

I(β0, ω
2) =

T∑
ν=1

T∑
ν′=1

ω−2
ν ω−2

ν′

∞∑
k=−∞

E
[
εν(β)εkT+ν′(β)

(
∂εν(β)

∂β

)(
∂εkT+ν′(β)

∂β

)′]
β=β0

.(19)

The proof of this proposition is similar to that of Theorems 1 and 2 of Francq et al. (2011).



Y. Boubacar Maïnassara and A. Ilmi Amir/Diagnostic checking in weak PARMA models 11

Remark 1. Using the multivariate chain rule as in Lund et al. (2006), we obtain:

∂εnT+ν

∂β
= V ′

∂εnT+ν

∂α
where V =

∂α

∂β′
. (20)

Now using (20) in (18) and (19), we have:

J(β0, ω
2) = V ′J(α0, ω

2)V and I(β0, ω
2) = V ′I(α0, ω

2)V.

Remark 2. In the strong SPARMA case, i.e. when (A2) is replaced by the assumption that

(εnT+ν)n∈Z is iid, the independence of the εnT+ν
′s implies that only the terms for k = 0 and

ν = ν ′ are non-zero. Then we have I(β0, ω
2) = J(β0, ω

2), so that the covariance matrix in

the strong case is Ωs(β0, ω
2) := (J(β0, ω

2))−1. Therefore in view of Remark 1, we retrieve the

well-known result obtained by Lund et al. (2006).

3. Diagnostic checking in PARMA models

After the estimation phase, the next important step consists in checking if the estimated

model �ts satisfactorily the data. In this section we derive the limiting distribution of the

residual autocorrelations and that of the portmanteau statistics based on the standard and

the self-normalized approaches in the framework of weak PARMA models (4). Note that the

results stated in this section extend directly for models (2) with constants. In order to check

the validity of the PARMA models, it is a common in practice to examine the least squares

periodic residuals ε̂nT+ν = ênT+ν = enT+ν(β̂LS) when p + q > 0. We use (16) to notice that

we have êt = 0 for t := nT + ν ≤ 0 and t > NT . By (15), for n = 0, 1, . . . , N − 1, it holds that

ênT+ν = XnT+ν −
∑p

k=1 φ̂k(ν)XnT+ν−k +
∑q

l=1 θ̂l(ν)ênT+ν−l,

for 1 ≤ t ≤ NT , with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1 where φ̂k(ν) = φk(ν; β̂LS) and

θ̂l(ν) = θl(ν; β̂LS). We denote by

γ(ν, l) =
1

N

N∑
n=l+1

εnT+νεnT+ν−l and γ̂(ν, l) =
1

N

N∑
n=l+1

ênT+ν ênT+ν−l (21)

the periodic white noise "empirical" autocovariances and residuals autocovariances. It should

be noted that γ(ν, l) is not a computable statistic because it depends on the unobserved
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innovations εnT+ν = εnT+ν(α0). For a �xed integer m ≥ 1 we let

γm(ν) := (γ(ν, 1), . . . , γ(ν,m))′ and γ̂m(ν) := (γ̂(ν, 1), . . . , γ̂(ν,m))′ ,

be the vectors of "empirical" autocovariances and residuals autocovariances for a speci�ed

season ν. Similarly the global "empirical" autocovariances and residuals autocovariances across

all the seasons are denoted by

γmT := (γm(1), . . . , γm(T ))′ and γ̂mT := (γ̂m(1), . . . , γ̂m(T ))′ .

Note that the mixing assumption (A4) will entail the asymptotic normality of γm(ν) and

γmT . The theoretical and sample autocorrelations at lag l are respectively de�ned by

ρ(ν, l) =
Γ(ν, l)√

Γ(ν, 0)Γ(ν − l, 0)
and ρ̂(ν, l) =

γ̂(ν, l)√
γ̂(ν, 0)γ̂(ν − l, 0)

with γ̂(ν−l, 0) =
1

N

N∑
n=1

ê2
nT+ν−l,

and where Γ(ν, l) := Cov(εnT+ν , εnT+ν−l) with Γ(ν, 0) := σ2
ν . See for instance Hipel and

McLeod (1994); Shao and Lund (2004) for some properties of Γ(ν, l). In the sequel we will

also need these expressions:

ρ̂m(ν) = (ρ̂(ν, 1), . . . , ρ̂(ν,m))′ and ρ̂mT = (ρ̂m(1), . . . , ρ̂m(T ))′ ,

where ρ̂m(ν) denotes the vector of the �rst m sample autocorrelations for a speci�ed season

ν and ρ̂mT is the vector of the global sample autocorrelations across all the seasons.

Based on the residual empirical autocorrelations, Box and Pierce (1970) have proposed a

goodness-of-�t test, the so-called portmanteau test (BP), for strong ARMA models. A mod-

i�cation of their test has been proposed by Ljung and Box (1978) which is nowadays one

of the most popular diagnostic checking tools in ARMA modeling of time series. To test si-

multaneously whether all residual autocorrelations at lags 1, . . . ,m of a PARMA model are

equal to zero for a speci�ed period ν, the portmanteau of Box and Pierce (1970); Ljung and

Box (1978) can be adapted as proposed by McLeod (1994, 1995) (see also Hipel and McLeod

(1994)). Based on these results McLeod (1994, 1995) suggested the following portmanteau

statistics de�ned by

Qbp

m (ν) = N
m∑
h=1

ρ̂2(ν, h) and Qlbm

m (ν) = N
m∑
h=1

%(h, ν,N, T )ρ̂2(ν, h), (22)
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where %(h, ν,N, T ) is called the Ljung-Box-McLeod (LBM) correction and is de�ned by

%(h, ν,N, T ) =

 (N + 2)/(N − h/T ) if h ≡ 0 mod T

N/ (N − b(h− ν + T )/T c) otherwise.

Note that the lag m used in (22) could be chosen to be di�erent across the seasons but in

most applications it is reasonable to use the same value of m for all seasons (see for instance

Hipel and McLeod (1994)).

Across seasons the portmanteau test statistics are asymptotically independent for ν =

1, . . . , T . Consequently for the case of the portmanteau test statistics in (22) an overall check

to test if the residuals across all the seasons are periodic white noise is given by

Qbp

m =

T∑
ν=1

Qbp

m (ν) and Qlbm

m =

T∑
ν=1

Qlbm

m (ν). (23)

The statistics (23) (resp. (22)) are usually used to test the following null hypothesis

(H0) : (XnT+ν)n∈Z satis�es a PARMAT (p; q) representation (resp. for a speci�ed period ν ∈

{1, 2, . . . , T});

against the alternative

(H1) : (XnT+ν)n∈Z does not admit a PARMAT (p; q) representation (resp. for a speci�ed period

ν) or (XnT+ν)n∈Z satis�es a PARMAT (p′; q′) representation (resp. for a speci�ed period

ν) with p′ > p or q′ > q.

3.1. Diagnostic checking in weak PARMA models

For weak PARMAT (p; q) models we will show that the asymptotic distributions of the statistics

de�ned in (22) and (23) are a mixture of chi-squared distributions weighted by eigenvalues of

the asymptotic covariance matrix of the vector of autocorrelations.

3.1.1. Asymptotic distribution of the residual autocorrelations

By a Taylor expansion of
√
Nγ̂(ν, h) we have

√
Nγ̂(ν, h) =

√
Nγ(ν, h) +

(
E
[
εnT+ν−h

∂

∂β′
εnT+ν(β0)

])√
N
(
β̂LS − β0

)
+ oP(1). (24)
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We now remark that in Equation (24), E[εnT+ν−h(∂εnT+ν(β0)/∂β
′
)] is the row h of the fol-

lowing matrix Ψm(ν) ∈ Rm×s0 de�ned by

Ψm(ν) = E




εnT+ν−1

...

εnT+ν−m

 ∂εnT+ν

∂β′

 = E




εnT+ν−1

...

εnT+ν−m

 ∂εnT+ν

∂α′
V

 , (25)

using (20). So for h = 1, . . . ,m, Equation (24) becomes

√
Nγ̂m(ν) =

√
N (γ̂(ν, 1), . . . , γ̂(ν,m))

′
=
√
Nγm(ν) + Ψm(ν)

√
N
(
β̂LS − β0

)
+ oP(1). (26)

From (26) it is clear that the asymptotic distribution of the residual autocovariances
√
Nγ̂m(ν)

is related to the asymptotic behavior of
√
N(β̂′LS − β

′
0, γ

′
m(ν))

′
.

In view of Proposition 1 and (A3) we have almost surely β̂LS → β0 ∈
◦
Bδ. Thus ∂Qω

2

N (β̂LS)/∂β =

0 for su�ciently large N and a Taylor expansion gives

√
N

∂

∂β
Oω

2

N (β0) + J(β0, ω
2)
√
N(β̂LS − β0) = oP(1), where Oω

2

N (α) =
1

2N

N−1∑
n=0

T∑
ν=1

ω−2
ν ε2nT+ν(α).

(27)

Consequently under the assumption that J(β0, ω
2) is invertible and from (27) we deduce that

√
N(β̂LS − β0) = −J(β0, ω

2)−1 1√
N

N−1∑
n=0

T∑
ν=1

ω−2
ν εnT+ν

∂εnT+ν(β0)

∂β
+ oP (1) . (28)

Proposition 2. Assume that p + q > 0. Under the assumptions (A0), (A1), (A2), (A3)

and (A4), the random vector
√
N

((
β̂LS − β0

)′
, γ
′
m(ν)

)′
has a limiting centered normal dis-

tribution with covariance matrix

Ξ(ν) =

 ΩLS
β0

Σβ̂,γm(ν)

Σ
′

β̂,γm(ν)
Σγm(ν)

 =

∞∑
h=−∞

E
[
WnT+νW

′

(n−h)T+ν

]
,

where from (21) and (28) we have

WnT+ν =

W1,nT+ν

W2,nT+ν

 =

−J(β0, ω
2)−1

∑T
ν=1 ω

−2
ν εnT+ν

∂εnT+ν(β0)
∂β

(εnT+ν−1, . . . , εnT+ν−m)
′
εnT+ν

 . (29)
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The proof of this result is available in the extended online version of this article.

The following theorem which is an extension of the results given in Francq et al. (2005)

provides the limit distribution of the residual autocovariances and autocorrelations of weak

PARMA models for a speci�ed season ν. We also provide the limit distribution of the global

residual autocovariances and autocorrelations of weak PARMA models across all the seasons.

Let Dm(ν) = Diag(σνσν−1, . . . , σνσν−m) and

DmT = Diag(σ1σ1−1, . . . , σ1σ1−m, . . . , σTσT−1, . . . , σTσT−m).

Theorem 3.1. Under the assumptions of Proposition 2 we have

√
Nγ̂m(ν)

d−−−−→
N→∞

N (0,∇γ̂m(ν, ν)) , where (30)

∇γ̂m(ν, ν) = Σγm(ν) + Ψm(ν)ΩLS
β0 Ψ

′
m(ν) + Ψm(ν)Σβ̂,γm(ν) + Σ

′

β̂,γm(ν)
Ψ
′
m(ν) when p+ q > 0

and ∇γ̂m(ν, ν) = Σγm(ν) when p = q = 0.

Then:
√
Nγ̂mT

d−−−−→
N→∞

N (0,∇γ̂m) (31)

where the asymptotic covariance matrix ∇γ̂m is a block matrix, with the asymptotic variances

given by ∇γ̂m(ν, ν), for ν = 1, . . . , T and the asymptotic covariances given by

∇γ̂m(ν, ν ′) = Σγm(ν, ν ′) + Ψm(ν)ΩLS
β0 Ψ

′
m(ν ′) + Ψm(ν)Σβ̂,γm

(ν, ν ′) + Σ
′

β̂,γm(ν)
Ψ
′
m(ν ′), ν 6= ν ′.

We also have

√
Nρ̂m(ν)

d−−−−→
N→∞

N (0,∇ρ̂m(ν, ν)) where ∇ρ̂m(ν, ν) = D−1
m (ν)∇γ̂m(ν, ν)D−1

m (ν) (32)

and
√
Nρ̂mT

d−−−−→
N→∞

N (0,∇ρ̂m) where ∇ρ̂m = D−1
mT∇γ̂mD

−1
mT . (33)

The proof of this result is available in the extended online version of this article.

The asymptotic variance matrices∇γ̂m(ν, ν) and∇ρ̂m(ν, ν) depend on the unknown matrices

Ξ(ν), Ψm(ν) and the scalar σν−h for h = 1, . . . ,m. Matrix Ψm(ν) and σν−h can be estimated

by its empirical counterpart, respectively by

Ψ̂m(ν) =
1

N

N−1∑
n=0

{
(ε̂nT+ν−1, . . . , ε̂nT+ν−m)′

∂ε̂nT+ν

∂α′
V

}
and σ̂ν−h =

√√√√ 1

N

N−1∑
n=0

ε̂2nT+ν−h.
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Similarly the matrix J(α0, ω
2) can be estimated empirically by the square matrix JN (α̂LS, ω

2)

of order (p+ q)T de�ned by:

JN (α̂LS, ω
2) =

T∑
ν=1

ω2
ν

1

N

N−1∑
n=0

{
∂

∂α
enT+ν (α̂LS)

}{
∂

∂α
enT+ν (α̂LS)

}′
. (34)

Thus in view of Remark 1, the matrix J(β0, ω
2) can be estimated by JN (β̂LS, ω

2) := V ′JN (α̂LS, ω
2)V .

The estimation of the long-run variance Ξ(ν) is more complicated. In the econometric litera-

ture the nonparametric kernel estimator, also called heteroscedastic autocorrelation consistent

(HAC) estimator (see Newey and West (1987), or Andrews (1991)), is widely used to esti-

mate covariance matrices of the form Ξ(ν). Interpreting (2π)−1Ξ(ν) as the spectral density

of the multivariate stationary periodic process (WnT+ν)n∈Z = (W ′1,nT+ν ,W
′
2,nT+ν)′n∈Z evalu-

ated at frequency 0 (see Brockwell and Davis (1991), p. 459 for more details), an alternative

method consists in using a parametric vector AR (VAR) estimate of the spectral density of

(WnT+ν)n∈Z. The stationary process (WnT+ν)n∈Z admits the Wold decomposition

WnT+ν = unT+ν +
∞∑
i=1

$i(ν)unT+ν−i,

where unT+ν is a (s0 + m)−variate weak periodic white noise. Assume that the covariance

matrix Σu(ν) := Var(unT+ν) is non-singular, that
∑∞

i=1 ‖$i(ν)‖ <∞, where ‖ · ‖ denotes any

norm on the space of the real (s0+m)×(s0+m) matrices, and that det
{
Is0+m +

∑∞
i=1$i(ν)zi

}
6=

0 if |z| ≤ 1. Then (WnT+ν)n∈Z admits an AR(∞) representation (see Akutowicz (1957)) of

the form

Φν(L)WnT+ν = WnT+ν +
∞∑
i=1

Φi(ν)WnT+ν−i = unT+ν , (35)

such that
∑∞

i=1 ‖Φi(ν)‖ <∞ and det {Φν(z)} 6= 0 if |z| ≤ 1.

This parametric approach has been studied by Berk (1974) (see also den Haan and Levin

(1997)) is based on the expression

Ξ(ν) = Φ−1
ν (1)Σu(ν)Φ−1′

ν (1). (36)

Since WnT+ν is unobserved we introduce ŴnT+ν ∈ Rs0+m obtained by replacing εnT+ν(β0) by

enT+ν(β̂LS) and J(β0, ω
2) by its empirical or observable counterpart JN (α̂LS, ω

2) in (29). Let

Φ̂ν,r(z) = Is0+m+
∑r

i=1 Φ̂r,i(ν)zi, where Φ̂r,1(ν), . . . , Φ̂r,r(ν) denote the coe�cients of the least
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squares regression of ŴnT+ν on ŴnT+ν−1, . . . , ŴnT+ν−r for a speci�ed season ν. Let ûr,nT+ν

be the residuals of this regression, and let Σ̂ûr(ν) be the empirical variance of ûr,1, . . . , ûr,N .

In the case of linear processes with independent innovations, Berk (1974) has shown that

the spectral density can be consistently estimated by �tting autoregressive models of order

r = r(N), whenever r tends to in�nity and r3/N tends to 0 asN tends to in�nity. There are dif-

ferences with Berk (1974): (WnT+ν)n∈Z is multivariate, is not directly observed and is replaced

by (ŴnT+ν)n∈Z. It is shown that this result remains valid for the multivariate linear process

(WnT+ν)n∈Z with non-independent innovations (see Francq et al. (2005); Boubacar Mainassara

et al. (2012); Boubacar Mainassara and Francq (2011) for references in weak (multivariate)

ARMA models). We will extend these results to weak PARMA models. We are now able to

state the following theorem.

Theorem 3.2. In addition to the assumptions of Theorem 2, assume that the process (WnT+ν)n∈Z

de�ned in (29) admits a periodic VAR(∞) representation (35) in which the roots of det Φ(z) =

0 are outside the unit disk, ‖Φi‖ = o(i−2), and Σu(ν) = Var(unT+ν) is non-singular. Moreover

we assume that E ‖εn‖8+4κ < ∞ and
∑∞

k=0{αε(k)}κ/(2+κ) < ∞ for some κ > 0. Then the

spectral estimator of Ξ(ν):

Ξ̂SP(ν) := Φ̂−1
ν,r(1)Σ̂ûr(ν)Φ̂−1′

ν,r (1)→ Ξ(ν)

in probability when r = r(N)→∞ and r3/N → 0 as N →∞.

The proof of this theorem is similar to the proof of Theorem 5.2 in Francq et al. (2005) and

it is omitted.

From Theorem 3.1 we can deduce the following result which gives the exact limiting dis-

tribution of the standard portmanteau statistics (22) and (23) under general assumptions on

the innovation process of the �tted PARMA(p; q) model.

Theorem 3.3. Under Assumptions of Theorem 3.1 and (H0), the statistics Qlb

m (ν) and

Qlbm

m (ν) de�ned in (22) converge in distribution, as N →∞, to

Zνm(ξνm) =

m∑
i=1

ξνi,mZ
2
i

where ξνm = (ξν1,m, . . . , ξ
ν
m,m)′ is the vector of the eigenvalues of the matrix ∇ρ̂m(ν, ν) given in

(32) and Z1, . . . , Zm are independent N (0, 1) variables.
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The asymptotic distribution of the global portmanteau test statistics (that takes into account

all the seasons) Qlb

m and Qlbm

m de�ned in (23) is also a weighted sum of chi-square random

variables:

Zm(ξm) =
mT∑
i=1

ξi,mTZ
2
i

where ξmT = (ξ1,mT , . . . , ξmT,mT )′ denotes the vector of the eigenvalues of the matrix ∇ρ̂m

given in (33).

The true asymptotic distributions depend on the periodic nuisance parameters involving

σν−h for h = 1, . . . ,m and the elements of Ξ(ν). Consequently in order to obtain the asymp-

totic distribution of the portmanteau statistics (22) (resp. (23)) under weak assumptions on the

periodic noise, one needs a consistent estimator of the asymptotic covariance matrix ∇ρ̂m(ν, ν)

(resp. ∇ρ̂m). We let ∇̂ρ̂m(ν, ν) (resp. ∇̂ρ̂m) the matrix obtained by replacing Ξ(ν) by Ξ̂(ν),

Ψm(ν) by Ψ̂m(ν) and σν−h by σ̂ν−h in∇ρ̂m(ν, ν) (resp.∇ρ̂m). Denote by ξ̂νm = (ξ̂ν1,m, . . . , ξ̂
ν
m,m)′

(resp. ξ̂m = (ξ̂1,mT , . . . , ξ̂mT,mT )′) the vector of the eigenvalues of ∇̂ρ̂m(ν, ν) (resp. ∇̂ρ̂m). At

the asymptotic level α and for a speci�ed season ν, the LBM test (resp. the BP test) consists

in rejecting the adequacy of the weak PARMAT (p; q) model when

lim
N→∞

P (Qbp

m (ν) > Sνm(1− α)) = lim
N→∞

P (Qlbm

m (ν) > Sνm(1− α)) = α,

where Sνm(1 − α) is such that P
{
Zνm(ξ̂νm) > Sνm(1− α)

}
= α. We emphasize the fact that

the proposed modi�ed versions of the BP and LBM statistics are more di�cult to implement

because their critical values have to be computed from the data while the critical values of

the standard method are simply deduced from a χ2-table. We shall evaluate the p-values

P
{
Zm(ξ̂νm) > Qbp

m (ν)
}

and P
{
Zm(ξ̂νm) > Qlbm

m (ν)
}
, with Zm(ξ̂νm) =

m∑
i=1

ξ̂νi,mZ
2
i ,

by means of the Imhof algorithm (see Imhof (1961)) or other exact methods.

The test procedures for Qbp

m and Qlbm

m de�ned in (23) are similar but they are based on the

mT empirical eigenvalues of ∇̂ρ̂m .

3.1.2. Self-normalized asymptotic distribution of the residual autocorrelations

The nonparametric kernel estimator (see Andrews (1991); Newey and West (1987)) used to

estimate the matrix Ξ(ν) causes serious di�culties regarding the choice of the sequence of



Y. Boubacar Maïnassara and A. Ilmi Amir/Diagnostic checking in weak PARMA models 19

weights. The parametric approach based on an autoregressive estimate of the spectral density

of (WnT+ν)n∈Z studied in Berk (1974); den Haan and Levin (1997) is also facing the problem

of choosing the truncation parameter. So the choice of the order of truncation is often crucial

and di�cult.

In this section, we propose an alternative method where we do not estimate an asymptotic

covariance matrix which is an extension to the results obtained by Boubacar Maïnassara and

Saussereau (2018). It is based on a self-normalization approach to construct a test-statistic

which is asymptotically distribution-free under the null hypothesis. This approach has been

studied by Boubacar Maïnassara and Saussereau (2018) in the weak ARMA case by proposing

new portmanteau statistics. In this case the critical values are not computed from the data

since they are tabulated by Lobato (2001). In some sense this method is �nally closer to

the standard method in which the critical values are simply deduced from a X 2-table. The

idea comes from Lobato (2001) and has been already extended by Boubacar Maïnassara and

Saussereau (2018), Kuan and Lee (2006), Shao (010a), Shao (010b) and Shao (2012) to name a

few in more general frameworks. See also Shao (2015) for a review on some recent developments

on the inference of time series data using the self-normalized approach.

Let (BK(r))r≥0 be aK-dimensional Brownian motion starting from 0. ForK ≥ 1, we denote

UK the random variable de�ned by

UK = B′K(1)V −1
K BK(1) where VK =

∫ 1

0
(BK(r)− rBK(1)) (BK(r)− rBK(1))′ dr.

We denote Λ(ν) the matrix in Rm×(s0+m) de�ned in block formed by Λ(ν) = (Ψm(ν)|Im).

In view of (26) and (28) we deduce that
√
N γ̂m(ν) = N−1/2

∑N−1
n=1 Λ(ν)WnT+ν + oP(1).

Contrary to Subsection 3.1.1 we do not rely on the classical method that would consist

in estimating the asymptotic covariance matrix of (Λ(ν)WnT+ν)n∈Z. We rather try to apply

Lemma 1 in Lobato (2001). So we need to check that a functional central limit theorem holds

for the process (WnT+ν)n∈Z.

Finally we de�ne the normalization matrix Cm(ν, ν) ∈ Rm×m for a speci�ed season ν by

Cm(ν, ν) =
1

N2

N−1∑
n=0

Sn(ν)S′n(ν) where Sn(ν) =
n∑
j=0

(Λ(ν)WjT+ν − γm(ν)) . (37)
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Similarly we denote by CmT ∈ RmT×mT the global normalization block matrix across all the

seasons with diagonal block given by (37) for ν = 1, . . . , T and

Cm(ν, ν ′) =
1

N2

N−1∑
n=0

Sn(ν)S′n(ν ′) where Sn(ν ′) =
n∑
j=0

(
Λ(ν ′)WjT+ν′ − γm(ν ′)

)
for ν 6= ν ′.

To ensure the invertibility of the normalization matrix Cm(ν, ν) we need the following technical

assumption on the distribution of εn.

(A5): The process (εn)n∈Z has a positive density on some neighborhood of zero.

The following proposition gives the invertibility of the matrices Cm(ν, ν) and CmT .

Proposition 3. Under the assumptions of Theorem 3.1 and (A5), the matrices Cm(ν, ν) and

CmT are almost surely non singular.

The proof of this result is available in the extended online version of this article.

The following theorem states the asymptotic distributions of the residual autocovariances

and autocorrelations of weak PARMA models for a speci�ed season ν. We also provide the

limit distribution of the global residual autocovariances and autocorrelations of weak PARMA

models across all the seasons.

Theorem 3.4. We assume that p + q > 0. Under Assumptions of Theorem 3.1, (A5) and

under the null hypothesis (H0) we have for a speci�ed season ν

Nγ̂′m(ν)C−1
m (ν, ν)γ̂m(ν)

d−−−−→
N→∞

Um and Nρ̂′m(ν)Dm(ν)C−1
m (ν, ν)Dm(ν)ρ̂m(ν)

d−−−−→
N→∞

Um.

For the global residual autocovariances and autocorrelations across all the seasons we also have

Nγ̂′mTC
−1
mT γ̂mT

d−−−−→
N→∞

UmT and Nρ̂′mTDmTC
−1
mTDmT ρ̂mT

d−−−−→
N→∞

UmT .

The proof of this result is available in the extended online version of this article.

Remark 3. When p = q = 0 we don't need to estimate the unknown parameter α0. Thus a

careful reading of the proofs shows that the vector WnT+ν is replaced by

W̃nT+ν = W2,nT+ν = (εnT+νεnT+ν−1, . . . , εnT+νεnT+ν−m)′ .

Then we generalized for weak periodic noise the result obtained by Boubacar Maïnassara and

Saussereau (2018).
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Of course the above theorem is useless for practical purpose because the normalization

matrix Cm(ν, ν), CmT and the parameter σν−h are not observable. This gap will be �xed

below (see Theorem 3.5) when one replaces the matrix Cm(ν, ν), CmT and the scalar σν−h by

their empirical or observable counterparts. Then we denote

Ĉm(ν, ν) =
1

N2

N−1∑
n=0

Ŝn(ν)Ŝ′n(ν) where Ŝn(ν) =

n∑
j=0

(
Λ̂(ν)ŴjT+ν − γ̂m(ν)

)
,

with Λ̂(ν) = (Ψ̂m(ν)|Im) and where ŴnT+ν and σ̂ν−h are de�ned in Subsection 3.1.1.

We are able to state the following result which is the applicable counterpart of Theorem 3.4.

Theorem 3.5. Under the assumptions of Theorem 3.4, for a speci�ed season ν we have

Nγ̂′m(ν)Ĉ−1
m (ν, ν)γ̂m(ν)

d−−−−→
N→∞

Um and Qsn

m (ν) =: Nρ̂′m(ν)D̂m(ν)Ĉ−1
m (ν, ν)D̂m(ν)ρ̂m(ν)

d−−−−→
N→∞

Um.

We also have for the global seasons

Nγ̂′mT Ĉ
−1
mT γ̂mT

d−−−−→
N→∞

UmT and Qsn

m =: Nρ̂′mT D̂mT Ĉ
−1
mT D̂mT ρ̂mT

d−−−−→
N→∞

UmT .

The proof of this result is available in the extended online version of this article.

Based on the above result we propose a modi�ed version of the LBM statistic for a speci�ed

season ν when one uses the statistic

Q̃sn

m (ν) = Nρ̂′m(ν)M1/2
m (ν,N, T )D̂m(ν)Ĉ−1

m (ν, ν)D̂m(ν)M1/2
m (ν,N, T )ρ̂m(ν), (38)

where the matrix Mm(ν,N, T ) ∈ Rm×m is diagonal with (%(1, ν,N, T ), . . . , %(m, ν,N, T )) as

diagonal terms.

Similarly we propose a modi�ed version of the LBM statistic for the global seasons when

one uses the following statistic

Q̃sn

m = Nρ̂′mTM
1/2
mT D̂mT Ĉ

−1
mT D̂mTM

1/2
mT ρ̂mT , (39)

where the matrix MmT ∈ RmT×mT is diagonal with

(%(1, 1, N, T ), . . . , %(m, 1, N, T ), . . . , %(1, T,N, T ), . . . , %(m,T,N, T ))

as diagonal terms.
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At the asymptotic level α and for a speci�ed season ν, the self-normalized LBM test (resp.

the BP test) consists in rejecting the adequacy of the weak PARMAT (p; q) model when

Q̃sn

m (ν) > Um(1− α) (resp. Qsn

m (ν) > Um(1− α)),

where the critical values Um(1−α) are tabulated in (Lobato, 2001, Table 1). Similarly for the

global test we have

Q̃sn

m > UmT (1− α) (resp. Qsn

m > UmT (1− α)).

3.2. Diagnostic checking in strong PARMA models

Under the assumption that the data generating process (DGP) follows a strong PARMAT (p; q)

model, the statistic Qlbm

m (ν) has the same asymptotic chi-squared distribution as Qbp

m (ν) and

has the reputation of doing better for small or medium sized sample (see McLeod (1994,

1995)). If the strong PARMAT (p; q) model is adequate for a �xed period ν, McLeod (1994,

1995) shown that Qbp

m (ν) or Qlbm

m (ν) is asymptotically distributed as a chi-squared variable

with m − (p + q) (or m − (pν + qν) for strong PARMA (4)) degrees of freedom. Thus if the

strong PARMAT (p; q) model is adequate the global statistics (23) will also be asymptotically

distributed as a chi-squared variable with mT − T (p+ q) (or mT −
∑T

ν=1(pν + qν) for strong

PARMA (4)) degrees of freedom (see Hipel and McLeod (1994)).

Remark 4. For weak PARMAT (p; q) models, Theorem 3.3 shows that: the asymptotic distri-

butions of the statistics de�ned in (22) and (23) are no longer chi-squared distributions but a

mixture of chi-squared distributions weighted by eigenvalues of the asymptotic covariance ma-

trix of the vector of autocorrelations. Therefore for the asymptotic distributions of (22) and

(23), the χ2
m−(p+q) and χ2

mT−(p+q)T approximations are no longer valid in the framework of

weak PARMA(p; q) models.

Theorem 3.6. Under the assumptions of Proposition 2, when (A2) is replaced by the as-

sumption that (εnT+ν)n∈Z is iid, we have

√
Nγ̂m(ν)

d−−−−→
N→∞

N
(
0,∇S

γ̂m(ν, ν)
)
, where (40)

∇S
γ̂m(ν, ν) = σ4

νIm −Ψm(ν)J(β0, ω
2)−1Ψ

′
m(ν) when p+ q > 0 and ∇S

γ̂m(ν, ν) = σ4
νIm when p = q = 0.
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Then:
√
Nγ̂mT

d−−−−→
N→∞

N
(
0,∇S

γ̂m

)
(41)

where the asymptotic covariance matrix ∇S
γ̂m

is a block matrix, with the asymptotic variances

given by ∇S
γ̂m

(ν, ν), for ν = 1, . . . , T and the asymptotic covariances given by ∇S
γ̂m

(ν, ν ′) =

−Ψm(ν)J(β0, ω
2)−1Ψ

′
m(ν), for ν 6= ν ′. We also have

√
Nρ̂m(ν)

d−−−−→
N→∞

N
(
0,∇S

ρ̂m(ν, ν)
)

where ∇S
ρ̂m(ν, ν) = D−1

m (ν)∇S
γ̂m(ν, ν)D−1

m (ν) (42)

and
√
Nρ̂mT

d−−−−→
N→∞

N
(
0,∇S

ρ̂m

)
where ∇S

ρ̂m = D−1
mT∇

S
γ̂mD

−1
mT . (43)

The proof is the same as in Theorem 3.1 with some simpli�cations due to the independence

assumption.

Remark 5. Note that from (40) and (41) of Theorem 3.6 we retrieve the well-known results

obtained by (Duchesne and Lafaye de Micheaux, 2013, Proposition 2).

Theorem 3.7. Under Assumptions of Theorem 3.1 and (H0), when (A2) is replaced by the

assumption that (εnT+ν)n∈Z is iid, the statistics Qlb

m (ν) and Qlbm

m (ν) de�ned in (22) converge

in distribution, as N →∞, to

Zνm(ξνm) =
m∑
i=1

ξνi,mZ
2
i

where ξνm = (ξν1,m, . . . , ξ
ν
m,m)′ is the vector of the eigenvalues of the matrix ∇S

ρ̂m
(ν, ν) given in

(42) and Z1, . . . , Zm are independent N (0, 1) variables.

The asymptotic distribution of the global portmanteau test statistics (that takes into account

all the seasons) Qlb

m and Qlbm

m de�ned in (23) is also a weighted sum of chi-square random

variables:

Zm(ξm) =

mT∑
i=1

ξi,mTZ
2
i

where ξmT = (ξ1,mT , . . . , ξmT,mT )′ denotes the vector of the eigenvalues of the matrix ∇S
ρ̂m

given in (43).

Remark 6. In view of Theorem 5 when m is large, the matrix

∇S
ρ̂m(ν, ν) ' Im −D−1

m (ν)Ψm(ν)J(β0, ω
2)−1Ψ

′
m(ν)D−1

m (ν)
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(resp. ∇S
ρ̂m
' D−1

mT∇γ̂mD
−1
mT ) is close to a projection matrix. Its eigenvalues are therefore

equal to 0 and 1. The number of eigenvalues equal to 1 is Tr(∇S
ρ̂m

(ν, ν)) = Tr(Im−s0(ν))) =

m − s0(ν) (resp. Tr(∇S
ρ̂m

) = Tr(ImT−s0) = mT − s0) and s0(ν) (resp. s0) eigenvalues equal

to 0, where s0(ν) is the number of estimated parameters for a speci�ed season ν and Tr(·)

denotes the trace of a matrix. Therefore we can provide an answer to the open problem raised

on portmanteau white noise tests by Lund et al. (2006). More precisely, under (H0) and in

the strong PARMA case, the asymptotic distributions of the statistics de�ned in (22) and (23)

can be approximated by a χ2
m−s0(ν) and χ

2
mT−s0. As a consequence to the existing results, the

χ2
m−(p+q) and χ

2
mT−(p+q)T approximations are not valid in the case of parsimonious PARMA

models when s0 is considerably smaller then (p+q)T . Note that this result and also the existing

results are not applicable when m ≤ (p+q) in contrast to our results (see Theorem 3.7). In fact,

the exact distributions of the BP or LBM portmanteau test statistics are better approximated

by those of weighted sums of chi-square random variables. Our results show that in the general

PARMA case, the weights in the asymptotic distributions of the BP or LBM procedures may

be relatively far from zero, and thus, adjusting the degrees of freedom does not represent a

solution in the present framework.

Theorem 3.8. Under the assumptions of Theorem 3.4 and when (A2) is replaced by the

assumption that (εnT+ν)n∈Z is iid, for a speci�ed season ν we have

Nγ̂′m(ν)Ĉ−1
m (ν, ν)γ̂m(ν)

d−−−−→
N→∞

Um and Qsn

m (ν) =: Nρ̂′m(ν)D̂m(ν)Ĉ−1
m (ν, ν)D̂m(ν)ρ̂m(ν)

d−−−−→
N→∞

Um.

We also have for the global seasons

Nγ̂′mT Ĉ
−1
mT γ̂mT

d−−−−→
N→∞

UmT and Qsn

m =: Nρ̂′mT D̂mT Ĉ
−1
mT D̂mT ρ̂mT

d−−−−→
N→∞

UmT .

The proof is the same as in Theorem 3.5.

4. Numerical illustration

By means of Monte Carlo experiments, we investigate the �nite sample properties of the tests

introduced in this paper. The numerical illustrations of this section are made with the free

statistical R software (see https://www.r-project.org/).



Y. Boubacar Maïnassara and A. Ilmi Amir/Diagnostic checking in weak PARMA models 25

We indicate the conventions that we adopt in the discussion and in the tables. One refers

to

� BPs(ν) for the standard Box-Pierce test using the statistic Qbp

m (ν);

� LBMs(ν) for the standard Ljung-Box-McLeod test using the statistic Qlbm

m (ν);

� BPsn(ν) for the modi�ed test using the statistic Qsn

m (ν) with the values of the quantiles

of Um simulated in Table 1 of Lobato (2001);

� LBMsn(ν) for the modi�ed test using the statistic Q̃sn

m (ν), using the critical values Um;

� BPw(ν) for the modi�ed Box-Pierce test using the statistic Qbp

m (ν);

� LBMw(ν) for the modi�ed Ljung-Box-McLeod test using the statistic Qlbm

m (ν);

� BPs for the standard global Box-Pierce test using the statistic Qbp

m ;

� LBMs for the standard global Ljung-Box-McLeod test using the statistic Qlbm

m ;

� BPsn for the modi�ed global test using the statistic Qsn

m , using the critical values UmT ;

� LBMsn for the modi�ed global test using the statistic Q̃sn

m , using the critical values UmT ;

� BPw for the modi�ed global Box-Pierce test using the statistic Qbp

m ;

� LBMw for the modi�ed global Ljung-Box-McLeod test using the statistic Qlbm

m .

We will see in the tables that the numerical results using the Ljung-Box-McLeod tests are

very close to those of the Box-Pierce tests. Nevertheless they are still presented here for the

sake of completeness.

We consider a PARMA2(1, 1) model of the form

X2n+ν − φ(ν)X2n+ν−1 = ε2n+ν − θ(ν)ε2n+ν−1, ν = 1, 2 (44)

where the unknown parameter is α0 = (φ(1), φ(2), θ(1), θ(2))′. Two di�erent periodic noises are

considered. First we assume that in (44) the innovation process (ε2n+ν)n∈Z is an iid centered

Gaussian process with variance σ2
ν = E(ε2n+ν) where σ1 = 0.9 and σ2 = 1.5 which corresponds

to the strong PARMA case. For the weak PARMA case, we consider that in (44) the innovation

process (ε2n+ν)n∈Z follows a periodic ARCH(1) given by

ε2n+ν =
√
ω(ν) + a(ν)ε22n+ν−1η2n+ν , ν = 1, 2 (45)

with (ω(1), ω(2)) = (0.2, 0.4), (a(1), a(2)) = (0.4, 0.45) and where (η2n+ν)n∈Z is a sequence of

iid centered Gaussian random variables with variance 1.
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For each of these two di�erent periodic white noises 1,000 independent replications of length

(N+100)×2 were generated. These sequences were plugged into the model (44) yielding 1,000

independent replications of the periodic process (X2n+ν)n of length (N+100)×2. Initial values

were set to zero and in order to achieve periodic stationarity the �rst 200 observations were

dropped. For each replication of size NT = N × 2 we use the QLS method to estimate the

corresponding coe�cient α0. After estimating Model (44) we apply portmanteau test to the

residuals for di�erent values of m ∈ {1, . . . , 12}, where m is the number of autocorrelations

used in the portmanteau test statistic. In the experiment we considered two values of N : 400

and 2,000. The nominal asymptotic level considered of the tests is α = 5%. Note that for this

level, the empirical relative frequency of rejection size over the 1, 000 independent replications

should vary within the con�dences intervals [3.6%, 6.4%] with probability 95% and [3.3%, 6.9%]

with probability 99%. When the relative rejection frequencies are outside the signi�cant limits

with probability 95% (resp. 99%), they are displayed in bold (resp. underlined) type in Tables

2 and 3.

4.1. Strong PARMA2(1, 1) model case

Table 2 displays relative frequencies (in %) of rejection (over the 1,000 replications) of the null

hypothesis (H0) that the data generating process (DGP for short) follows a strong periodic

white noise i.e. a strong PARMA2(1, 1) given by (44) with α0 = (0, 0, 0, 0)′. For the strong

periodic white noise, all the relative rejection frequencies (for global or a speci�ed season ν)

are inside the signi�cant limits. Thus the error of �rst kind is well controlled by all the tests

in this case. Similar simulation experiments, not reported here (see supplementary materials),

reveal that the observed relative rejection frequency of the standard tests is very far from the

nominal α = 5% for small m when α0 6= (0, 0, 0, 0)′. The results are worse for N = 2, 000 than

for N = 400. This is in accordance with the results in the literature on the strong PARMA

models. The theory that the asymptotic distributions of (22) and (23), namely, χ2
m−2 and

χ2
2m−4 approximations are better for larger m is con�rmed. In contrast, the proposed tests

well control the error of �rst kind, even when m is small.

From these examples we draw the conclusion that the proposed versions are preferable to
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the standard ones, when the number m of autocorrelations used is small.

4.2. Weak PARMA2(1, 1) model case

We now repeat the same experiment on Model (44) by assuming that the innovation process

(ε2n+ν)n follows (45). Tables 3 displays relative frequencies (in %) of rejection of the null hy-

pothesis (H0) that the DGP follows a weak periodic white noise i.e. the weak PARMA2(1, 1)

given by (44)�(45) with α0 = (0, 0, 0, 0)′. As expected the observed relative rejection frequen-

cies of the standard tests are de�nitely outside the signi�cant limits. Thus the standard tests

reject very often the true weak periodic noise. By contrast, the error of �rst kind is globally

well controlled by the proposed tests when N increases. Similar simulation experiments, not

reported here (see supplementary materials), reveal the same situation when α0 6= (0, 0, 0, 0)′.

We draw the conclusion that for this particular weak PARMA model the proposed tests are

clearly preferable to the standard ones. For this particular PARMA2(1, 1) model, we notice that

the standard and our proposed tests have very similar powers (see supplementary materials).

5. Adequacy of weak PARMA models for real datasets

We now consider an application to the daily log returns (also simply called the returns) of two

stock market indices (closing values): CAC 40 (Paris) and DAX (Frankfurt). The returns are

de�ned by rt = 100 log(pt/pt−1) where pt denotes the price index of the corresponding index at

time t. The observations cover the period from January 4, 1999 to November 20, 2020. The data

can be downloaded from the website Yahoo Finance: http://fr.�nance.yahoo.com/. Because

of the presence of holidays many weeks comprise less than �ve observations. We removed the

entire weeks when there was less than �ve data. The e�ective number of observations used for

each index is given in Table 1 and the periodicity is then T = 5.

In Financial Econometric the returns are often assumed to be a weak white noise (though

they are not generally independent sequences). In view of the so-called volatility clustering it

is well known that the strong white noise assumption is generally not adequate for these series

(see for instance Francq and Zakoïan (2019); Lobato (2001); Boubacar Mainassara et al. (2012);

Boubacar Maïnassara and Saussereau (2018)). The squares of the returns have often second-
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order moments close to those of an ARMA(1, 1) (which is compatible with a GARCH(1, 1)

model for the returns). We will test if these hypotheses remind valid in the case of periodic

models by �tting weak PARMA models on the returns and on their squares.

A day-of-the-week seasonality property of the stock markets returns series was largely inves-

tigated in the literature, by Aknouche et al. (2020); Francq et al. (2011); Regnard and Zakoian

(2011); Bollerslev and Ghysels (1996); Franses and Paap (2000); Balaban et al. (2001) to name

a few. Most of these studies focus on the description of day-of-the-week seasonality in returns

and volatility. In particular the so-called Monday e�ect in the �nance literature was observed

in many stock markets.

First we apply portmanteau tests on each series of daily returns for checking the hypothesis

that the returns constitute a periodic white noise. In this section we only present the results on

the Ljung-Box-McLeod tests since they are very close to those of the Box-Pierce tests. Table

4 displays the p−values and the statistics (for the self-normalized versions) of the standard

and modi�ed LBM tests for the mean corrected returns of each index. The p-values less than

5% are in bold, those less than 1% are underlined. At the α = 5% signi�cance level, the

hypothesis of strong periodic noise is (frequently) rejected by the standard global, even for

a speci�ed season ν ∈ {1, . . . , 5} LBM tests for all indices. This is not surprising because as

above-mentioned the standard test required the iid assumption and, in particular in view of

the so-called volatility clustering, it is well known that the strong white noise model is not

adequate for these series (see for instance Francq and Zakoïan (2019); Boubacar Mainassara

et al. (2012); Francq et al. (2011)). By contrast, the weak periodic white noise hypothesis is

not rejected for these two indices by all the global proposed tests, even for a speci�ed season

ν. To summarize, the outputs of Table 4 are in accordance with the common belief that these

series are not strong white noises but could be weak white noises.

Next, let us turn to the dynamics of the squared returns by �tting a weak PARMA5(1, 1)

model. Denoting by (X5n+ν)n≥0 the mean corrected series of the squared returns (r2
5n+ν)n≥0,

we �t the model

X5n+ν − φ(ν)X5n+ν−1 = ε5n+ν − θ(ν)ε5n+ν−1. (46)

To check the stationary properties of X5n+ν it is convenient to consider the solution to the
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characteristic equation of the autoregressive part of Equation (46), which with our notations

in Section 2 can be shown to be equal to

det (Φ(z)) = det (Φ0 − Φ1z) = 1− φ(1)φ(2)φ(3)φ(4)φ(5)z = 0 for |z| > 1 (47)

where

Φ0 =



1 0 0 0 0

−φ(2) 1 0 0 0

0 −φ(3) 1 0 0

0 0 −φ(4) 1 0

0 0 0 −φ(5) 1


and Φ1 =



0 0 0 0 φ(1)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

The same result holds for the invertible Model (46) with φ(ν) replaced by θ(ν) in (47).

Table 1 presents the QLS estimated parameters of Model (46), their p−values (in parenthe-

ses) and their estimated standard errors (into brackets, under weak assumption on ε5n+ν) of

the squared returns of the CAC 40 and DAX indices. As expected all the estimated parame-

ters are signi�cant at any reasonable levels, except: µ̂4 for the CAC 40 index; µ̂2 (at 1% and

5% levels) and µ̂4 for the DAX index. For all indices the mean µ̂1 on Monday is positive and

signi�cant, it seems more possibly to talk of a global Monday e�ect. For the other days the

means µ̂2, µ̂3, µ̂4 and µ̂5 are all negatives. Therefore Tuesday, Wednesday and Friday seem

bad days for the CAC 40 and DAX (at 5% level) indices since they are signi�cant.

For all indices the autoregressive coe�cients φ̂(ν) are all positive and signi�cant for all days.

These coe�cients are greater than one on Monday (for CAC 40 and DAX) and on Wednesday

(for CAC 40). We also observe that the coe�cients φ̂(ν) are the biggest on Monday for CAC 40

and DAX. Furthermore, with these two indices and the period considered, it is probably more

appropriate to talk of a Monday e�ect. Additionally, Table 1 shows that there is evidence that

the estimated noise standard deviations (estimated volatility) for all indices is considerably

greater on Monday than the other days (Tuesday, Wednesday, Thursday and Friday), for which

it is smaller and almost constant.

Note that from Table 1 and for all series, the product of the estimated coe�cients φ̂(ν) (resp.

θ̂(ν)) are smaller than one. Thus in view of (47) |z| > 1 for all series (the smallest z verify
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|z| = 1.126 > 1). So we think that the assumption (A1) is satis�ed and thus our asymptotic

normality theorem on the residual autocorrelations can be applied. After estimating the model

(46), the next important step in the modeling consists in checking if the estimated model �ts

satisfactorily the data. Thus under the null hypothesis that the model has been correctly

identi�ed, the residuals are approximately a white noise.

We thus apply portmanteau tests to the residuals of Model (46) for each series. The re-

sults not reported here (see supplementary materials), reveal the conclusion that the strong

PARMA5(1, 1) model is rejected by the standard global LBM test and even for a speci�ed

season ν at the nominal level α = 5%. By contrast a weak PARMA5(1, 1) model is not re-

jected. Note that for the �rst and second-order structures we found for the returns considered,

namely a weak periodic white noise for the returns and a weak PARMA5(1, 1) model for the

squares of the returns, seem compatible with a PGARCH(1, 1) model.

To conclude our empirical investigations, a comparison of the two indices indicates that the

DAX index is systematically more volatile on Tuesday and Thursday than the CAC 40 index.

Table 1

QLS estimates, their p−values (in parentheses) and their estimated standard errors (in brackets) of a
weak PARMA5(1, 1) model �tted to the mean corrected series of the squared returns of the CAC 40

and DAX indices.

Index CAC 40 DAX

NT 6830 6740

Day µ̂ν φ̂ν θ̂ν σ̂ν µ̂ν φ̂ν θ̂ν σ̂ν
Monday 1.094

(0.000)

[0.256]

2.183
(0.000)

[0.225]

1.958
(0.000)

[0.197]

8.844 ×10−8 1.399
(0.000)

[0.335]

2.062
(0.000)

[0.315]

1.825
(0.000)

[0.279]

11.964 ×10−8

Tuesday −0.363
(0.001)

[0.113]

0.444
(0.004)

[0.153]

0.411
(0.006)

[0.148]

3.958 ×10−8 −0.279
(0.098)

[0.168]

0.954
(0.000)

[0.182]

0.929
(0.000)

[0.179]

5.458 ×10−8

Wenesday −0.325
(0.005)

[0.116]

1.501
(0.007)

[0.552]

1.501
(0.008)

[0.567]

3.648 ×10−8 −0.459
(0.000)

[0.107]

0.702
(0.000)

[0.095]

0.757
(0.000)

[0.074]

3.367 ×10−8

Thursday −0.059
(0.730)

[0.171]

0.840
(0.000)

[0.219]

0.767
(0.000)

[0.198]

5.979 ×10−8 −0.214
(0.224)

[0.176]

0.960
(0.000)

[0.140]

0.846
(0.000)

[0.140]

6.103 ×10−8

Friday −0.346
(0.007)

[0.128]

0.727
(0.000)

[0.165]

0.652
(0.000)

[0.169]

4.491 ×10−8 −0.447
(0.000)

[0.115]

0.664
(0.000)

[0.135]

0.595
(0.000)

[0.132]

3.978 ×10−8
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Table 2

Empirical size of the standard and proposed tests: relative frequencies (in %) of rejection of a strong
PARMA2(1, 1) given by (44) with the parameter α0 = (0, 0, 0, 0)′ and where the innovation

εt ∼ N (0, 1). When the relative rejection frequencies are outside the signi�cant limits with probability
95% (resp. 99%), they are displayed in bold (resp. underlined) type.

Length N Tests Lag m
1 2 3 4 5 6 7 8 9 10 11 12

BPs(1) 5.0 4.5 5.2 4.7 5.2 5.2 5.5 5.7 5.7 5.8 5.9 6.0

BPs(2) 4.9 6.5 5.5 5.5 5.9 5.8 6.1 5.9 6.1 6.2 6.0 6.4

LBMs(1) 5.0 4.5 5.3 4.7 5.2 5.2 5.7 5.8 5.8 6.2 6.1 6.2

LBMs(2) 4.9 6.7 5.7 5.7 6.0 6.0 6.1 6.0 6.2 6.4 6.1 6.7

BPw(1) 4.3 3.6 3.6 3.5 3.6 4.0 4.2 4.0 3.8 4.4 4.4 4.1

BPw(2) 4.8 5.5 5.1 5.4 5.0 5.4 5.1 4.7 4.8 5.1 4.5 4.2

LBMw(1) 4.3 3.6 3.8 3.6 3.6 4.0 4.3 4.1 3.9 4.4 4.7 4.7

LBMw(2) 4.8 5.6 5.2 5.5 5.2 5.6 5.2 5.0 5.2 5.4 4.8 4.6

N = 400 BPsn(1) 4.8 4.5 3.9 4.4 4.6 5.1 4.9 5.5 4.9 5.0 5.8 5.7

BPsn(2) 6.4 5.6 5.3 4.4 5.4 5.3 6.4 5.4 5.3 4.8 5.0 4.9

LBMsn(1) 4.8 4.5 4.0 4.4 4.7 5.1 5.0 5.7 4.9 5.0 5.9 6.2

LBMsn(2) 6.4 5.6 5.3 4.4 5.4 5.6 6.4 5.7 5.4 4.8 5.0 5.1

BPs 4.9 5.6 5.6 5.6 5.9 5.3 5.6 5.9 5.7 6.4 6.3 6.4

LBMs 4.9 5.6 5.6 5.7 6.2 5.6 5.7 6.4 6.1 7.0 6.7 6.9

BPw 4.3 4.4 4.2 4.4 4.2 3.6 3.7 3.7 3.9 3.7 3.1 3.4

LBMw 4.3 4.4 4.2 4.7 4.3 3.7 3.9 4.0 4.2 4.3 3.4 3.5

BPsn 5.9 4.6 4.9 5.4 5.4 5.4 5.8 5.5 5.4 4.9 5.4 4.8

LBMsn 6.1 4.7 5.1 5.4 5.4 5.8 5.8 5.8 5.5 5.1 5.5 5.2

1 2 3 4 5 6 7 8 9 10 11 12

BPs(1) 5.8 5.8 5.0 5.3 5.7 5.3 6.0 5.6 5.4 5.6 5.9 6.7

BPs(2) 5.3 5.3 5.5 5.3 5.3 5.7 5.8 6.3 6.5 5.9 5.4 4.3

LBMs(1) 5.8 5.8 5.0 5.3 5.7 5.3 6.0 5.7 5.6 5.6 6.0 6.7

LBMs(2) 5.3 5.3 5.5 5.3 5.4 5.7 5.8 6.3 6.6 6.0 5.6 4.3

BPw(1) 5.5 5.9 4.9 5.5 5.5 4.9 5.6 5.6 5.0 5.4 5.7 5.8

BPw(2) 4.8 5.5 5.9 5.1 5.5 5.3 5.5 5.9 6.2 5.8 4.9 4.1

LBMw(1) 5.5 5.9 4.9 5.6 5.5 4.9 5.6 5.6 5.0 5.4 5.8 5.8

LBMw(2) 4.8 5.5 5.9 5.1 5.5 5.3 5.5 6.0 6.2 5.8 4.9 4.1

N = 2, 000 BPsn(1) 5.0 5.0 6.0 4.9 4.8 4.7 5.6 5.6 6.4 6.0 5.8 6.7

BPsn(2) 5.1 4.3 4.3 5.5 5.1 4.8 5.2 7.3 6.9 6.3 6.3 5.2

LBMsn(1) 5.0 5.0 6.0 5.0 4.8 4.7 5.6 5.7 6.4 6.0 5.8 6.7

LBMsn(2) 5.1 4.3 4.3 5.5 5.1 4.8 5.2 7.3 6.9 6.3 6.3 5.3

BPs 5.1 5.9 5.0 5.1 5.0 5.6 5.6 4.8 5.0 5.2 5.3 4.8

LBMs 5.1 5.9 5.1 5.1 5.0 5.6 5.7 4.8 5.0 5.3 5.4 4.8

BPw 5.6 6.0 4.8 5.0 5.2 5.3 4.9 4.6 4.3 4.6 4.9 4.3

LBMw 5.6 6.0 4.8 5.1 5.3 5.3 4.9 4.6 4.4 4.6 5.0 4.4

BPsn 5.2 4.5 5.2 4.8 4.6 4.9 4.7 5.5 6.0 6.8 6.9 5.6

LBMsn 5.2 4.5 5.2 4.8 4.6 5.0 4.8 5.6 6.0 6.8 6.9 5.7
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Table 3

Empirical size of the standard and proposed tests: relative frequencies (in %) of rejection of a weak
PARMA2(1, 1) given by (44) with the parameter α0 = (0, 0, 0, 0)′ and where the innovation εt ∼ (45).
When the relative rejection frequencies are outside the signi�cant limits with probability 95% (resp.

99%), they are displayed in bold (resp. underlined) type.

Length N Tests Lag m

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) 13.2 12.5 10.8 9.5 9.4 9.0 9.0 8.2 7.3 7.5 7.4 7.4

BPs(2) 10.5 8.9 8.0 7.2 7.9 8.1 7.9 7.5 6.9 7.6 7.7 7.9

LBMs(1) 13.2 12.9 10.8 9.6 9.4 9.1 9.1 8.3 7.5 7.8 7.7 8.0

LBMs(2) 10.5 8.9 8.3 7.2 8.1 8.1 8.0 7.7 7.3 7.8 8.3 8.4

BPw(1) 4.4 3.9 3.4 3.1 3.3 3.0 2.5 2.7 2.8 2.6 2.6 3.0

BPw(2) 3.6 4.0 3.8 3.5 3.3 3.2 3.6 3.2 3.0 2.4 2.7 2.9

LBMw(1) 4.4 4.0 3.5 3.3 3.6 3.0 2.7 2.7 2.9 2.9 2.8 3.0

LBMw(2) 3.6 4.0 3.8 3.7 3.3 3.4 3.7 3.3 3.0 2.7 2.8 3.0

N = 400 BPsn(1) 4.8 4.3 4.4 5.2 4.6 4.4 5.2 4.5 3.9 3.7 3.6 3.3

BPsn(2) 3.9 4.1 3.8 4.0 3.5 4.3 4.7 4.8 3.9 3.9 4.0 4.6
LBMsn(1) 4.8 4.3 4.4 5.2 4.7 4.4 5.4 4.5 4.1 4.0 3.7 3.3

LBMsn(2) 3.9 4.1 3.8 4.0 3.6 4.5 4.8 5.1 3.9 4.1 4.0 4.7
BPs 14.3 12.6 11.6 10.2 10.4 10.3 10.5 10.3 10.0 9.8 8.7 9.1

LBMs 14.3 12.7 11.7 10.7 10.6 10.5 10.6 10.5 10.3 10.3 9.1 9.4

BPw 3.2 2.7 2.3 2.4 3.4 2.7 1.7 2.0 2.5 1.5 2.2 1.5

LBMw 3.2 2.8 2.3 2.4 3.4 2.8 2.0 2.2 2.5 2.1 2.5 1.7

BPsn 4.6 5.5 4.3 3.4 3.5 3.5 3.1 3.3 2.8 2.0 1.4 1.2

LBMsn 4.7 5.5 4.4 3.5 3.6 3.7 3.6 3.4 3.2 2.2 1.4 1.3

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) 16.6 14.8 12.9 11.7 12.1 11.3 11.8 11.9 10.9 10.6 10.2 10.3

BPs(2) 12.8 10.5 9.9 9.9 8.8 8.5 8.1 7.6 7.1 6.9 6.3 6.6

LBMs(1) 16.6 14.8 12.9 11.8 12.2 11.4 11.8 11.9 11.0 10.6 10.3 10.4

LBMs(2) 12.8 10.5 9.9 9.9 8.9 8.6 8.1 7.6 7.1 6.9 6.3 6.7

BPw(1) 5.4 4.0 4.1 4.5 4.9 5.0 4.5 4.6 4.5 4.8 4.7 5.0
BPw(2) 5.5 5.3 4.6 4.5 4.0 4.4 4.1 3.6 3.7 3.3 3.2 3.4
LBMw(1) 5.4 4.0 4.1 4.5 4.9 5.0 4.5 4.6 4.5 4.8 4.8 5.1
LBMw(2) 5.5 5.3 4.6 4.5 4.0 4.4 4.2 3.6 3.7 3.4 3.2 3.4

N = 2, 000 BPsn(1) 5.7 4.3 4.7 4.6 5.1 5.0 5.4 5.6 5.4 5.5 5.2 5.4
BPsn(2) 6.0 5.5 5.0 4.6 5.1 6.0 5.1 5.3 4.8 4.9 5.2 5.1
LBMsn(1) 5.7 4.3 4.7 4.6 5.2 5.0 5.4 5.6 5.5 5.6 5.3 5.4
LBMsn(2) 6.0 5.5 5.0 4.6 5.1 6.0 5.1 5.4 4.8 4.9 5.2 5.1

BPs 18.3 15.9 13.9 12.5 12.1 11.9 11.2 11.3 10.6 9.9 10.0 10.4

LBMs 18.3 15.9 13.9 12.5 12.1 11.9 11.3 11.3 10.6 10.0 10.1 10.4

BPw 4.9 4.1 3.9 4.2 4.3 3.8 4.0 4.0 3.7 3.7 3.5 3.7
LBMw 4.9 4.1 3.9 4.2 4.3 3.8 4.0 4.0 3.7 3.7 3.6 3.7
BPsn 5.6 4.5 4.7 4.8 5.8 4.7 5.3 5.4 4.5 4.1 4.7 5.2
LBMsn 5.6 4.5 4.7 4.8 5.8 4.7 5.4 5.5 4.5 4.1 4.7 5.2
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Table 4

Modi�ed and standard versions of portmanteau tests to check the null hypothesis that the returns
follow a periodic white noise, based on m residuals autocorrelations. The p-values less than 5% are in

bold, those less than 1% are underlined.

Index Tests Lag m
1 2 3 4 5 6 7 8 9 10 11 12

LBMs(1) 0.083 0.113 0.210 0.335 0.468 0.210 0.277 0.178 0.225 0.286 0.351 0.431
LBMs(2) 0.001 0.000 0.000 0.001 0.002 0.003 0.005 0.009 0.010 0.014 0.014 0.016

LBMs(3) 0.617 0.806 0.508 0.675 0.051 0.068 0.079 0.104 0.116 0.147 0.189 0.083
LBMs(4) 0.504 0.570 0.276 0.424 0.516 0.508 0.253 0.248 0.310 0.393 0.461 0.436
LBMs(5) 0.423 0.674 0.324 0.079 0.071 0.075 0.010 0.018 0.031 0.047 0.066 0.016

LBMw(1) 0.263 0.435 0.570 0.710 0.797 0.641 0.695 0.619 0.664 0.711 0.755 0.817
LBMw(2) 0.005 0.007 0.007 0.015 0.039 0.054 0.085 0.111 0.129 0.170 0.159 0.176
LBMw(3) 0.782 0.905 0.766 0.872 0.374 0.414 0.436 0.501 0.523 0.591 0.654 0.522

CAC 40 LBMw(4) 0.631 0.760 0.607 0.745 0.833 0.840 0.671 0.675 0.740 0.814 0.848 0.823
LBMw(5) 0.604 0.842 0.678 0.433 0.428 0.419 0.236 0.295 0.345 0.389 0.446 0.293
LBMsn(1) 8.8 22.3 32.5 33.1 61.2 61.5 62.3 86.8 253.2 262.0 295.6 333.8
LBMsn(2) 75.0 152.0 156.6 370.1 406.7 410.1 445.7 905.0 906.0 907.0 1071.4 1208.8
LBMsn(3) 0.9 10.6 10.9 16.2 126.6 136.7 137.9 158.9 178.7 189.4 203.6 216.5
LBMsn(4) 1.3 11.6 49.7 57.6 60.7 150.3 375.1 382.4 383.3 383.3 430.5 462.0
LBMsn(5) 2.7 31.5 55.8 127.8 166.0 187.3 188.4 327.8 403.3 544.2 548.1 699.1

LBMs 0.011 0.016 0.005 0.009 0.003 0.002 0.001 0.001 0.002 0.007 0.015 0.004

LBMw 0.247 0.426 0.420 0.513 0.472 0.456 0.359 0.404 0.494 0.610 0.668 0.572
LBMsn 201.6 367.2 741.2 1334.8 1660.1 2363.3 2425.7 3318.8 4241.9 5046.5 5889.5 6504.8

1 2 3 4 5 6 7 8 9 10 11 12
LBMs(1) 0.166 0.217 0.247 0.360 0.498 0.524 0.602 0.499 0.506 0.600 0.367 0.368
LBMs(2) 0.016 0.014 0.033 0.062 0.067 0.016 0.026 0.010 0.016 0.002 0.003 0.004

LBMs(3) 0.298 0.408 0.393 0.328 0.147 0.217 0.298 0.194 0.266 0.127 0.075 0.085
LBMs(4) 0.205 0.005 0.008 0.009 0.001 0.002 0.002 0.004 0.005 0.009 0.003 0.003

LBMs(5) 0.256 0.148 0.236 0.295 0.052 0.087 0.070 0.089 0.128 0.090 0.103 0.018
LBMw(1) 0.350 0.496 0.546 0.674 0.773 0.806 0.849 0.800 0.799 0.859 0.751 0.773
LBMw(2) 0.048 0.123 0.175 0.273 0.329 0.205 0.271 0.198 0.230 0.116 0.137 0.199
LBMw(3) 0.555 0.685 0.738 0.749 0.643 0.733 0.798 0.725 0.787 0.690 0.628 0.650

DAX LBMw(4) 0.437 0.140 0.190 0.237 0.177 0.210 0.227 0.253 0.279 0.322 0.247 0.246
LBMw(5) 0.438 0.437 0.560 0.651 0.356 0.420 0.410 0.443 0.503 0.446 0.475 0.283
LBMsn(1) 13.7 14.0 66.0 117.0 117.3 121.1 121.4 148.5 180.7 181.0 209.0 252.7
LBMsn(2) 18.9 40.8 43.7 62.6 62.6 63.0 113.3 116.1 117.2 179.0 182.7 187.7
LBMsn(3) 1.9 16.6 55.4 89.4 137.6 172.1 189.5 218.1 218.2 357.6 412.9 462.7
LBMsn(4) 1.9 50.2 86.8 140.6 140.9 170.3 171.5 222.7 300.2 316.6 319.5 390.1
LBMsn(5) 4.8 83.5 84.7 194.1 208.5 209.8 259.8 330.4 359.3 392.6 430.2 430.8

LBMs 0.040 0.002 0.006 0.014 0.001 0.001 0.001 0.001 0.002 0.000 0.000 0.000

LBMw 0.407 0.307 0.470 0.622 0.455 0.481 0.558 0.509 0.586 0.479 0.405 0.399
LBMsn 143.5 541.5 736.3 960.5 1644.0 2049.5 2363.4 3694.2 3982.4 5504.6 6356.8 6779.2
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Portmanteau tests for periodic ARMA models with dependent errors

Supplementary Appendix

Appendix A: Proofs

A.1. Proof of Proposition 2

First we remark that the asymptotic normality of the joint distribution of
√
N(β̂′LS−β

′
0, γ

′
m(ν))

′

can be established along the same lines as the proof of Theorem 2 in Francq et al. (2011). The

detailed proof is omitted. From (21) and (28) we have

√
N

β̂LS − β0

γm(ν)

 =
1√
N

N−1∑
n=0

−J(β0, ω
2)−1

∑T
ν=1 ω

−2
ν εnT+ν

∂εnT+ν(β0)
∂β

(εnT+ν−1, . . . , εnT+ν−m)
′
εnT+ν

+

oP(1)

0m


=

1√
N

N−1∑
n=0

WnT+ν + oP(1),

where 0m is the vector of Rm×1 with zero components. It is clear that WnT+ν is a measurable

function of εnT+ν , εnT+ν−1, . . . Thus by using the same arguments as in Francq et al. (2011)

(see proof of Theorem 2), the central limit theorem (CLT) for strongly mixing processes

(WnT+ν)n∈Z of Herrndorf (1984) implies that (1/
√
N)
∑N−1

n=0 WnT+ν has a limiting normal

distribution with mean 0 and covariance matrix Ξ(ν).

In view of (28), by applying the CLT for mixing processes we directly obtain

ΩLS
β0 = lim

N→∞
Var

(
− 1√

N

N−1∑
n=0

J(β0, ω
2)−1

T∑
ν=1

ω−2
ν εnT+ν

∂εnT+ν(β0)

∂β

)

:= J(β0, ω
2)−1I(β0, ω

2)J(β0, ω
2)−1,

which gives the �rst block of the asymptotic covariance matrix of Proposition 2.

By the stationarity of (εn) and Lebesgue's dominated convergence theorem, we obtain that
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for l, l
′ ≥ 1

Cov
(√

Nγ(ν, l),
√
Nγ(ν, l′)

)
= Cov

(
1√
N

N∑
n=l+1

εnT+νεnT+ν−l,
1√
N

N∑
n′=l′+1

εn′T+νεn′T+ν−l′

)

=
1

N

N∑
n=l+1

N∑
n′=l′+1

E (εnT+νεnT+ν−lεn′T+νεn′T+ν−l′)

=
1

N

N−1∑
h=−N+1

(N − |h|)E
(
εnT+νεnT+ν−lε(n−h)T+νε(n−h)T+ν−l′

)
−−−−→
N→∞

∞∑
h=−∞

E
(
εnT+νεnT+ν−lε(n−h)T+νε(n−h)T+ν−l′

)
:= Γν(l, l′).

We thus have Σγm(ν) = [Γν(l, l
′
)]1≤l,l′≤m.

Let Yn =
∑T

ν=1 ω
−2
ν εnT+ν∂εnT+ν(β0)/∂β. Finally by the stationarity of (εn) and (εnT+ν∂εnT+ν(β0)/∂β)n∈Z

we have

Cov

(
−J(β0, ω

2)−1 1√
N

N−1∑
n=0

Yn,
√
Nγ(ν, l)

)

= Cov

(
−J(β0, ω

2)−1 1√
N

N−1∑
n=0

T∑
ν=1

ω−2
ν εnT+ν

∂εnT+ν(β0)

∂β
,

1√
N

N−1∑
n′=l

εn′T+νεn′T+ν−l

)

= −J(β0, ω
2)−1

T∑
ν′=1

ω−2
ν

1

N

N−1∑
n=0

N−1∑
n′=l

E
(
εnT+ν

∂εnT+ν(β0)

∂β
εn′T+νεn′T+ν−l

)

= −J(β0, ω
2)−1

T∑
ν=1

ω−2
ν

1

N

N−1∑
h=−N+1

(N − |h|)E
(
εnT+ν

∂εnT+ν(β0)

∂β
ε(n−h)T+νε(n−h)T+ν−l

)

−−−−→
N→∞

−J(β0, ω
2)−1

T∑
ν=1

ω−2
ν

∞∑
h=−∞

E
(
εnT+ν

∂εnT+ν(β0)

∂β
ε(n−h)T+νε(n−h)T+ν−l

)
:= Σβ̂,γm(ν)(·, l),

by the dominated convergence theorem.

Note that the existence of the above matrices is a consequence of Assumption (A4) and of

Davydov's inequality (see Davydov (1968)). The proof is then complete. �
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A.2. Proof of Theorem 3.1

The joint asymptotic distribution of
√
Nγm(ν) and

√
N(β̂LS − β0) obtained in Proposition 2

shows that
√
Nγ̂m(ν) has a limiting normal distribution with mean zero and covariance matrix

lim
N→∞

Var
(√

Nγ̂m(ν)
)

= lim
N→∞

Var
(√

Nγm(ν)
)

+ Ψm(ν) lim
N→∞

Var
(√

N(β̂LS − β0)
)

Ψ
′
m(ν)

+ Ψm(ν) lim
N→∞

Cov
(√

N(β̂LS − β0),
√
Nγm(ν)

)
+ lim
N→∞

Cov
(√

Nγm(ν),
√
N(β̂LS − β0)

)
Ψ
′
m(ν)

= Σγm(ν) + Ψm(ν)ΩLS
β0 Ψ

′
m(ν) + Ψm(ν)Σβ̂,γm(ν) + Σ

′

β̂,γm(ν)
Ψ
′
m(ν).

By the stationarity of (εn) and Lebesgue's dominated convergence theorem, we obtain that

for l, l
′ ≥ 1

Cov
(√

Nγ(ν, l),
√
Nγ(ν ′, l′)

)
= Cov

(
1√
N

N∑
n=l+1

εnT+νεnT+ν−l,
1√
N

N∑
n′=l′+1

εn′T+ν′εn′T+ν′−l′

)

=
1

N

N∑
n=l+1

N∑
n′=l′+1

E (εnT+νεnT+ν−lεn′T+ν′εn′T+ν′−l′)

=
1

N

N−1∑
h=−N+1

(N − |h|)E
(
εnT+νεnT+ν−lε(n−h)T+ν′ε(n−h)T+ν′−l′

)
−−−−→
N→∞

∞∑
h=−∞

E
(
εnT+νεnT+ν−lε(n−h)T+ν′ε(n−h)T+ν′−l′

)
:= Γν,ν′(l, l

′).

We thus have Σγm(ν, ν ′) = [Γν,ν′(l, l
′
)]1≤l,l′≤m.

Finally by the stationarity of (εn) and (εnT+ν∂εnT+ν(β0)/∂β)n∈Z we have

Cov
(√

N(β̂LS − β0),
√
Nγ(ν ′, l)

)
= Cov

(
−J(β0, ω

2)−1 1√
N

N−1∑
n=0

T∑
ν=1

ω−2
ν εnT+ν

∂εnT+ν(β0)

∂β
,

1√
N

N−1∑
n′=l

εn′T+ν′εn′T+ν′−l

)

= −J(β0, ω
2)−1

T∑
ν′=1

ω−2
ν

1

N

N−1∑
n=0

N−1∑
n′=l

E
(
εnT+ν

∂εnT+ν(β0)

∂β
εn′T+ν′εn′T+ν′−l

)

= −J(β0, ω
2)−1

T∑
ν=1

ω−2
ν

1

N

N−1∑
h=−N+1

(N − |h|)E
(
εnT+ν

∂εnT+ν(β0)

∂β
ε(n−h)T+ν′ε(n−h)T+ν′−l

)

−−−−→
N→∞

−J(β0, ω
2)−1

T∑
ν=1

ω−2
ν

∞∑
h=−∞

E
(
εnT+ν

∂εnT+ν(β0)

∂β
ε(n−h)T+ν′ε(n−h)T+ν′−l

)
:= Σβ̂,γm

(ν, ν ′)(·, l),
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by the dominated convergence theorem. We then deduce that

lim
N→∞

Cov
(√

Nγ̂m(ν),
√
Nγ̂m(ν ′)

)
= lim

N→∞
Cov

(√
Nγm(ν),

√
Nγm(ν ′)

)
+ Ψm(ν) lim

N→∞
Var

(√
N(β̂LS − β0)

)
Ψ
′
m(ν ′)

+ Ψm(ν) lim
N→∞

Cov
(√

N(β̂LS − β0),
√
Nγm(ν ′)

)
+ lim
N→∞

Cov
(√

Nγm(ν),
√
N(β̂LS − β0)

)
Ψ
′
m(ν ′)

= Σγm(ν, ν ′) + Ψm(ν)ΩLS
β0 Ψ

′
m(ν ′) + Ψm(ν)Σβ̂,γm

(ν, ν ′)

+ Σ
′

β̂,γm(ν)
Ψ
′
m(ν ′)

=: ∇γ̂m(ν, ν ′).

We come back to the vector ρ̂m(ν) and observe that from (24), we have
√
N(γ̂(ν, 0) −

γ(ν, 0)) = oP(1). Applying the CLT for mixing processes (see Herrndorf (1984)) to the process

(ε2t )t, we obtain

√
N
(
σ̂2
ν − σ2

ν

)
=

1√
N

N−1∑
n=0

(
ε2nT+ν − E[ε2nT+ν ]

)
+ oP(1)

in law−−−−→
N→∞

N

(
0,

∞∑
h=−∞

Cov
(
ε2ν , ε

2
hT+ν

))
.

So we have
√
N(σ̂2

ν − σ2
ν) = OP(1) and

√
N(γ(ν, 0) − σ2

ν) = OP(1). Using the δ−method we

deduce that
√
N(
√
σ̂2
ν −

√
σ2
ν) = OP(1) and

√
N(
√
γ(ν, 0)−

√
σ2
ν) = OP(1). Now using (30)

and the ergodic theorem we obtain

N

(
γ̂(ν, h)√

γ̂(ν, 0)γ̂(ν − h, 0)
− γ̂(ν, h)

σνσν−h

)
=
√
Nγ̂(ν, h)

√
N
(
σνσν−h −

√
γ̂(ν, 0)γ̂(ν − h, 0)

)
σνσν−hγ̂(ν, 0)

= OP(1),

which means
√
Nρ̂(ν, h) =

√
Nγ̂(ν, h)/(σνσν−h) + OP(N−1/2). For h = 1, . . . ,m, it follows

that

√
Nρ̂m(ν) = D−1

m (ν)
(√

Nγ̂(ν, 1), . . . ,
√
Nγ̂(ν,m)

)′
+ oP(1) =

√
ND−1

m (ν)γ̂m(ν) + oP(1),

(48)

where Dm(ν) = Diag(σνσν−1, . . . , σνσν−m). Thus from (48) the asymptotic distribution of the

residual autocorrelations
√
Nρ̂m(ν) depends on the distribution of

√
Nγ̂m(ν). Consequently

we have

lim
N→∞

Var
(√

Nρ̂m(ν)
)

= lim
N→∞

Var
(
D−1
m (ν)

√
Nγ̂m(ν)

)
= D−1

m (ν)∇γ̂m(ν, ν)D−1
m (ν).
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Observe that from (48) we deduce

√
Nρ̂mT =

(
D−1
m (ν)

√
Nγ̂m(1), . . . , D−1

m (ν)
√
Nγ̂m(T )

)′
+ oP(1)

= D−1
mT

√
Nγ̂mT + oP(1), (49)

where DmT = Diag(σ1σ1−1, . . . , σ1σ1−m, . . . , σTσT−1, . . . , σTσT−m).

Thus from (49) the asymptotic distribution of the residual autocorrelations
√
Nρ̂mT depends

on the distribution of
√
Nγ̂mT . Consequently we have

lim
N→∞

Var
(√

Nρ̂m

)
= lim

N→∞
Var

(
D−1
mT

√
Nγ̂mT

)
= D−1

mT∇γ̂mD
−1
mT =: ∇ρ̂m .

The proof is completed. �

A.3. Proof of Proposition 3

The following proofs are quite technical and are adaptations of the arguments used in Boubacar Maï-

nassara and Saussereau (2018).

To prove the invertibility of the normalized matrix Cm(ν, ν) we need to introduce the follow-

ing notation. Let Sin(ν) be the i-th component of the vector Sn(ν) =
∑n

j=0 (Λ(ν)WjT+ν − γm(ν)) ∈

Rm. We remark that

Sin−1(ν) = Sin(ν)−
s0∑
k=1

δi,k(ν)ω−2
ν εnT+ν

∂

∂βk
εnT+ν(β0)− εnT+νεnT+ν−i + γ(ν, i), (50)

where δi,k(ν) is the (i, k)−th entry of the m× s0 matrix G(ν) := −Ψm(ν)J(β0, ω
2)−1.

If the matrix Cm(ν, ν) is not invertible, there exists some real constants c1, . . . , cm not all

equal to zero, such that we have

m∑
i=1

m∑
j=1

cj [Cm(ν, ν)]ijci =
1

N2

N−1∑
n=0

m∑
i=1

m∑
j=1

cjS
j
n(ν)Sin(ν)ci =

1

N2

N−1∑
n=0

(
m∑
i=1

ciS
i
n(ν)

)2

= 0,

which implies that
∑m

i=1 ciS
i
n(ν) = 0 for all n ≥ 0.

Then by (50) it would imply that

m∑
i=1

s0∑
k=1

ciδi,k(ν)ω−2
ν εnT+ν

∂

∂βk
εnT+ν(β0) +

m∑
i=1

ciεnT+νεnT+ν−i =
m∑
i=1

ciγ(ν, i). (51)

By the ergodic Theorem, we also have
∑m

i=1 ciγ(ν, i)→ 0 almost-surely as N goes to in�nity.
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Consequently replacing this convergence in (51) implies that for all n ≥ 0

m∑
i=1

s0∑
k=1

ci

T∑
ν=1

δi,k(ν)ω−2
ν εnT+ν

∂

∂βk
εnT+ν(β0) +

m∑
i=1

ciεnT+νεnT+ν−i = 0, a.s.

Note that from (7) and under (A1) we have

εn(β0) = Φ−1(L)Θ(L)Xn. (52)

In view of (52) we deduce
∂εn(β0)

∂βi
=

∞∑
`=1

d′`εn−`(β0), (53)

where the sequence of matrices d` = d`(i) is such that ‖d`‖ → 0 at a geometric rate as `→∞

(see for instance (Francq et al., 2011, Lemma 7.11)). Using (53), the ν−th component of

∂εn(β0)/∂βi is of the form:

∂

∂βi
εnT+ν(β0) =

∞∑
`=1

T∑
j=1

d′`(ν, j)εnT+ν−`(β0) (54)

where |d′`(ν, j)| = |d′`(i, ν, j)| ≤ Kτ ` uniformly in (i, ν, j) ∈ {1, . . . , s0} × {1, . . . , T}2 and τ is

a constant belonging to [0, 1) with K > 0. In view of (54) it yields that

εnT+ν

∑
`≥1

 m∑
i=1

s0∑
k=1

ciδi,k(ν)

T∑
j=1

d′`(ν, j)εnT+ν−`ω
−2
ν

 εnT+ν−` +

m∑
`=1

c`εnT+ν−`

 = 0, a.s.

Or equivalently,

εnT+ν


m∑
`=1

 m∑
i=1

s0∑
k=1

ciδi,k(ν)

T∑
j=1

d′`(ν, j)ω
−2
ν + c`

 εnT+ν−`

+
∑

`≥m+1

 m∑
i=1

s0∑
k=1

ciδi,k(ν)

T∑
j=1

d′`(ν, j)ω
−2
ν

 εnT+ν−`

 = 0, a.s.

Thanks to Assumption (A5), (εn)n∈Z has a positive density in some neighborhood of zero

and then εnT+ν 6= 0 almost-surely. Hence we obtain

m∑
`=1

 m∑
i=1

s0∑
k=1

ci

T∑
ν=1

δi,k(ν)
T∑
j=1

d′`(ν, j)ω
−2
ν + c`

 εnT+ν−`

+
∑

`≥m+1

 m∑
i=1

s0∑
k=1

ci

T∑
ν=1

δi,k(ν)

T∑
j=1

d′`(ν, j)ω
−2
ν

 εnT+ν−` = 0, a.s.
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Since the variance of the linear periodic innovation process in not equal to zero, we deduce

that 
∑m

i=1

∑s0
k=1 ciδi,k(ν)

∑T
j=1 d

′
`(ν, j)ω

−2
ν + c` = 0 for all ` ∈ {1, . . . ,m}

∑m
i=1

∑s0
k=1 ciδi,k(ν)

∑T
j=1 d

′
`(ν, j)ω

−2
ν = 0 for all ` ∈ {m+ 1, . . . } .

Then we would have c1 = · · · = cm = 0 which is impossible. Thus we have a contradiction

and the matrix Cm(ν, ν) ∈ Rm×m is non singular.

The proof of the matrix CmT ∈ RmT×mT follows the same lines that of Cm(ν, ν). �

The proofs of Theorems 3.4 and 3.5 are similar to that given by Boubacar Maïnassara and

Saussereau (2018) in the weak ARMA case.

A.4. Proof of Theorem 3.4

We recall that the Skorokhod space D`[0,1] is the set of R`−valued functions on [0,1] which are

right-continuous and has left limits everywhere. It is endowed with the Skorokhod topology

and the weak convergence on D`[0,1] is mentioned by
D`−→.

The proof is divided in two steps.

A.4.1. Functional central limit theorem for (Λ(ν)WnT+ν)n∈Z

In view of (26) and (29) we deduce that

√
Nγ̂m(ν) =

√
Nγm(ν) +

√
NΨm(ν)

(
β̂LS − β0

)
+ oP(1)

=
1√
N

N−1∑
n=0

W2,nT+ν + Ψm(ν)

(
1√
N

N−1∑
n=0

W1,nT+ν + oP(1)

)
+ oP(1)

=
1√
N

N−1∑
n=0

Λ(ν)WnT+ν + oP(1). (55)

Now it is clear that the asymptotic behaviour of γ̂m(ν) is related to the limit distribution

of (WnT+ν)n∈Z = (W
′
1,nT+ν ,W

′
2,nT+ν)

′
n∈Z. Our �rst goal is to show that there exists a lower

triangular matrix Π(ν) with nonnegative diagonal entries such that

1√
N

bNrc−1∑
n=0

Λ(ν)WnT+ν
Dm−→

N→∞

(
Π(ν)Π

′
(ν)
)1/2

Bm(r), (56)
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where (Bm(r))r≥0 is a m−dimensional standard Brownian motion. Let t = nT + ν and using

(54), Wt can be rewritten as

Wt =

−

∞∑
`=1

T∑
j=1

d′`(1, ν, j)εtεt−i, . . . ,

∞∑
`=1

T∑
j=1

d′`(s0, ν, j)εtεt−i


′

J(β0, ω
2)−1′ , εtεt−1, . . . , εtεt−m


′

.

The non-correlation between εt's implies that the process (Wt)t of Rs0+m is centered. In

order to apply the functional central limit theorem for strongly mixing process (see Herrndorf

(1984)), we need to identify the asymptotic covariance matrix in the classical central limit

theorem for the sequence (Wt)t. It is proved in Proposition 2 that

1√
N

N−1∑
n=0

WnT+ν
in law−−−−→
N→∞

N (0,Ξ(ν) := 2πfW (0)) ,

where fW (0) is the spectral density of the stationary process (WnT+ν)n∈Z evaluated at fre-

quency 0. The existence of the matrix Ξ(ν) is a consequence of Assumption (A4) and of

Davydov's inequality (see Davydov (1968)). Since the matrix Ξ(ν) is positive de�nite it can

be factorized as Ξ(ν) = Υ(ν)Υ
′
(ν), where the (s0 + m) × (s0 + m) lower triangular matrix

Υ(ν) has nonnegative diagonal entries. Therefore we have

1√
N

N−1∑
n=0

Λ(ν)WnT+ν
in law−−−→
n→∞

N
(

0,Λ(ν)Ξ(ν)Λ
′
(ν)
)
,

and the new variance matrix can also been factorized as

Λ(ν)Ξ(ν)Λ
′
(ν) = (Λ(ν)Υ(ν))(Λ(ν)Υ(ν))

′
:= Π(ν)Π

′
(ν),

where Π(ν) ∈ Rm×s0 . Thus

1√
N

N−1∑
n=0

(Π(ν)Π
′
(ν))−1/2Λ(ν)WnT+ν

in law−→
N→∞

N (0, Im),

where (Π(ν)Π
′
(ν))−1/2 is the Moore-Penrose inverse (see Magnus and Neudecker (1999), p.

36) of (Π(ν)Π
′
(ν))1/2.

Using the same arguments as in the proof of Theorem 2 in Francq et al. (2011) the asymp-

totic distribution of N−1/2
∑N−1

n=0 WnT+ν when N tends to in�nity is obtained by introducing

the random vector W k
t := W k

nT+ν de�ned for any strictly positive integer k by

W k
t =

−


k∑
`=1

T∑
j=1

d′`(1, ν, j)εtεt−i, . . . ,
k∑
`=1

T∑
j=1

d′`(s0, ν, j)εtεt−i


′

J(β0, ω
2)−1′ , εtεt−1, . . . , εtεt−m


′

.
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Since W k
nT+ν depends on a �nite number of values of the periodic noise process (εnT+ν)n∈Z. It

also satis�es a mixing property (see Theorem 14.1 in Davidson (1994), p. 210). Then apply-

ing the central limit theorem for strongly mixing process of Herrndorf (1984) shows that its

asymptotic distribution is normal with zero mean and variance matrix Ξk(ν, ν) that converges

when k tends to in�nity to Ξ(ν). More precisely we have

1√
N

N−1∑
n=0

W k
nT+ν

in law−−−−→
N→∞

N (0,Ξk(ν)) .

The above arguments also apply to matrix Ξk(ν) with some matrix Πk(ν) which is de�ned

analogously as Π(ν). Consequently we obtain

1√
N

N−1∑
n=0

Λ(ν)W k
nT+ν

in law−−−→
n→∞

N
(

0,Λ(ν)Ξk(ν)Λ
′
(ν)
)

and we also have N−1/2
∑N−1

n=0 (Πk(ν)Π
′
k(ν))−1/2Λ(ν)W k

nT+ν
in law−−−−→
N→∞

N (0, Im).

Now we are able to apply the functional central limit theorem (see Herrndorf (1984)) and

we obtain that

1√
N

bNrc−1∑
n=0

(Πk(ν)Π
′
k(ν))−1/2Λ(ν)W k

nT+ν
Dm−→

N→∞
Bm(r).

Since for all n ∈ {0, . . . , bnrc − 1} we write

(Π(ν)Π
′
(ν))−1/2Λ(ν)W k

nT+ν =
(

(Π(ν)Π
′
(ν))−1/2 − (Πk(ν)Π

′
k(ν))−1/2

)
Λ(ν)W k

nT+ν

+ (Πk(ν)Π
′
k(ν))−1/2Λ(ν)W k

nT+ν ,

we obtain the following weak convergence on Dm [0, 1]:

1√
N

bNrc−1∑
n=0

(Π(ν)Π
′
(ν))−1/2Λ(ν)W k

nT+ν
Dm−→

N→∞
Bm(r).

In order to conclude that (56) is true, it remains to observe that uniformly with respect to

N

Y k
N (r) :=

1√
N

bNrc−1∑
n=0

(Π(ν)Π
′
(ν))−1/2Λ(ν)ZknT+ν

Dm−→
k→∞

0, (57)

where the random vector Zkt := ZknT+ν is de�ned by

Zkt =

−


∞∑
`=k+1

T∑
j=1

d′`(1, ν, j)εtεt−i, . . . ,
∞∑

`=k+1

T∑
j=1

d′`(s0, ν, j)εtεt−i


′

J(β0, ω
2)−1′ , εtεt−1, . . . , εtεt−m


′

.
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Using the same arguments as those used in the proof of Theorem 2 in Francq et al. (2011) we

obtain

sup
N

Var

(
1√
N

N−1∑
n=0

ZknT+ν

)
−→
k→∞

0

and since bNrc ≤ N we have

sup
0≤r≤1

sup
N

{∥∥∥Y k
N (r)

∥∥∥} −→
k→∞

0.

Thus (57) is true and the proof of (56) is achieved.

A.4.2. Limit theorem

To conclude the prove of Theorem 3.4, we follow the arguments developed in Boubacar Maï-

nassara and Saussereau (2018). Note that the previous step ensures us that Assumption 1 in

Lobato (2001) is satis�ed for the sequence (Λ(ν)WnT+ν)n≥0. Firstly from (56) we deduce that

1√
N
SbNrc(ν) =

1√
N

bNrc−1∑
n=0

Λ(ν)WnT+ν −
bNrc
N

(
1√
N

N−1∑
n=0

Λ(ν)WnT+ν

)
Dm−→

N→∞
(Π(ν)Π

′
(ν))1/2Bm(r)− r(Π(ν)Π

′
(ν))1/2Bm(1). (58)

Observe now that the continuous mapping theorem implies

Cm(ν, ν) =
1

N

N−1∑
n=0

(
1√
N
Sn

)(
1√
N
Sn

)′
Dm−→

N→∞
(Π(ν)Π

′
(ν))1/2

[∫ 1

0
{Bm(r)− rBm(1)} {Bm(r)− rBm(1)}

′
dr

]
(Π(ν)Π

′
(ν))1/2

= (Π(ν)Π
′
(ν))1/2Vm(Π(ν)Π

′
(ν))1/2.

Using (55), (58) and again the continuous mapping theorem on the Skorokhod space, one

�nally obtains

Nγ̂
′
m(ν)C−1

m (ν, ν)γ̂m(ν)
Dm−→

N→∞

{
(Π(ν)Π

′
(ν))1/2Bm(1)

}′ {
(Π(ν)Π

′
(ν))1/2Vm(Π(ν)Π

′
(ν))1/2

}−1

×
{

(Π(ν)Π
′
(ν))1/2Bm(1)

}
= B

′
m(1)V −1

m Bm(1) := Um.
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Consequently from (48) it follows that

Nρ̂
′
m(ν)Dm(ν)C−1

m (ν, ν)Dm(ν)ρ̂m(ν)
Dm−→

N→∞
Um,

which completes the proof of the convergence of
√
Nρ̂m(ν).

The proof of the convergence of
√
Nρ̂mT follows the same lines that of

√
Nρ̂m(ν) which

completes the proof of Theorem 3.4. �

A.5. Proof of Theorem 3.5

We write Ĉm(ν, ν) = Cm(ν, ν) + ΥN (ν, ν) where ΥN (ν, ν) = N−2
∑N−1

n=0

(
Sn(ν)S′n(ν) −

Ŝn(ν)Ŝ′n(ν)
)
. Now observe that there are three kinds of entries in the matrix ΥN . The �rst

one is a sum composed of

υk,k
′

nT+ν = ε2nT+ν(β0)εnT+ν−k(β0)εnT+ν−k′(β0)− e2
nT+ν(β̂ls)enT+ν−k(β̂ls)enT+ν−k′(β̂ls)

for (k, k′) ∈ {1, . . . ,m}2. By (Francq et al., 2011, Lemma 7.11) and the consistency of β̂ls, we

have υk,k
′

nT+ν = oP(1) almost surely. The two last kinds of entries of ΥN (ν, ν) come from the

following quantities for i, j ∈ {1, . . . , s0} and k ∈ {1, . . . ,m}

υ̃k,inT+ν = ε2nT+ν(β0)εnT+ν−k(β0)
∂εnT+ν(β0)

∂βi
− e2

nT+ν(β̂ls)enT+ν−k(β̂ls)
∂enT+ν(β̂ls)

∂βi
,

ῡi,jnT+ν = ε2nT+ν(β0)
∂εnT+ν(β0)

∂βi

∂εnT+ν(β0)

∂βj
− e2

nT+ν(β̂ls)
∂enT+ν(β̂ls)

∂βi

∂enT+ν(β̂ls)

∂βj

and they also satisfy υ̃k,inT+ν + ῡi,jnT+ν = oP(1) almost surely. Consequently, ΥN (ν, ν) = oP(1)

almost surely as N goes to in�nity. Thus one may �nd a matrix Υ∗N (ν, ν), that tends to the

null matrix almost surely, such that

N γ̂′m(ν)Ĉ−1
m (ν, ν)γ̂m(ν) = N γ̂′m(ν)(Cm(ν, ν) + ΥN (ν, ν))−1γ̂m(ν)

= N γ̂′m(ν)C−1
m (ν, ν)γ̂m(ν) +N γ̂′m(ν)Υ∗N (ν, ν)γ̂m(ν) .

Thanks to the arguments developed in the proof of Theorem 3.4, Nγ̂′m(ν)γ̂m converges in

distribution. So Nγ̂′m(ν)Υ∗N (ν, ν)γ̂m(ν) tends to zero in distribution, hence in probability.

Then Nγ̂′m(ν)Ĉ−1
m (ν, ν)γ̂m(ν) and Nγ̂′m(ν)C−1

m (ν, ν)γ̂m(ν) have the same limit in distribution

and the result is proved.
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Turning to the global normalization matrix we write ĈmT = CmT + ΥN where ΥN =

N−2
∑N−1

n=0

(
SnS

′
n − ŜnŜ′n

)
. The proof of the convergence of ĈmT to CmT follows the same

lines that of of Ĉm(ν, ν) to Cm(ν, ν) which completes the proof of Theorem 3.5. �

Appendix B: Example of explicit calculation of Ω(α0, σ
2) and ∇ρ̂m(ν, ν)

The results of the previous Sections 2, 3 and 3.2 are particularized in the PARMA2(1, 0) and

PARMA2(0, 1) cases. First we consider the case of a PARMA2(1, 0) model of the form X2n+1 = φ(1)X2n + ε2n+1

X2n+2 = φ(2)X2n+1 + ε2n+2

, (59)

where the unknown parameter is α0 = (φ(1), φ(2))′. For simpli�cation, we assume that in (59)

the innovation process (εt)t∈Z = (ε2n+ν)n∈Z is the GARCH(1, 1) process given by the model εt = σtηt

σ2
t = ω + a1ε

2
t−1 + b1σ

2
t−1,

(60)

with ω > 0, a1 ≥ 0, b1 ≥ 0 and where (ηt)t∈Z is a sequence of iid centered Gaussian random

variables with variance 1. We also assume that in (60): a2
1κη+b21+2a1b1 < 1,1 where κη := Eη4

1

and we assume that κη > 1.

For the sake of simplicity we assume that the variables (ηt)t∈Z involved in (60) have a

symmetric distribution. More precisely, we have the following symmetry assumption

E[εt1εt2εt3εt4 ] = 0 when t1 6= t2, t1 6= t3 and t1 6= t4, (61)

made in Francq and Zakoïan (2009), Boubacar Mainassara et al. (2012). For this particular

GARCH(1, 1) model with fourth-order moments and symmetric innovations satisfying (61), it

can be shown that

E [εtεt−`εt−hεt−h−`′ ] =

 E
[
ε2t ε

2
t−`
]

if h = 0 and ` = `′

0 otherwise.
(62)

1This is a necessary and su�cient condition for the existence of a nonanticipative stationary solution process

(εt)t∈Z with fourth-order moments (see (Francq and Zakoïan, 2019, Example 2.3)).
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Now we need to compute the autocovariance structure of (ε2t )t∈Z. We will use the fact that the

GARCH process (εt)t∈Z is fourth-order stationary, then (ε2t )t∈Z is a solution of the following

ARMA(1, 1) model

ε2t = ω + (a1 + b1)ε2t−1 + vt − b1vt−1, t ∈ Z (63)

where vt = ε2t − σ2
t is the innovation of (ε2t )t∈Z. From (63) the autocovariances of (ε2t )t∈Z take

the form

γε2(`) := Cov(ε2t , ε
2
t−`) = γε2(1)(a1 + b1)`−1, ` ≥ 1, (64)

where

γε2(1) =
(κη − 1)(a1 − a1b

2
1 − a2

1b1)

1− b21 − 2a1b1 − a2
1κη

σ4, γε2(0) :=
(κη − 1)(1− b21 − 2a1b1)

1− b21 − 2a1b1 − a2
1κη

σ4,

and σ2 := Eε2t =
ω

1− a1 − b1
.

From (62) and (64) we deduce that for any ` ≥ 1

Γ(`, `) = E
[
ε2t ε

2
t−`
]

= Cov(ε2t , ε
2
t−`) + E

[
ε2t
]
E
[
ε2t−`

]
=

{
1 +

1

σ4
γε2(1)(a1 + b1)`−1

}
σ4. (65)

B.1. Example of analytic computation of Ω(α0, σ
2)

In view of Remark 2, the asymptotic covariance matrix of the QLS estimators obtained under

independent errors is generally di�erent from the one obtained under uncorrelated but depen-

dent errors when I(α0, σ
2) 6= J(α0, σ

2). Here, we give explicit expressions for the asymptotic

covariance of the QLS estimator of a weak PAR2(1) model (59). For that sake, we need the

following additional expressions. From (7) and using (A1) we deduce that: X2n+1 = ε2n+1 + 1
φ(2)

∑
i≥1 φ

i(1)φi(2)ε2(n−i)+2

X2n+2 = φ(2)ε2n+1 +
∑

i≥0 φ
i(1)φi(2)ε2(n−i)+2

, (66)

It is classical that the noise derivatives in (59) can be represented as

∂ε2n+ν(α0)

∂α
=

∂ε2n+1

∂φ(1)
∂ε2n+1

∂φ(2)

∂ε2n+2

∂φ(1)
∂ε2n+2

∂φ(2)

 =

−X2n 0

0 −X2n+1

 . (67)
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We compute the information matrices J(α0, σ
2) and I(α0, σ

2) by using (66) and (67). Then

we have

J(α0, σ
2) =

1

1− φ2(1)φ2(2)

φ2(2)[1− φ2(1)φ2(2)] + 1 0

0 1− φ2(1)φ2(2) + φ2(1)

 . (68)

A simple calculation implies that

J−1(α0, σ
2) =

 1−φ2(1)φ2(2)
φ2(2)[1−φ2(1)φ2(2)]+1

0

0 1−φ2(1)φ2(2)
1−φ2(1)φ2(2)+φ2(1)

 . (69)

We now investigate a similar tractable expression for I(α0, σ
2). Using (67) and (61) we have

I(α0, σ
2) = J(α0, σ

2) +
(κη − 1)(a1 − a1b

2
1 − a2

1b1)

1− b21 − 2a1b1 − a2
1κη

Ĩ(α0, σ
2), (70)

where

Ĩ(α0, σ
2) =

φ2(2)[1−φ2(1)φ2(2)(a1+b1)2](a1+b1)+1
1−φ2(1)φ2(2)(a1+b1)2

0

0 1−φ2(1)φ2(2)(a1+b1)2+φ2(1)(a1+b1)
1−φ2(1)φ2(2)(a1+b1)2

 .

Note that when a1 = b1 = 0 in (70) we retrieve the well know result: I(α0, σ
2) = J(α0, σ

2)

obtained in the strong PARMA case (see Remark 2). Direct computation of (68) and (70)

lead to the following asymptotic covariance matrix of the QLS estimators of
√
N(φ̂(1), φ̂(1))′:

Ω(α0, σ
2) = J−1(α0, σ

2) +
(κη − 1)(a1 − a1b

2
1 − a2

1b1)

1− b21 − 2a1b1 − a2
1κη

J−1(α0, σ
2)Ĩ(α0, σ

2)J−1(α0, σ
2). (71)

It is obvious that (71) can be quite di�erent from the asymptotic covariance matrix (69)

corresponding to a strong PARMA model (see also Remark 2).

B.2. Example of analytic and numerical computations of ∇ρ̂m(ν, ν)

As mentioned before, the subject of this subsection is to give an explicit expression of the

asymptotic variance of residual autocorrelations ∇ρ̂m(ν, ν) de�ned in (32) in this particular

case of model (59). Using (65) and under the symmetry assumption (61), the matrix Σγm(ν)

takes the simple following diagonal form

Σγm(ν) = σ4Im + σ4 (κη − 1)(a1 − a1b
2
1 − a2

1b1)

1− b21 − 2a1b1 − a2
1κη

diag(1, (a1 + b1), . . . , (a1 + b1)m−1). (72)
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In the sequel we consider m = 4. The matrix de�ned in (25) can be rewritten as

Ψ4(2) = −σ2

0 0 0 0

1 φ(1) 0 φ2(1)φ(2)

′ and Ψ4(1) = −σ2

1 φ(2) φ(1)φ(2) 0

0 0 0 0

′ .
(73)

Using (61), (66), (67) and (69), the matrix Σ′α̂,γ4(ν) is given by

Σ′α̂,γ4(ν) =
1− φ2(1)φ2(2)

σ2



Σγ4(ν)(1,1)

φ2(2)[1−φ2(1)φ2(2)]+1

Σγ4(ν)(1,1)

1−φ2(1)φ2(2)+φ2(1)

φ(2)Σγ4(ν)(2,2)

φ2(2)[1−φ2(1)φ2(2)]+1

φ(1)Σγ4(ν)(2,2)

1−φ2(1)φ2(2)+φ2(1)

φ(1)φ(2)Σγ4(ν)(3,3)

φ2(2)[1−φ2(1)φ2(2)]+1 0

0
φ2(1)φ(2)Σγ4(ν)(4,4)

1−φ2(1)φ2(2)+φ2(1)

 , (74)

where for any 1 ≤ i, j ≤ 4, Σγ4(ν)(i, j) is given by (72).

From Remark 6 when m is large, in the strong PARMA case the asymptotic variance of

residual autocorrelations takes a simpler form

∇S
ρ̂4(ν, ν) ' I4 −D−1

4 (ν)Ψ4(ν)J(α0, ω
2)−1Ψ

′
4(ν)D−1

4 (ν).

More precisely, we have

∇S
ρ̂4(1, 1) = I4 −

1− φ2(1)φ2(2)

φ2(2)[1− φ2(1)φ2(2)] + 1
R1 and ∇S

ρ̂4(2, 2) = I4 −
1− φ2(1)φ2(2)

1− φ2(1)φ2(2) + φ2(1)
R2,

where

R1 =



1 φ(2) φ(1)φ(2) 0

φ(2) φ2(2) φ(1)φ2(2) 0

φ(1)φ(2) φ(1)φ2(2) φ2(1)φ2(2) 0

0 0 0 0


and R2 =



1 φ(1) 0 φ2(1)φ(2)

φ(1) φ2(1) 0 φ3(1)φ(2)

0 0 0 0

φ2(1)φ(2) φ3(1)φ(2) 0 φ4(1)φ2(2))


.

From the above explicit expressions we deduce that the asymptotic variance of residual auto-

correlations for this model is in the form

∇ρ̂4(1, 1) = ∇S
ρ̂4(1, 1) +

(κη − 1)(a1 − a1b
2
1 − a2

1b1)

1− b21 − 2a1b1 − a2
1κη

[
(a1 + b1)i−11{i=j}

− 1− φ2(1)φ2(2)

φ2(2)[1− φ2(1)φ2(2)] + 1
R1(i, j)

{
(a1 + b1)i−1 + (a1 + b1)j−1

}
+R1(i, j)

{
1− φ2(1)φ2(2)

φ2(2)[1− φ2(1)φ2(2)] + 1

}2
φ2(2)[1− φ2(1)φ2(2)(a1 + b1)2](a1 + b1) + 1

1− φ2(1)φ2(2)(a1 + b1)2

]
1≤i,j≤4

,
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∇ρ̂4(2, 2) = ∇S
ρ̂4(2, 2) +

(κη − 1)(a1 − a1b
2
1 − a2

1b1)

1− b21 − 2a1b1 − a2
1κη

[
(a1 + b1)i−11{i=j}

− 1− φ2(1)φ2(2)

1− φ2(1)φ2(2) + φ2(1)
R2(i, j)

{
(a1 + b1)i−1 + (a1 + b1)j−1

}
+R2(i, j)

{
1− φ2(1)φ2(2)

1− φ2(1)φ2(2) + φ2(1)

}2
1− φ2(1)φ2(2)(a1 + b1)2 + φ2(1)(a1 + b1)

1− φ2(1)φ2(2)(a1 + b1)2

]
1≤i,j≤4

,

For instance when b1 = 0, κη = 3, ω = 1, φ(1) = −0.55 and φ(2) = 0.75 we have

ν α0 ∇ρ̂4 (ν, ν) ξν4 = (ξν1,4, ξ
ν
2,4, ξ

ν
3,4, ξ

ν
4,4) Zν4 (ξν4 )

ν = 1 a1 = 0


0.43 −0.42 0.23 0

−0.42 0.68 0.18 0

0.23 0.18 0.90 0

0.00 0.00 0.00 1

 (1.00, 1.00, 1.00, 0.02) χ2
1+χ

2
1+ χ2

1+ 0.02χ2
1

ν = 2 a1 = 0


0.27 0.40 0 −0.17

0.40 0.78 0 0.09

0.00 0.00 1 0.00

−0.17 0.09 0 0.96

 (1.00, 1.00, 1.00, 0.01) χ2
1+χ

2
1+ χ2

1+ 0.02χ2
1

ν = 1 a1 = 0.55


4.06 −4.35 1.71 0.00

−4.35 5.98 0.34 0.00

1.71 0.34 4.69 0.00

0.00 0.00 0.00 2.98

 (9.61, 5.08, 2.98, 0.04) 9.61χ2
1+ 5.08χ2

1+ 2.98χ2
1+ 0.04χ2

1

ν = 2 a1 = 0.55


2.24 3.70 0.0 −0.77

3.70 6.69 0.0 −0.07

0.00 0.00 4.6 0.00

−0.77 −0.07 0.0 3.18

 (8.82, 4.60, 3.27, 0.01) 8.82χ2
1+4.60χ

2
1+ 3.27χ2

1+ 0.01χ2
1

It is clear that for a1 = 0.55, the McLeod (1994, 1995) approximation by a χ2
3 distribution will

be disastrous. The eigenvalues ξν4 can be very di�erent from those of strong PARMA models

which are close to 1 or 0 when the lag m is large enough (see Remark 6).

The same result holds for PARMA2(0, 1) model with φ(ν) replaced by θ(ν) in α0.

Appendix C: Additional Monte Carlo experiments and real datasets

C.1. Empirical size

Secondly a weak noise de�ned by a following PGARCH(1, 1) is also considered: ε2n+ν =
√
h2n+νη2n+ν

h2n+ν = ω(ν) + a(ν)ε22n+ν−1 + b(ν)h2n+ν−1, ν = 1, 2
(75)
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with (ω(1), ω(2)) = (0.2, 0.4), (a(1), a(2)) = (0.1, 0.15) and (b(1), b(2)) = (0.83, 0.82) and

where (η2n+ν)n∈Z is a sequence of iid centered Gaussian random variables with variance 1.

When the relative rejection frequencies are outside the signi�cant limits with probability

95% (resp. 99%), they are displayed in bold (resp. underlined) type in Tables 5, 6, 7,. . . , 11.

We now repeat the same experiment on Model (44) by assuming that the innovation process

(ε2n+ν)n follows �rst (45) and secondly (75).

Table 5 displays relative frequencies (in %) of rejection of the null hypothesis (H0) that the

DGP follows two weak periodic white noises i.e. the weak PARMA2(1, 1) given by (44)�(75)

with α0 = (0, 0, 0, 0)′. As expected the observed relative rejection frequencies of the standard

tests are de�nitely outside the signi�cant limits. Thus the standard tests reject very often

the true weak periodic noise (see Table 5). By contrast, the error of �rst kind is globally

well controlled by the proposed tests when N increases. We draw the conclusion that for this

particular weak PARMA model the proposed tests are clearly preferable to the standard ones.

Table 6 (resp. Table 9) displays relative frequencies (in %) of rejection (over the 1,000

replications) of the null hypothesis (H0) that the DGP follows a strong PARMA2(1, 1) given

by (44) with the parameter α0 = (0.8, 0.9, 0, 0)′ (resp. α0 = (0.8, 0.9,−0.5,−0.45)′). Note

that the empirical size is not available (n.a.) for the standard BP and LBM tests because

these tests are not applicable to m = 1 (see Table 6) and m ≤ 2 (see Table 9). As expected

the observed relative rejection frequency of the standard tests is very far from the nominal

α = 5% for small m when α0 6= (0, 0, 0, 0)′. The results are worse for N = 2, 000 than for

N = 400. This is in accordance with the results in the literature on the strong PARMA

models. The theory that the asymptotic distributions of (22) and (23), namely, χ2
m−(p+q) and

χ2
2m−2(p+q) approximations are better for largerm is con�rmed. In contrast, the proposed tests

well control the error of �rst kind, even when m is small. From these examples we draw the

conclusion that the proposed versions are preferable to the standard ones, when the number

m of autocorrelations used is small.

Tables 7 and 8 (resp. Tables 10 and 11) display relative frequencies (in %) of rejection

(over the 1,000 replications) of the null hypothesis (H0) that the DGP follows two weak

PARMA2(1, 1) given by (44)�(45) (resp. (44)�(75)) with the parameter α0 = (0.8, 0.9, 0, 0)′
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(resp. α0 = (0.8, 0.9,−0.5,−0.45)′). Note also that the empirical size is not available (n.a.)

for the standard BP and LBM tests because these tests are not applicable to m = 1 (see

Tables 7 and 8) and m ≤ 2 (see Tables 10 and 11). As expected, Tables 7, 8, 10 and 11

show that the standard tests poorly perform to assess the adequacy of these weak PARMA

models. The observed relative rejection frequencies of the standard tests are de�nitely outside

the signi�cant limits. Thus the standard tests reject very often the true weak PARMA2(1, 1)

models (see Tables 7 and 8, Tables 10 and 11). By contrast, the error of �rst kind is globally

well controlled by the proposed tests when N increases. We draw the conclusion that for these

particular weak PARMA models the proposed tests are clearly preferable to the standard ones.
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Table 5

Empirical size of the standard and proposed tests: relative frequencies (in %) of rejection of a weak
PARMA2(1, 1) given by (44) with the parameter α0 = (0, 0, 0, 0)′ and where the innovation εt ∼ (75).
When the relative rejection frequencies are outside the signi�cant limits with probability 95% (resp.

99%), they are displayed in bold (resp. underlined) type.

Length N Tests Lag m

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) 12.6 13.8 15.7 17.1 16.9 18.2 18.7 19.2 20.1 19.0 18.7 19.5

BPs(2) 9.6 12.1 12.7 15.1 14.9 15.1 15.3 15.8 16.5 17.1 16.6 16.3

LBMs(1) 12.6 14.0 15.7 17.3 17.2 18.5 18.9 19.4 20.4 19.6 19.2 20.1

LBMs(2) 9.6 12.2 12.7 15.1 15.4 15.4 15.5 16.4 16.8 17.7 17.2 16.8

BPw(1) 5.1 4.4 3.7 3.3 3.5 3.1 3.3 3.4 2.6 2.9 3.2 3.0

BPw(2) 3.4 3.5 2.7 2.7 2.7 3.1 3.2 3.1 2.5 2.6 2.4 2.4

LBMw(1) 5.1 4.4 3.7 3.3 3.5 3.3 3.4 3.6 3.0 2.9 3.4 3.2

LBMw(2) 3.4 3.5 2.8 2.8 2.7 3.2 3.2 3.2 2.6 2.7 2.7 2.5

N = 400 BPsn(1) 4.6 3.4 3.8 3.4 3.1 2.4 2.5 2.2 2.0 1.1 1.5 1.4

BPsn(2) 2.8 2.9 2.7 3.5 2.1 2.2 2.6 2.1 1.5 1.4 1.4 1.4

LBMsn(1) 4.6 3.4 3.9 3.4 3.1 2.5 2.6 2.2 2.0 1.1 1.5 1.4

LBMsn(2) 2.8 2.9 2.8 3.6 2.1 2.2 2.6 2.1 1.6 1.5 1.4 1.6

BPs 13.6 15.9 20.0 20.9 23.6 23.9 24.7 25.9 26.8 26.4 25.9 25.6

LBMs 13.6 16.0 20.4 21.2 23.8 24.3 25.0 26.3 27.5 27.2 26.7 26.7

BPw 3.4 2.8 2.0 2.5 2.5 2.4 2.0 2.5 2.3 2.2 2.3 1.8

LBMw 3.4 2.8 2.2 2.5 2.5 2.7 2.1 2.5 2.3 2.3 2.3 2.0

BPsn 3.3 3.2 2.8 1.4 0.9 1.2 0.7 0.8 0.6 0.6 0.6 0.3

LBMsn 3.3 3.2 2.8 1.4 0.9 1.2 0.7 0.8 0.6 0.6 0.6 0.3

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) 15.5 17.7 19.3 21.2 23.7 24.4 25.3 26.5 27.3 26.6 27.9 28.4

BPs(2) 13.1 15.6 18.5 19.9 20.4 21.9 22.9 22.0 23.3 22.2 23.9 23.8

LBMs(1) 15.5 17.7 19.3 21.3 23.7 24.5 25.3 26.5 27.3 26.7 28.4 28.6

LBMs(2) 13.1 15.7 18.5 20.0 20.4 21.9 22.9 22.0 23.4 22.6 24.1 23.9

BPw(1) 5.1 5.2 4.5 5.0 4.4 4.0 4.6 4.5 4.7 5.2 4.9 4.0
BPw(2) 5.1 5.3 4.4 3.7 3.7 4.4 4.1 3.9 3.3 3.7 3.5 3.3

LBMw(1) 5.1 5.2 4.5 5.0 4.4 4.0 4.6 4.5 4.7 5.3 5.1 4.0
LBMw(2) 5.1 5.3 4.4 3.8 3.8 4.4 4.1 3.9 3.4 3.8 3.5 3.4

N = 2, 000 BPsn(1) 5.4 5.1 4.5 3.4 4.8 4.7 4.3 4.7 4.1 4.0 3.7 3.2

BPsn(2) 5.8 5.1 4.5 3.6 4.3 3.7 4.5 4.1 3.9 3.8 3.9 3.2

LBMsn(1) 5.4 5.1 4.5 3.5 4.8 4.7 4.3 4.7 4.1 4.0 3.7 3.2

LBMsn(2) 5.8 5.1 4.5 3.6 4.3 3.7 4.5 4.1 3.9 3.9 4.0 3.3

BPs 19.1 21.9 26.1 29.0 30.1 30.7 31.3 34.1 34.7 34.6 36.4 36.5

LBMs 19.1 22.0 26.1 29.0 30.3 30.7 31.6 34.1 35.0 34.8 36.5 36.8

BPw 5.3 5.0 4.2 3.8 3.9 3.9 4.1 4.1 4.0 3.4 3.4 3.9
LBMw 5.3 5.0 4.2 3.8 3.9 3.9 4.2 4.2 4.0 3.4 3.4 4.1
BPsn 6.2 5.0 4.4 4.1 3.7 4.0 3.9 3.8 3.0 1.7 1.3 1.3

LBMsn 6.2 5.0 4.4 4.1 3.7 4.0 3.9 3.8 3.1 1.7 1.4 1.3
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Table 6

Empirical size of the standard and proposed tests: relative frequencies (in %) of rejection of a strong
PARMA2(1, 1) given by (44) with the parameter α0 = (0.8, 0.9, 0, 0)′ and where the innovation

εt ∼ N (0, 1). When the relative rejection frequencies are outside the signi�cant limits with probability
95% (resp. 99%), they are displayed in bold (resp. underlined) type.

Length N Tests Lag m

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. 11.8 9.1 8.5 7.6 7.2 7.5 6.5 6.4 6.8 6.3 6.4
BPs(2) n.a. 8.4 7.0 6.7 6.7 7.0 7.2 7.4 6.6 7.4 6.8 6.9

LBMs(1) n.a. 11.9 9.1 8.8 7.6 7.4 7.7 6.6 6.9 7.0 7.0 6.6

LBMs(2) n.a. 8.5 7.3 6.9 6.8 7.1 7.2 7.5 6.9 7.6 7.2 7.3

BPw(1) 5.5 3.9 3.8 3.1 2.8 2.0 2.5 2.2 1.7 1.9 2.0 1.5

BPw(2) 4.2 4.2 4.4 2.8 2.9 2.3 2.5 2.1 1.5 1.7 1.0 0.9

LBMw(1) 5.5 3.9 3.8 3.1 2.8 2.1 2.6 2.3 1.8 2.0 2.1 1.8

LBMw(2) 4.2 4.5 4.4 3.1 3.1 2.4 2.8 2.3 1.6 2.2 1.4 1.0

N = 400 BPsn(1) 5.4 5.3 5.8 4.9 4.6 5.7 6.0 5.5 5.3 6.1 5.1 5.6
BPsn(2) 4.8 6.0 5.9 5.8 5.6 5.6 5.2 6.1 5.1 5.4 5.9 6.3
LBMsn(1) 5.4 5.4 5.8 4.9 4.6 5.9 6.3 5.6 5.5 6.2 5.3 5.7
LBMsn(2) 4.8 6.0 6.3 5.9 5.6 5.7 5.3 6.1 5.3 5.6 6.2 6.5

BPs n.a. 12.3 9.8 8.8 9.0 8.9 8.5 8.1 8.1 8.5 7.8 8.1

LBMs n.a. 12.4 9.9 9.0 9.1 8.9 8.8 8.6 8.3 8.9 8.6 8.5

BPw 4.4 4.0 3.3 3.4 2.6 1.7 1.4 1.4 1.1 1.1 0.9 0.5

LBMw 4.4 4.1 3.3 3.5 2.6 2.0 1.5 1.4 1.2 1.2 1.0 0.5

BPsn 5.0 5.8 6.4 5.6 5.9 5.9 5.3 5.5 6.0 5.9 4.9 5.0
LBMsn 5.0 5.8 6.4 5.7 6.0 6.3 5.7 5.6 6.1 6.2 5.2 5.3

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. 13.1 9.6 9.7 8.3 7.1 7.5 7.2 7.2 7.7 8.2 8.3

BPs(2) n.a. 9.5 7.3 6.9 6.9 7.0 6.3 6.4 6.4 5.3 4.6 4.5
LBMs(1) n.a. 13.1 9.6 9.7 8.3 7.1 7.7 7.2 7.2 7.7 8.2 8.3

LBMs(2) n.a. 9.5 7.3 6.9 7.0 7.0 6.4 6.4 6.5 5.4 4.8 4.6
BPw(1) 6.5 5.3 4.8 5.0 4.9 4.3 3.9 4.1 4.3 4.6 5.4 5.7
BPw(2) 5.1 5.6 5.8 4.8 5.4 5.2 5.1 4.7 4.3 3.0 3.0 2.9

LBMw(1) 6.5 5.3 4.8 5.0 4.9 4.3 3.9 4.1 4.3 4.6 5.5 5.7
LBMw(2) 5.1 5.6 5.8 4.8 5.4 5.2 5.1 4.8 4.4 3.1 3.0 3.0

N = 2, 000 BPsn(1) 6.1 5.1 5.9 5.6 6.1 6.4 6.1 6.7 6.5 7.0 6.2 6.3
BPsn(2) 5.2 5.5 4.2 5.3 5.7 6.3 6.0 6.0 6.1 6.2 6.4 6.1
LBMsn(1) 6.1 5.1 5.9 5.6 6.1 6.4 6.1 6.7 6.5 7.0 6.2 6.4
LBMsn(2) 5.2 5.5 4.2 5.3 5.7 6.3 6.1 6.0 6.2 6.4 6.4 6.1

BPs n.a. 15.3 10.5 9.8 8.7 8.7 7.6 6.8 7.5 7.2 7.5 8.2

LBMs n.a. 15.3 10.5 9.8 8.9 8.7 7.7 6.9 7.5 7.3 7.5 8.3

BPw 5.9 5.5 4.9 4.8 4.4 4.0 4.2 4.1 3.5 4.0 3.3 4.0
LBMw 5.9 5.5 4.9 4.8 4.4 4.0 4.2 4.1 3.6 4.2 3.4 4.0
BPsn 6.6 5.6 4.5 4.7 5.0 6.0 6.0 6.2 5.3 5.9 6.3 6.5

LBMsn 6.6 5.6 4.5 4.7 5.0 6.0 6.0 6.2 5.3 6.2 6.3 6.5
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Table 7

Empirical size of the standard and proposed tests: relative frequencies (in %) of rejection of a weak
PARMA2(1, 1) given by (44) with the parameter α0 = (0.8, 0.9, 0, 0)′ and where the innovation

εt ∼ (45). When the relative rejection frequencies are outside the signi�cant limits with probability
95% (resp. 99%), they are displayed in bold (resp. underlined) type.

Length N Tests Lag m

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. 18.5 14.5 12.6 12.2 10.8 10.0 9.9 10.8 9.5 8.6 8.5

BPs(2) n.a. 15.9 13.5 9.6 9.8 9.2 9.4 9.3 8.6 8.2 8.9 8.6

LBMs(1) n.a. 18.6 14.5 13.0 12.3 11.0 10.2 10.0 11.1 9.7 8.9 9.1

LBMs(2) n.a. 16.1 13.5 9.7 10.0 9.3 9.4 9.6 8.8 9.2 9.0 8.8

BPw(1) 4.3 3.1 2.5 2.9 2.7 2.1 1.8 1.9 1.4 1.2 1.1 1.0

BPw(2) 3.6 3.5 2.8 2.6 1.9 1.9 2.0 1.3 1.1 1.1 0.8 0.7

LBMw(1) 4.3 3.1 2.5 2.9 2.7 2.2 1.8 1.9 1.4 1.2 1.3 1.0

LBMw(2) 3.6 3.6 2.8 2.7 2.1 1.9 2.2 1.3 1.2 1.2 1.0 1.1

N = 400 BPsn(1) 4.4 3.7 3.8 4.4 3.9 4.2 5.0 4.5 3.9 4.3 3.7 3.5
BPsn(2) 3.5 4.8 6.4 5.4 4.5 5.8 4.7 5.5 5.0 4.0 3.7 4.8
LBMsn(1) 4.4 3.7 3.8 4.5 4.0 4.2 5.2 4.5 3.9 4.7 3.8 3.6
LBMsn(2) 3.5 4.8 6.4 5.4 4.6 5.8 4.7 5.7 5.0 4.4 4.1 5.0

BPs n.a. 24.4 19.1 16.0 14.6 13.6 13.3 13.6 12.4 12.5 11.5 11.1

LBMs n.a. 24.4 19.3 16.1 15.1 14.1 13.3 13.9 13.0 12.9 12.1 11.8

BPw 2.7 2.0 2.0 2.2 1.6 1.1 0.8 0.9 0.7 0.5 0.4 0.4

LBMw 2.7 2.0 2.0 2.2 1.7 1.1 0.8 0.9 0.8 0.5 0.4 0.4

BPsn 4.0 4.4 5.0 4.7 5.3 4.4 3.7 3.9 3.2 2.6 1.4 1.8

LBMsn 4.0 4.5 5.0 4.8 5.5 4.4 4.0 4.0 3.4 2.7 1.6 2.1

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. 23.6 17.3 15.7 15.3 14.4 14.7 14.0 12.7 11.9 11.6 11.3

BPs(2) n.a. 18.4 14.2 12.2 11.3 10.2 8.8 8.9 8.5 7.5 7.5 7.3

LBMs(1) n.a. 23.6 17.4 15.7 15.3 14.4 14.7 14.1 13.0 12.1 11.6 11.3

LBMs(2) n.a. 18.4 14.2 12.2 11.3 10.2 8.8 9.0 8.5 7.5 7.5 7.3

BPw(1) 6.2 5.1 4.2 3.9 4.0 4.6 4.2 3.6 3.7 4.1 3.8 4.0
BPw(2) 5.1 4.9 4.6 4.7 3.5 3.2 3.5 3.5 3.5 2.9 2.6 3.0

LBMw(1) 6.2 5.1 4.2 3.9 4.0 4.6 4.3 3.6 3.8 4.1 3.8 4.1
LBMw(2) 5.1 4.9 4.6 4.7 3.5 3.3 3.5 3.5 3.7 3.0 2.6 3.2

N = 2, 000 BPsn(1) 4.9 4.8 5.3 5.4 5.8 5.5 5.9 5.7 5.4 5.4 5.5 5.3
BPsn(2) 4.8 5.2 4.8 4.6 5.1 6.2 5.0 5.4 5.7 5.7 6.0 5.3
LBMsn(1) 4.9 4.8 5.3 5.4 5.8 5.6 6.0 5.7 5.5 5.5 5.5 5.4
LBMsn(2) 4.8 5.2 4.8 4.6 5.1 6.2 5.1 5.4 5.7 5.8 6.0 5.4

BPs n.a. 30.8 23.4 20.1 17.3 16.3 15.5 14.1 12.5 12.3 11.7 12.1

LBMs n.a. 30.8 23.5 20.2 17.4 16.3 15.6 14.1 12.5 12.4 11.8 12.3

BPw 4.7 4.3 3.6 3.7 3.6 2.9 3.1 2.6 2.8 2.9 3.0 3.4
LBMw 4.7 4.3 3.6 3.8 3.6 2.9 3.1 2.6 2.8 2.9 3.0 3.4
BPsn 5.6 6.2 5.7 5.2 5.6 5.5 5.2 6.1 5.6 5.1 4.9 5.8
LBMsn 5.6 6.2 5.7 5.2 5.6 5.5 5.2 6.2 5.7 5.1 4.9 5.9
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Table 8

Empirical size of the standard and proposed tests: relative frequencies (in %) of rejection of a weak
PARMA2(1, 1) given by (44) with the parameter α0 = (0.8, 0.9, 0, 0)′ and where the innovation

εt ∼ (75). When the relative rejection frequencies are outside the signi�cant limits with probability
95% (resp. 99%), they are displayed in bold (resp. underlined) type.

Length N Tests Lag m

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. 22.2 21.5 21.2 20.4 21.2 21.3 21.0 20.7 20.5 21.4 20.3

BPs(2) n.a. 20.9 18.3 18.3 19.4 19.5 18.4 19.5 19.0 19.0 19.6 18.5

LBMs(1) n.a. 22.2 21.6 21.6 20.5 21.6 21.3 21.8 21.4 20.9 21.7 21.3

LBMs(2) n.a. 20.9 18.3 18.4 19.7 19.8 18.5 19.7 19.3 19.6 20.0 19.2

BPw(1) 5.0 3.1 3.8 2.8 1.9 1.5 1.4 1.3 0.9 0.8 0.6 0.3

BPw(2) 4.1 3.1 2.5 2.1 1.4 0.8 0.8 0.9 0.5 0.4 0.6 0.2

LBMw(1) 5.0 3.2 3.8 3.0 2.1 1.7 1.5 1.4 0.9 1.0 0.8 0.6

LBMw(2) 4.1 3.1 2.5 2.1 1.5 0.8 0.8 1.0 0.7 0.6 0.6 0.2

N = 400 BPsn(1) 4.2 3.7 3.6 3.3 3.4 2.3 2.7 2.7 1.9 1.5 1.7 1.7

BPsn(2) 3.8 3.3 3.3 3.7 2.9 2.4 3.2 2.9 1.8 1.7 1.6 1.7

LBMsn(1) 4.2 3.7 3.6 3.4 3.4 2.4 2.7 2.7 1.9 1.6 1.8 1.8

LBMsn(2) 3.8 3.4 3.3 3.7 2.9 2.5 3.3 3.3 1.8 1.7 1.7 1.8

BPs n.a. 31.4 28.8 28.2 28.4 29.3 28.3 28.5 29.3 28.7 29.4 29.0

LBMs n.a. 31.5 28.9 28.5 28.7 29.8 28.4 29.4 30.3 29.4 30.4 30.1

BPw 3.9 2.2 2.1 1.7 0.6 0.7 0.1 0.4 0.3 0.1 0.1 0.0

LBMw 3.9 2.2 2.2 1.9 0.7 0.7 0.1 0.5 0.3 0.1 0.1 0.0

BPsn 3.1 3.9 2.9 2.4 2.1 1.5 1.0 1.2 0.6 0.5 0.5 0.5

LBMsn 3.1 3.9 2.9 2.4 2.2 1.6 1.0 1.2 0.6 0.6 0.6 0.5

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. 24.4 23.5 25.5 26.8 26.8 27.5 28.2 29.2 28.6 29.6 30.1

BPs(2) n.a. 24.1 24.3 24.7 22.8 23.5 24.3 25.2 25.3 25.3 25.6 25.5

LBMs(1) n.a. 24.6 23.5 25.5 26.9 27.0 27.5 28.2 29.6 28.6 29.7 30.2

LBMs(2) n.a. 24.1 24.3 24.8 22.8 23.6 24.4 25.3 25.3 25.4 25.7 25.5

BPw(1) 4.6 5.3 4.7 3.7 3.7 2.9 3.1 3.2 2.7 3.6 3.3 2.8

BPw(2) 5.4 4.9 4.5 4.0 3.3 3.5 3.0 3.2 2.8 2.3 1.8 1.7

LBMw(1) 4.6 5.3 4.7 3.7 3.7 2.9 3.1 3.2 2.7 3.7 3.3 2.8

LBMw(2) 5.4 4.9 4.5 4.0 3.3 3.6 3.0 3.2 2.8 2.4 1.8 1.7

N = 2, 000 BPsn(1) 5.0 4.8 4.2 4.6 5.0 4.6 4.5 5.1 4.5 3.8 3.9 3.7
BPsn(2) 4.5 4.2 4.5 4.3 4.4 3.9 3.8 4.1 3.6 4.0 3.8 3.0

LBMsn(1) 5.0 4.8 4.2 4.6 5.0 4.6 4.5 5.1 4.5 3.8 3.9 3.7
LBMsn(2) 4.5 4.3 4.5 4.3 4.4 3.9 3.9 4.1 3.7 4.1 3.9 3.1

BPs n.a. 38.2 36.2 37.1 37.3 36.7 36.5 38.7 39.9 39.2 39.5 38.5

LBMs n.a. 38.2 36.4 37.2 37.5 37.0 36.6 38.8 40.0 39.3 39.7 38.6

BPw 5.3 4.7 3.1 2.7 2.8 2.8 2.2 2.3 2.2 1.9 1.8 2.0

LBMw 5.3 4.7 3.1 2.7 2.8 2.8 2.2 2.3 2.2 1.9 1.9 2.0

BPsn 5.6 5.3 4.6 5.0 4.2 3.8 3.9 3.4 2.9 2.2 1.7 1.9

LBMsn 5.6 5.3 4.6 5.0 4.4 3.8 3.9 3.4 2.9 2.2 1.8 1.9
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Table 9

Empirical size of the standard and proposed tests: relative frequencies (in %) of rejection of a strong
PARMA2(1, 1) given by (44) with the parameter α0 = (0.8, 0.9,−0.5,−0.45)′ and where the

innovation εt ∼ N (0, 1). When the relative rejection frequencies are outside the signi�cant limits with
probability 95% (resp. 99%), they are displayed in bold (resp. underlined) type.

Length N Tests Lag m

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. n.a. 17.2 13.3 10.9 10.2 10.0 9.1 9.8 9.3 9.2 8.6

BPs(2) n.a. n.a. 19.9 13.5 12.1 11.3 11.2 10.1 9.8 10.2 10.2 9.4

LBMs(1) n.a. n.a. 17.3 13.4 11.1 10.2 10.1 9.4 10.3 9.9 9.9 9.3

LBMs(2) n.a. n.a. 20.1 13.7 12.3 11.6 11.5 10.3 10.2 10.3 11.0 9.6

BPw(1) 4.1 3.9 3.5 2.8 2.6 2.7 2.7 2.5 2.1 2.8 1.9 1.9

BPw(2) 5.0 5.4 5.2 3.9 3.5 3.1 3.2 2.8 2.0 2.0 1.9 1.6

LBMw(1) 4.1 3.9 3.7 2.8 2.8 2.7 2.7 2.8 2.5 3.1 2.0 2.0

LBMw(2) 5.0 5.4 5.2 3.9 3.6 3.1 3.4 2.9 2.3 2.0 1.9 1.6

N = 400 BPsn(1) 5.3 5.3 4.6 3.9 4.3 5.2 5.1 5.0 5.4 5.3 6.0 6.2
BPsn(2) 6.0 5.6 5.3 5.1 4.6 6.6 5.8 5.6 5.0 5.6 5.1 5.5
LBMsn(1) 5.3 5.3 4.6 3.9 4.3 5.2 5.2 5.2 5.6 5.3 6.3 6.5

LBMsn(2) 6.0 5.7 5.4 5.1 4.7 6.9 6.2 5.8 5.1 5.9 5.3 5.9
BPs n.a. n.a. 26.8 20.3 17.1 16.3 15.8 13.0 12.1 13.3 12.0 11.5

LBMs n.a. n.a. 27.2 20.6 17.5 16.8 16.5 13.5 13.0 14.2 12.6 12.8

BPw 4.8 3.7 3.8 2.8 2.3 1.9 1.8 1.1 1.6 1.5 1.1 0.8

LBMw 4.8 3.7 3.9 3.0 2.3 1.9 1.8 1.2 1.8 1.5 1.2 0.9

BPsn 3.9 3.6 4.9 4.9 5.4 5.9 6.1 6.7 5.8 4.8 5.1 4.5
LBMsn 3.9 3.8 4.9 4.9 5.4 6.0 6.2 6.7 6.0 5.1 5.2 5.0

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. n.a. 17.9 12.1 10.2 8.2 8.0 8.5 7.6 8.1 7.8 8.1

BPs(2) n.a. n.a. 18.3 12.9 11.9 11.2 9.5 10.1 9.2 9.2 8.7 8.2

LBMs(1) n.a. n.a. 18.0 12.1 10.2 8.3 8.0 8.6 7.6 8.2 7.8 8.1

LBMs(2) n.a. n.a. 18.3 13.0 11.9 11.2 9.6 10.1 9.3 9.2 8.9 8.2

BPw(1) 4.3 4.9 4.5 4.7 4.3 3.9 3.8 4.4 3.6 3.7 4.1 5.1
BPw(2) 5.4 5.9 5.3 4.4 4.7 4.6 5.3 4.9 5.0 4.7 3.9 3.0

LBMw(1) 4.3 4.9 4.5 4.7 4.3 3.9 3.8 4.4 3.6 3.7 4.1 5.1
LBMw(2) 5.4 5.9 5.3 4.4 4.7 4.6 5.3 4.9 5.0 4.9 4.0 3.0

N = 2, 000 BPsn(1) 4.7 4.8 5.4 4.2 5.2 5.6 5.7 5.5 5.2 5.2 5.6 5.6
BPsn(2) 5.9 5.0 4.1 5.7 5.5 4.9 5.5 6.1 6.5 6.4 5.9 5.3
LBMsn(1) 4.7 4.8 5.4 4.2 5.2 5.6 5.8 5.5 5.2 5.2 5.9 5.7
LBMsn(2) 5.9 5.0 4.1 5.7 5.5 4.9 5.5 6.1 6.5 6.4 6.1 5.3

BPs n.a. n.a. 26.5 18.3 15.2 13.1 13.4 11.7 9.4 10.2 9.8 8.7

LBMs n.a. n.a. 26.5 18.3 15.2 13.1 13.6 11.7 9.4 10.3 10.0 8.7

BPw 4.6 4.9 4.2 4.3 4.2 4.0 3.6 3.2 3.5 3.6 3.4 3.0

LBMw 4.6 4.9 4.2 4.3 4.2 4.0 3.6 3.3 3.7 3.7 3.4 3.0

BPsn 4.7 5.4 5.4 4.7 4.6 4.7 5.4 5.3 4.9 6.7 6.8 6.5

LBMsn 4.7 5.4 5.4 4.7 4.6 4.8 5.4 5.4 5.0 6.7 6.9 6.5
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Table 10

Empirical size of the standard and proposed tests: relative frequencies (in %) of rejection of a weak
PARMA2(1, 1) given by (44) with the parameter α0 = (0.8, 0.9,−0.5,−0.45)′ and where the

innovation εt ∼ (45). When the relative rejection frequencies are outside the signi�cant limits with
probability 95% (resp. 99%), they are displayed in bold (resp. underlined) type.

Length N Tests Lag m

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. n.a. 24.8 16.9 14.2 11.3 10.1 10.4 10.8 10.4 9.8 9.5

BPs(2) n.a. n.a. 22.5 17.5 13.6 12.4 12.1 12.1 11.1 10.8 10.4 10.3

LBMs(1) n.a. n.a. 24.8 17.2 14.2 11.5 10.2 10.6 11.1 10.7 10.2 9.8

LBMs(2) n.a. n.a. 22.6 17.7 13.8 12.8 12.3 12.3 11.2 11.1 10.9 10.7

BPw(1) 4.6 3.4 3.0 2.8 3.1 2.8 2.0 2.3 2.1 1.7 1.3 0.9

BPw(2) 3.4 3.2 3.5 3.2 2.6 2.6 2.0 1.2 1.2 0.8 1.0 0.8

LBMw(1) 4.6 3.4 3.1 2.8 3.2 2.9 2.1 2.3 2.2 2.0 1.4 1.0

LBMw(2) 3.4 3.2 3.6 3.3 2.6 2.8 2.2 1.5 1.3 0.9 1.1 0.9

N = 400 BPsn(1) 4.5 4.0 4.4 4.1 4.6 4.4 4.6 4.1 4.7 4.4 3.9 3.8
BPsn(2) 4.0 4.5 4.4 5.0 4.8 4.5 5.2 5.5 5.4 4.8 4.1 4.4
LBMsn(1) 4.5 4.0 4.5 4.1 4.7 4.6 4.9 4.3 4.7 4.4 4.1 3.9
LBMsn(2) 4.0 4.6 4.4 5.1 4.9 4.6 5.2 5.7 5.7 5.0 4.2 4.5

BPs n.a. n.a. 35.1 24.7 20.2 17.7 16.6 14.9 15.2 15.0 14.2 13.5

LBMs n.a. n.a. 35.1 24.8 20.3 18.1 16.9 15.4 15.4 15.7 15.0 14.8

BPw 3.4 2.7 2.8 2.5 1.4 1.3 1.2 1.1 0.8 0.5 0.7 0.4

LBMw 3.4 2.7 2.9 2.5 1.5 1.4 1.2 1.1 0.8 0.7 0.7 0.5

BPsn 3.4 4.7 4.0 3.8 3.6 3.9 3.3 3.4 2.8 2.5 1.9 1.5

LBMsn 3.4 4.7 4.0 3.9 3.7 3.9 3.4 3.4 3.0 2.7 2.1 1.8

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. n.a. 28.2 21.3 18.8 16.5 16.6 14.1 13.4 14.4 12.8 12.6

BPs(2) n.a. n.a. 25.8 19.3 15.1 13.3 12.6 10.7 10.2 10.0 8.7 8.2

LBMs(1) n.a. n.a. 28.2 21.3 18.8 16.5 16.6 14.1 13.7 14.4 13.1 12.6

LBMs(2) n.a. n.a. 25.8 19.3 15.1 13.5 12.6 10.7 10.2 10.0 8.7 8.2

BPw(1) 5.0 4.3 4.3 4.6 4.7 4.6 4.4 4.3 4.3 4.1 4.3 4.8
BPw(2) 5.0 5.0 4.3 4.4 3.7 3.8 3.5 3.2 3.5 2.8 3.2 3.5
LBMw(1) 5.0 4.3 4.3 4.6 4.7 4.6 4.4 4.4 4.3 4.3 4.3 4.8
LBMw(2) 5.0 5.1 4.3 4.4 3.8 3.9 3.5 3.2 3.5 2.8 3.2 3.5

N = 2, 000 BPsn(1) 5.5 4.9 5.0 4.3 5.5 5.2 5.5 5.3 5.3 4.9 4.1 5.0
BPsn(2) 5.3 5.1 5.7 5.3 5.3 5.3 5.2 5.7 5.4 5.7 5.8 5.6
LBMsn(1) 5.5 5.0 5.0 4.4 5.5 5.2 5.6 5.3 5.3 5.0 4.1 5.0
LBMsn(2) 5.3 5.1 5.7 5.3 5.3 5.3 5.2 5.7 5.5 5.7 5.8 5.6

BPs n.a. n.a. 40.4 29.1 24.8 22.3 19.7 18.4 16.2 15.1 15.1 14.9

LBMs n.a. n.a. 40.5 29.1 24.9 22.5 19.8 18.5 16.2 15.1 15.1 15.3

BPw 4.8 4.0 3.9 3.9 3.6 2.9 3.1 2.3 2.4 2.9 3.0 3.8
LBMw 4.8 4.0 3.9 3.9 3.7 2.9 3.1 2.4 2.4 2.9 3.0 3.8
BPsn 5.5 4.8 5.0 5.0 5.3 5.1 5.6 5.1 4.6 4.4 4.6 5.0
LBMsn 5.5 4.8 5.0 5.0 5.3 5.1 5.7 5.1 4.6 4.5 4.6 5.0
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Table 11

Empirical size of the standard and proposed tests: relative frequencies (in %) of rejection of a weak
PARMA2(1, 1) given by (44) with the parameter α0 = (0.8, 0.9,−0.5,−0.45)′ and where the

innovation εt ∼ (75). When the relative rejection frequencies are outside the signi�cant limits with
probability 95% (resp. 99%), they are displayed in bold (resp. underlined) type.

Length N Tests Lag m

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. n.a. 35.7 27.8 25.9 25.4 25.1 23.5 23.6 22.6 22.7 23.1

BPs(2) n.a. n.a. 31.3 26.8 23.7 23.4 23.0 21.6 21.1 21.0 21.3 20.2

LBMs(1) n.a. n.a. 35.7 28.2 26.0 25.7 25.4 24.1 23.9 23.0 23.0 23.4

LBMs(2) n.a. n.a. 31.4 26.8 24.3 23.9 23.3 21.9 21.8 21.5 21.8 21.1

BPw(1) 4.0 3.8 3.5 3.1 2.3 2.4 1.5 1.5 1.0 0.9 0.7 0.4

BPw(2) 3.3 2.5 2.1 1.5 1.0 1.0 1.1 0.8 0.6 0.6 0.5 0.3

LBMw(1) 4.0 3.9 3.6 3.1 2.4 2.5 1.6 1.7 1.0 0.9 0.8 0.6

LBMw(2) 3.3 2.5 2.2 1.7 1.2 1.0 1.2 0.9 0.6 0.6 0.6 0.3

N = 400 BPsn(1) 4.0 3.4 3.3 3.4 3.4 2.4 2.9 2.0 1.8 1.4 1.7 1.5

BPsn(2) 3.0 2.9 3.3 3.2 2.4 2.6 3.0 3.0 2.1 1.9 1.7 1.8

LBMsn(1) 4.0 3.5 3.3 3.5 3.5 2.4 2.9 2.1 1.8 1.4 1.7 1.5

LBMsn(2) 3.0 2.9 3.4 3.2 2.4 2.6 3.0 3.0 2.1 2.0 1.7 1.9

BPs n.a. n.a. 48.3 40.4 36.7 36.4 34.5 33.8 34.4 33.6 31.4 31.6

LBMs n.a. n.a. 48.5 40.8 37.0 37.1 34.8 34.2 35.3 34.4 32.4 33.1

BPw 2.7 2.6 2.2 2.0 1.2 0.8 0.4 0.4 0.3 0.2 0.0 0.1

LBMw 2.7 2.6 2.3 2.0 1.3 0.8 0.4 0.5 0.3 0.2 0.1 0.1

BPsn 2.7 2.8 2.4 1.9 1.4 1.3 0.9 0.8 0.4 0.6 0.5 0.5

LBMsn 2.8 2.9 2.5 1.9 1.4 1.4 0.9 0.8 0.5 0.6 0.6 0.5

1 2 3 4 5 6 7 8 9 10 11 12
BPs(1) n.a. n.a. 36.4 33.5 33.6 32.8 32.9 32.5 33.8 33.8 34.6 34.7

BPs(2) n.a. n.a. 36.0 31.9 28.1 29.0 28.6 29.2 29.3 28.5 28.8 27.7

LBMs(1) n.a. n.a. 36.4 33.6 33.6 32.9 32.9 32.5 33.9 33.8 34.6 34.7

LBMs(2) n.a. n.a. 36.0 31.9 28.1 29.1 28.7 29.2 29.5 28.5 28.8 27.9

BPw(1) 5.4 5.4 4.7 3.8 3.3 2.9 3.3 3.0 3.0 3.5 2.8 2.9

BPw(2) 6.0 5.1 4.6 3.4 3.2 3.8 3.5 3.5 3.3 3.0 2.7 2.3

LBMw(1) 5.4 5.4 4.7 3.9 3.3 2.9 3.3 3.1 3.0 3.5 2.9 2.9

LBMw(2) 6.0 5.1 4.6 3.4 3.2 3.8 3.5 3.5 3.3 3.0 2.8 2.3

N = 2, 000 BPsn(1) 4.2 4.3 4.4 4.3 5.3 5.2 4.5 4.2 4.2 3.7 3.8 3.1

BPsn(2) 4.4 4.7 5.2 4.6 3.9 4.1 3.6 3.3 3.4 3.3 3.3 3.2

LBMsn(1) 4.2 4.3 4.4 4.3 5.3 5.2 4.5 4.2 4.3 3.7 3.9 3.2

LBMsn(2) 4.4 4.7 5.2 4.6 3.9 4.1 3.6 3.3 3.4 3.3 3.3 3.2

BPs n.a. n.a. 53.9 49.5 47.3 45.0 44.6 47.1 46.8 47.0 46.9 44.5

LBMs n.a. n.a. 53.9 49.6 47.4 45.1 44.6 47.2 47.2 47.2 47.2 44.6

BPw 5.5 4.6 3.0 2.9 2.6 2.6 2.8 2.4 2.2 1.6 1.9 2.0

LBMw 5.5 4.7 3.0 2.9 2.6 2.6 2.8 2.4 2.2 1.6 1.9 2.0

BPsn 4.5 3.7 4.6 3.7 3.8 3.1 3.0 3.0 3.3 1.7 1.8 1.4

LBMsn 4.5 3.7 4.6 3.7 3.8 3.1 3.0 3.0 3.3 1.7 1.8 1.4

C.2. Empirical power

We now repeat the same experiments for N = 1, 000 to examine the empirical power of the

standard and proposed tests: �rst for the null hypothesis of a periodic white noise against

a PARMA2(1, 1) with α0 = (0.8, 0.9, 0.0, 0.0)′) alternative given by (44). Second for the
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null hypothesis of a PAR2(1) against a PARMA2(1, 1) alternative given by (44) with α0 =

(0.8, 0.9, 0.5, 0.45)′.

Tables 12 and 13 compare the empirical powers of Model (44) for the three di�erent periodic

noises above introduced over the N × 2 independent replications at the asymptotic level

α = 5%. Model I with innovation εt ∼ N (0, 1); Model II with innovation εt ∼ (45) and Model

III with innovation εt ∼ (75).

For these particular PARMA2(1, 1) models, we notice that the standard and our proposed

tests have very similar powers except for BPsn(ν) (resp. BPsn) and LBMsn(ν) (resp. LBMsn

) in the case of Model III.
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Table 12

Empirical power (in %) of the modi�ed and standard versions of the LBM and BP tests for the null
hypothesis of a periodic noise against a PARMA2(1, 1) given by (44) with the parameter

α0 = (0.8, 0.9, 0.0, 0.0)′. Model I with innovation εt ∼ N (0, 1); Model II with innovation εt ∼ (45) and
Model III with innovation εt ∼ (75). The nominal asymptotic level of the tests is α = 5%.

Model Tests Lag m
1 2 3 4 5 6 7 8 9 10 11 12

BPs(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPs(2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs(2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw(2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMw(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMw(2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

I BPsn(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPsn(2) 99.9 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMsn(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMsn(2) 99.9 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPs 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMw 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPsn 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMsn 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1 2 3 4 5 6 7 8 9 10 11 12

BPs(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPs(2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs(2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw(1) 100.0 100.0 100.0 99.9 99.9 99.8 99.9 99.8 99.8 99.9 99.9 99.9

BPw(2) 100.0 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

LBMw(1) 100.0 100.0 100.0 99.9 99.9 99.8 99.9 99.8 99.8 99.9 99.9 99.9

LBMw(2) 100.0 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

II BPsn(1) 99.1 98.8 98.8 99.0 98.9 98.8 98.7 98.5 98.6 98.1 98.3 98.2

BPsn(2) 99.1 98.8 98.9 98.8 98.9 98.8 98.2 98.3 98.4 98.1 97.9 97.7

LBMsn(1) 99.1 98.8 98.7 99.0 98.7 98.7 98.6 98.5 98.5 98.1 98.3 98.2

LBMsn(2) 99.1 98.8 98.9 98.7 98.9 98.8 98.2 98.2 98.4 98.1 97.9 97.7

BPs 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw 99.9 99.9 99.9 99.9 99.8 99.7 99.8 99.8 99.8 99.8 99.8 99.8

LBMw 99.9 99.9 99.9 99.9 99.8 99.7 99.8 99.8 99.8 99.8 99.8 99.8

BPsn 97.6 98.4 98.8 98.9 98.6 98.5 98.5 98.3 98.4 98.1 97.5 97.1

LBMsn 97.7 98.4 98.8 98.9 98.5 98.5 98.4 98.3 98.2 98.1 97.3 97.0

1 2 3 4 5 6 7 8 9 10 11 12

BPs(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPs(2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs(2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw(1) 98.9 97.9 97.3 96.8 96.6 96.0 95.8 95.4 95.1 94.7 94.3 93.7

BPw(2) 98.6 97.6 97.1 97.2 96.6 95.9 95.8 95.3 94.8 94.4 93.8 93.7

LBMw(1) 98.9 97.9 97.3 96.8 96.6 96.1 95.8 95.4 95.1 94.7 94.3 93.7

LBMw(2) 98.6 97.7 97.1 97.2 96.6 95.9 95.9 95.3 94.8 94.5 93.8 93.7

III BPsn(1) 84.6 80.3 78.1 77.8 76.3 74.4 72.0 69.8 66.5 64.5 63.4 62.0

BPsn(2) 84.7 81.2 77.8 76.4 73.9 72.5 71.3 69.3 67.9 66.9 65.2 63.4

LBMsn(1) 84.6 80.2 78.0 77.6 76.5 73.8 71.4 69.5 66.3 64.2 62.9 61.7

LBMsn(2) 84.7 81.3 77.9 76.1 73.4 72.1 71.2 69.1 67.3 66.7 65.1 62.8

BPs 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw 98.2 96.8 96.4 96.5 95.9 95.2 94.8 94.9 94.2 93.5 92.7 92.4

LBMw 98.2 96.8 96.4 96.5 95.9 95.3 94.8 94.9 94.3 93.5 92.8 92.4

BPsn 76.4 76.0 73.5 71.2 68.7 64.4 60.3 56.7 51.1 46.8 41.2 37.4

LBMsn 76.6 76.0 73.8 71.1 68.8 63.7 59.9 56.2 50.1 46.0 40.6 37.1
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Table 13

Empirical power (in %) of the modi�ed and standard versions of the LBM and BP tests for the null
hypothesis of a PARMA2(1, 0) against a PARMA2(1, 1) given by (44) with the parameter

α0 = (0.8, 0.9, 0.5, 0.45)′. Model I with innovation εt ∼ N (0, 1); Model II with innovation εt ∼ (45)
and Model III with innovation εt ∼ (75). The nominal asymptotic level of the tests is α = 5%.

Model Tests Lag m
1 2 3 4 5 6 7 8 9 10 11 12

BPs(1) n.a. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPs(2) n.a. 90.1 87.4 84.8 82.4 80.1 77.4 74.9 73.3 69.6 67.7 66.1

LBMs(1) n.a. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs(2) n.a. 90.1 87.4 84.8 82.5 80.2 77.4 75.0 73.5 70.0 67.9 66.3

BPw(1) 100.0 100.0 100.0 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw(2) 72.8 79.5 79.5 77.0 73.7 71.2 67.1 64.3 60.2 55.6 52.7 50.8

LBMw(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMw(2) 72.8 79.5 79.5 77.1 73.7 71.4 67.2 64.4 60.4 55.8 53.1 51.2

I BPsn(1) 97.9 94.4 93.5 90.9 90.6 90.0 89.5 88.7 87.8 88.4 87.9 88.0

BPsn(2) 54.1 54.2 51.1 50.0 45.3 43.8 42.4 41.5 39.0 37.1 37.3 35.3

LBMsn(1) 97.9 94.4 93.5 90.9 90.7 90.1 89.6 88.8 87.9 88.2 87.9 88.1

LBMsn(2) 54.1 54.2 51.1 50.0 45.3 43.8 42.4 41.5 39.4 37.2 37.4 35.6

BPs n.a. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs n.a. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMw 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPsn 96.0 95.6 94.9 94.8 94.1 94.6 94.4 93.7 92.4 91.7 90.6 90.1

LBMsn 96.0 95.6 94.9 94.8 94.1 94.6 94.6 93.7 92.5 91.7 90.6 90.2

1 2 3 4 5 6 7 8 9 10 11 12

BPs(1) n.a. 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 99.9 99.9 99.9

BPs(2) n.a. 94.4 93.9 92.7 91.8 89.7 89.7 86.8 84.9 84.0 82.8 81.9

LBMs(1) n.a. 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 99.9 99.9 99.9

LBMs(2) n.a. 94.4 93.9 92.7 91.8 89.7 89.7 86.8 85.0 84.0 83.0 82.0

BPw(1) 97.7 99.2 99.1 99.0 99.0 99.0 98.9 98.8 98.7 98.5 98.5 98.2

BPw(2) 68.9 80.1 81.2 79.8 78.1 76.2 73.1 70.6 68.9 66.2 64.3 61.5

LBMw(1) 97.7 99.2 99.1 99.0 99.0 99.0 98.9 98.8 98.7 98.5 98.5 98.2

LBMw(2) 68.9 80.1 81.2 79.9 78.1 76.5 73.2 70.7 69.3 66.7 64.6 61.8

II BPsn(1) 83.8 85.5 82.5 80.6 78.8 76.9 75.6 74.0 71.3 69.3 68.6 65.2

BPsn(2) 48.6 48.5 49.3 46.3 44.8 41.9 39.5 35.9 34.3 32.5 30.5 28.9

LBMsn(1) 83.8 85.5 82.5 80.6 78.8 76.9 75.5 74.1 71.5 69.5 68.8 65.3

LBMsn(2) 48.6 48.5 49.3 46.4 45.1 41.9 39.6 36.1 34.5 32.7 30.7 29.1

BPs n.a. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs n.a. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw 97.9 99.2 99.2 99.2 99.2 99.1 99.2 99.0 98.8 99.0 98.9 98.9

LBMw 97.9 99.2 99.2 99.2 99.2 99.1 99.2 99.0 99.0 99.0 98.9 98.9

BPsn 82.1 87.2 87.3 85.4 84.7 82.9 81.8 80.5 77.9 75.0 72.8 70.6

LBMsn 82.2 87.2 87.5 85.4 84.7 83.0 82.0 80.5 78.0 75.0 73.1 70.7

1 2 3 4 5 6 7 8 9 10 11 12

BPs(1) n.a. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPs(2) n.a. 96.3 96.7 96.3 96.1 95.2 94.5 93.1 92.7 92.1 91.7 90.4

LBMs(1) n.a. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs(2) n.a. 96.3 96.7 96.3 96.1 95.2 94.6 93.3 92.7 92.1 91.7 90.5

BPw(1) 96.2 97.8 97.7 96.8 96.2 95.5 94.9 94.0 92.6 91.3 90.6 89.9

BPw(2) 72.8 78.6 79.3 75.7 71.7 66.9 64.3 60.8 57.2 54.8 51.9 48.6

LBMw(1) 96.2 97.8 97.8 96.8 96.2 95.5 95.0 94.0 92.9 91.5 90.6 90.0

LBMw(2) 72.8 78.8 79.3 75.7 71.9 67.0 64.4 61.1 57.2 54.9 52.0 48.9

III BPsn(1) 82.7 77.4 75.5 71.5 69.1 65.1 64.2 60.7 58.7 56.4 52.7 49.8

BPsn(2) 53.9 48.4 49.1 42.6 40.4 35.8 32.9 29.9 27.1 26.4 25.1 22.0

LBMsn(1) 82.7 77.4 75.5 71.5 69.0 65.1 64.2 60.8 58.7 56.6 53.1 49.9

LBMsn(2) 53.9 48.5 49.2 42.6 40.5 35.8 33.0 29.9 27.2 26.4 25.2 22.1

BPs n.a. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LBMs n.a. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BPw 97.0 98.0 97.5 97.3 95.9 94.9 93.4 92.5 91.8 89.9 89.6 88.3

LBMw 97.0 98.0 97.5 97.3 95.9 94.9 93.4 92.6 91.8 90.1 89.6 88.4

BPsn 80.0 81.4 79.1 76.4 73.7 67.2 63.0 59.6 53.8 50.7 46.0 41.2

LBMsn 80.0 81.5 79.2 76.5 73.7 67.5 63.0 59.8 54.0 51.0 46.3 41.4
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C.3. Real datasets

C.3.1. The SP500 and Nikkei indices as an illustrative example

As we did for the CAC 40 and DAX, we also consider an application to the daily log

returns (also simply called the returns) of the SP500 and Nikkei indices (closing values):

Nikkei (Osaka) and SP500 (New York). The observations cover the period from January 4,

1999 to November 20, 2020. The data can be downloaded from the website Yahoo Finance:

http://fr.�nance.yahoo.com/. Because of the presence of holidays many weeks comprise less

than �ve observations. We removed the entire weeks when there was less than �ve data. The

e�ective number of observations used for each index is given in Table 15 and the periodicity

is then T = 5.

First we apply portmanteau tests on each series of daily returns for checking the hypothesis

that the returns constitute a periodic white noise. In this section we only present the results on

the Ljung-Box-McLeod tests since they are very close to those of the Box-Pierce tests. Table

14 displays the p−values and the statistics (for the self-normalized versions) of the standard

and modi�ed LBM tests for the mean corrected returns of each index. The p-values less than

5% are in bold, those less than 1% are underlined. At the α = 5% signi�cance level, the

hypothesis of strong periodic noise is (frequently) rejected by the standard global, even for a

speci�ed season ν ∈ {1, . . . , 5} LBM tests for SP500 index. For the Nikkei index the strong

periodic white noise assumption is not rejected. But since the class of strong periodic noises

is a subset of the class of weak periodic noises, these results show that the standard inference

based on the assumption of a strong periodic noise can be misleading (see for instance Francq

et al. (2011)). By contrast, the weak periodic white noise hypothesis is not rejected for the

two indices by all the global proposed tests, even for a speci�ed season ν. To summarize, the

outputs of Table 14 are in accordance with the common belief that these series are not strong

white noises but could be weak white noises.

Next, let us turn to the dynamics of the squared returns by �tting a weak PARMA5(1, 1)

model (46). To check the stationary properties of X5n+ν it is convenient to consider the

solution to the characteristic equation of the autoregressive part of Equation (46), which with
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our notations in Section 2 can be shown to be equal to (47) where

Φ0 =



1 0 0 0 0

−φ(2) 1 0 0 0

0 −φ(3) 1 0 0

0 0 −φ(4) 1 0

0 0 0 −φ(5) 1


and Φ1 =



0 0 0 0 φ(1)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

The same result holds for the invertible Model (46) with φ(ν) replaced by θ(ν) in (47).

Table 15 presents the QLS estimated parameters of Model (46), their p−values (in parenthe-

ses) and their estimated standard errors (into brackets, under weak assumption on ε5n+ν) of

the squared returns of the SP500 and Nikkei indices. As expected all the estimated parameters

are signi�cant at any reasonable levels, except: µ̂2, µ̂3 and µ̂4 for the SP500 index. For these

two indices the mean µ̂1 on Monday is positive and signi�cant, it seems more possibly to talk

of a global Monday e�ect. For the other days the means µ̂2, µ̂3, µ̂4 and µ̂5 are all negatives.

Therefore Tuesday, Wednesday, Thursday and Friday seem the bad days for the Nikkei index

since they are signi�cant. Friday seems a particularly bad day for the SP500 index.

For these indices the autoregressive coe�cients φ̂(ν) are all positive and signi�cant for all

days. These coe�cients are greater than one on Monday (for SP500), on Wednesday (for SP500

and Nikkei) and on Friday for Nikkei index. We also observe that the coe�cients φ̂(ν) are the

biggest on Monday (for SP500) and on Wednesday (for Nikkei). Furthermore, with the SP500

index and the period considered, it is probably more appropriate to talk of a Monday e�ect.

By contrast for the Nikkei index, it is probably more appropriate to talk of a Wednesday

e�ect rather than a Monday e�ect. Additionally, Table 15 shows that there is evidence that

the estimated noise standard deviations (estimated volatility) for these indices is considerably

greater on Monday than the other days (Tuesday, Wednesday, Thursday and Friday), for which

it is smaller and almost constant.

Note that from Table 15 and for these two series, the product of the estimated coe�cients

φ̂(ν) (resp. θ̂(ν)) are smaller than one. Thus in view of (47) |z| > 1 for all series (the smallest

z verify |z| = 1.236 > 1). So we think that the assumption (A1) is satis�ed and thus our

asymptotic normality theorem on the residual autocorrelations can be applied.
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We thus apply portmanteau tests to the residuals of Model (46) for each series. The results

reveal the conclusion that the strong PARMA5(1, 1) model is rejected by the standard global

LBM test and even for a speci�ed season ν at the nominal level α = 5%. By contrast a weak

PARMA5(1, 1) model is not rejected. Note that for the �rst and second-order structures we

found for the returns considered, namely a weak periodic white noise for the returns and a weak

PARMA5(1, 1) model for the squares of the returns, seem compatible with a PGARCH(1, 1)

model.

Table 14

Modi�ed and standard versions of portmanteau tests to check the null hypothesis that the returns
follow a periodic white noise, based on m residuals autocorrelations. The p-values less than 5% are in

bold, those less than 1% are underlined.

Index Tests Lag m
1 2 3 4 5 6 7 8 9 10 11 12

LBMs(1) 0.496 0.349 0.097 0.124 0.195 0.272 0.075 0.084 0.015 0.005 0.008 0.002

LBMs(2) 0.000 0.000 0.000 0.001 0.002 0.003 0.007 0.012 0.020 0.027 0.028 0.028

LBMs(3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMs(4) 0.960 0.822 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

LBMs(5) 0.224 0.470 0.100 0.116 0.192 0.012 0.007 0.002 0.004 0.003 0.001 0.001

LBMw(1) 0.686 0.765 0.585 0.657 0.732 0.783 0.608 0.638 0.443 0.343 0.381 0.294

LBMw(2) 0.027 0.048 0.157 0.215 0.264 0.340 0.409 0.476 0.544 0.583 0.589 0.607

LBMw(3) 0.152 0.193 0.425 0.363 0.299 0.325 0.331 0.343 0.329 0.316 0.318 0.297

SP500 LBMw(4) 0.983 0.948 0.133 0.174 0.247 0.231 0.289 0.252 0.213 0.219 0.148 0.172

LBMw(5) 0.365 0.666 0.315 0.407 0.504 0.152 0.130 0.104 0.127 0.130 0.080 0.103

LBMsn(1) 0.4 34.8 115.4 140.6 155.1 172.6 262.9 267.9 294.9 326.4 334.8 582.8

LBMsn(2) 25.9 37.9 142.6 166.0 185.5 192.0 284.5 295.9 337.4 343.7 375.5 384.6

LBMsn(3) 13.5 19.3 25.9 45.3 45.3 203.9 237.5 243.1 348.0 350.4 354.3 366.3

LBMsn(4) 0.0 1.7 93.4 93.6 93.8 94.9 102.4 140.6 213.8 216.8 233.0 233.1

LBMsn(5) 12.8 14.3 73.2 93.6 153.2 234.0 244.7 300.1 419.2 426.1 441.9 462.7

LBMs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMw 0.149 0.354 0.279 0.361 0.359 0.342 0.324 0.322 0.292 0.284 0.258 0.263

LBMsn 205.3 384.9 658.0 1445.5 1563.3 1787.3 1937.5 2006.4 2458.9 2797.1 3173.7 3848.8

1 2 3 4 5 6 7 8 9 10 11 12

LBMs(1) 0.015 0.048 0.037 0.075 0.119 0.138 0.204 0.262 0.290 0.371 0.441 0.394

LBMs(2) 0.089 0.222 0.196 0.319 0.219 0.139 0.158 0.205 0.127 0.178 0.208 0.213

LBMs(3) 0.571 0.832 0.697 0.837 0.851 0.920 0.952 0.974 0.986 0.993 0.992 0.996

LBMs(4) 0.069 0.157 0.265 0.336 0.307 0.404 0.503 0.551 0.622 0.477 0.556 0.567

LBMs(5) 0.199 0.412 0.273 0.128 0.121 0.023 0.040 0.022 0.032 0.049 0.067 0.083

LBMw(1) 0.045 0.117 0.079 0.137 0.209 0.256 0.355 0.403 0.431 0.525 0.595 0.567

LBMw(2) 0.118 0.343 0.438 0.537 0.461 0.396 0.413 0.471 0.376 0.432 0.458 0.462

LBMw(3) 0.652 0.898 0.805 0.897 0.910 0.956 0.972 0.987 0.993 0.997 0.996 0.998

Nikkei LBMw(4) 0.279 0.445 0.574 0.622 0.577 0.639 0.701 0.740 0.778 0.678 0.758 0.755

LBMw(5) 0.620 0.769 0.696 0.568 0.573 0.398 0.449 0.373 0.405 0.436 0.460 0.488

LBMsn(1) 54.4 54.5 126.8 127.8 221.0 226.9 579.8 605.1 609.4 919.6 923.9 979.8

LBMsn(2) 14.0 14.0 85.0 123.7 171.5 176.9 177.6 215.6 240.1 240.2 319.8 320.4

LBMsn(3) 2.1 2.4 5.2 10.9 21.9 23.1 25.5 53.4 53.4 71.2 98.1 98.3

LBMsn(4) 5.3 6.1 54.0 94.8 100.5 115.2 126.8 127.5 127.7 176.7 324.8 345.9

LBMsn(5) 2.7 3.6 18.5 40.3 111.3 133.8 229.6 291.9 292.8 308.1 340.9 499.5

LBMs 0.015 0.135 0.096 0.155 0.145 0.069 0.153 0.182 0.211 0.291 0.409 0.444

LBMw 0.323 0.609 0.597 0.641 0.630 0.545 0.640 0.671 0.689 0.742 0.809 0.821

LBMsn 343.6 426.6 1013.1 1309.4 1602.2 2142.9 2931.9 3909.1 4737.3 5585.1 7404.2 8118.3
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Table 15

QLS estimates, their p−values (in parentheses) and their estimated standard errors (in brackets) of a
weak PARMA5(1, 1) model �tted to the mean corrected series of the squared returns of the SP500 and

Nikkei indices.

Index SP500 Nikkei

NT 6550 5920

Day µ̂ν φ̂ν θ̂ν σ̂ν µ̂ν φ̂ν θ̂ν σ̂ν
Monday 0.718

(0.001)

[0.213]

1.900
(0.000)

[0.435]

1.613
(0.008)

[0.611]

7.163 ×10−8 2.716
(0.000)

[0.418]

0.738
(0.000)

[0.109]

0.529
(0.000)

[0.128]

14.391 ×10−8

Tuesday −0.149
(0.250)

[0.129]

0.871
(0.000)

[0.060]

0.747
(0.000)

[0.071]

4.093 ×10−8 −0.994
(0.000)

[0.138]

0.491
(0.000)

[0.093]

0.472
(0.000)

[0.093]

4.690 ×10−8

Wenesday −0.116
(0.502)

[0.173]

1.518
(0.000)

[0.283]

1.362
(0.000)

[0.185]

4.958 ×10−8 −0.571
(0.000)

[0.154]

1.669
(0.000)

[0.159]

1.551
(0.000)

[0.172]

4.817 ×10−8

Thursday −0.061
(0.620)

[0.123]

0.648
(0.000)

[0.118]

0.490
(0.000)

[0.109]

3.687 ×10−8 −0.646
(0.000)

[0.150]

0.900
(0.000)

[0.104]

0.654
(0.000)

[0.093]

4.670 ×10−8

Friday −0.391
(0.000)

[0.074]

0.497
(0.000)

[0.037]

0.402
(0.000)

[0.042]

2.418 ×10−8 −0.500
(0.006)

[0.182]

1.357
(0.000)

[0.241]

1.397
(0.000)

[0.363]

5.360 ×10−8

C.3.2. Portmanteau tests to check the null hypothesis that the squared returns follow a weak

PARMA5(1, 1) models for each of the four indices considered

We thus apply portmanteau tests to the residuals of Model (46) for each series. Tables 16 and

17 display the p−values and the statistics (for the self-normalized versions) of the standard

and modi�ed LBM tests for the mean corrected returns of each index. The p-values less than

5% are in bold, those less than 1% are underlined. From these tables we draw the conclusion

that the strong PARMA5(1, 1) model is rejected by the standard global LBM test and even

for a speci�ed season ν at the nominal level α = 5%. By contrast a weak PARMA5(1, 1) model

is not rejected. Note that for the �rst and second-order structures we found for the returns

considered, namely a weak periodic white noise for the returns and a weak PARMA5(1, 1)

model for the squares of the returns, are compatible with a PGARCH(1, 1) model.

Figures 1, 2, 3 and 4 display the residual autocorrelations and their 5% signi�cance limits

under the strong and weak periodic noises assumptions.

Figures 5, 6, 7 and 8 display the residual autocorrelations and their 5% signi�cance limits

under the strong PARMA5(1, 1) and weak PARMA5(1, 1) assumptions. In view of Figures 1, 2,

3 and 4 (resp. Figures 5, 6, 7 and 8), the diagnostic checking of residuals does not indicate any

inadequacy for the proposed tests. All of the sample autocorrelations should lie between the

bands (at 95%) shown as dashed lines (green color) and solid lines (red color) for the modi�ed
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tests, while the horizontal dotted (blue color) for standard test indicate that strong periodic

noise (resp. strong PARMA5(1, 1)) is not adequate. Figures 1, 2, 3 and 4 (resp. Figures 5, 6,

7 and 8) con�rm the conclusions drawn from Tables 4 and 14 (resp. Tables 16 and 17).

To conclude our empirical investigations, a comparison of the four indices (CAC 40, DAX,

Nikkei and SP500) indicates that Nikkei is systematically more volatile over two days of the

week (Monday and Friday) than the other three. By contrast the DAX index is systematically

more volatile on Tuesday and Thursday than the other three. Finally SP500 index is the most

volatile on Wednesday.

Table 16

Modi�ed and standard versions of portmanteau tests to check the null hypothesis that the squared
returns follow a weak PARMA5(1, 1) models, based on m residuals autocorrelations. The p-values less

than 5% are in bold, those less than 1% are underlined.

Index Tests Lag m
1 2 3 4 5 6 7 8 9 10 11 12

LBMs(1) n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMs(2) n.a. n.a. 0.063 0.177 0.317 0.474 0.209 0.306 0.195 0.271 0.238 0.247

LBMs(3) n.a. n.a. 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMs(4) n.a. n.a. 0.034 0.019 0.044 0.078 0.127 0.197 0.280 0.038 0.061 0.080

LBMs(5) n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMw(1) 0.652 0.401 0.275 0.336 0.307 0.307 0.328 0.382 0.386 0.382 0.362 0.372

LBMw(2) 0.509 0.682 0.725 0.771 0.849 0.892 0.767 0.806 0.804 0.838 0.818 0.806

LBMw(3) 0.047 0.414 0.460 0.391 0.430 0.392 0.374 0.366 0.369 0.356 0.358 0.347

CAC 40 LBMw(4) 0.291 0.311 0.550 0.462 0.524 0.517 0.544 0.581 0.590 0.478 0.491 0.488

LBMw(5) 0.409 0.555 0.260 0.254 0.267 0.240 0.253 0.203 0.215 0.249 0.268 0.274

LBMsn(1) 1.0 15.1 23.8 23.9 36.6 42.1 49.2 159.3 196.7 277.4 295.0 313.7

LBMsn(2) 2.6 2.6 6.2 29.7 29.7 35.2 96.3 106.1 137.0 142.3 228.6 250.8

LBMsn(3) 118.7 128.9 150.7 152.5 153.8 155.9 177.2 182.5 241.4 243.0 244.9 264.7

LBMsn(4) 3.0 20.7 23.9 58.2 85.7 117.0 122.5 126.4 126.8 129.7 134.4 403.5

LBMsn(5) 4.9 8.1 15.9 19.4 75.1 113.2 113.6 254.1 269.6 643.0 659.9 742.0

LBMs n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMw 0.523 0.558 0.416 0.406 0.414 0.388 0.345 0.329 0.317 0.314 0.332 0.358

LBMsn 239.6 483.0 641.0 771.3 830.9 1068.7 1300.6 1632.9 2460.4 2814.5 3299.4 6016.9

1 2 3 4 5 6 7 8 9 10 11 12

LBMs(1) n.a. n.a. 0.131 0.319 0.346 0.483 0.627 0.735 0.796 0.776 0.701 0.744

LBMs(2) n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMs(3) n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMs(4) n.a. n.a. 0.027 0.085 0.112 0.198 0.228 0.175 0.254 0.344 0.415 0.470

LBMs(5) n.a. n.a. 0.002 0.008 0.023 0.010 0.016 0.005 0.008 0.014 0.012 0.000

LBMw(1) 0.530 0.772 0.380 0.473 0.361 0.426 0.503 0.567 0.573 0.648 0.610 0.716

LBMw(2) 0.234 0.291 0.070 0.138 0.130 0.157 0.196 0.190 0.187 0.206 0.242 0.255

LBMw(3) 0.650 0.375 0.391 0.427 0.515 0.548 0.419 0.453 0.401 0.345 0.341 0.355

DAX LBMw(4) 0.503 0.583 0.479 0.539 0.559 0.584 0.586 0.483 0.526 0.569 0.574 0.576

LBMw(5) 0.177 0.345 0.315 0.391 0.445 0.358 0.438 0.361 0.366 0.396 0.386 0.272

LBMsn(1) 1.0 13.5 13.5 14.6 46.1 99.0 123.6 170.0 235.9 258.6 381.2 392.2

LBMsn(2) 19.7 21.5 80.0 80.4 80.4 112.1 134.8 157.3 159.6 182.2 199.1 204.6

LBMsn(3) 2.0 25.1 45.4 48.8 98.5 104.5 108.4 109.1 117.2 170.6 178.5 182.8

LBMsn(4) 1.2 2.5 12.4 19.1 78.0 79.1 88.5 166.2 168.0 169.9 173.3 173.3

LBMsn(5) 7.8 17.3 31.6 40.0 42.7 171.4 181.6 194.3 194.8 194.8 285.6 514.8

LBMs n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMw 0.428 0.442 0.312 0.369 0.425 0.426 0.387 0.394 0.36 0.332 0.364 0.438

LBMsn 77.0 105.9 343.8 427.1 548.1 707.6 887.5 1314.5 1542.8 1850.3 2371.7 3368.8
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Table 17

Modi�ed and standard versions of portmanteau tests to check the null hypothesis that the squared
returns follow a weak PARMA5(1, 1) models, based on m residuals autocorrelations. The p-values less

than 5% are in bold, those less than 1% are underlined.

Index Tests Lag m
1 2 3 4 5 6 7 8 9 10 11 12

LBMs(1) n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMs(2) n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMs(3) n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMs(4) n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMs(5) n.a. n.a. 0.006 0.018 0.010 0.001 0.003 0.004 0.000 0.001 0.001 0.000

LBMw(1) 0.632 0.378 0.386 0.412 0.455 0.386 0.396 0.377 0.343 0.342 0.365 0.372

LBMw(2) 0.097 0.299 0.312 0.298 0.394 0.401 0.384 0.381 0.388 0.402 0.408 0.407

LBMw(3) 0.126 0.231 0.270 0.276 0.231 0.257 0.248 0.249 0.257 0.253 0.233 0.240

SP500 LBMw(4) 0.534 0.489 0.366 0.423 0.407 0.425 0.434 0.425 0.418 0.409 0.412 0.412

LBMw(5) 0.733 0.878 0.659 0.713 0.646 0.522 0.545 0.517 0.383 0.456 0.467 0.453

LBMsn(1) 0.5 13.4 19.9 20.4 39.2 52.7 116.0 140.1 141.1 142.3 169.4 187.9

LBMsn(2) 10.7 14.2 16.2 16.6 27.0 28.6 37.7 46.5 87.8 88.7 91.5 164.3

LBMsn(3) 9.9 10.0 15.4 25.8 34.4 43.9 44.7 146.5 147.4 150.7 153.1 192.4

LBMsn(4) 1.6 13.7 14.0 44.0 51.3 52.8 72.9 126.5 126.7 134.9 211.9 217.7

LBMsn(5) 0.5 3.9 18.1 125.7 136.4 144.2 146.3 159.5 243.3 256.4 257.9 322.6

LBMs n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMw 0.526 0.345 0.344 0.369 0.400 0.389 0.394 0.388 0.335 0.332 0.352 0.361

LBMsn 51.1 234.4 303.2 629.0 882.3 1263.3 2209.1 3376.7 4499.5 4661.4 7230.0 7631.6

1 2 3 4 5 6 7 8 9 10 11 12

LBMs(1) n.a. n.a. 0.735 0.925 0.829 0.795 0.853 0.919 0.958 0.906 0.932 0.947

LBMs(2) n.a. n.a. 0.001 0.002 0.005 0.005 0.009 0.017 0.029 0.047 0.055 0.083

LBMs(3) n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMs(4) n.a. n.a. 0.000 0.000 0.000 0.001 0.002 0.003 0.006 0.004 0.008 0.010

LBMs(5) n.a. n.a. 0.021 0.062 0.131 0.211 0.179 0.205 0.292 0.283 0.362 0.052

LBMw(1) 0.781 0.967 0.976 0.987 0.892 0.863 0.885 0.910 0.931 0.922 0.933 0.949

LBMw(2) 0.228 0.256 0.281 0.281 0.292 0.272 0.279 0.289 0.294 0.291 0.303 0.312

LBMw(3) 0.586 0.604 0.220 0.192 0.195 0.195 0.186 0.210 0.210 0.207 0.212 0.214

Nikkei LBMw(4) 0.096 0.113 0.476 0.488 0.497 0.501 0.517 0.515 0.519 0.518 0.533 0.519

LBMw(5) 0.270 0.634 0.640 0.647 0.672 0.692 0.634 0.648 0.672 0.642 0.666 0.486

LBMsn(1) 0.0 0.3 1.4 2.1 10.5 19.6 32.4 32.5 37.3 160.2 213.0 216.1

LBMsn(2) 5.4 25.7 34.4 56.7 88.6 88.8 93.3 234.4 299.0 308.9 345.4 459.1

LBMsn(3) 1.2 6.3 20.1 214.9 215.6 220.8 283.7 289.1 377.6 533.5 654.6 782.1

LBMsn(4) 33.2 53.3 70.1 87.6 99.5 125.9 127.2 127.3 139.5 174.4 182.0 363.1

LBMsn(5) 10.9 23.6 23.8 25.6 47.4 50.5 163.3 163.8 267.4 354.6 395.2 516.7

LBMs n.a. n.a. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LBMw 0.150 0.356 0.406 0.388 0.400 0.404 0.397 0.417 0.425 0.452 0.455 0.440

LBMsn 102.2 140.3 1062.8 1962.3 2536.5 3060.9 3719.6 4521.2 5420.0 6002.4 6715.0 8404.3
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Figure 1. Autocorrelation of the periodic noise for the CAC 40 returns. The horizontal dotted lines (blue color)
correspond to the 5% signi�cant limits obtained under the strong periodic noise assumption. The solid lines
(red color) and dashed lines (green color) correspond also to the 5% signi�cant limits under the weak periodic
noise assumption. The full lines correspond to the asymptotic signi�cance limits for the residual autocorrela-
tions obtained in Theorem 3.1. The dashed lines (green color) correspond to the self-normalized asymptotic
signi�cance limits for the residual autocorrelations obtained in Theorem 3.5.
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Figure 2. Autocorrelation of the periodic noise for the DAX returns. The horizontal dotted lines (blue color)
correspond to the 5% signi�cant limits obtained under the strong periodic noise assumption. The solid lines
(red color) and dashed lines (green color) correspond also to the 5% signi�cant limits under the weak periodic
noise assumption. The full lines correspond to the asymptotic signi�cance limits for the residual autocorrela-
tions obtained in Theorem 3.1. The dashed lines (green color) correspond to the self-normalized asymptotic
signi�cance limits for the residual autocorrelations obtained in Theorem 3.5.
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Figure 3. Autocorrelation of the periodic noise for the SP500 returns. The horizontal dotted lines (blue color)
correspond to the 5% signi�cant limits obtained under the strong periodic noise assumption. The solid lines
(red color) and dashed lines (green color) correspond also to the 5% signi�cant limits under the weak periodic
noise assumption. The full lines correspond to the asymptotic signi�cance limits for the residual autocorrela-
tions obtained in Theorem 3.1. The dashed lines (green color) correspond to the self-normalized asymptotic
signi�cance limits for the residual autocorrelations obtained in Theorem 3.5.
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Figure 4. Autocorrelation of the periodic noise for the Nikkei returns. The horizontal dotted lines (blue color)
correspond to the 5% signi�cant limits obtained under the strong periodic noise assumption. The solid lines
(red color) and dashed lines (green color) correspond also to the 5% signi�cant limits under the weak periodic
noise assumption. The full lines correspond to the asymptotic signi�cance limits for the residual autocorrela-
tions obtained in Theorem 3.1. The dashed lines (green color) correspond to the self-normalized asymptotic
signi�cance limits for the residual autocorrelations obtained in Theorem 3.5.
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Figure 5. Autocorrelation of the PARMA5(1, 1) residuals for the squares of the CAC 40 returns. The hori-
zontal dotted lines (blue color) correspond to the 5% signi�cant limits obtained under the strong PARMA5(1, 1)
assumption. The solid lines (red color) and dashed lines (green color) correspond also to the 5% signi�cant
limits under the weak PARMA5(1, 1) assumption. The full lines correspond to the asymptotic signi�cance lim-
its for the residual autocorrelations obtained in Theorem 3.1. The dashed lines (green color) correspond to the
self-normalized asymptotic signi�cance limits for the residual autocorrelations obtained in Theorem 3.5.
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Figure 6. Autocorrelation of the PARMA5(1, 1) residuals for the squares of the DAX returns. The horizontal
dotted lines (blue color) correspond to the 5% signi�cant limits obtained under the strong PARMA5(1, 1) as-
sumption. The solid lines (red color) and dashed lines (green color) correspond also to the 5% signi�cant limits
under the weak PARMA5(1, 1) assumption. The full lines correspond to the asymptotic signi�cance limits for
the residual autocorrelations obtained in Theorem 3.1. The dashed lines (green color) correspond to the self-
normalized asymptotic signi�cance limits for the residual autocorrelations obtained in Theorem 3.5.
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Figure 7. Autocorrelation of the PARMA5(1, 1) residuals for the squares of the SP500 returns. The horizontal
dotted lines (blue color) correspond to the 5% signi�cant limits obtained under the strong PARMA5(1, 1) as-
sumption. The solid lines (red color) and dashed lines (green color) correspond also to the 5% signi�cant limits
under the weak PARMA5(1, 1) assumption. The full lines correspond to the asymptotic signi�cance limits for
the residual autocorrelations obtained in Theorem 3.1. The dashed lines (green color) correspond to the self-
normalized asymptotic signi�cance limits for the residual autocorrelations obtained in Theorem 3.5.
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Figure 8. Autocorrelation of the PARMA5(1, 1) residuals for the squares of the Nikkei returns. The horizontal
dotted lines (blue color) correspond to the 5% signi�cant limits obtained under the strong PARMA5(1, 1) as-
sumption. The solid lines (red color) and dashed lines (green color) correspond also to the 5% signi�cant limits
under the weak PARMA5(1, 1) assumption. The full lines correspond to the asymptotic signi�cance limits for
the residual autocorrelations obtained in Theorem 3.1. The dashed lines (green color) correspond to the self-
normalized asymptotic signi�cance limits for the residual autocorrelations obtained in Theorem 3.5.
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