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Abstract

We consider an observed subcritical Galton Watson process {Y,,, n € Z} with correlated
stationary immigration process {€,, n € Z}. Two situations are presented. The first one is
when Cov(eg, €x) = 0 for k larger than some ky: a consistent estimator for the reproduction
and mean immigration rates is given, and a central limit theorem is proved. The second one
is when {€,, n € Z} has general correlation structure: under mixing assumptions, we exhibit
an estimator for the the logarithm of the reproduction rate and we prove that it converges in
quadratic mean with explicit speed. In addition, when the mixing coefficients decrease fast
enough, we provide and prove a two terms expansion for the estimator. Numerical illustrations
are provided.
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1. Introduction

Estimation of parameters in a Galton Watson process with immigration has a long history:
we refer to the seminal paper Klimko and Nelson (1978) for laying the ground and expliciting
conditional least square estimators for the expectation of the reproduction and immigration
sequences in the subcritical case. A central limit theorem for these estimators was later proved
in Venkataraman (1982), using a time series point of view. Note that the link between such
processes and the so called integer-valued times series INAR(1) processes has been exploited,
see e.g. Al-Osh and Alzaid (1987) which studied such a process with particular distributions
for the reproduction and immigration sequences. See also McKenzie (2003) who reviews the
literature on models for integer-valued time series. These above processes play an important
role in many scientific disciplines and applied fields such as epidemiology, economics, finance, to
name a few. Note also that the link between such processes and the so called Hawkes processes
introduced by Hawkes (1971a,b) as a model for contagious processes such as measles infections
or hijackings has been exploited in the literature. See Daley et al. (2003) for a reference book
that covers many aspects of the Hawkes process. For instance, Daley et al. (2003, Example
6.3(c)) show that each immigrant of Hawkes process has the potential to produce descendants
whose numbers in successive generations constitute a subcritical Galton—Watson branching
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process with Poisson offspring distribution (see also Hawkes and Oakes (1974)). Recently,
it was proved in Kirchner (2016, Theorem 3) that Hawkes prcesses can be approximated by
integer-valued autoregressive models of infinite order (INAR(o0)) processes, which in turn are
the limit of INAR(p) processes as p — oo see Kirchner (2017, Proposition 2.5). A certain
number of extensions for the model were later devised and studied. Wei and Winnicki (1990)
considered the general critical and supercritical case and proved central limit theorems for
(modified) weighted least square estimators. In Barczy et al. (2021), the specific case where the
immigration sequence has a regular variation distribution is considered, leading to asymptotic
normality of the reproduction mean when the immigration mean is known. Generalization to
two types processes have been recently investigated in Ispany et al. (2014); Kérmendi and Pap
(2018), including estimations for the criticality parameter. Note that these references have
one of the following constraint on the immigration process: first, some of them assume that
its expectation is known (and appears in the expression of the estimator for the reproduction
sequence); second, this immigration process is assumed to be a sequence of independent random
variables, in addition to be identically distributed.

We aim in this paper at considering a process which is stationary, but where the immigra-
tion process is dependent. To our knowledge, this particular feature appears not to have been
studied in the literature. Thus, there are two major contributions in this work. The first one
is the relaxing of the standard independence assumption on the immigration process in order
to extend considerably the range of application of the Galton Watson models and to show
that the moment estimation procedure can be extended to the Galton Watson models with
correlated immigration to estimate the unknown mean reproduction and immigration param-
eters \g and mg. This goal is achieved thanks to Proposition 4.1 and Theorem 4.2 in which
the consistency and the asymptotic normality are stated when the immigration sequence is
no longer correlated from a certain instant. Still in this context, another contribution is to
propose a weakly consistent estimator of the unknown asymptotic variance matrix (see Theo-
rem 5.2), which may be very different from that obtained in the standard framework (see for
instance Klimko and Nelson (1978, Theorem 2.2) or Al-Osh and Alzaid (1987, Section 4.2)).
Thanks to this estimation of the asymptotic variance matrix, we can for instance construct
a confidence region for the estimation of the parameters (the reproduction and mean immi-
gration rates). The second major contribution is when the immigration process has general
correlation structure: we exhibit an estimator for the logarithm of the reproduction rate and
we prove that it converges in quadratic mean with explicit speed at most of the order 1/In(n)
(see Theorem 6.1). Convergence is thus very slow, which in particular explains why we need to
pick very large n in the numerical illustrations. Under mildly stronger assumption, we provide
and prove a two terms expansion for the estimator (see Theorem 6.2) and thus deduce that
the speed of convergence is exactly of the order 1/In(n).

The paper is organized as follows. Section 2 presents the Galton Watson process that we
consider here. A series of Propositions and Lemmas which are going to be repeatedly used are
presented in Section 3. It is shown in Section 4 that the moment estimators of the unknown
mean reproduction and immigration parameters Ag and mg are consistent and asymptotically
normally distributed when the immigration sequence is no longer correlated from a certain
instant and satisfies mild mixing assumptions. The proof relies on using Herrnorf’s result
(see Herrndorf (1984)) that involves a truncated expansion of the stationary Galton Watson
with correlated immigration process. These results use tools used previously in the time
series literature in the case of uncorrelated but non-independent error terms (i.e. weak white
noise), see Francq and ZakoTan (1998), except for some major differences: first, the model is



different from the one in a time series setting and requires a different approach for determining
the estimators, and second, the asymptotic normality concerns estimators which are different
from least square estimators in Francq and Zakoian (1998). The asymptotic variance of the
moment estimators may be very different in the correlated and independence immigration
cases. The estimation of this unknown asymptotic covariance matrix is done in Section 5.
We consider in Section 6 a more general case of correlated immigration process. Here the
approach is completely novel to our knowledge. The core results of the section are the quadratic
convergence of the estimator as well as a two terms stochastic expansion for the estimator
of InA\g. The ingredients for the proofs relies on fine estimates for the estimator coupled
with a central limit theorem for mixing triangular arrays of variables whose dependence is
allowed to grow with the sample size proved in Francq and Zakoian (2005). Note that in
the aforementioned results all estimators are determined from the observation of the base
Galton Watson process only; in particular, the expectation of the immigration is unknown,
and actually also estimated. Numerical illustrations are given in Section 7. Finally, proofs of
intermediate technical results are in Appendix Appendix A.

2. Model, notation and Assumptions

We consider the following Galton Watson process with immigration as the stationary
sequence {Y,,, n € Z} satisfying

Yn

Y1 = Zgn—i-l,k: +€ny1, mnEZ, (1)
k=1

for some sequences {&, k, n € Z, k € N} and {e,, n € Z}, named thereafter the reproduction
sequence and the immigration sequence, which are such that

e {{k, n€Z, ke N} and {e,, n € Z} are independent sequences,

e the reproduction sequence {&, 5, n € Z, k € N} is an i.i.d. (doubly indexed) sequence,
with distribution of a generic r.v. denoted by &,

e the immigration process {e,, n € Z} is stationary and ergodic, with distribution that
of a generic r.v. denoted by e,

e the moments \g := E(§) and mg := E(e) of {{,x, n € Z, k € N} and {¢,, n € Z} are
unknown.

The aim of the paper is devoted to the problem of estimating the unknown reproduction rate
Ao as well as the mean immigration mg from the observed sequence {Y,,, n € Z}.

Furthermore, in order for the existence of the stationary process {Y;,, n € Z} to exist and
be unique, it is required that the subcritical case holds, namely that

>\0 < 1. (2)

To control the serial dependence of the stationary process {€,, n € Z}, we introduce the
strong mixing coefficients ae(h) defined by

ae (h) = sup [P(ANB)—-P(A)P(B)|,

AeFr  BEFS,,



where F7 = o(ey,u < n) and F5, = o(ey,u > n+ h). Note that a.(h) does not depend
on n € Z thanks to the stationarity of {e,, n € Z}.

To establish the asymptotic properties of the proposed estimator of A\g, the following
assumptions are required.

(A1l):  The mixing coefficient a.(-) verifies the following summability condition. There exists
B > 2 such that

o
Z Aghoze(h)l_wﬁ < 00.
h=0

We next make an integrability assumption on the moments and covariances of the immigration
process {€,, n € Z} and the reproduction sequence {&,r, n € Z, k € N}. We use | - || to
denote the Euclidean norm of a vector and for any (potentially matrix valued) random variable
X, we will set || X||} := E||X||P its L norm, with p > 1.

(A2):  The following moment conditions hold:

} 1/(28)

1/(28)
lellas = [E[e[*” }

<oo and [¢lhs = [EIEP?] T < oo,

(A3):  The covariance of the immigration process v, := Cov(ep, €p,) verifies:
oo
Z h)\ah |Vhi1] < o0
h=0

Assumption (A8) may be removed if we replace (A1) by > 77 hg"ae(h)'=2/F < oo thanks
to Davydov’s inequality (see Davydov (1968, Inequality (2.2))) and (A2). Also note that
(A1) implies that the mixing coefficient a.(-) decreases at least exponentially, with decay
rate depending on the unknown parameter A\g. This unknown decay rate may be problematic
because (A1) may thus not be easy to verify it in practice. Note that, in the case when one
imposes Ag to lie in a known interval [A_, Ay] where 0 < A_ < AL < 1 (as is the case later on in
Section 6), then (A1) can be replaced by the stronger assumption $°7° s A\="a(h)'=2/% < oo
which may be easier to check in practice.
We need to introduce the following notation in the sequel:

up = E(YoYiep) =EMiYy), keN, (3)
fo@) = Y wiad, Jal <A1 (4)
=0
1
Xk = —FZ)\OV]'JFL k‘GN, (5)
0 j=k

Note that the existence of y defined in (5) is an easy consequence of the convergence of the
series in Assumption (A3), and that f, is a power series with convergence radius larger than
Ao ! for the same reason. Observe also that yo = — fv(Xo). Furthermore, it will be proved in
Proposition 3.1 that, under Condition (2) and Assumption (A2), the process {Y,, n € Z} is



a second-order stationary process of which the first and second-order moments are finite and
defined by:
C1:=E(Yo), Co:=E(Yy). (6)

Furthermore, taking the expectation in (1) with n = 0 and using the independence of {&; 5, j €
N}’s and Yp imply the explicit expression of the first order moment of the process {Y;,, n € Z}:

mo

C1=1_)\0- (7)

The expression of Cy is also available and will be derived later on in Lemma 3.1.

3. Preliminary results

3.1. Expansion for Yy,
Let us introduce for all n € Z the random operator 6, : N — N defined as

k
Opok = Zgn,z
=1

for all k& € N. We note that 6, depends on the &,;, i € N, so that the operators (6,)nen
are independent. Following Kevei and Wiandt (2021, Relation (4)), iteration of (1) yields the
representation for the stationary distribution

Yo = Z 00 oe_, (8)
=0

provided that the series converges, where 0 ; € N, are independent random operators, such
that ) = Id and #®) 2 fpofB_10..00_;11,% > 1, and independent from the immigration
sequence {¢;, i € Z}. Even more generally and more precisely, let us introduce a family of i.i.d.
Galton Watson processes {{6; (i), i € N}, (j,') € N?} starting from 6; ;(0) = 1 and with
same offspring distribution as {§,, n € Z, k € N}, and independent from the immigration
process {€,, n € Z}. We may write

Yo=Y 0Woe ;, nei, (9)
=0
where {955), i € N, n € N} are a set of operators defined from N to N, written as

k
0 o k= Onij(i). (10)
j=1

This way, the term 6,_; ;(¢) in 0 0 ep_; = Z;":’f 0n—i (1) in (9) may be interpreted as the
number of descendants at time n of the jth immigrants arrived at time n — i, j € {1, ...6,—;}
and ¢ € N. Note that the representation (10) in particular implies the two following important

(4)

facts. First, the operators 6, i € N, n € Z, are independent from the immigration sequence
{€i, i € Z}. Second, for all n and r in Z and i > 0, j > 0, 6,@ is independent from 99) as
soon as n — i # r — j. This latter feature will be extensively used later on, particularly in the
proofs of the central limit theorems (see upcoming Theorem 4.2 and Proposition 6.4).



Proposition 3.1 (Stationary distribution and existence of moments). The stationary version
of the model described by (1) exists and admits moments of order 2 under Assumption (A2).

The proof of Proposition 3.1 is postponed to Section Appendix A.1.

Lemma 3.1. Let us define v, := E(e;Y_) = E(ex41Y0) for all k£ € N. Its explicit expression

is given by
2

0
1—Xo
where wuy and xj are given by (3) and (5). As a consequence, the second moment of Yj is
given by

Vg = Up — AUE_1 = — Xk keN (11)

1 Vogmo (2) 2
- 70 42N + f,(\ E 12
C2 1—)\3{1—% 0(1 Ao Joo) | + Eeq (12)

where Vj ¢ := Var(§).

The proof of Lemma 3.1 is postponed to Section Appendix A.2.

3.2. Correlations of the process {Y,, n € Z}

We next study properties related to the asymptotic behaviour of Cov(Yp,Y,,). The fol-
lowing result, proved in Appendix Appendix A.3, shows that the correlation of the process
{Y,, n € Z} converges to 0 exponentially fast.

Corollary 3.2. One has the following expression

k

CT—up =26 [ D A"x + Mo(CE—Co) | - (13)
7=0

In particular, one has that Cov(Yp, Yii1) = up — C? = O(AE) as k — oo.

One deduces from (13) the asymptotic equivalent C? — g ~
PV <Z]°i0 Ao? X + Mo(CF — Cb)) as k — oo, when the quantity > 22, Mo”7 Xj + Ao(C? — Ca)
is not zero. The latter quantity will be studied later on, hence it will be interesting to write
this quantity in function of the parameters m, Ao and the function f, defined in (4). This is
done as follows. Using Fubini and (5), we first obtain that

oo ) o0 - [e%e] r )
Z)‘EJX]‘ = — Z)\O—QJ Z/\SVTH - _ Z)\g Z)\O—m Vi1
j=0 7=0 r=j =i =0

(7"""2) )\2

:—Zv” AO rir = 105 00 = 2205 ] (19

Moreover, the expressions (7) and (12) of Cy and C3 the first and second moments of {Y;,, n €
Z} entail that

Ct—Cy=

m2 1 Vo.emo + 2 om?
0 [0’5 C 200 4 900 (o) + Vo + md

1—X)2 1— A2 1— )Xo
0



Vo,emo 20

B f Vo,e
(1=2M)(1+X) 1-A"7

1- X3

(o) —

by using Ee? = Vj . +m3 with Vj . := Var(e). Combining the above expression and (14), yields

Voﬁmo)\ﬂ Vo.eAo /\% 1 .
’ Y v(Mo)——5f(Ag ). (15
T+ r) 1-a 1=l =75 (7). (15)

D AT x+ X (CE=Cy) = —
7=0

We also mention that, still when 372 Ay J X;j+Ao(C?—C2) is not zero, (13) yields the following

interesting limit

. CQ — Uk
Ao = lim 217,
k—o0 Cl — U1

which is the starting point for exhibiting estimators for Ag in the following Section.

4. Ultimately uncorrelated immigration

We suppose in this section that Assumptions (A1), (A2) and that (A3); defined there-
after hold.

(A3)1:  Tko € N\ {0} such that v, = 0 for all k > kg, where the instant kg is known.

In other words, the above assumption means that the immigration is no more correlated from
an instant kg. Also note that (A3); is stronger than (A3).

Example 4.1. Let {Z,, n € Z} be any sequence of iid discrete (for instance: Poisson,
Bernoulli, Binomial,...). For fixed ky > 0, let us assume that those random variables have

finite 28 moments and let
ko—1

€n 1= H D (16)
=0
We may alternatively assume that they have 43 moments and let ¢, := Z?2 Hfi;l Zpn—i. Thus

| Cov(en,€n—pn)#0 if h<ky—1,
Yh = { Cov (én, en_p) =0 if  h > k. (17)

we have:

Then the €, form an (kg — 1)-dependent sequence; that is, the mixing coefficients of the €,
sequence satisfies a.(h) = 0 if h > ko — 1, and the assumptions (A1), (A2) and (A3); are
satisfied.

Example 4.2. The previous example may be generalized when kg = 2 as follows. We suppose
that we are in a setting where {Y,, n € Z} described by (1) represents the number of persons
infected by an illness. We consider an exogenous system that provides the contaminated
immigrants {e,, n € Z} described as follows. This system consists of contaminated individuals
pertaining to two classes, namely the class of contagious individuals (Class 1) and the class
of non contagious individuals (Class 2). We are endowed with a family of N\ {0} valued,
independent and identically distributed processes {(Cn,k)rem o}, 7 € Z}, with the assumption
that supren foy [Gnkll2s < 0o. Note that we do not assume necessarily that (Cnx)rem {0y i
iid. for fixed n € Z. We suppose that at time n — 1, the k-th individual, from Class
1 contaminate (, 1 individuals of Class 1 if & = 1 and (,} individuals of Class 2 if k ¢

7



{2,...,{n—1,1}. Soon after contaminating those individuals, they emigrate to our system and
we then set
Cn—l,l

€y 1= Z Cnky NELZL. (18)
k=1

An illustration of the evolution of individuals from different classes is provided in Figure 1: the
Class 1 individuals are represented by crosses, the Class 1 individuals that contaminate Class
1 individuals are represented by boxed crosses, while the Class 2 individuals are represented
by dots. Then, the sequence {¢,, n € Z} given by (18) satisfies the ky dependence relation

x  Class 1 individual

. Class 1 individual,
\ generating Class 1 individuals
e Class 2 individual

|
[

n—1 n n+1

\j

Figure 1: Infected immigrants {e,, n € Z}

(17) with kg = 2. Also, we note that €, in Example 4.1 satisfies (18) with ¢, » = Z,, which is
independent from k.

Under the assumption (A3)1, it is interesting to notice that yj defined in (5) verifies
Xk = 0 for all & > kg — 1, so that we obtain from (13) the following moment expression for
the unknown reproduction rate:

2
Cl — Ukp—1

Ao = . 19
0 012 — U2 ( )

For all k£ € N, we introduce the following notation:

B 1 n B 1 n n
Vo= =3 Vs Yin = = 3 V¥ Sulk)i= 3 X(k), X;(k) := (Vj=Cr, V¥ ppr—un)
7j=1 j=1 7=1
To(k) =Y Vj(k).  Yjk) := (Yj = O YjYjpno1 — g, Yi¥jr — up—1)'. (20)
j=1



Note that (19) is the starting point for the estimation of the unknown parameter. The
following consistance result holds.

Proposition 4.1 (Consistency). Assume that (A1), (A2) and (A3); hold. The following
estimators o,
. V1% -1, . ) )
Rkom = £ n; _ — ) Mkom = Yn(l - Rko,n) (21)
[Yn] - Ykofl,n

converge a.s. towards the unknown parameters \g and mg as n — oo.

The proof of Proposition 4.1 is postponed to Appendix Appendix A.4.

Remark 4.1. Note that, when kg = 1, the estimator Rko,n in Proposition 4.1 agrees with
those in the case where the immigration process {e,, n € Z} is i.i.d., see Klimko and Nelson
(1978, Expression (5.1)), Al-Osh and Alzaid (1987, Expression (4.1)) and Wei and Winnicki
(1990, Section 1).

The following theorem states the asymptotic distributions of the process n=1/ 2T (o),
where we recall that T),(ko) is defined in (20).

Theorem 4.2. The following central limit theorem holds:
Tn(kO)
NLD

for some (non zero) semi-definite positive matrix Sy, € R3*3 given by

> > > D
= \/ﬁ [Yn - 017 Yko—l,n — Uky—2, Yko,n - uk0—1j|/ TL—>—OO> N(Ou 6/60)5 (22)

[e.o]

Gk, = Y ko), where (23)

j=—o00

7j(ko) = E (Vo (ko)Y; (ko)')
COVG/E)? Y]) COV(YO? Y}Yj+k0*1) COV(Y07 YijJrko)
= | Cov(Y0,Y;Yjipo—1) Cov(YoYiy—1,Y;Yjth—1) Cov(YoYie—1,YYjiny) |, JEN.
COV(YE% YjY}”F’%) COV(YOYkO*h YjY}+%) COV<Y0Y1€07 Y}'YJ'Jrko)
(24)
The proof of Theorem 4.2 is postponed to Appendix Appendix A.5.

Let us now define the open set O := {(a,b,c) € R3| a? # b} C R3 as well as the following
function

2 _ 2 _ /
gp:(a,b,c)EOi—)(ZQ_z,a<1—32_2>> c R? (25)

so that (Ao, mo)" = ¢(C1, ug,—2, uk,—1) thanks to Relations (7) and (19).

We are now able to state the following proposition, which shows the asymptotic normality
of the estimators proposed in Proposition 4.1. The §-method as well as Theorem 4.2 thus
yield the main following result.

Theorem 4.3 (Asymptotic normality). Assume that (A1), (A2) and (A3); hold. The
following central limit theorem holds:

ViR — Aoy Mg — mo)’ SN N(0, Q) (26)

n—o0

where Qp, = Vo(C1, upy—2, Ugy—1) Sk, Vo(C1, Ugy—2, Ugy—1) With ¢ and Sy, are defined in
(25) and in Theorem 4.2.



Remark 4.2. In the independent immigration case, Klimko and Nelson (1978, Theorem 2.2)
show that the asymptotic covariance matrix is reduced as

Qg :=J 'WJ !, where

89(907 Yn—l) 89(907 Yn—l) 2 89(007 Yn—l) 89(907 Yn—l)
=K =K |{Y,, — Y, _
J 80 89/ ’ W { n g(e()) 1)} 80 89/
with g(0p,Yn—1) = Y, — XNYn—1 and 6y = (Ao, mo)". See also Al-Osh and
Alzaid (1987, Section 4.2). The true asymptotic covariance matrix €, =

Vo (Cry tugy—2, Ugy—1)' Sk Vip(C1, ugy—2, ug,—1) obtained in the correlated immigration frame-
work can be very different from g and can yield inacurrate estimation results when used on
a model with correlated immigration sequence, as illustrated later on in Section 7.1. This is
why it is interesting to find an estimator of €2, which is consistent for both independent and
correlated immigration cases.

5. Estimating the asymptotic variance matrix

For statistical inference problem, the asymptotic variance {2, has to be estimated. In
particular Theorem 4.3 can be used to obtain confidence intervals.
The estimation of the long-run variance (LRV) matrix expressed by (23) and given by

G = Z Cov (Vo(ko), V;(ko))

j==o00

is complicated. In the literature, two types of estimators are generally employed: heteroskedas-
ticity and autocorrelation consistent (HAC) estimators based on kernel methods (see Newey
and West (1987) and Andrews (1991) for general references, and Francq and Zakoian (2007)
for an application to testing strong linearity in ARMA models with dependent errors) and
the spectral density estimators (see e.g. Berk (1974) and den Haan and Levin (1997) for a
general references; see also Boubacar Mainassara and Francq (2011) for an application to a
multivariate ARMA (VARMA) model with dependent errors). In the present paper, we focus
on an estimator based on a spectral density form.

Following the arguments developed in Boubacar Mainassara et al. (2012), the matrix S,
can be estimated using Berk’s approach (see Berk (1974)). More precisely, by interpreting
G, /27 as the spectral density of the stationary process {V, = (Y}, V2, V3), n € Z} :=
{Vn(ko), n € Z} evaluated at frequency 0, we can use a parametric autoregressive estimate of
the spectral density of (Y, )nez in order to estimate the matrix &y,. This is explained more
precisely in the following.

First, the stationary process {),, n € Z} is in L2 hence admits the following Wold
decomposition

o0
Yo=en+ > Upenp, nel, (27)
k=1
where (e,)nez is a 3—variate uncorrelated but not independent white noise with variance
matrix denoted by .. We recall e.g. from Brockwell and Davis (1991, Theorem 5.7.1 p.187)
that e, € R3*! and ¥,, € R3*3 are expressed in function of {)),,, n € Z} as follows

En = yn_ n—lyna HGZ,

’ _ 28
U, = EQel,)Eot =E(Vue))Et, n>0, (28)

10



where P,_1)), is the .2 projection of the random vector ), onto the vector space spanned
by Vi, k < n — 1. It may be verified that ¥, is indeed non-singular in the case when the
reproduction sequence {&, , n € Z, k € N} is non deterministic. We next introduce

U(z):= Z W2k, (29)
k=0

for z € C where the series converges, and where ¥ is the identity matrix. We suppose in this
section that Assumptions (A1), (A2)1, (A3) and (A4) hold where

(A2);:  The following moment condition holds

[ellavies) < oo and  [|§]l2p < oco.

(A4):  The sequence {Uy, k > 1} verifies that > ;2 [|[¥] < co and
det (¥(z)) #0
for all z € C such that |z| < 1.

Under Assumption (A4), {V,, n € Z} admits a multivariate AR(co) representation (see
Akutowicz (1957, Section 2)) with dependent errors of the form

Vn — Z Q1 Vn—k = €n, (30)
k=1

where (®)r>1 are R3*3 matrices such that Y 7o | ||Px|| < oo and det (®(2)) # 0, |z| < 1,
where

O(z) =I5 -y Bpz¥ =T(z)"". (31)
k=1

In particular, (28) implies that the L2 projection P,_1)), is in this case expressed as the
series > p° | ®xV,—k. One may argue that Assumption (A4) is quite complicated to verify in
practice, and it may be informative and useful to give some assumption on the base model
(1) such that it holds. This is provided in the following proposition (proved in Appendix
Appendix A.6).

Proposition 5.1. Let us define €, := (€n, €n€ntky—1: En€niky)’s 7 € Z, and suppose that

e the spectral density f. : @ — 5= 3°7° _ Cov(ey, €,)e™™ is such that f.(z) is invertible
for all z € [0, 27].

e (A1) is replaced by the stronger assumption
ae(n) =0 <)\62/6> : (32)

Then (A4) is verified if Ao is small enough, and the sequence {®j, k& > 1} in the expansion
(30) verifies ||®| = o(1/k?) as k — oo.
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Note that the proof of the above Proposition is technical and occupies most of Appendix
Appendix A.6. What is essentially proved is that the spectral density is close to f. when Ao
is small enough.

Thanks to the previous remarks, the estimation of &y, in (23) is therefore based on the
following expression

-1
Yie

-1/

Sk, =2 H(1)D.2 V(1) = [13 - i D),

oo
I — Z d,
k=1

For r € N\ {0}, consider the least square regression of V,, on V,_1,...,Vy—r, for all n € Z,
defined by

-
Vo= @i Vni+Ern, (33)
k=1
where €., is uncorrelated with Y,_1,...,V,—r. Since ), is not observable, we introduce
Y € R? obtained by replacing Cy by Yy, Ukg—2 Y Yig—1.n and ug,—1 by Y, in (20):

5}71 = (Yn - an YnYn—i—ko—l - Yko—l,nv YnYn+k0 - Yko,n)/ . (34)

Let us define & p(z) =13 — > _ L ATka7 where <i>r71, - Q:)m denote the coefficients of the
least squares regressmn of yn on yn Tyeoos 5}” . Let &,, be the residuals of this regression
so that Y, = > oreq Tkyn i+ Erp, and let 257 = %Z?:l ér4€,., be the empirical variance of
57",1; .. 57‘,n

In the case of linear processes with independent innovations, Berk (1974) has shown that
the spectral density can be consistently estimated by fitting AR models of order r» = r(n),
whenever r tends to infinity and 73/n tends to 0 as n tends to infinity. Here, there are
differences with Berk (1974): {),, n € Z} is multivariate, is not directly observed and is
replaced by {),, n € Z}. Tt is shown that this result remains valid for the multivariate linear
process {V,, n € Z} with non-independent innovations (see for instance Boubacar Mainassara
et al. (2012); Boubacar Mainassara and Francq (2011), for references in (multivariate) ARMA
models with dependent errors).

Thus, the asymptotic study of the estimator of Sy, using the spectral density method is
given in the following theorem.

Theorem 5.2. Assume that (A1), (A2); hold with 5 = 4 + 2k for some x > 0 and (A3)
hold, and that the process {V,, n € Z} defined in (20) verifies (A4) with 3. = Var(e,)
non-singular. Assume in addition that the sequence {®, k& > 1} defined in (30) verifies
|®k|| = o(1/k?). Then, the spectral estimator é%}; of &y, defined as follows verifies

57V (1) — &, = 1D (1) (35)

r
T n—00

S =& (1)3:
when r = r(n) — oo and r3/n — 0 as n — co.

As explained previously, Proposition 5.1 gives some conditions such that (A4) and || k|| =
o(1/k?) are verified. Its proof occupies a large bulk of Appendix Appendix A.6. The proof of
Theorem 5.2 is similar to that given by Boubacar Mainassara et al. (2012, Section 3.3.1) and
is given in the same Appendix.
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Let V(Yo Yig—1.n, Yion) be a consistent estimator of Vi (Ch, ugy—2, uk,—1), where ¢ is
the function defined by (25). Theorem 5.2 thus implies that

Qz(l)) = (VSO(YTH Yk‘o—l,na Yko,n))/ éz(l)j (VQD(YTH Yko—l,nv Yko,n)) (36)
is a weakly consistent estimator of €2;,. Some numerical illustrations are presented in Section
7.1.

6. General correlated immigration

We suppose throughout this section that (A1), (A2) and (A3) hold, as well as the following
additional Assumptions.

(A5): The unknown parameters Ag, mg, Vo¢ and Vp (reminding that the two latter are
the variances of £ and €) belong to © := [A_, A\;] X O, X Oy, x Oy, for some known
respective intervals [A_, ;] and compact intervals O, Oy, and Oy, included in [0, 00),
with 0 < A_ < A4 < 1, and the generating function f, : € [0,1] — > o2 2%veq1
belongs to some known class of function F.

(A6):  There exists a known quantity K,, > 0 such that

inf 2w, Ve, Ve, > K,, 47
(Aau,Vg,‘lfge@, fe]:’ (A 13 3l (37)

where = is the function defined on © x F by

Ve A VA 22 1 B
(1—/\52731(01+/\) e TN 0T 68)

E()‘Hua‘/fa‘/eaf) =

where (A, 1, Ve, Vi, f) € © x F.

(AT): There exists a known constant Cy > 0 such that the k-th moments ||Yy||x of the
stationary process, k = 1,2 are less than Cy.

We give a few comments on the two last assumptions. Assumption (A6) may at first sight
look artificial, but is actually natural for the following reason. First note that the function = in
(38) verifies from (15) that Z(Xo, mo, Vo, Vo,es fv) = 2720 Ao Xy + Xo(C? — Cy) is non zero (a
condition which will turn out to be necessary in the forthcoming Theorem 6.2), and that it is
still non zero in the neighborhood © x F of the unknown parameters (Xo, mo, Vo¢, Vo.e, f). So
that (A6) is relevant because, unless in very specific circumstances, > 725 Ay J X;+Ao(CF—Cs)
is not likely to be exactly zero. This is verified for example in the following situations:

e When F is the set of power series with non negative coefficents, meaning that the
immigration sequence {e,, n € Z} is positively correlated, i.e. v, > 0 for all n > 1.
This is the case when one models the evolution of a disease with constant (increasing or
decreasing) trend. In that case we have that f()\) and f(A~!) are non negative, so that
we have from (37) that

A A
inf ©
LA (Lt Ay TOv

12\ 11, Ve, Ve, ) > Ky := inf Oy, . inf O,,. T2
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e When F is included in the set of functions bounded by some constant Mz, in which
case we may set

A A A2 1
K,y := inf Oy, .inf ©,,. inf Oy ——— — M + ,
MOV I Om o ) T T T T T T

which is positive e.g. if the bound Mr is small enough.

As to (AT), note that the explicit upper bound Cy in (A7) may be obtained from Kevei and
Wiandt (2021, Section 3.1) under the assumptions that ||e||2 and ||£||2 are finite, so that (AT)
is not too restrictive. The expression of the bound obtained in that latter paper may not be
simple, which is why one simple example where Cy has a nice expression may be illuminating.
This is given in the following example:

Example 6.1. Assume that there exists known constants M, > 0 and M € (0,1) such that
lellx = [E(le*)]V/*F < M, and ||€]|x = [E(|€F)]Y/* < Mg, k = 1,2. Let us then write that

Y_1 Y1
Yolle = || o +eo|| <|D &l +leolly- (39)
j:l k j:l k

Thanks to the independence of Y_; from the & ;’s, j > 1:

k k k

Y, Y4 oo n
Gl = E| D &, => 1D | PO-1=n)
p j=1

k n=0 || j=1 k

o0
Y nPlIENE BOY=y = n) = JENR IY=allf = I€IE 1Yol

n=0

IN

which, plugged into (39) yields that the stationary process {Y;, n € Z} admits the following
k-th moment upper bounds

el M,
el = T g

¥olle < 7 k=1,2.

Here, the fact that we impose for M to be less than 1 may look demanding, but is satisfied
for instance if £ is zero with sufficiently high probability.

In order to state the main result of this section, we first introduce some auxiliary functions
that will enable us to construct the estimator for the unknown parameters Ay and mgy. We
first let @ : R — R be a twice differentiable function such that

=1, =z€ll,0),

w(x) =0, z€(—00,0], (40)
€ [0,1], x€]0,1],
o’(x) = o(z), z—0, (41)

so that @'(7) = o(z?) and w(z) = o(x3) as x — 0.
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We also need a twice differentiable function G : R — R with finite support such that
G(z) =1 for € [0, max (Cy,C%)]. We then let

2

K,, being defined in (37), so that wy(z) is equal to 1 on [271K,,AF, 00), lies in [0,1] on
(0,271 K, A" | and is 0 on (—ooc, 0]. We finally define for all k € N\ {0}

Hy:z€R o %wk(|x|)ln]:c|, (43)
Ui : (a,0) € R? = G(a)G(b)Hy(a® —b). (44)

Now, to motivate the expression of the upcoming estimator we first make a few comments.
Since Z?io Ao’ x; is a convergent series (an easy consequence of the definition (5) of xj and the

convergence of the series in assumption (A2)), and since we saw that > 72 Ay i Xj+Ao(C?—Cs)
is not zero thanks in particular to (A6), the first crucial observation that we may make from
(13) is that

1
S = Em\cl? — | — In(No), Kk — oo. (45)

This limit brings us to two deductions. First, w.l.o.g. we are going to estimate the unknown
parameter In Ay rather than A\g. Second, since for fixed ¥ € N, (1 and wu; are respectively
estimated by

B 1 n B 1 n
Yo i=— Yi, Y& 1n = — YiYitks1, 46
- ; in = ; et (46)
then it is natural to let k& = k,, in (45) for an integer valued sequence (k;)nen such that
lim,, o0 kn, = 00, and introduce an estimator where C and uyg, are respectively replaced by
Y,, and ?knJan.

We now arrive at the definition of the estimator. As previously said, and in view of (45),
a first idea that springs to mind is to consider the following estimator:

T = ki (V]2 — Vi1 (47)
n

for a sequence (kj)nen with lim, o k, = oco. Equation (47) has however two drawbacks.
First, by a very crude approximation we have that [V,,]? — Yy, y1., & C} — ug, which tends
to 0 as n — oo: this observation foretells that [}_/n]2 — Ykn_’_Ln can be arbitrarily too close to
0 with possibly large probability as n grows large, so that In HYH]Q - Y]{;n+17n‘ is difficult to
control and may e.g. tend to oo faster or more slowly than k. Second, [Y]? — Y, 11, may
also be arbitrarily large. Both those observations imply some potential "bad" behaviour of
the estimator defined in (47), namely that it can grow large as n — oo, which will induce
undesirable statistical properties. This justifies to rather consider the following regularized
estimator

~

S =V, (Yo, Vi 11.0) = GY) GV 11.0) Hie, (|[Va]? = Vit 10|

_ _ _ _ 1 _ _
= GG Vw10, ([Val* = Yirin]) o | Vol = Vi 410], n €N, (48)
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for a well chosen sequence (ky)nen specified later, where 1)y is defined in (44). One sees
that S,, resembles (47), but the behaviour of [Y,]? — Ykn_l'_l’n at 0 and infinity is "smoothed
out" thanks to the functions wy, (-) and G(-), see (44). The role of the function 1, in the
definition (48) is motivated as follows. The terms G(Y,) and G(Yj, 11.,) prevent S, from
being too large if Y,, or Ykn-i-l,n are large. The term Hj, (‘[}7”]2 — Ykn+17n‘) is such that it
behaves like k! In H}_/n]z - Ykn+1’n‘ when Hi_/n]2 — Yknﬂm‘ is far enough from 0. When the
latter is close to 0, the definition (42) for wy, entails that wy,, (’ [V,]? — Yan,nD tends to oo
with the same order of magnitude as k,,, again preventing S,, from being too large.

The main results of this section show the convergence in L? of the estimator towards the
unknown parameter and gives an expansion for S, for a suitable choice for ky,.

Theorem 6.1 (Quadratic convergence of estimator). We suppose that (A1), (A2), (A3),
(A5), (A6) and (A7) hold. Let us set ky, := |cInn]| where ¢ < —1/(2InA_). The following
convergence in quadratic mean holds:

= converges in probability towards Ay as n — oo. Furthermore, the

b
Inn

Sn—ln)\oH2—O< )HO, n — oo (49)

so that, in particular, e®

estimator defined by N, =Y, <1 — eS”> converges in probability towards mg as n — oo.

The proof of Theorem 6.1 is postponed to Appendix Appendix A.9.

Remark 6.1. The sequence (ky)nen grows like Inn in the previous theorem. It may be
(wrongly) guessed that such a growth is inconsequential and that any sequence satisfying
k, = o(n) could guarantee the convergence of the estimator S,,. In fact, it turns out that this
growth rate is not only significant but actually careful chosen, as it is illustrated numerically
in Section 7 that the estimator performs very badly if k, grows for example like \/n instead.

Last, a finer behaviour for the estimator can be described when the covariance of the
immigration process decreases fast enough. This is explained in the following result.

Theorem 6.2 (Expansion for S,). We suppose that (A1), (A2), (A3), (A5), (A6) and
(A7) hold. Let us also assume here that the covariance of the immigration process satisfies
v, = O(¢") for some ¢ < A_ (ensuring that (A2) holds). Let us set k, := |clnn| where
c€ (—1/2In¢,—1/2InA_). Then one has the two terms expansion

S, —In)g = klnln gxgjxj + X(C? — Cy)| + Wzn (50)
where Z,, satisfies 7, 2, N(0,0), n — oo, with
o = V&V, (51)
/
N 20 1 7 (52)

Yo x + (€3 = Co)| |50 AT+ M(CF =€)
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and where & is given by

[ 2 {80 2an=o X _
2357524 (CF — upa) +14-(Ca - C)
+3C1 Y poy (up—1 — C3)
S — (53)
_2(11”,\00)2 Zzio Xh 022 - C% + 2220:1(’“%—1 - Cil)
+19-(Cr = CF) +2CF 320 (un—1 — CF)
1301 Y50 (uny — CF) —2050 X e

The proof of Theorem 6.2 is postponed to Appendix Appendix A.10.

It seems that such expansions as (50) are quite rare in the literature and exist in the
case of regression models, see convergence (3.6) in Taniguchi and Puri (1996, Theorem 2)
for a corrected central limit theorem for an estimator in a linear model. Also note that the
normalization factor in the central limit theorem involved in (50) is /nk,Ag" i.e. in the form
ndInn with § = 1/2 + cIn \g, which is different from the classical re-normalization in v/n.

Also, a byproduct of (50) is the following refinement of (49) in Theorem 6.1:

. 1 N 1
Sp, —In)Xg = k—ln Z)\ijj + )\0(012 — C3)| + Op2 (W) ) (54)
n =0 n0

as indeed it is shown in the proof of Theorem 6.2 that ||Z,||2 converges as n — oo to some
finite quantity. This makes more precise the speed of convergence of S,, towards In Ay, as (54)
implies that

i.e. that the speed of convergence is ezactly of the order 1/In(n) here, and not just at most of
order 1/In(n) as shown in (49). Convergence is thus very slow, which in particular explains
why we need to pick very large n in the numerical illustrations in the forthcoming Section 7.2.

Theorems 6.1 and 6.2 will heavily rely on the two following technical results, proved re-
spectively in Appendices Appendix A.7 and Appendix A.8.

N

Sn—].n)\QH2 x ln(l’

n)

(55)

Proposition 6.3. The following estimate holds for all £ and n in N:

o+ ;) (56)

for some constant Kg > 0, where we recall that S, (k) is defined in (20).

1
N

Sn(k)

[k (Y, Y1) — In Xo|2 < Kg <

Proposition 6.4. Let the sequence (ky)nen be such that k, = o(n) as n — oco. Then the
following convergence holds

%]E(Sn(k:n)sn(kn)’) BN (57)

as n — 0o, where we recall that S, () is defined in (20), and where & is given by (53). If
furthermore the sequence (ky,)nen verifies

kn, = O(n™), n — oo with x € <O, 1A 2(55__11)> , (58)
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then the following central limit theorem holds

S (kn)
NG

Finally, the proofs of Theorem 6.1 and Theorem 6.2 are resppectively presented in Appen-
dices Appendix A.9 and Appendix A.10.

2y N(0,8), n— . (59)

7. Numerical illustrations

7.1. Ultimately correlated case

We study numerically the behavior of the moment estimator for independent and corre-
lated immigration model (1) on N = 1000 independent simulated trajectories to assess the
performance of the moment estimator in finite sample. We generated from model (1) three
trajectories of length n = 300, n = 2000 and n = 5000, in which the reproduction sequence
{&k, n € Z, k € N} is taken to be:

1) random variables P(\g) distributed,

2) Bernoulli random variables with expectation Ag.
The immigration process {e,, n € Z} is taken to be:

1) P(1) distributed (for the independent case),

2) of the form €, = Hfial Zp—; where {Z,, n € Z} is i.i.d. with P(ag) distribution (for
the correlated case), for ko = 2,3. In view of (17), we have:

Cov (€n, €n—p) = { oA oo+ oo™ ~ag if h<ko—1.
0 if h > kg

We take ag = 1 in our numerical illustrations. Table 1 summarizes the distribution of the
moment estimator Rko,n of Ag over these simulations experiments. As expected, Table 1 shows
that the bias and the RMSE decrease when the size of the sample increases. From Table 1, the
estimation of Ay becomes more difficult when kg increases. We will now numerically evaluate
the potential effects of underestimation or overestimation of the instant kg (see Assumption
(A3)1). Table 2 summarizes the distribution of the moment estimators .7:21,,1 and Rg,n of g
for the model (1) when €, = Z,Z,_ 1 i.e. ko = 2 with Z, ~ IIDP(1). As expected R,
is inconsistent and the bias of the estimation increases with increasing n. In contrast, when
n increases, the distributions of fm’g,n are close to those of Table 1 (see kg = 2) except for
Ao = 0.2. From this example we draw the conclusion that, in the case of an overestimation of
the parameter kg the proposed estimator szo,n of \g remain asymptotically consistent. On the
other hand, if the instant kg is underestimated, the proposed estimator Rko,n is inconsistent
even as m increases.

Figures 2, 3, 4, 5, 6 and 7 summarize via box-plots and compare the distribution of the
proposed moment estimators and those proposed by Klimko and Nelson (1978) (see also Al-
Osh and Alzaid (1987)) in the independent and correlated cases. For these simulations the
distributions of the proposed moment estimators and those proposed by Klimko and Nelson
(1978) are similar in the independent case (see the left panels of Figure 2), whereas the
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distributions of our proposed estimators Rko,n and Mko’n are more accurate in the correlated
case than those proposed by Klimko and Nelson (1978) (see the right panels of Figures 2
and 3). Under non-independent immigration, it appears that the estimators proposed by
Klimko and Nelson (1978) (see also Al-Osh and Alzaid (1987)) are unreliable (see the right-
bottom panel of Figures 2 and 3). See also the right-bottom panel of Figures 6 and 7 for which
the estimation of the centered Gaussian density with the same variance plotted in dotted line
is very poorly approximated because the fact that the estimators proposed by Klimko and
Nelson (1978) is very biased (bias(\g) = 0.165 and bias(mg) = —0.331) in the correlated case.
For these simulations we also observe that: the precision around the estimated coefficients
is better when the size of the sample increases and the distributions of ﬁiko,n and Mko,n are
more accurate in the independent case than in the correlated one. This is in accordance with
the results of Romano and Thombs (1996) who showed that, with similar (ko — 1)-dependent
noises, the asymptotic variance of the sample autocorrelations can be greater than 1 as well
(1 is the asymptotic variance for independent white noises).

Figure 8 compares the standard estimator Qg of Qg in Remark 4.2 by Klimko and Nelson
(1978) with the proposed estimator based on spectral density estimation QEE of the asymp-
totic variance Q, in (36). We used the spectral estimator defined as (35) in Theorem 5.2.
The AR order r in this theorem is taken equal to |n(1/3)—-Machine$double.eps| ypere
.Machine$double.eps is the smallest positive floating-point number x such that n 4+ x # n.
The order r can also be automatically selected by AIC or BIC, using the function VARselect ()
of the vars R package). In the case of independent immigration we know that the two estima-
tors are consistent. In view of the left-top and the left-bottom panels of Figure 8, it seems that
the standard estimator is most accurate than the proposed estimators in the independent case.
This is not surprising because the spectral estimator is more robust, in the sense that this
estimator continues to be consistent in the correlated case, contrary to the standard estimator.
It is clear that in the correlated case nVar(RkO’n — Xo)? and nVar(MkO,n —myg)? are better
estimated by Q%f(l, 1) and Q%E(Q, 2) (see the box-plots 1 and 2 of the right-bottom panel of

Figure 8) than by Qg(l, 1) and Qs(2,2) (see the box-plots 1 and 2 of the right-top panel).
The failure of the standard estimator of €2y, in the correlated immigration model setting may
have important consequences in terms of statistical inference.
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Table 1: Sampling distribution of the moment estimator Rko,n of g for the model (1) with €, =
155" Z,_i where Z, ~ IIDP(1).

£~ P(Xo) £~ B(Xo)
Ao Ao

0.2 0.5 0.7 0.9 0.2 0.5 0.7 0.9

Biais -0.006 -0.033 -0.029 -0.029 -0.007  -0.027 -0.027 -0.034

RMSE 0.108  0.103  0.075  0.049 0.110  0.090  0.066  0.051

QgOP(L 1)  4.582 1.938 1.006  0.293 4.527  2.261  0.833 0.301

Min 0.001  0.116  0.406  0.694 0.002  0.220 0.463  0.710

ko=2 n=300 Q1 0.108  0.402  0.627  0.846 0.109  0.414 0.637 0.844
Q2 0.183  0.473 0.678  0.876 0.185  0.475  0.677  0.873

Mean 0.194 0.467 0.671  0.871 0.193  0.473 0.673  0.866

Qs 0.268  0.536  0.720  0.899 0.266  0.533 0.716  0.894

Max 0.513  0.753  0.834  0.956 0.591  0.716  0.821  0.954

Biais -0.007  -0.007 -0.005 -0.004 -0.009  -0.007 -0.004 -0.004

RMSE 0.057  0.037 0.026  0.014 0.057  0.035 0.023  0.012

QgOP(L 1)  5.935 2417 1202  0.337 5.600  2.081 0.938  0.240

Min 0.002  0.374 0.599  0.857 0.031 0.372 0.598  0.856

k=2 n=2000 Q 0.158  0.470  0.678  0.887 0.156  0.470  0.683  0.889
Q2 0.193  0.493  0.696  0.897 0.190  0.494  0.697  0.896

Mean 0.193  0.493  0.695  0.896 0.191  0.493 0.696  0.896

Qs 0.229  0.518 0.713  0.905 0.236  0.515 0.712  0.904

Max 0.379  0.634  0.782  0.934 0.372  0.595  0.765  0.929

Biais 0.051 -0.057 -0.040 -0.031 0.060 -0.056 -0.038 -0.030

RMSE 0.164  0.153  0.096  0.052 0.171  0.142  0.083  0.049

QgOP(L 1) 14.888  4.184  1.409  1.098 14.043  3.533  1.428 0.371

Min 0.000  0.006 0.291  0.691 0.000  0.003 0.394  0.644

ko=3 n=2300 Q1 0.133  0.356  0.607  0.843 0.129  0.363  0.617  0.849
Q2 0.233  0.454 0.669  0.874 0.249  0.445 0.666  0.875

Mean 0.251  0.443  0.660  0.869 0.260  0.444 0.662  0.870

Qs 0.354  0.547  0.721  0.898 0.364  0.539 0.714  0.896

Max 0.780  0.790  0.860  0.959 0.864  0.825 0.838  0.957

Biais -0.008 -0.009 -0.007 -0.005 0.001  -0.009 -0.006 -0.005

RMSE 0.101  0.056  0.033  0.016 0.104  0.053  0.029  0.013

QgOP(L 1) 24.418 5.098 1.742  0.390 24.525 4525  1.353  0.250

Min 0.000 0.268  0.580  0.830 0.000 0.328 0.616  0.852

k=3 n=2000 Q1 0.113  0.455 0.670  0.886 0.122  0.458 0.675  0.888
Q2 0.190 0.494 0.694  0.896 0.195 0.491  0.694  0.896

Mean 0.192  0.491  0.693  0.895 0.201  0.491 0.694  0.895

Q3 0.259  0.526  0.715  0.905 0273  0.524  0.714  0.904

Max 0.525  0.688  0.782  0.947 0.581  0.670  0.797  0.933
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Table 2: Sampling distribution of the moment estimator Rko,n of g for the model (1) with e, = Z,,Z,,_1
i.e. ko =2 where Z,, ~ IIDP(1).

&~ P(Xo) &~ B(Xo)
Ao Ao

0.2 0.5 0.7 0.9 0.2 0.5 0.7 0.9

Biais 0.162 0.060 0.014 -0.018 0.165 0.062 0.021  -0.012

RMSE  0.208 0.106 0.064 0.039 0.214 0.102 0.059 0.035

Min 0.020 0.270 0.379 0.696 0.004 0.299 0.534 0.721

ko=1 mn =300 Q1 0.276 0.501 0.672 0.863 0.270 0.513 0.683 0.871
Q2 0.360 0.562 0.717 0.886 0.367 0.564 0.725 0.892

Mean 0.362 0.560 0.714 0.882 0.365 0.562 0.721 0.888

Q3 0.451 0.617 0.757 0.906 0.460 0.618 0.762 0.910

Max 0.732 0.858 0.865 0.957 0.847 0.797 0.863 0.961

Biais 0.192 0.085 0.037 0.004 0.198 0.086 0.042 0.009

RMSE 0.201 0.092 0.045 0.014 0.206 0.094 0.048 0.014

Min 0.188 0.455 0.657 0.857 0.194 0.497 0.675 0.873

ko=1 n=2,000 @ 0.352 0.561 0.721 0.896 0.359 0.560 0.727 0.902
Q2 0.393 0.586 0.737 0.905 0.398 0.586 0.742 0.909

Mean 0.392 0.585 0.737 0.904 0.398 0.586 0.742 0.909

Q3 0.431 0.608 0.754 0.914 0.436 0.609 0.758 0.916

Max 0.645 0.726 0.824 0.947 0.587 0.715 0.829 0.939

Biais 0.303 -0.030 -0.060 -0.035 0.305 -0.041 -0.059 -0.034

RMSE  0.409 0.222 0.148 0.060 0.403 0.214 0.132 0.058

Min 0.001 0.000 0.047 0.645 0.003 0.000 0.015 0.587

ko=3 mn =300 Q1 0.274 0.324 0.563 0.835 0.294 0.300 0.572 0.844
Q2 0.509 0.474 0.658 0.871 0.498 0.471 0.656 0.873

Mean 0.503 0.474 0.640 0.865 0.505 0.459 0.641 0.866

Q3 0.737 0.633 0.739 0.900 0.705 0.609 0.722 0.896

Max 0.996 0.989 0.938 0.964 0.998 0.975 0.961 0.961

Biais 0.201 -0.019 -0.009 -0.006 0.202 -0.016 -0.006 -0.005

RMSE 0.317 0.112 0.045 0.018 0.317 0.103 0.040 0.014

Min 0.001 0.056 0.532 0.830 0.000 0.046 0.573 0.848

ko=3 n=2,000 @ 0.209 0.415 0.663 0.884 0.202 0.421 0.668 0.887
Q2 0.371 0.489 0.693 0.895 0.390 0.492 0.694 0.896

Mean 0.401 0.481 0.691 0.894 0.402 0.484 0.694 0.895

Q3 0.573 0.549 0.721 0.906 0.577 0.552 0.718 0.905

Max 0.998 0.800 0.820 0.955 0.994 0.770 0.821 0.934

Biais 0.128 -0.010 -0.004 -0.002 0.134 -0.008 -0.003 -0.001

RMSE  0.238 0.069 0.028 0.011 0.242 0.065 0.026 0.008

Min 0.000 0.275 0.603 0.864 0.002 0.280 0.609 0.870

ko=3 n=5,000 Q; 0.169 0.444 0.677 0.891 0.173 0.451 0.681 0.893
Q2 0.310 0.494 0.697 0.899 0.314 0.496 0.698 0.899

Mean 0.328 0.490 0.696 0.898 0.334 0.492 0.697 0.899

Q3 0.465 0.535 0.714 0.905 0.468 0.537 0.714 0.904

Max 0.952 0.688 0.774 0.938 0.999 0.689 0.785 0.929
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Figure 2: The moment estimators and the estimators proposed by Klimko and Nelson (1978) of N = 1,000
independent simulations of model (1) of size n = 5,000 with unknown parameter Ao = 0.5 and mo = 1, when
the immigration is independent (left panels, with €, ~ I7DP(1)) and when the immigration is correlated (right
panels, with €, = Z,,Z,_1 where Z,, ~ IIDP(1)). The reproduction sequence ¢ ~ B(Ao). The panels display
the distribution of the estimators Rko’n and Mko’n. The two top panels (resp. two bottom panels) correspond
to our proposed estimators (resp. to the estimators proposed by Klimko and Nelson (1978) and Al-Osh and
Alzaid (1987)).
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Figure 3: The panels at the top present the distribution of the estimation error of the estimates Ao and mg
given in Figure 2. The left (resp. right) panel corresponds to the case of independent (correlated) immigration.
Points 1 and 2, in the box-plots, display the distribution of the estimation error Rko,n — Ao and M;m,n — mgo.
The two top panels (resp. two bottom panels) correspond to our proposed estimators (resp. to the estimators
proposed by Klimko and Nelson (1978) and Al-Osh and Alzaid (1987)).
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Figure 4: The panels at the top present the Q—Q plot of the estimates Ao given in Figure 2. The left (resp.
right) panel corresponds to the case of independent (correlated) immigration. The two top panels (resp. two
bottom panels) correspond to our proposed estimators (resp. to the estimators proposed by Klimko and Nelson
(1978) and Al-Osh and Alzaid (1987)).
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Figure 5: The panels at the top present the Q—Q plot of the estimates mo given in Figure 2. The left (resp.
right) panel corresponds to the case of independent (correlated) immigration. The two top panels (resp. two
bottom panels) correspond to our proposed estimators (resp. to the estimators proposed by Klimko and Nelson
(1978) and Al-Osh and Alzaid (1987)).
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Figure 6: The panels at the top display the distribution of the estimates Ao given in Figure 2. The kernel
density estimate is displayed in full line, and the centered Gaussian density with the same variance is plotted
in dotted line. The left (resp. right) panel corresponds to the case of independent (correlated) immigration.
The two top panels (resp. two bottom panels) correspond to our proposed estimators (resp. to the estimators
proposed by Klimko and Nelson (1978) and Al-Osh and Alzaid (1987)).
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Figure 7: The panels at the top display the distribution of the estimates mo given in Figure 2. The kernel
density estimate is displayed in full line, and the centered Gaussian density with the same variance is plotted
in dotted line. The left (resp. right) panel corresponds to the case of independent (correlated) immigration.
The two top panels (resp. two bottom panels) correspond to our proposed estimators (resp. to the estimators
proposed by Klimko and Nelson (1978) and Al-Osh and Alzaid (1987)).
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Figure 8: Comparison of standard and modified estimates of the asymptotic variance of the moment estimator
of the model parameters, on the simulated models presented in Figure 2. The diamond symbols represent the

R 2
mean, over N = 1,000 replications, of the standardized squared errors n (Rko,n - 0.5) for 1 (0.934 in the

. 2
independent immigration case and 2.260 in the correlated immigration case) and n (Mko,n - 1) for 2 (4.283
in the independent immigration case and 13.519 in the correlated immigration case) .

7.2. Correlated case

We now illustrate the performance of the estimator S, in (48) of which theorical conver-
gence result was presented in Theorems 6.1 and 6.2.

The process considered here is the stationary version of (1), where & ~ P()\g), and where
{€n, n € Z} is the stationary Markov chain with state space {0,1} and transition matrix P =

1/2 1/2
(1
Ao is not close to 0, and all simulations below are performed such that =(\o, mo, Vo, f) # 0
(with the function = defined in (38)) with V) = Var(§) = Ao and (after some easy computation)

mo = E(e) = 1/3. Inspired by Theorems 6.1 and 6.2, we proceed to estimate E(S,) and

> . It is standard that «. is exponentially decreasing and that (A1) is satisfied if

c | Ao In(Ao) E(Sn) Var(S,) | ||Sn —In(Xo)|l2 | E(exp(Sy))
4.7 1 0.9 | —0.1053605 | —0.0665497 | 0.0001058 0.0401508 0.9356657
1.4 0.7 | —0.3566749 | —0.3192667 | 0.0066237 0.0895714 0.7292888
0.7 1 0.5 | —0.6931472 | —0.6326057 | 0.0369518 0.2015367 0.5423869
0.3 | 0.2 | —1.6094379 | —1.490265 | 0.0000447 0.1193602 0.225318

Table 3: Tllustration of estimator S, with k, = [clnn] (with n = 5.10°)

E(exp(S,)) by Monte Carlo simulation by simulating 20 times S,, with n = 5.10% and k,, =
lclnn]. The factor ¢ is chosen purposefully close to the value —1/(2InA_) while assuming
that A_ is close to Ag in Theorem 6.1, which theoretically guarantees the convergence for .5,,.
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The results are displayed in Table 3. We first remember that convergence is extremely slow,
as was argued in (55), hence the choice of the very lengthy trajectory n = 5.10° (as opposed to
the shorter lengths considered in Section 7.1). Table 3 shows that the estimator S,, performs
well: in particular, E(exp(S’n)) is close to Ag for different values of the reproduction parameter.

We next discuss the choice of the lag sequence (kj)nen. To show that that the choice
k, o< Inn (which, again, is motivated by Theorem 6.1) is efficient, we provide numerics for the
case where the sequence tends to oo at a different speed, namely faster than Inn, while still
being an o(n). Thus, and for comparison, Table 4 shows estimations when k,, = |y/n] (which
still satisﬁeSAkn < n): it is clear that the corresppnding estimator performs very badly, with

values of E(SS),) being very close to 0, and E(exp(S,,)) around 0.99, independently of the value
of )\0.

Ao In(Ao) E(Sy) Var(S,) | E(exp(Shn))
0.9 | —0.1053605 | —0.0001556 | 8.019.10710 | 0.9998444
0.7 | —0.3566749 | —0.0008472 | 7.539.10~% | 0.9991532
0.5 | —0.6931472 | —0.001969 | 2.651.10~% | 0.998033

0.2 | —1.6094379 | —0.0055293 | 0.0000007 | 0.9944862

Table 4: Illustration of estimator S,, with k, = |/n] (with n = 5.10°)

Appendix A. Appendix : Proofs of the main results

Appendiz A.1. Proof of Proposition 3.1

In order to prove that Y admits moments of order 24, it suffices from (8) to prove that
S220110@ 0 €_;||25 converges. This comes from the fact that

109 0 €_i]|25 = O("), |09 0 €n_illap = O(v'), VneZ (A1)

for some v < 1, see the proof in Kevei and Wiandt (2021, Section 3.1). Note that the authors
proved this latter exponential decrease in a context where the immigration process is i.i.d.,
but a close look reveals that the only ingredient in the proof is the independence of 8() from
e_; for all i € N, which is the case here since {{,r, n € Z, k € N} and {e,, n € Z} are
independent sequences. O

Appendiz A.2. Proof of Lemma 3.1

We introduce the quantity 7 := E(e1e_x), k¥ € N, and observe, using (1) as well as the
independence of €; and Y_j_; from {{_j ;, j € N}, that

Y_ k1
me = Ele [Yop— Z kgl | =E(aY_r) — ME(e1Y_p—1)
j=1
= Vi — )\ka+17 k e N. (A2)

Observing now that n, = m(% + vi+1, k € N, yields the following recursive first order relation

from (A.2)
1 1
Vi+1 = )\*ka - )\*0

(m% +vgy1), keEN,
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leading to the expression

k
1 1
v = E /\* mo"’”kzﬂ )+ FUO
j=1 0
k k—1
1 1—1/X\k Vkr1—j 1 m2 1| md ;
2 +1-7 0 0 J
TN T = 1/ Zl N + N T T + N o1 Z., ovi+1 T
j= Jj=0
2 2 0
m 1 m ;
1—0)\0 +F )\0—01 7Z>‘€)Vj+1+vo — Xk- (A.3)
0 j=0

We note now that 0 < v < [E(e2)]V/2[E(Y2)]Y/? = [E(G%)]1/205/2 thanks to the Cauchy
Schwarz inequality, so that the sequence {vg, k € N} is uniformly bounded. Also, one has
that [xx| < > 524 [vj41], which tends to 0 as k& — oo thanks to the (stronger) assumption
(A3). The subcriticality condition (2) for A¢ thus entails from (A.3) the explicit expression

2
A4
Vo = 1_AO +J§%)‘OVJ+1 /\0 ( )

as well as the more general expression (11) for vy, k € N.
We now come back to (12). Using (1), the independence of the sequence {1, j € N} as
well as its independence from Yy, yields

2
0
Cy=E(Y?) = E wa—i-el

Yo
= qu+ Y b 20 by e

1<r#r'<Y)y j=1
= E(& )E(Yo> + [B(&)PE(Yo (Yo — 1)) 4 2E(&)E(e1 Yo) + Ee?
= V0,§C1 + /\(2)02 + 2Xgvg + EE%,

which, thanks to (A.4) and the fact that xo = —f,(A\o), yields (12). O

Appendixz A.3. Proof of Corollary 3.2
(7) coupled with the relation (11) obtained in Lemma 3.1 yields uy — Augp_1 = CZ(1 —
Ao) — Xk, from which in turn we deduce the following recursive relation

Ct —up, = Xo(C —wp—1) — xu, k€N,

Since u_1 = Cy, we arrive then at C? —uy, = Z?:o )\%kaj +ARHL(C? — Oy), hence (13). O
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Appendiz A.4. Proof of Proposition /.1

Iterating Equation (1) yields that Y, is a function of €, & < n and &,;, £ < n,
i € No. {Y,, n € Z} and {Y,Yh+k,, n € Z} being stationary and integrable, and
{(en,&ni), n € Z, i € N\ {0, }} being ergodic, yields the a.s. convergence of Y,, and ffko,n
(defined in (20)) respectively towards C; and uy, by Francq and ZakoTan (2019, Theorem A.2
p.344). Hence szo,n and, in turn, Mko,n, converge a.s. to \g and mg as n — oo based on (19)
and (7). O

Appendiz A.5. Proof of Theorem 4.2
We start by stating two technical lemmas.

Lemma Appendix A.1l. Let k, j and m in N with m > j > k and ¢, (resp. ¢}},) be a
o(en, n < k)®o(pi,n < k,i € N) measurable (resp. o(e,, n > m) measurable) random
variables belonging to L(=2/8)V4 The following decompositions hold:

m—j—1  [j—k—1
Cov(p,,Y;Ym) = Z Y Z AéCov(@,;,ej,tem,s)+)\67kCOV(<p,;,Ykem,s)
s=0 t=0
—I—)\(T)n_jCov(gD;, Y]?), (A.5)
j—k—1 A
Covlpp, Yiem) = > M fis(k,m) + NV Cov(py, Yi),),  where (A.6)
s=0
filk,m) = VogCov(py, Yimiph) + Cov(py . efom) + 200Cov(pp, Yi—1ejofA.7)

with V¢ = Var(§).
Proof. In view of (1), the independence of &, , from ¢, , Y; yields:

mel
Cov(py, YY) = Cov | ¢, ,Y; Z Emp + €Em = XCov(yp,Y;Ym_1) + Cov(y, , Yiem)
p=1
which, by direct induction, gives
m—j—1 )
Cov(y,,Y;Y,,) = Z XoCov(ey, Yiem—s) + A?_]Cov(gpg,}/jg).
s=0

A similar argument (involving this time the independence of ¢,  and €, from {§,,, p >
1}, » = k + 1,...,7), yields that Cov(p,,Yjem—s) = Z{;gil NoCov(py , €j—t€m—s) +
)\gkaov(gplz, Yi€m—s) which, plugged in the above equality, yields (A.5).

In order to prove (A.6), we first expand Y}Z = [E;ﬁf Eip+€j ‘o Z;fgl ]2-,1, +
Zlgp;ép'ng,l §ipSip T e? + 2¢; E;fgl &j,p» which, still by independence arguments and since
E(£%) = Voe + A3, yields

Covlpy, Yiom) = (Vog + A)Cov(gy, Vi) + ACov(py, Yim1 (Y1 — D))
+ Covlpy , Fom) +200Cov(py ¢ Yj—108,)
= \5Cov(py, Yiom) + fi(k,m)
where f;(k,m) is defined by (A.7). Direct induction in the above equality yields (A.6). [
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Lemma Appendix A.2. Let k, j in N with j > k and ¢; (resp. ¢;) be a o(e,, n <
t, &nisn < t,i € N) measurable (resp. o(e,, n > t) measurable) random variables belonging
to LAV4, uniformly in t = k, ..., j. The following upper bound holds

o) A

where 8 > 2 is defined in (A1). As a consequence, the following similar bound holds for all
k<j<minN:

Covier Vioh)| < K [ae (V"’“_lJ ) . AéjglJ] (A.9)

—k—

Cov(py, ¢; )

2
for £ =1,2.

Proof. Since {&,,m € N,i € N} is independent from {e,, n € Z}, Davydov’s inequality (see
Davydov (1968)) as well as the L assumption on ¢, and ¢;, t = k, ..., (see Assumption
(A2)), yields that |\jCov (¢, goj_s)\ is less than K a.(j—s—k)? or K A\ for s =0,...,j—k—1
(thanks to the Cauchy Scwharz inequality thanks to the L*, hence L2, assumption), for some
constant K > 0. We split the sum on the lefthanside of (A.8) in s =0,...,[(j —k—1)/2]
and s = |[(j—k—1)/2],....,j —k—1. When s =0,...,[(j —k—1)/2] we get that j —s >
|(j — k—1)/2], so that Davydov’s inequality reads
: 1-2/8
j—k—1
< K\  —
= (|5 )

k-1 |\
<oXac(|Z522]) T Mol o

A5 |Cov(py ) )

(A.10)
for some universal positive constants C' and K. So that summing (A.10) yields
LG—=k=1)/2] L1\
> XCovlgy,el,)| < Ka. QJQ J) (A.11)
s=0

for some (different) constant K > 0. When s = |(j —k—1)/2] +1,...j — k — 1, one easily
gets

gkl i—k=1
S NCov(vp. et | < kAT (A.12)
s=|(j—k—1)/2]+1
so that combining (A.11) and (A.12) yields (A.8).
We next prove (A.9) for s = 2 (s = 1 being proved similarly).
Observing each term on the righthandside of (A.7), we have (still by standard arguments)

that PR
£k m)| < K [ae QJQD e J] |

Hence, splitting the sum on the righthandside of (A.6) in s =0,...,|(j —k—1)/2| and s =
|(j—k—1)/2] +1,...,j — k — 1 and using the fact that a.(-) is decreasing, yields

—k— [ =] j—k—1
2Sf] s k m) < Z ‘)‘(Q)Sfj—s(kym)‘ + Z |)\(2)sfj—s(k7m)|
= = S
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j—k—1
<K Ll

() e
<o ([]) )

where the constant K > 0 changes at each inequality. Combined with the fact that:

NP Cov(er Vi) < AU,

(a consequence of the Cauchy-Schwarz inequality, thanks to the LAV4 integrability assumption
of ¢, , ¢, and the L* property of Y;), we thus obtain (A.9) from (A.6). O

Proof of Theorem 4.2. The proof follows the line of proof in Francq and Zakoian (1998),
with some noticeable technical differences. More precisely, we intend to apply Herrndorf (1984)
to a truncation of Y;, expressed as the series (9).

Appendiz A.5.0.1. o Step 1:. we prove that Sy, defined in (23) is a convergent series. To
prove this, and in view of (24), we prove here only that Zj’;l Cov(YoYk,, Y;Yjtk,) converges,
the series involving the other terms in (24) being proved similarly. Using (A.5) with k := ko,
m = j+ ko, ¢, = YoYy,, yields for j > kg

ko—1  [j—ko—1
Cov(YoYig, Y Yjtr) = Z A [ Z Ny Cov(YoYiy, €j—t€jho—s) + Ay Cov(YoYiy, Yieg€jtho—s)
s=0 t=0

+ A Cov(YoYyy, ), (A.13)

of which different terms are appropriately upper bounded. Applying inequalities (A.8), the
Cauchy Schwarz inequality (under the assumptions (A2) and thanks to Proposition 3.1) and
(A.9) give respectively

J—ko—1 i . 1-2/8 j—kg=1|
ke —1 i=ko—1
Z )\6 ’COV(}/OYIC(V ej—t6j+k0—s)| S K Qe ( % ) + )\[\5 ? J 9
t=0 L - - |
|COV(YOYkm Yko€j+ko—8)| < )

S IN1=2/8 kgt
’COV(YOYkO,Yf)’ < K ae( W) "’)‘(L d J )

2

for some constant K > 0, which, plugged into (A.13), gives

o ko— 1|\ 18 izko=1 -
ae(vo J) +>\g : J+/\{) ko

|Cov(YoYiy, YiYjtk)| < K 5

(A.14)

for j > ko, yielding that » 22, |Cov(YoYk, Y;Yjtky)| is indeed finite thanks to Condition (2)
and Assumption (A1l).
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Appendix A.5.0.2. ¢ Step 2:. Recall that Y,, may be expanded as (9). We then further de-
compose (9) for all m € N into

m oo
Yo=Yom+ Znm, Yom:= Z Hg) O €n—i, Ipm = Z 97(1i) 0 €n_i, (A.15)
=0 i=m-+1

and YV (ko) = [Yo — C1, Yo Yniko—1 — Ukg—15 YnYniko — Uky| into

yn(ko) = yn,m(kO) + Zn,m(k0)7 (A~16)
Vom(ko) = [Yom—EMum), YomYntko—1.m — ENVnmYntko—1,m)
Yo Ymskom — EYnmYnikom)]
Zom(ko) = [Znm —E(Znm), YomZntko—1,m + ZnmYntko—1,m + ZnmZntko—1,m

_E(Yn,mZn+kofl,m + Zn,mYnJrkofl,m + Zn,mZn+kofl,m>>
Yn,mZn-i-ko,m + Zn,mYn+ko,m + Zn,mZn—i-ko,m
_E(Yn,mZn+k0,m + Zn,myn+k0,m + Zn,mZn+ko,m)>]

!/

for all m € N. We also recall from the proof of Proposition 3.1 that Heg)oen_i 2 = 10 oe_4]|25
is an O(v?) for some v < 1, so that |Yallag, [|[Yamll2s | Zn.mll2s are finite for all n € Z and
m € N. We prove in this Step that

1 n
=" Vimlko) —— N(0,65), (A.17)
n im1 n—o0
for some semi-definite positive matrix &7 € R3%3, for all m € N given by

1= Var(Vom (ko)) + > _[Cov(Vo.m (ko) Yam (ko)) + Cov(Vom (o), Yam(ko))]  (A.18)
h=1

For this we verify Assumption (1.2) in Herrndorf (1984) which says that the following limit
exists

l]E ((Z yz,m(h))) (Z yz,m(kﬁo)> ) = %E Z yi,m(ko)/yj,m(ko)
=1 i=1

1<ij<n
1 n
= Z (n — |h])Cov(Vo,m(ko), Ynm (ko)) — Si, (A19)
h=—n

as indeed, if we prove that &} in (A.18) converges absolutely then the limit (A.19) exists
by the dominated convergence theorem. Then, under Assumption (A1) and m € N fixed,
we prove that the process (Vn m(ko))nez is strongly mixing (see Davidson (1994, Theorem
14.1)), i.e. that the following condition holds:

> amy(h) P < 00 (A.20)

where oy, y(h) = sup{|P(ANB) — P(A)P(B)|, A € 0(Vum(ko), 1 < n < 1), B €
0(Vn.m(ko), n > r+h)} is the mixing coefficient associated to the sequence {V; ,,(ko), i € N}.
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Now, in view of the definition (A.16) of YV, m(ko), we first prove the following limit

)| —— 0, (A.21)

m— 00

o0
to to to to
D | CovOmYEZ iy s Y Vit gyt m) — COVORYLE_ VY2,
h=0

for all ¢y, t3 in {0,1}. Indeed, one deduces easily from this both that &} in (A.18) is finite
for all m, and that it converges to Sy, defined in (23). We prove (A.21) only for ¢t; = 0 and
to = 1, the other cases being similar. For these ¢; and ¢, we decompose the summands in the
above series as

Cov(Yo,mYko,ms YnmYntkom) — Cov(YoYrg, YaYnin,) = Cov([Yo.m — Yo!Yio,ms YamYatkom)
+Cov(Yo[Yig,m—Ykols Ynm Yh+ko,m) +Cov(YoYhgs [Yam—Yn]Yhtko,m)+Cov(YoYhgs Yi[Yitkom—Yhtko)
and we focus on the first term in the righhandside, the other terms being tackled with similarly,
so that we prove that

o0

D 1Cov([Yo,m — Yol Yigm Yim Yo m)| ——— 0. (A.22)
h=0
For this, we observe that, letting
PCrom = 20,mYko,ms (A.23)
and in view of (A.15) and for h/2 > ko:
—Cov([Yo,m — Yol Ykoms YamYnthom) = Cov(ZomYiom, YnmYntkom) = Cov(op, s YamYntkom)
= 33 Cov (%;W, 0 0 e—i, (652, o e +k0_i2])A-24)
i1=0i2=0
4
= Ij(hvm)a
j=1
where
L (hv m) = Z Cov (SDIZOJM [9}(51) ° €h—i1] [Gl(zli)ko 0 6h+k’o—i2]> )
0<41<min(|h/2|—ko,m)
0<iz<min([h/2],m)
L(h,m) = Cov (@ s [0 0 €116 o ]
2\, m ov Sok07m7 h €h—iq h+ko €h+ko—ia] | »
|h/2)—ko<ir<m
0<iz<|h/2]
Lhom) = 3 Cov(0gum 04 0 enillOy2), © ehnosl
3\n,m ov gpko,m’ h €h—iy h+ko €h+ko—ial | »
0<i1<|h/2]—ko
lh/2|<ia<m
Iihom) = 37 Cov (g 4 0 enillOf T, © enikoi
4\n,m ov ¢k07m7 h €h—iq h+ko €h+ko—ia] | »
|h/2|—ko<ii<m
Lh/2]<iz<m

where a sum over an empty set is equal to zero by convention. We notice that PCro.m depends on

Q) ieN, ol ieN and €5, 7 < kg. Also, we recall from (10) that 0\ and 61 are independent
0 ko J 0 ko
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from 6,(51) and Héziko for all ¢ € N as soon as [{—i,ko—i}N{h—i1, h+ko—iz} =0, Vi € N] <—
ko < h — i1, ko < h+ ko — i3] < [i1 < h— ko, i2 < h]. The mixing coefficient ay(h) :=
sup{[P(AN B) — P(A)P(B)|, A € o((0)ien,1 <n < 1), B a0, n—i+1>r+h)}
verifies ag(h) = 0 as soon as h > 1 for similar independence reasons. And, we remember that
{(eﬁ))ieN, n € Z} and {e,, n € Z} are independent. Thus, the following upper bound holds,

using Davydov’s inequality (see Davydov (1968)):

Bm < Y K b B

0<i1 < h/2] ko ?
0<iz<|h/2]
|66 o cns 085, o il (185" o cns 055, o il |, xcli/2) =22

(A.25)

for some constant K. The terms involved on the right-hand side of the above inequality are
bounded as follows. First, thanks to Minkoswki’s inequality followed by Cauchy Schwarz as
well as (A.1), we get

[k =B, < 1 Z0mYiomllg + E(ZomYiom) (A.26)
< NZomllag 1Viamllzg + 1 Zomlly 1 Veomlls
o0 m
(4) , (%) .
< (3 Jooc],,) (Sooed,,)
i=m+1 =0

) (Solooeed,

+< i Hg(i) ey ) = O(v™)(A.27)
i=m+41

Similarly,
|8 0 nin ] (6825 © nermia] —E (07 0 cnmia] 043, 0 enenomsr] )|, < O (HE)
Plugging (A.27) and (A.28) into (A.25) yields their upper bound
11 (hym)| < Kv™ac ([h/2])' 727, (A.29)
for some constant K. Similarly, using again (A.27) and (A.28) yields
[Iy(h,m)| < KoMy, (A.30)
[I3(h,m)| < Kuolh/2ym, (A.31)
[Iy(h,m)| < Ko?h/2ym, (A.32)

for some constant K. Using (A.24) and plugging the bounds, (A.29), (A.30), (A.31) and
(A.32) we thus obtain

Z |Cov([Yo,m — Yo|Yko,m» Ya,mYntkom)|
h/2>ko

Y [ (Lh/2)' 725 4 ylh/2] +U2W2J] — 0, (A.33)

m—o0
h/2>ko
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for some constant K. Since it is easy to check that

|Cov ([Yb,m — Yb]Yko,ma Yh,th+k0,m)| m 0,

for the finite number of terms A such that h/2 < kg, one then deduces that (A.22) holds. And
all in all, we thus proved (A.21), ensuring that &)} — &y, as m — oc.
In order to prove (A.20), we notice from (A.16) that Y, (ko) depends on €;, i = n—m,...,n+

ko, and 65, 97(111@0 1 97(72*’60’

q € Z and 6’1(;9), j € N, p € Z are independent as soon as ¢ — i # p — j. Remembering that
{(6’7(11))161\;, n € Z} and {e,, n € Z} are independent, we hence obtain that

1 =0,...,m. We already observed that the operators 0((1 ), 1 €N,

amy(h) < ac(h —ky—m) (A.34)

as soon as ko+m < h, so that (A.20) holds thanks to Assumption (A1). Allin all, the finiteness
of &} and (A.20) imply the convergence (A.17) thanks to Herrndorf (1984, Corollary 1).

Appendiz A.5.0.3. ¢ Step 3:. We then prove that

1 n
lim i P(|—=S"zi (ko) >€¢] =0 Ve>o, A.35
s (|3 2o ) <o, e e
where the norm || - || is defined here on R? by ||ul|? = v/u, v € R® a column vector. The

result (A.35) follows from a straightforward adaptation of Anderson (1971, Theorem 7.7.1
and Corollary 7.7.1, pages 425-426). Indeed, Markov’s inequality as well as the stationarity of

{Zim(ko), i € Z} yields
> e) < —E
nE

dl

where the latter limit is obtained similarly as in (A.19), provided that
v 1 E(Z20.m (ko) Zhm(ko)) is a convergent series that tends to 0 as m — oco. In view
of the definition (A.15), this is the case if we prove that the following series:

n 2

Z Zim (ko)

=1

2]E Z sz kO jm(kO

1<i,j<n

~—

\/15 Z Zim(ko)
i—1

7’L€

_>€i2 Y E(Zom(ko) Zpm(ko)), (A.36)

n—o0

(3] 0
t t t
E COV ZO m ko ta,m> ’rhg’m)7 § COV(YE),mZkQ—tQ,ma T}Zm)a E COV(ZO,mZkO—tQ,my Thg,m)7
h=1 h=1

t.
where T}im € {Zh,myh—l-ko—tg,,mu Yh,mZh—l-ko—t;;,mu Zh,th-i-ko—t;g,m}v
converge to 0 as m — oo for t1,t2 and t3 in {0,1}. We proceed to do prove this convergence

for the series with general term Cov(ZomZkym, ZhmZh+ko,m), the other cases being similar.
As previously while studying (A.24), we write that

o0

o
Cov(Zo.mZroans ZhanZnikom) = Y >, Cov (ZO,mZko,m, 0% o eh,il}[ﬁﬁﬁ)}m o €h+k0—i2]) :
i1=m+112=m+1
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Splitting the above double sum into i; and i3 less or larger than h/2, the following equivalent
of (A.33) may be obtained:

Z |COV(ZO,mZk0,m’Zh,mZh-i-ko,m)’ < Ko™ Z |:Oée(|_h/2J)1_2/B —i—U\-h/QJ _|_U2Lh/2j] — O(Um)

h/2>kg h/2>kg
(A.37)
for some constant K > 0. It can be also proved that for h/2 < ko we
have |Cov(ZomZkyms ZhmZhtkem) = O(@®™), which, combined with (A.37), yields
> 51 1CoV(Zo.m Zkg ms Zhim Zhkgm)| = O(v™), from which we in turn get
> E(Zom(ko) Znm (ko)) = O(w™). (A.38)
h=—o00

Combining the above with (A.36) thus yields (A.35).

Appendix A.5.0.4. © Step 4:. Combining (A.17) and (A.35) yields by Brockwell and Davis
(1991, Proposition 6.3.9 p.208) the final result (22). O
As a side result of the previous proof, let us prove that the following convergence holds:

CE(Tu(ko) (ko)) —— &, (A.30)

which will be useful later on. For this, we write, remembering the notation (20) and (A.16),

HE (Tn(ko)Tn(k?o)'> — Gy, ‘IE (Tn(ko)Tn(k?o)'> m

n n ko
E(

<

1 < 1 & 1< 1 / m
< NG ; Vism(ko) + 7n ; Zi,m(kO)] 7n ; Vism(ko) + 7 ; Zi,m(ko)] ) — Ok H

+[|85; — o

1 — 12 /
< E( \/ﬁ;y@m(k@) [\/ﬁ;yz,m(k‘o)] ) — 7];%
+2||E ([\}ﬁ;yz‘,m(kO)] [\}E;Zi,m(ko) > + &8 — &k (A40)

We now observe that, thanks to (A.19),

1 & 1 & '
E ([\/ﬁ;yz,m(k())] [\/ﬁ;yz,m(]%)] ) - Z?)

Next, we have that Hﬁ Sy yi,m(ko)H2 is upper bounded by a constant C' independent
from n and m thanks to (A.19) and the fact that &} converges to the finite limit &g, as
m — oo. Also a byproduct of (A.36) and (A.38) is that lim, Hﬁzy:l Zi7m(k0)H2 =
Yore o E(Z0m(ko) Znm (ko)) = O(v™). Thus, Cauchy Schwarz’s inequality yields that

——0, YmeN. (A.41)

n—oo
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E ([\/15 ; yz‘,m(kO)] [\}ﬁ ; Zim (ko) > <E (‘ \/15 ; Vim (ko) ‘ \/15 ; Zim(ko)
1 « 1 1 o
< 7 ;yi,m(kO) 2 7 ;Zi,m(k[)) 2 <C 7 Z2;2"1',771(7%) 2
— 0 Y E(Zom(k) Znm(ke) = OW™). (Ad2)
h=—o0

Thus, (A.41), (A.42) along with lim, o &} = &y, yields from (A.40) that

T (ko)Tn(ko)"\
() o,

n

lim sup
n—oo

which implies (A.39).

Appendiz A.6. Proof of Proposition 5.1 and Theorem 5.2

Proof of Proposition 5.1. Remembering the expression (20), we recall that ), =
Vn(ko) = (Yo — C1, Yo Yo ko1 — Ukg—2, Yn Ytk — Ukg—1)'- Writing the R3 vector X leg in the

/
form ¥ leg = (5(()1), 5(()2),5(()3)> , we thus have from (28) that

T, = Cov(Vn, X e0),

which is a R3*3 matrix. We first prove that
o
D T < oo (A.43)
n=1

The first row, third line of ||¥,|| is equal to Cov(eél),YnYnJrkO). Since 5(()1) depends on Y},
j < ko, an argument similar to (A.14) yields that

o o 172/,3 n—kg—1
SK[aeanolJ) +/\(L ? JJr)\g

COV(gél)a YnYn—i-ko) 2

And, more generally one obtains a similar bound for all coefficients of W,,, which thus implies
(A.43).

We next introduce the spectral density associated to the process {)V,, n € Z} := {Vn(ko), n €
Z} defined as

fy(x) = = Z C(h)et"®  where C(h) := E(MoY}) = Cov(Vo, Vi) (A.44)

We note that the above series is indeed convergent thanks to arguments similar to the ones
leading to the convergence of (A.43). Also note that, still thanks to that latter convergence,
we have the relation

fy(@) = U(e™)S W (™), Vo eR, (A.45)
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where we recall that U(-) is defined by (29). We first prove that
det (¥(2)) #0, Vz e C such that |z| =1. (A.46)

In view of (A.45), the above is satisfied if and only if we show that fy(z) is invertible for all
x € [0, 2x], which we proceed to do if \g is small enough. For this we will momentarily write
the dependence of the spectral density of {),, n € Z} and write fy(\g,x) instead of fy(x),
and we are going to prove that

s[up ] | fy(Xo, ) — fe(x)]| — 0, Ao — 0. (A.47)
z€[0,2m

In view of the definitions of those spectral densities, it is not difficult to check that this amounts
to show that the quantities

> he oo | Cov (Yo, Vi) — 0V(6 nl,
2 he—oo |CoV (Y0, Y3 Yh iy 1) — Cov(e€o, €nntrg—1)l,
> he oo |Cov(Yo, YiYhik,) — Covieo, €nchiro)l, (A.48)
D oo [Cov(YoYig—1, YnYhiko—1) — Cov(€o€ro—1, €nénrio—1)], '
th OO|COV()/0Y]90 15 YnYhiko) — Cov(€oery—1, €nentho)ls
D he o0 |COV(Y0Yhg, YaYiiky) — Cov(€oery, €nentio)l

tend to 0 as Ag tends to 0: we prove this only for Y 72 [Cov(YoYk, YaYnik,) —
Cov(€o€ry, €n€n+ky )|, the other cases being dealt with similarly. We first note that

Cov(YoYkg, YnYhtko) = Ao[Cov(YoYko, Y3 Yniko—1) + Cov(YoYig, Yi1€n+k,)
+ Cov(YoYho—1, €n€nihy) + Cov(Y_1€ry, €n€nikg)] + Covieryerys €n€ning), h > ko. (A.49)

172/& h—kg—1
ow, . implies that |Cov(YoYk,, YnYniko—1)| < o | | —32— +
N A.14) implies that |Cov(YoY,, Y2 Vi, K bhtuzl A(L =

where K can be verified to be uniformly bounded in Ay € [A_, A;]. This inequality along

h—kg—1
with the assumption (32) entails that |Cov(YoYky, YaYntko—1)] < K)\_L_ : J for h > ko, so
that ZZ’;,WH |Cov(YoYky, YaYhtko—1)| is finite and bounded in Ao € [A_, \+]. A similar argu-
ment and bound holds for Y72, 1 [Cov(YoYry, Ya—1€niko)ls Dopeio ICOV(Y0Yirg—15 €nhiho )|
and Y7 1 [Cov(Yo_1éry, €nentk,)|- All in all, one thus deduce from (A.49) that

o0

D 1Cov(YoYie, YnYaike) — Cov(eoerys encning)| = O(No).
h=ko+1

Besides, one can verify that |Cov(YoYs,, YnYhik,) — Cov(€o€r,, €nénti,)| = O(No) for h =
0, ..., kg so that one finally obtains that

Z ‘COV(K)YRO, Yth+k0) — COV(Eoka, €h€h+k0)‘ = O(/\())
h=0

A similar argument holds for Z(,)l:foo |Cov (Yo Yy, Y Ynir,) — Cov(€o€ry, €n€ntky )|, SO that we
eventually have that >~p7 _ [Cov(YoYsy, YnYhtk,) — Cov(€o€ry, €nentiy)| = O(Xo) as A tends
to 0. As explained earlier, all series in (A.48) can be shown to be also O(\p), so that (A.47)
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is proved. This in turn implies that limy, 0 Supgcp,24) | det fy (Ao, z) — det fe(z)| = 0. Hence
we have that, for A\g small enough:
inf |det fy(Xo,x)| > inf |det fe(x)|— sup |det fy(Ao,z) —det fe(x)] > 0,
z€[0,27] z€[0,27] - z€[0,2n) -
so that (A.46) is proved. We now prove that (A4) holds, i.e. that det (¥(z)) # 0 not just on
z such that |z| = 1 but on the broader set {z € C| |z| < 1}. This is the most delicate part of
the proof, and the main argument is an analysis related to the measurability with respect to

the immigration sequences. We first observe that (A.46) implies that the expansion (27) can
be inverted and there exists a sequence of R3*3 matrices (¢, )nez such that

en=> ¢¥nj, neL, (A.50)
JEZ
and we are going to prove that ¢; = 0 for all j < —1, so that the expansion (30) holds with
¢o = I3 and ®; = —¢;, j > 1, which in turn is equivalent to Condition (A4). We first recall
that, for all n € Z, Y, depends on the random variables €; and {{;; i € N}, j < n + ko (see
(1) as well as the expression (20) for )),). Next, we write, using the definition (28) for ¢,, and
the expansion (A.50):

00 —1
yn - Pn—lyn - Z d)jyn—j = Z ¢jyn—j- (A51)

=0 j=—o00

We now prove that the righthanside of (A.51) is 0 by using arguments related to the indepence
of the sequences {1, k € N} when n € N. To avoid tedious notation we will denote by &, .
the latter sequence in the rest of the proof. We define the following o— algebras

Gn =0, k<n, & .,j>n+1), neZ, (A.52)

and we proceed to express the conditional expectation of ),_; given G, in function of j € Z
in order to take the conditional expectation on both sides of (A.51). We observe that

Yoo if j >0,

G(—lg)‘(fk,,7k =n+1,..,n—7j) ifj<-—1. (A.53)

E<Yn—j’gn) = {

Here G(_lj) (&k,.,k = n+1,..,n — j) is a random variable that depends on the sequences
&,k = n+1,..,n — j as well as on the random variables Yj, k < n; however, only the
dependence on &, = is mentioned in order to avoid tedious notation. Similarly, we have

Yn—an—j—l-ko—l ifj > ko —1,
E(Y, ;Y jikg-1|Gn) = G k=n+1,on—j+ko—1) ifj<-1,  (A54)
VoGl (&hnk=n+1,on—j+ko—1) ifj=0,. ko —2,
Yoo i Yo ko if j > ko,
E(Yo; Yoo jrrolGn) = GG k=n+1,n—j+hk) ifj<—1, (A.55)

Yoo iGN k=n+1,.on—j+ko) ifj=0,.. k —1,

where G®) (& k= n+1,.,n—j+ko—1) = E(Ya_jing-1|Gn) and GP)(& k= n+1,..,n—
J+ ko) = E(Yy—j1k|Gn). We now note that, by definition of the projection operator P,_1,
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R3X3

there exists a sequence of combinations (Zﬁ\f:ml a(m)yn, j) such that, a(»m) isa matrix
meN

and Z; | a yn j —> P,_1Y, as m — oo. Thus, the lefthanside of (A.51) is the limit in
2 of an (potentlally infinite) combination ijl qbgm Yp—j as m — oo, where (gbgm))jeN are

R?’X?’ matrices given by gb(()m) = 13— a(()m), ¢§m) = —ozgm) —¢j,j=1,..., Ny, and ¢§m) = —¢j,
j > Np,. Then, taking the conditional expectation in (A.51) reads

-1
n}gnooZ}b EVu-ilGn) = > 6EVn—jlGn)- (A.56)

j=—o00

Let us now write the matrices ¢, j < —1, and qb( , j > 0, in the form of ¢; = [C’(I) 0(2) C’( )]

and gbj = [Cj(l)( ),Cf)(m),cj(- )(m)] where C](- ), CJ(-Z)(m), 1 =1,2,3, are 3 x 1 column vec-
tors. We next identify in both sides of (A.56) the terms that feature the sequence &,41,.,
and only this sequence, among &, , K > n + 1. From the expressions (A.53), (A.54) and
(A.55), we may see that the only term on the righthandside of (A.56) with that property

is €N (Enn,) = ONEVanldn) = €O [ T2 6ni1r + ElennlGn)], with Eens1]Gn)
depending only on Y;, j < n because of the independence of €,41 with &; , 7 > n + 1.
On the lefthandside, and in view of the expressions (A.54) and (A.55), the only case for
E(Yn—jYn—jtko—1|Gn) and E(Yn—;Y,—jik|Gn) to depend on &,41, is when j is respectively
equal to ko — 2 and ko — 1: in that case E(Y;,_(x,—2)Yn+1|Gn) = Yoo (k- 2)(;(72()/%072) (&nt1,) =

Yn*(k072)E( Yot1|Gn) = Ynf(k072) [Zr:l Enti,r "‘E(En-f—l’gn)} and E(Y, —(ko—1) Yot1lGn) =

Yn—(ko—l)é(_g()ko_g)(§n+1,.) = Yo (ko—1) [23«21 Ent1,r +E(en+1|gn)] Isolating these particu-
lar terms, one thus checks that (A.56) can be equivalently written as

1= OGN 60+ O, 0 G i)

T C( ()k( " )Yn*(kofl)é(*g()ko 1) (fn-l—l ) + X(m)

_C(—ll) + C(—Q()k( m) )Y —(ko—2) + O( ()( m) )Yn— ko—1 :| [Z £n+1 r +E(€n+1’gn)]

r=1

2
+ XM 50 m o oo, (A.57)
where X (™) is a random vector which is the sum of

e a random vector that involves the terms E(Y;,—;|Gy,), 7 > 0, E(Y,—;Y,—jtko—11Gn), § >
ko — 1, E(Yn—;Yn—jtko|Gn), 7 = ko, that are respectively equal to Yy, Y jYn_jtro—1
and Y,,_;Y,,_j k., and that thus depend on Y}, k < n only,

e and of a random vector that figures terms of the form E(Y,1;|Gn),
E(Ytj—(ho—1)Yn+ilGn)s E(Yngj—(ko—2)Yn+jlGn), j = 2, that thus depend on Y,
k<mnand &, k>n+1

Let us now suppose that

limsup || — ( ) +C(2)(m) Yo (ko—2) —l—C( )(m 3

Y (ro-n)ll > 0 (A.58)
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on a non negligible set.  Then, from (A.57), the 3 x 1 vectors D, := —C(_ll) +

¢! ()kggn)z)Y —(ko—2) T 0(3()150 )1)Yn_(k0_1), Em and X (™) are such that there exists ig € {1,2,3}

and im sup,,,_, o, |Dm,io| > 0, where Dy, ;, is the ipth entries . With the same notation for &, ;,
and Xl-(gn), we obtain by taking the limsup in (A.57) (observing that S0 &,01 +E(ent1/Gn)
is non negative) that

m—00 m—o0
r=1

[lim sup |Dm7i0|} . [Z Ent1,r T E(en+1|gn)] = limsup |Em.io Xl(om)‘ . (A.59)
Up to a subsequence, we have from (A.57) that &£, — 0 a.s. as m — oco; Thus we have that
Em,i, — 0. So that, on a non negligible set, (A.59) yields

lim sup,,, oo ‘X m)‘

Yn
Z €n+1,r + E(6n+1 |gn) =

r=1

(A.60)

lim sup,,, oo |Dm7lo |

Let us now define the operator F(j ,€;) :y € N+ YV &+ € =0j0y+¢; for all j € Z.
We may thus write that, for all k£ > 2,

Yn+k = ]:(gn—l—k,.a €n+k) ©...0 ]:(é-’n+1,.a €n+1)(Yn)a (A61)

so that, obviously, Yok, Yo 1k—(ko—2)s Yntk—(ko—1), and thus also their conditional expectation
given G, depend on the sequences &,41,., {nt2,.,--os {ntk,. for all & > 2. More importantly a
crucial property is that they depend &, 11, if and only if they depend on say &,42 , in view of
the expression of the operators F(¢; ,€;) and the expression (A.61). Thus, the righthandside
of (A.60) in particular depends on &1, if and only if it depends on &2, , which is a contra-
diction with the expression on the lefthandside which only depends on &,41 . (in addition to
the Y, k < n, which are independent from the the &, , kK > n +1). Thus, (A.58) is violated
and we have

lim C( )+ 0(2)(m) )Yn_(ko_g) + C(—S()k((?i)l)yn—(ko—l) =0 a.s. (A.62)

m—0o0 (

Let us now notice that the sequences (C(_Q()]s(?i)g))meN and (C(_3()k(:1)1))m€N are then necessarily
bounded. Indeed, if say (0(2()15;”)2)),,161\; was not bounded, then we may suppose that
HC'(Q),g;n 2) || — oo up to a subsequence. Then (A.62) implies that HC H — 00, and,
dividing on both sides of (A.62) by HC 1)” and letting m — oo ylelds that the (deter-
ministic) limit L := lim,, o0 C(f(k(;nQ /HC H exists and that Y,,_,_1) = LY, _(x,—2),
which is not possible by an 1ndependence argument Hence the boundedness of the two

o) o3

sequences, from which one gets that ( —(k0—2))m€N and ( —(ko—l))meN converge (up to
a subsequence) towards some limits Lo and Lg, which in turn yields from (A.62) that

C'( ) + LY, _(ky—2) + L3Y;_(ky—1) = 0 a.s. An indenpendence argument again yields that

Lo, L3 and, more importantly, that C(_l)

0(21) = C’(_31) = 01i.e. ¢_1 = 0. Similarly, one proves that ¢_; = 0 for all j > 2.

are equal to zero. Similar arguments yield that
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We now prove that ||®| = o(1/k?) as k — co. We define, as in (A.44), the function

o

gy(z) == — C’(h)zh, C(h) := Cov(Yo, Vh),

h=—00

which is convergent when )\é/ ? < |z <1/ )\(1)/ ? thanks to arguments similar to the ones leading
to the convergence of (A.43). As in (A.45), one has the relation

gy(z) = U(1/2)S.0(z), A* < |z < /202 (A.63)

Note now that the assumption that f. is invertible on [0, 27] implies that there exists § > 0

small enough such that C5 :={z € C| 1 -0 < |2| <1+ J} C {z e C| )\(1)/2 <z < 1//\(1)/2}

and the function

is invertible on Cs. As in (A.47), one may specify the dependence of gy w.r.t. Ao and prove
that sup,cc, (19 (Mo, 2) — ge(2)|| — 0 as A\g — 0 so that, if Ag is small enough, gy is invertible
on Cs. Thus, for such a A\, one may invert (A.63) and deduce in particular that ®(z) in (31)
is a convergent series on Cs. This in particular implies that >_7°, ||®x]|(1 + 6)¥ < oo, which
in turn implies ||®|| = o(1/k?). O

Proof of Theorem 5.2. As announced after the statement of the theorem, the scheme
of the proof is quite standard and is similar to Boubacar Mainassara et al. (2012, Section
3.3.1). Therefore, the following series of Lemmas will be proved only when their proofs are
significantly different from the corresponding ones in the latter paper. We start by introducing
some notation. If r > 1, we let ®,(z) = I3 — Y ;4 @Tvkzk, where ®,.1,...,®,, denote the
coefficients of the least squares regression of ), on V,_1,...,Vn—r as defined in (33), and
we recall that ,,, is the corresponding residual. We let V,; == (V;_1,...,V/_,) € R* and
introduce the following (real or empirical) covariance matrices

By = EQW)) € R,

Yy, = E(yr,()y;,o) € R3r><3r’ (A.64)
Syy, = EQWY,) € R,

23} - % Sh L Y € R3S,

Eyr = % Z?:l yr,ty{«’t c R?’TX?’T, (A.65)
Eyyyr - % Z?:l yty7/~7t S RSXST,

237 = % Dt JA}tJA)t, € R3%3,

Ej}r = % Z?:l yr’ty,:‘zt € R37‘X3T’ (A66)
$53, = =i DV € R

Then we have the matrix expressions for the least square projections:

= (Pr1, .., Bry) =Ty, B30, Oy i= (D, Dp,) = %yﬁ;- (A.67)
We use here the matrix norm [|Al| := sup, <1 [[Az| for all matrix A = (aij)i=1,..dy j=1,...d> €

R%1xd2  a550ciated to the usual euclidean norm, and recall that it is submultiplicative and

41



verifies

JAIZ <> al. (A.68)
i

We now state the following lemmas that lead to the proof of the theorem.

Lemma Appendix A.3. One has that sup,> || Xy, [, sup,>1 [|[Xy,y, || and sup,>; HEJ_,:H are
finite.

Proof. We follow the proof of Boubacar Mainassara et al. (2012, Lemma 1). We first observe
that for all column vector x € R3 we have the inequalities HZyTHacH < HZyTH(:B’,Og)H
and ||Xy y, (05,2")|], where 03 := (0,0,0), so that (||Xy,]|)r>1 is an increasing sequence and
[y, || < Xy, for all » > 1. Thus it suffices to prove that sup,; |2y, || < oo in order
for sup,~; [|Xy,y,|| to be finite.

For this, we recall that the spectral density fy associated to the process {V,, n € Z} defined
by (A.44) is absolutely convergent for all x € R, thus verifies

”fy(‘r)H < Knaz, = €R, (A69)

for some constant K,q, > 0. Also, ¥y, is symmetric matrix with real entries, so that the
matrix norm entails that ||y, || is its largest (real) eigenvalue, that we denote by pmaz (7).

Hence, there exists an eigenvector §(") = ((5§T),, ey 5,(,T),)’ € R?", where 6; € R3, such that
1S9, | = pmaz(r) = 675y, 60 and 60 = 1. (A.70)

Besides, one obtains from (A.44) and the inversion formula that C(h) = [*_ fy(z)e=""*dz for
all h € Z, so that we obtain from (A.70) that

IS = 3 6 [ fy<x>ei<s—f>$dx} 50)

Jrs=1

T / T
= / (Z 5§T)ei(s_1)$> fy(x) (Z 5§T)ei(51)x) dr. (A.71)
T \s=1

s=1

Since fy(x) is an hermitian matrix for all = € [0, 27], one has X'fy(z)X < || fy(z)|[|X'X for
all column vector X € C*. Coupled with (A.69), (A.71) as well as some easy computation,
this yields the bound

T ! T
Xy, [ < Kmax/ (Z 5§T)ei(s_1)w) (Z 5§T)6i(51)x> dr = [(WmH(s(T)H2 = Kmaxs
T \s=1 s=1

a constant which is independent from 7 > 1, which proves sup, || Xy, || < oo.

We now turn to sup,>4 HE;H We start from the observation that HZJ_,TI || is the inverse of the
smallest eigenvalue ppmn () (which is positive) of 3y, . As for pmaez(r), there thus exists an

eigenvector () = (Lgr) ) eee Lﬁ’") ) € R3", where 1; € R3, such that

125217 = pmin(r) = (' Sy, ™ and O = 1. (A.72)
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Now, (A4) and (A.45) imply that fy(z) is invertible for all z € [, 7], so that X' fy(xr)X >0
for all X € S(C*) :={V € C*| |V|? = V'V = 1}. Since [~7, 7] x S(C3") is a compact set
of R x C?", we deduce that there exists some constant K,,i, > 0 such that

X' fy(x)X > Kpin, Y(x,X) € [-7,7] x S(C*),
from which an analysis similar to (A.71) yields from (A.72) that

T ! T
125,07 = / (Zbg%@'(sw) fy(@) (Zbg”e«s—lﬂ)dx
s=1

T \s=1
T / T
> Kmin/ <Z Lgr)ei(sl)x> (Z Lgr)ei(s—l)x> dz = Kpin|t" )2 = Kmin,
T \s=1 s=1

so that HE&}H < Kl = a constant independent from 7 > 1, proving that SUp,>1 HZ;,:H <

min’
Q.

Lemma Appendix A.4. For all s € N, the series )7 [|Cov(Jody, V)|l is conver-
gent.

Proof. Let us put wp(s) := Cov(YoYiYsYstkos YnYntkoYsthYntstk), Which is one of the
entries of Cov(yoy;,yhyg JrS). We proceed by establishing estimates similar to the ones in
Lemmas Appendix A.1 and Appendix A.2. As in (A.5), we have

ko—1 s—ko—1
/
t
wp(s) = E Ao E A Cov(Y0YkoYsYsthg, YnYhtho€s+h€sththo—s')
s'=0 t=0

AR COV(Yo Vi YaYathgs YaYiZihy €sththo—s' )]
AL Cov (Yo Yo Y Yasky YnYiano Yoin),
Similarly to the bound (A.9), and since € has moments of order 8 thanks to Assumption (A2)1,

iy —ko—1
both quantities > 7~ 50" |NCov(YoYkyYsYsiko, Y Yntho€sth€sthtko—s )| and
—k
NG 0 Cov(YoYiy YaYarho, YV i €sthiko—s )| are less than

P A 1-2/8 h—s—ko—1
([ )

for h > s+ ko + 1 and some constant K > 0. Also, estimations similar to (A.6) and (A.7)
leading to (A.9) may be used to obtain that [Cov(YoYi,YsYeiry, YaYhin, Y2 ,)| has the same

upper bound, so that Y7 |wp(s)| < co. We prove similarly that Z(,]Z:_OO |wp(s)| and, more
generally, that 3% [|Cov(JoVs, Yrdj,, )| is convergent. O

K

Lemma Appendix A.5. The r.v. Vr|[Sy, — Sy, ||, Vr[Sy — Syl and v7[[£y,y, = Sy, |
converge to 0 in probability as n — oo when 7 = r(n) = o(n'/?).

Proof. Remember from (A.64) and (A.65) that 3y, — By, has (3r)? coefficients. Each entry
of ¥y, is of the form

. 1 < . , o
2y = ViVl =123 1<rmm<r,
t=1
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of which variance verifies Var(Z5/,,) = — Z;inﬂ(n— ]h!)Cov(yimyir2 , y;’l_rly,{w) which

is less than C/n for some constant C thanks to Lemma Appendix A.4. We deduce that

N 2 ~
B ([VAIEs, - 2x]") =B (1% - 0 1P) <r >3 V(i)

7] 1T17T2 1
3T3 1/3
<—C1—0, n—oo, r=r(n)=o(n"'"),
n

which proves that /7|2y, — £y, || converges in L2, hence in probability, to 0. We prove the
same convergence for /7|2y — Xy and /7||2y.y, — Sy.y,| in an analogous manner. O

Lemma Appendix A.6. The r.v. \/FHXA)yT — Xyl \/FHi]y — Yy|l and \ﬁ”ﬁ)j},j@ — Xyl

converge to 0 in probability as n — co when r = 7(n) = o(n!/3).

Proof. We are going to prove that \/FHZAJSJT — 3y | 5 0asn — 0o when r = r(n) = o(n'/3)
so as to conclude the convergence of /1 ||25,r — Xy, || thanks to Lemma Appendix A.5 and the
triangular inequality. We note that the entries of 254 — f}yT are of the form

ﬁ Z [yz—nytj—rz - ytl—rlyg—rg y 4, =123, 1<r,ra <,
t=1
of which most complex term is the following:

1 n

ﬁ Z {(Y;f*h Y;H—ko—m - uko—l)(y}/*rzn-&-ko—m - uko—l)
t=1

—(Yi—r, Yitko—r — Yko,t—m)(n—mn-&-ko—rz - Yko,t—m)}

1 & _ _ _
2
= n § {uk’o—l = Yo ,t—ry Yeo,t—ry T Yi—r, Yitko—r, (Yko,t—m - Uko—l)
t=1

Yy Yitho—rs (Yko,t—m - uko—l)} : (A'73)

We study each terms on the righthandside of the above equality and start with

1 .
ﬁ Z }/;,7'!’1 th-i—k:()—rl (Yko,t—TQ - uk}o—l)' (A74)
t=1

We first observe that a consequence of one of the steps in the proof of Theorem 22 (see
convergence (A.39) in Step 1 of the proof of this theorem) is \/n||Ykn — Uko—1]l2 is upper
bounded by some constant K for all n > 1, of which consequence is obviously that ||Yg,,, —
Uko—1]|2 is obviously upper bounded in n € N. Hence, using the classical inequality va + b <
Va + /b for all a,b > 0, we have, for all ry < 7,

\/z”}_/ko,thz _uk()leQ < K\/;7 VYt = 1,...7’2
VitllYeg vy —tkg-1llz < VE=7T2lYiguory — uro—1ll2 + V72l Vg t—ry — kg1l
< K ++/r), Vt>ry,
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from which one has the global bound v/#||Yy t—r, — ug,—1]j2 < K (1 + /7) for some constant
K and for all ¢ > 0. Coupled with the fact that ||Y}||4 is uniformly bounded by some constant
C' as well as Cauchy Scwharz inequality, we thus deduce that (A.74) is bounded as follows

n

- 1ZCQK(1+\/?) SK,1+\/F

= Vit N4D

1 < _
E Z }/}/*Tl 1/;f-‘y-k‘()—’l‘l (Yk:o,t—’l‘g - uk‘o—l)
t=1

for some contant K’, where we used that >, , % is equivalent to \/n up to a factor. We thus
deduce that

— 0, n— o0, r=r(n)=o(n3). (A.75)
1

1< _
n E Yiori Yitko—r (Yko,t—Tz - uko—l)
t=1

VT

A similar approach yields the following limit that concerns the second term in (A.73):

— 0, n— o0, r=r(n)=o(n?). (A.76)
1

1< _
\/’F E Z }/;77’2 Y;H—k:()—’r’g (Yk‘o,t—rl - uko—l)

t=1

We now turn to the last first term in (A.73) namely nil_zzl:l(uzo_l — Yko,t—nYko,t—p)~ For
thiS, we write uio—l - Yko,t—’ﬁ Yko,t—Tz = uko—l(uko—l - Yko,t—rl) + Yko,t—r1 (uko—l - Yko,t—Tl)
and conclude in a similar manner that
1< _ _

- Z(U20—1 = Yiot—r Yko,t—T2)

n
t=1

— 0, n— o0, r=r(n)=o(n!3). (A.77)
1

\/7?

Gathering (A.75), (A.76) and (A.77) we deduce that (A.73) multiplied by /7 tends to 0 in
L' hence in probability as n — co when r = r(n) = o(n'/3). As announced earlier, we prove
similarly that all other entries of /1 [XA]);T — 3y, ] also converges in probability. This concludes
the proof. O

Lemma Appendix A.7. Let us define ®F := (®1,...,9,). Then /r|®} — &[] — 0 as
r — 00, where we recall that @, is defined in (A.67).

Proof. We follow the proof of Boubacar Mainassara et al. (2012, Lemma 5). We recall from
(30) and the definition of the least square regression coefficients ®,.1, ..., ®,, with correspond-
ing residual e, that Yy = Y70 PeVpk + D per i1 PeVnk +n = D pey PLrkdn—k + Enyr
which entails the matrix relation

(@~ BV = 3 Bk o0 =, (A.T8)
k=r+1
from which we deduce that

P, — ®; = ¥..%3!,  where ox = E(e},,V),). (A.79)

Let us note that €, is orthogonal to Y, i.e. E(eny,’"vn) = 0, as this vector depends on ) for
t=n—r,..,n—1. So that we obtain from (A.78) and (A.79) that

Ser = > OEDVniV,)- (A.80)

k=r+1

45



We proved in Step 1 of the proof of Theorem (22) that &y, in (23) is an absolute conver-
gent series: a byproduct of this is that [|)p||2 is finite. Also, since Y., is a 3r x 3 matrix,
the matrix norm property (A.68) implies that ||V.,|l2 < VKr for some constant K > 0.
Thus, we deduce from the Cauchy-Schwarz inequality that [|E(V, 1Yy ,) | < E(|Va—rd)null) <
E(Vctll [70]) < Patllz [Vnllz = O(/F). So that, by (A.50):

Bzl < Z 1@k ]| IEVn—rYyn)ll = Z 1]l

k=r+1 k=r+1

hence we obtain from (A.79) that /r[|®; — @[ = O(r) > 2, [Pkl — 0 thanks to the
assumption ||®| = o(1/k?). O

Lemma Appendix A.8. The r.v. ﬁHfl;l - EJ_,TIH converge to 0 in probability as n — oo

when r = r(n) = o(n'/3).

Proof. The proof is exactly the same as the one in Boubacar Mainassara et al. (2012, Lemma
6), up to a change of notation. O

Lemma Appendix A.9. Ther.v. ﬁ”@—%” converge to 0 in probability as n — co when
r=r(n) = o(n'/?).

Proof. We follow the proof of Boubacar Mainassara et al. (2012, Lemma 7). Similarly to
(A.79), and thanks to (A.67), one has that

by — @, = 555 551 - S35, 55 = Sy 5 — Sy (855! - 551
+ (5, — Zyp)Sy + Sy (55 - 830,

whence one obtains for all a > 0 that

PVl — 2.l > o) <P (VPS5 — Syl IE5) - 251

VIS5 5, = Tyl IS5+ VIS )l 185 - 552 > o)

P (\/;Hi:j;,j;r —Zy. |l H(i;} -0 > a/3) +P <\/7j”23}73}r — Xyl >a/@3 sup H%‘;;H))

+P (WHEJA%HH?;} =55 >a/(3 sup HEy,yjH)) - (A81)
JZ

Now, each of the terms in (A.81) tends to 0 thanks to Lemmas Appendix A.6 and Ap-
pendix A.3, and the proof is complete. O

The end of proof of Theorem 5.2 relies on the above Lemmas Appendix A.3 to Ap-
pendix A.8, and is the same as the end of proof as Boubacar Mainassara et al. (2012, The-
orem A.l, page 7 of Supplementary material). We give it below for the sake of presenta-
tion. Let E, := I3 ® 1, where we recall that I3 is the 3 x 3 identity matrix, 1, = (1,...,1)’
of size r. Then by the submultiplicativity of the matrix norm and Lemma Appendix A.8:

15t (B = @) | = (@) = @B, < V3rl| &, — ] <5 0 as n — 00 when r = r(n) =
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o(n'/3). Similarly using Lemma Appendix A.7, we have that || 37_, (®,; — ®;) ||| — 0. We
then deduce by triangular inequality that

H@T(l) - (I)(l)” < Z <(i)r,i - q)r,i> + Z ((I)r,i - q)z) ‘
i=1 i=1
+ Z o | 0, n— oo, r=r(n)=o(n'?). (A82)
i=r+1

We now pass on to the convergence of the estimator igr. (33) implies that fléT = 25) —@i/y 9,
Also, the expression (28), the orthogonality of g and P_1)) and (30) imply that

Y. = E(eoep) = E(e0)y) = E [(yo - Z ‘I)ky—k> Y

k=1

=Yy — Z PRE(V-_£dp) = Xy — (I):Ely,yr - Z DLE(V_1Y))-

k=1 k=r+1
We deduce that
18, = Sell = ||B5 -3y - (80— 93) 855,
a7 (S5~ Ty )+ D BEQ)|
k=r+1
< 1185 = Syl + || (e - 07) (55, — Sh )|+ [] (8 — #1) S,
o -o)][+] S emomon]. s
k=r+1

Lemma Appendix A.5 entails that the first term on the right hand side of (A.83) converges in
probability to 0. The combination of Lemmas Appendix A.7, Appendix A.9 and Appendix A.6
yield that the second term converges to 0, and likewise the fourth term tends to 0 because the
{®;, i € N} is a bounded sequence thanks for example to the assumption || ®x|| = o(1/k?).
Lemma Appendix A.3 also entails that the third term tends to 0. Finally, the last term tends
to 0 since it is the remainder of a convergent series. All in all, we thus deduce from (A.83)

that 3, S 0asn— 0o, 7 = r(n) = o(n'/?), which combined with (A.82), proves (35). [

Appendixz A.7. Proof of Proposition 6.3

The following lemma will be needed.

Lemma Appendix A.10. There exist constants My, M }_I and MIQJ such that

@y (|z]) In([z])] < Ma 5 (A.84)
1
@) < My (A.85)
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@) < Mip (4.56)

for all x € R. Besides, for each k € N there exists M; (k) such that

|Ver(a,b)|| < Mi(k), ¥(a,b) € R?, (A.87)
1D*r(a,b)l| < Ma(k), V(a,b) € R, (A.88)

with M, (k) and Ms(k) being O (%k)

Proof. The assumption (41) on the regularity at 0 of the function @ imply that @’(z) = O(x)
as * —1 0, hence the existence of some positive 9! (that we may also suppose less than 1
w.lo.g.) and CL such that 0 < @'(z) < CLx when z € [0,9']. Furthermore, the regularity
conditions implies the existence of some C > 0 such that 0 < @w'(z) < Cg, z € [0, 1]; we also
recall that @’(z) =0 if 2 < 0 or # > 1. Consequently, wy, defined in (42) verifies

2 2 K \E
if ol <9 = 2] < —==9 (A89)
K \F 2

/ 1
(@ (z]) In(z])] < In(lz)ICs =7 =
We now observe that the function z + z In x is decreasing and negative on the interval [0, e~1],
and in particular on the interval [0, K \e9l) 2] for k large enough. We thus deduce from
(A.89) that |} (|z|) In(|z])] < C} In (Kp A 91 /2)| = O(k). Since A_ < 1, an O(k) is also an
O(k/A*) so that we obtain

k
oo (|2]) In(|z])] = O(k/AR), z € lo, K";A—w] . (A.90)

Now, since x + Inx is increasing and negative on (0, 1], and picking k large enough such that

(KmAF)/2 < 1, we have
K \F
| (|2]) In(|2)| < CL|In(|2])] < CZ |In (2‘191> ‘

KmAF | Ky AP
=O0(k/\), z¢ [ 5 —9t 5| (A1)
And, since @} (|z|) In(Jz|) = 0 when |z| > (K,;»A\*)/2, (A.90) and (A.91) yield (A.84).
We now compute
11 1
Hi(e) = g rnlel) + k(e Inlel, @ € R (A.92)

observing incidentally that H}(z) is continuous at x = 0 thanks to the fact that w(z) = o(z?)
and @’(z) = o(z) when  — 0. We first note that (A.84) implies that the second term on the
righthandside of (A.92) verifies +)(z)In|z| = O(1/A"). Furthermore, w has the property
that w(x) = O(x) so that there exists 90 > 0 and C2 such that 0 < w(z) < C%z when
x € [0,9°]. Hence the following upper bound

11 1 2 K\
- < <0 = |z| < —BE=0.
+ Lol "E ) < K

2
- _CY=0(1/)F) if
S Rk G = O/A%) ‘K \F

m\_—

48



If Jo] > (K A£00)/2 then i (|a]) /(L)) < |1/(kla)] Co < [2/ (kKM 9%)] Co = O(1/X)
which, coupled with the above inequality, yields that the first term on the righthandside of
(A.92) isan O(1/A*). Allin all, we thus obtain the inequality (A.85). With similar arguments,
(A.86) is obtained by differentiating Hj(z) and using w(z) = o(z?).

We now prove (A.87) from the two afore established upper bounds (A.84) and (A.85). We
observe that 1) is twice differentiable, and compute its first derivative w.r.t. a as

datir(a,b) = G'(a)G(b)Hy(a® — b) + 2aG(a)G (b) Hy(a® — b). (A.93)
Since w(x) = O(z) as ¢ — 0, a similar approach leading to (A.90) yields that
| (|z)) In(|z])| = O(k/A*) on |z| < (K, A 9°)/2. Consequently we have that
! 2 k 2 Km>\]i 0
|G'(a)G(b)Hi(a® —b)| = O(1/AY), |a” —b| € |0, 5 V. (A.94)

Since G has a finite support and is thus zero outside of some compact interval say I, (a,b) —
G'(a)G(b)Hy(a? — b) is 0 when (a,b) ¢ I?, and is continuous hence uniformly bounded on
the compact set 12 N {(a,b) € R?| [a? — b| > (K, A¥9°)/2}. Thanks to the factor 1/k in the
definition (43) of Hjy, it is easily verified that this uniform bound on that set is in fact an
O(1/k), and so is also an O(1/A\*). This latter fact, coupled with (A.94), yields that the
first term on the righthandside of (A.93) is an O(1/A*) uniformly in (a,b) € R2. Similarly,
a similar analysis along with the inequality (A.85) proved previously yields that second term
on the righthandside of (A.93) is an O(1/\*) uniformly in (a,b) € R%. Again, a similar
analysis yields similar upper bounds for 91 (a,b), so that (A.87) holds. The upper bound
(A.88) is obtained by similar arguments thanks to (A.86). This concludes the proof of Lemma
Appendix A.10 O

We now turn to the proof of Proposition 3.2. Let us set U(k) := (Cy,ux), k € N. The
definition (48) as well as the finite increment theorem yields the existence of some (random)
¢k € (0,1) such that

— (U (k)
sn<k:>> Sulk)

n

(Yo, Yor) = vu(U(k)) = i (U(k)+5nn(k)>

)

= Vi (U(k) + Ckm

so that, thanks to (A.87), we obtain the L? bound

Sn (k)

[ (T Vo) — (U (R)l < My (k) ]

. (A.95)
2

We now observe that, for k large enough we have from (13) as well as Assumption (A6) that
|C% — uy| = N ‘Z?:o A7 X+ Mo(C2 — C'g)) > MK, /2, so that the definition of Y entails
that @ (|C? — ug|) = 1. Now, by Assumption (A7) we have 0 < C; = [|Yo|l1 < Oy and
0 < up = E(YoYir1) < ||Yoll2l|Yet1ll2 = [|[Yoll3 < C% (by the Cauchy Scwharz inequality)

so that the definition of function G entails that G(C1) = G(ug) = 1. Thus ¢¥(U(k)) =
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G(C1)G(up)Hy(C} — ug) = £In|CF — uy| = Sy, for k large enough. All in all, we thus have,
from (45) and (13), that

k
9 (U109) ~ o = £ S + o~ ~o(3)
=0

for k large enough. The upper bound (56) is deduced from the above inequality, Minkowski’s
inequality, (A.95) as well as the estimate M (k) = O (1/A®) proved in Lemma Appendix A.10.
O

Appendiz A.8. Proof of Proposition 6./

The scheme somewhat has some common ideas with the proof of Theorem 4.2 in Section
Appendix A.5 (with the notable difference that kg in this section is now replaced with k,, with
lim,, o0 k, = 00) combined with a triangular central limit theorem for stationary sequences
of random variables proved in Francq and Zakoian (2005), and is decomposed in several steps.
Let (kn)nen be a sequence of integers verifying (58).

Appendiz A.8.0.1. o Step 1:. we first prove the existence of the limit & in (57). We first

observe that
CE(Su(ka)Sn(kn)) =+ 3 (n— [B)E (Xo(kn) Xa (k) (4.96)

h=—n

where we recall that S, (.) and X}(.) are defined in (20). Since

Cov(Yo, Yn) Cov(Yo, YaYh+k,+1)

N —
E (Xo(kn) Xn(ka)') = [ Cov(YoYk,+1,Yn) Cov(YoYk,+1, YaYhyk,+1) |’ (4.97)

we then see that (A.96) converges if we prove that >, | E (Xo(kn)Xp(kn)') and

Y on1 h E(Xo(kn)Xn(kn)") converge by the dominant convergence theorem, in which case the
limit of (A.96) is related to the limit of >, E (Xo(kn)Xp(kn)) as n — oco. For this we study
the corresponding terms in (A.97). The simplest term in the latter expression is Cov(Yp, Y,),
of which corresponding series converges thanks to a direct application of the bound (A.9) that

ho1
yields |Cov(Yy, Y3)| < K |ae ([(h —1)/2)"%/5 + /\(E 2 J] for some constant K > 0. In that

case the corresponding limit may also be written as

1 n o
- > (n—[B)Cov(Yy, Y) — 2 (CF —up_y), n— oo (A.98)
h=—n h=1

We next study Cov(Yo, YY1k, +1). We get from (A.5) that

ko [hel
Cov(Yo, VVhikot1) = DA [ D A6Cov(Yo, enser,414h-s) + AGCov(Y0, Yoek, +14h—s)
s=0 t=0
AL Cov(Yy, Y72). (A.99)
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We wish to apply the dominant convergence theorem to establish the limit of
> 1 Cov(Yo, Y Yhik,+1) as n — oco. For this we observe that, similarly to (A.14):

h—1\"%% a1
|COV(YE),Yth+kn+1)| < K Q¢ <\\J> + )\0 2

for some constant K > 0, of which
n and summable in A > 1. Thus,
terms on the righthandside of (A.99)

En h—
Dso A Zt:()l Ao Cov(Yo, €n—t€k, +1+h—s)-

5 + AR

righthandside upper bound is independent from
we now need to study the convergence of the
as n — oo for fixed h > 1. We start with
We write that

Cov(Yoen—t, €k, +1+h—s) + E(Yoen—t)E(€k, +1+n—s)
—E(Y0)E(€n—tex, +1+n—s)
Cov(Yoen—t, €k, +1+h—s) + E(Yoen—t)mo — CrE(en—t€x, +14+n—s),

Cov(Yo, €h—t€kn+1+h—s)

of which terms are easier to analyse than Cov(Yp, €—t€, +14+h—s) directly. For fixed h,s,t > 1,
the Davydov inequality entails that ASABCOV(YOeh,t, €k, +h—s) —> 0 as n — oco. Furthermore,
the Cauchy Schwarz inequality yields

IAGCov(Yoen—t, €k t14n—s)| < Aol |Yol[all€l]alle]]2

of which upper bound is summable w.r.t. s € N, so that a domination convergence theorem
argument yields that

kn h—1

t
Z D Z Mo Cov(Yoen—¢, €k, 414h-s) — 0, n — o0,
s=0 t=0

for fixed h > 1. Moreover, the following limits are easily obtained as n — oo:

iAS Z)\OE Yoen—_t)

— Z)\O YOGh t Z)\()Uh t— 1 )\
kn h—1 — 1
2 )\g ; )\BclE(eh,tGknJrlJrh,s) — ; /\BC’lmgl — )\0

so that the following limit is established:

kn  h—1 h—1
DA NCov(Yo, en—t€ht14h-s) —r b [vn—t-1 — Cimy)
s=0  t=0 0 3=
my w
= -0 MNoXh_t—1, n — oo, (A.100)
1—- X
t=0
thanks to Relations (11) and (7). A similar analysis yields
kn kn
D XA Cov(Yo, Yoek, 111h-s) = D AAG [Cov(YT, kyp1ns) + Como — CLE(Yoek, y11h-s)]
s=0 s=0
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— Z ASAE % 0 + Z)\S/\chmo - Z MM CEmg

s=0 s=0 s=0
Cy — C?
h 2 1
= A.101
A0 —— " (A.101)
At Cov(Yy, V2) — 0 (A.102)

as n — oo, for fixed h > 1. Combining (A.100), (A.101), (A.102) and (A.99), we then obtain

n oo h—1 CQ B C2 0 X
>~ Cov(Yo, YiYiin,+1) e Z v
h=1 T 0o = Ao
Cl )\0 m
pr— A o )
1_)‘01_>‘ ZXh+ 0 X0 1-Xo  (1—X)? [ hZ;)Xh—F e Cl)], T

(A.103)

A similar analysib yields that > ;h Cov(Yy, YnYhik,+1) converges as n — oo so that
limy, oo D oy b Cov(Yy, YaYhar,) = 0, from which, along with (A.103) and the fact that
limy, o0 COV(YO7 YoYk, +1) = 0, gives that

1 & m >
- > "(n — |))Cov(Yo, YiYiik,41) — 27— [— > " Xn+ Xo(C2 — CF)

, n— oo.
h=1 (T=20)* | 35
(A.104)
We then study the term Y, ™ | Cov(Yo, Y3 Yhik,+1). A change of index h := —h as well as
the stationarity of the process {Y,, n € Z} yields
—1 n
> Cov(Yo, VaViik, 1) = > Cov(Vh, YoYh, 11). (A.105)

h=—n h=1

We split the righthandside of (A.105) into the two sums Zi”:l and Ezzkn 41+ Writing for
h=1,..k, that

Cov(Yp, YoV, 1) = Cov(Yo, YaYk,+1) + E(Y0)E(YaYk,+1) — E(Y2)E(Y0Y,+1)

= Cov(Yo, Y3 Yk, +1) + Crug,—n — Crug,
= Cov(Yo, YnYs,+1) + Ci(uk,—n — 012) — Ci(ug, — C12), (A.106)

h
we notice that, similarly to (A.14), |Cov(Yp, VY%, 41)| < K [ae(th/%)l_z/ﬁ —i—)\ObJ —i—)\g]

which, since the mixing coefficient function a.(-) is decreasing and |h/2] > [(k,/4) — 1],
h = 1kn/2]|,..., kn, yields that

kn

& 5 L L)
TTL

Next, writing COV(YE), YhYkn+1) = COV(}/QY}-“ Ykn-‘rl) +E(}/()Yh)E(Ykn+1) —E(%)E(Yhykn+1) =
Cov(YoYn, Y, +1) + Ci(up_1 — C3) + C1(C? — ug, 1), and since, by an argument similar
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En | _ En | _
to (A.107), ST Cov(YoYh, Yis1) — 0 as n — oo, and L2472 = wyyn) =

kn—1
Zh:knft%"jﬂ(clz —up) — 0 as n — oo, we thus get that

I.kTRJ_l o]
Z COV(YQ, YhYkn+1) — Cl Z(uh,1 — 012), n — oo,
h=1 h=1

which, coupled with (A.107), yields that

kn [e%e)
S Cov(Yo, YiYi, 1) — C1 Y (up-1 — C3), n— oo, (A.108)
h=1 h=1

Pluged into (A.106), and since ky, (ug, — C?) = O(k‘n)\g”) — 0 as n — oo thanks to Corollary
3.2 and Zi’;l(ukn_h —C?) = f;_ol(uh —C?) — Y72 o (up—1 — CF), we thus get
kn 00
Z COV(Yh, YE)Ykn+1) — 201 Z(uh,l — 012), n — oQ. (A.109)
h=1 h=1

We now consider the Zzzkn-i-l sum in the splitting of righthandside sum of (A.105). Using
the stationarity of {Y,,, n € Z} and a change of index h := h — ky,, we first write

n n—knp—1
> Cov(Ya,YoY,1) = > Cov(Y_p, 10, Ya). (A.110)
h:kn‘i‘l h=0

We use a dominated convergence argument to determine the limit of (A.110) as n — oo.
Similarly to (A.14), the following inequality holds

h

AN
Cov(Y_p, 1Yo, V)| < K |ac | |= + AL+ N\ A111
n 2 0 0

the upper bound being summable. Next, we decompose the summand in the righthandside of
(A.110) in the same spirit as (A.106) as

Cov(Y_p, 1Yo, Yn) = Cov(Y_p, _1,YoV3) 4+ C1(up_1 — C2) — Cy(ug, — C3). (A.112)

For fixed h € N, a standard argument yields that

kn + 1\ %7 b1
rCov<Y_kn_1,m>|gK[a€Q;J) ol

— 0

as n — oo. We already saw that lim, oo ug, — 012 = 0, so that from (A.112) the following
limit holds
Cov(Y_p, 1Y0, Yi) — Ci(up_1 — C?), n — oo, Yh € N. (A.113)

Hence, (A.110) along with (A.111) and (A.113) yield by the dominated convergence theorem
that

> Cov(Yn, YoYh,11) — > Ci(up—y — CF) = C1(Ca— CF) + C1 > _(up—y — CY),
h=kn+1 h=0 h=1
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which, coupled with (A.109) as well as (A.105), yields

1 0
Z COV(YE), Yth+kn+l) — 01(02 — 012) +3Ch Z(uh_l — 012), n — 0o,
h=—n h=1

which in turn gives

—1 00

1

E Z (TL — ’h’)COV(}/E),Yth+kn+1) — 201(02 — 012) + 301 Z(uh71 - 012)7 n — 0.
h=—n h=1

Gathering (A.104) and the above limit we eventually arrive after some easy calculation at

1 - mo >
- > (n— ) Cov(Yo, YnYish, 1) — —2m > xn
h=—n h=0
+ 1 (02 — 012) + 3C1 Z(Uh_l — 012), n — oo. (A.114)
1— )X —

We then study Cov(YoYk,+1,YnYhtk,+1)- The limit of >}, Cov(YoYe,+1, YaYnik,+1) is

obtained by splitting the sum in three blocks, namely }Lf:l/ 2J, ZIE}::/lz |+1 and Y h_p Lo

We start by the summation over h = 1, ..., | k,/2|. We exploit here the fact that h is "far"
from k, + 1, and write that

Cov(YoY, +1; YaVaikot1) = Cov(YoYn, Yi,+1Yntk,+1) + E(YoYi)E(Ye, +1Ye, +144)
—E(YoYy, +1)E(Ya Yk, +1+n)
= COV(YE)Yh, Ykn—i-th—i-kn—i-l) + u%fl — uin (A.115)

Similarly to (A.14) we have

kn—h |\ | Bt | kn+1—h
|Cov(YoYh, Yie,+1Yhtk,4+1)| < K | e 5 +Ag + A"

which, since the mixing coefficient function a.(-) is decreasing and | (k, — h)/2| > |(kn/4)—1],
h=1,..., |kn/2], entails that

Lkn /2] k 1-2/8 |40 1] v
S 1Cov YoV, Vi 11 Vi s1)| < K /2] [ae ([4 - 1J) af T ) ]
h=1

— 0, n—oo0. (A.116)

Remembering that C? — uy, = O()\Ig) from Corollary 3.2, so that limy_,oo k(C? — ug) = 0, we
also have, writing u%_l — u%"_l = (uz_1 -CH + (C’i1 — uin_l):

Lkn /2] [kn /2] 00
Z (uj—1 _Uin—l) = Z (uj —CH)+ Lkn/2J(Cf—uin_1) — Z(U%—l —-C}), n— oo,
h=1 h=1 h=1

(A.117)
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as indeed |k, /2] (C} —up 1) = O (|kn/2)(C} — ug,—1)) — 0 as n — co. Gathering (A.116)
and (A.117) in (A.115) thus yields

[kn /2] )
Z COV(YOYkn, Yth+kn) — (u%_l — Cf), n — Q. (A.118)
h=1 h=1

We now consider the summation over h = |k, /2| + 1, ..., k, + 1. We this time exploit the fact

that h and k, + 1 + h are respectively "far" from 0 and k, + 1, and write

Cov(YoYe,+1, YaYntk,+1)

Similarly to (A.116):

kn+1

> [Cov(YoYnYi+1s Vg, +1)] <

[kn/2]+1

kn+1

> Cov(Yo, YaYi,+1)]

lkn/2]+1

And, writing C?uy, 5 — uin

kn+1

2 2 2
Z Cl ukn_h - uk‘n = Cl

h=kn/2)+1

Cov(YoYnYk,+1, Yntk,+1) + [Cov(Yo, Y5 Yy, 11)
+E(Y0)E(Ya Yk, + DIE(Yntk,+1) — E(Y0Yk, +1)E(Y2 Ytk 41)
Cov(YoYn Yk, +1, Yntk,+1) + [Cov(Yo, Y3 Yk, 1)
+Cup,—p)Ch — uf, .

K |kn/2]

— 0,

IN

K |kn/2]

— 0,

kn—|kn/2]—1

D

h=0

so that we obtain from (A.119) the following limit

kn+1

D

h=kn/2]+1

oo

Cov(YoYh,, YaYih,) — CF Z(uhﬂ —Cf), n—oo.

h=0

o

n — oQ.

= C}(up,—n — C}) + Ct —u

2

1-2/8
) .\

1-2/8
) I\

I

0

I

0

kn

4

Ekn
4

1

,1J

(w1 = CF) + (kn — Lkn/2]) (CY = u,)

(A.119)

kn+1

+X 2

kp+1

+X 2

we obtain, similarly to (A.117):

oo
2 2
— (] E (un—1 — C7), n— o0,
h=0

(A.120)

Then, we consider the summation over h = k;, + 2, ...,n. The expansion established in (A.13)

reads here

o
Cov(YoYi 41, YaYatkat1) = DA [
s=0

h—kn,—2

t=0

Z )\BCOV(}/OYkn-i-lveh—t€h+kn+1—s)

+)\g_kn_1co"(YOYkn+1,Ykn+1€h+kn+175)} + AT Cov (Yo, 11, Y70). (A121)
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We study the summation over h = ky, + 2,...,n of each term in (A.121), and start with the
first term, which reads, thanks to a change of variable r := h — k,, — 1,

n kn h—knp—2 n—kn,—1
S0 D N Cov(YoVet1s htehikarios) = > Ji(r k), (A.122)
h=k,+2 s=0 t=0 r=1
kn r—1
Ti(rkn) = )Y AT Cov(YoYh, 41, €ty 1—t€ri2k, 42-5)-
s=0 t=0

Studying the limit of (A.122) is done by applying the dominant convergence the-
orem. We see from (A.8) that ‘Z:;é N Cov(YoYi,+1, €rthp+1—t€rt2kn+2—5)| <

g
K o ([(r— 1)/2J)1_2/6+)\$ 2 J] for all s = 0,...,ky,, so that |Ji(r, k,)| is dominated as

() A

of which righhandside is summable. As to the pointwise convergence of Ji(r, ky,) for fixed r
as n — 00, we use again a domination argument in the variables s and ¢. Indeed we have that
|/\S+tC0V(Y0Ykn+1, €tk +1—tEr+2k,+2—5)| < K)\8+t for some constant K thanks to the Cauchy
Schwarz inequality, and we have

follows

[J1(r k)| < K

Cov(YoYk, +1s €rthp+1—t€rt2kn+2—5) = Cov(Y0, Yk, 11€r 1k +1—t€rt+2k,+2—5)
FE(Y0)E(Yey 4161 kn+1—t€r 12k, +2—s) — E(Y0Yk, +1)E(€rip, +1-t6r 12k, 12—5)

= COV(YO, Ykn+1€T+kn+1—t5r+2kn+2—s)
+CIE(%6T—t€r+kn+175) - uknE(Er—tfrJrknJrlfs) (A123>

Standard arguments yields the following limits as n — oco:

COV(YE), Yk}n+167‘+kn+1—t€7’+2k‘n+2—8) — 0,
E(YVOETfter—i—kn—H—s) — E(Yvoerft)mO,
2,2
uknE(ET‘*tET‘-i-k‘n-‘rl—S) — O] my,

which, plugged into (A.123), yields the following thanks to Relation (11)

oo r—1
Ti(rkn) — DO NTCIE(Yoer—)mo — Cim)
s=0 t=0
C1mo < Cimg
= 1_)\OZAtUTt1—Clm0 1_/\ Z)‘OXTtl

Hence the following limit from (A.122):

n kn h—kp—2

ST AT Cov(YoYa 415 ht€hihy,41-s) — —fﬂr;\(; Z Ao Z A X1

h=kp-+2s=0 t=0
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Clmo
=Ty Z/\o Xe—1. (A.124)

We now pass on to the second term in (A.121) and we write

n kn n—kn—1
> D N Cov(Yo, Yok q1th-s) = Y Ja(rkn), (A.125)
h=kn,+2 s=0 r=1
kn
Jo(r,kn) = Z ASTTHE L Cov (Yo, Yo€r sk, +2-—s)-
s=0

From the Cauchy Schwarz inequality as well as crude bounding we get that |Jo(r, ky,)| is upper
bounded by KX, for some constant K, so that from (A.124) we obtain that

n kn

> ) A Cov(Yo, Yoek, 414h-s)| = O(AG") — 0, n — oo (A.126)
h=kp+2 s=0

As to the third term in (A.121), standard estimates yield that Y ;% ; Cov(Yp, Y}?) is a conver-
gent series, so that we get

D AT Cov(Yo, Y) = O(Af") — 0, n — o, (A.127)
h=kn+2

so that, gathering (A.124), (A.126) and (A.127), we get from (A.121) that

Clmo

n
Z Cov(YoYk,+1, YnYnik,+1) — (1— o)

h=kn+2

22)\0 Xt—1, N — 00. (A.128)

Finally, gathering (A.118), (A.120) and (A.128) we arrive at the following limit as n — oo:

n o0 o0

C m
E COV(%Ykn7Yth+kn+1)—>§ (u%71—0f)+012§ (up—y — CF) — 0 E Ao Xi—1
h=1 h=1 h=0

(A.129)
A similar analysis yields that Y7 h Cov(YyYs,, Y Yiik,) converges as n — oo so that
limy, oo Y e I COV(Y[)Ykn, YnYhir,) = 0. Also, it is not difficult to check that
lim;, 00 COV(YOYan, YoYi, +1) = limy, 00 COV(YOQ, Y2, )+C3-Ct+Cf—ui =C3—-Ct.
As to Zﬁifn Cov(YoYk, 41, YnYntk,+1), we use again by a stationarity argument and a
change of index that it is equal to Y, _; Cov(YoYs,+1, YnYh+k,+1), so that its limit as n — oo
is also given by the righthandside of (A.129). Thus, we obtain the following limit

— Z —|h| COV }/()Ykn-i—leth-i-kn-i-l) — 02 Cl -I-QZ —Cf)-l-QClQ Z(Uh_l—C%)
hf—n h=1 h=0
20171”02 i Ao 'xi—1, m— o0, (A.130)
(1— o) =

Hence, in view of (A.96), (A.97) and the limits (A.98), (A.114) and (A.130), we thus proved
the expression (53) for &.
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Appendiz A.8.0.2. o Step 2:. Recalling for all m € N the processes {Y, n, n € Z} and
{Zpm, n€Z} in (A.15), as well as introducing

Xim(kn) = Xjp(kn) + X3, (kn) (A.131)
Xjmkn) = [Yim —E jm), Yiekattm — Bk, 41m))
Xyz,m(kn) = [Zj,m - E(ij), ZJ+kn+1 m E( Jj+kn+1, m)]/’

we now follow the scheme in Step 2 of the proof of Theorem 4.2 with again the non negligible
difference that kg is now replaced by k,, and show that

ZX ) 25 N(0,8™), 1 — oo, (A.132)

for some semi-definite positive matrix &™ € R?*2. For this we need to verify Condition (2) in
Francq and Zakoian (2005) which says that the following limit exists and defines that matrix:

- Z (7 — [R)E(Xg g (kn), Xy (kn)) —> 6™ (A.133)
h—fn

as n — 0o, which we prove now. For this we first express the expectation above as covariances
as follows

COV(YE) ms Yh m) COV(YE),ma Yh+kn+1,m)

E(X} (ko) X} (kn , A.134
( O,m( ) h,m( )) |:COV(Ykn+1m7Yhm) COV(Ykn—i—l,m»Yh—}—kn—l—l,m) ( )

where Cov(Yy, +1,m» Yatkn+1,m) = Cov(Yom, Ynm) by stationarity. We then study the conver-
gence of the series with general terms given by the entries of the above matrix, i.e. convergence
of Y p_ . Cov(Yom, Ynm)s Done—p COV(Yom, Yitk,+1.m) and > 5 Cov(Ye, +1.m, Yam) as
n — oo. Standard arguments yield the convergence of

> e Cov(Yom, Yim), as the summand does not depend on n, so that we are going
to focus on the convergence of Y 5 Cov(Yym, Yatk,+1,m), the one with the summand
Cov(Yk, +1,m> Yn,m) being dealt with similarly. Remembering the definition (A.15) for Yy,
and Y}, ,,, we have

Cov(Yom, Yitkntim) = D Cov(t” o ey, 9;(11);%“ O €hthy+1—1")- (A.135)

/=0

It thus suffices to prove that Y ,_ COV(Q[()T) o 6_T79}(L7:‘1,‘)]fn+1 O €ptk,+1—r) admits a limit
as n — oo for all r and 7 in 0,...m to be able to conclude as to the limit of
Y he 1 Cov(Yo.m, Yitk,+1,m). We prove that the limit exists when r and r’ are both 0 w.l.o.g.
Remembering that 97(10) = Id, we thus need to study the limit of ), _
we again split into ), and Z;ifn A dominated convervgence argument gives that

Cov(€o, €pt,+1) which

—-n

n
Z Cov(eo, €ptk,+1) — 0, n — oo. (A.136)
h=0
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Next, writing that

—1 n kn+1 n
Z COV(G(), fh—l-kn-i-l) = Z COV(&(), Ekn+1—h) = Z + Z y (A.137>
h=—n h=1 h=1 h=kn+2

of which two latter sums have the following limits (remember that k, = o(n) by assumption,
so that n — k,, — o0 as n — oo):

kn+1 kn kn
Z Cov(eo, €k, +1-1) = Z Cov(eg, €p) = Z v
h=1 h=0 h=0
— Z Vh, N — 00,
n n—kn,—1
Z Cov(eo, €k, +1-1) = Z Cov(eo, €p—k,—1) Z Cov(eg, €p)
h=kn+2 h=kn+2

n—kp—1

- > Vh_>zyh, n s oo

which, plugged into (A.137) and (A.136), yields the following limit

n (o]
Z Cov(Yo,m, Yntkn+1,m) — vo + 2 Z Vh, T — 00.
h=—n h=1

Note again that what we wanted was simply the existence of the limit, of which
explicit expression is just a bonus. All in all, we thus have from (A.135) that
Y he—n Cov(Yo.m, Yitk,+1,m) admits a limit as n — co. Similarly, one proves the existence of
Y he—p IRCOV(Y0 ms Yatk,+1,m)| so that, by (A.134) and the dominated convergence theorem
the limit 6™ indeed exists in (A.133).

We now conclude by saying that Condition (1) in Francq and Zakoian (2005) is satisfied
with v* = 28 — 2. As discussed in the beginning of Francq and Zakoian (2005, Section 2),
and using the notation therein, Condition (3) is verified here with 7,, = 2h,,, and thanks to
the assumption (58). Hence the convergence in distribution (A.132) holds.

Appendiz A.8.0.8. o Step 3:. As in Step 3 of the proof of Proposition 6.4, we prove that

1 = oy
—SN"X
Vi 2

lim limsupP ( > e) =0, Ve>0. (A.138)
m—=00 n—oo

The equivalent of (A.36) is here

PQ )

2

- Z (n— W) (X3 (k) X7 (k) . (A.139)
h=—n
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We see that it suffices to prove that

D B (X (k) Xt (k) | < K™, > (BB (XG0 (k) X7 (Kn)) || < K™
h=—n h=—n

(A.140)
in order to prove (A.138). We only prove this property for Y p_  E <Xg,m(k:n)’X,%’m(kzn)>,

the proof being similar for ., hE (Xg’m(kn)’X}%’m(k‘n)). For this, and since, as in (A.134),

one has the expression

Cov(Zoms Zhm)  Cov(Zom, Z )
2 2 _ 0,my “£h,m 0,my Lh+kp,+1,m
E(Xom(Fn), Xy (Fn)) = [ Cov(Zr,+1,m> Zh,m) Cov(Zo,m, Zh,m) ’ (A.141)
we saw that it suffices to prove that
n
> 1Cov(Zoms Zhik,+1)l < Ku™,  Wn €N, (A.142)

h=—n

the other terms in (A.141) being dealt with similarly. Similarly to the decomposition (A.24),
we write thanks to the definition (A.15), and for h =0, ...,n:

COV(ZOJn, Zh+kn+1) = Il(h, m, kn) + [Q(h, m, kn), (A.143>
Il (h, m, kn) = Z Cov (Zo,m, [9}(3_'%”_’_1 o €h+kn+1—z‘]) N
mA1<i< [ h)2) +kn+1
Iy(h,m, k) = Z Cov <Zo,m, [9;(3,%“ o Eh-i—lcn-i-l—z‘]) ;

max(|h/2|+kn+1,m+1)<i

with the convention that the sum over an empty set is equal to 0 (which is the case for example
for I1(h,m,ky) when |h/2| > m + 1). An argument similar to (A.25) and (A.28) yields the
following inequalities

[Li(h,m, kn)| < K > 1 Zom — E(Zom) | 5
mA1<i< | h/2]+kn+1

' Hei(ﬁknﬂ O €hthy+1—i — (9,(;1,%“ o eh+’“n+1—i) ‘5 ac(|h/2])' %",

h=0,..n,
1 Zojm —E(Zom)ll; < Kv™,

leading to the bound
[I1(h,m, k)| < Kv™ae ([h/2)) %%, h=0,..n. (A.144)

As to Iy(h,m, ky,), we need to split the sum further according to whether |h/2] + k, + 1 is
larger or less than m + 1. When it is larger than m + 1 then an upper bound as in (A.30)
holds, so that we obtain

[Lo(hym k)| < Kol myp ot met] + KUV 2 o1 <met 1]

< Kyl V™ 2]tk t15me1] + KV coiminy, h=0,..,n
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where we used the fact that |h/2] 4+ k, + 1 < m + 1 implies that h < 2(m + 1). Summing
(A.144) and the above inequality on h =0, ..., n leads to

Z|Cov Zoms Zhtkp+1)] < Kv™ [Zae Lh/2)) 2/5]
h=0 h=0

+ Kv™ [Z plh/2)

h=0

+2(m+ 1)p*™ < Kv™.  (A.145)

We now consider Y71 |Cov(Zom, Zhik,+1)|. We first observe that, by a change of index
and stationarity,

-1 n kn+1 n
> 1CN(Zo.ms Znskur ) = Y 1CV(Ziygrms Zhm) = D+ Y- (A.146)
h=—n h=1 h=1 h=kn+2

Let us first notice that the following bound holds thanks to standard arguments:
[Cov(Znms Zom)] < Kv™ [ac ([n/2))' 727 + 00/

so that the two sums on the righthandside of (A.146) verify the bounds

kntl kn+1 kn
Z |COV(ZkJn+1,TI'L7 Zh,,m)| = ‘COV(an+1_h7m7 Zo7m)| = Z |COV(Zh,m7 ZO,m)‘
< " 1Cov(Znms Zom)| < K™ 3 [ ([h/2])1 77 4 olh/2)]
h=0 h=0
" n n—kn—1
Z |Cov(Zk,t1,m5 Zhm)| = Z |Cov(Zo,ms Zh—kp+1.m)| = Z |Cov(Zo.m, Znm)|
h=kn+2 h=Fky,+2 h=1
< " 1Cov(Znms Zom)| < K™ 3 [ ([h/2]) 27 4 wlh/2)]
h=0 h=0

which, plugged into (A.146), yields that S, |Cov(Zom, Znik,+1)| < Kv™. In turn, this
latter bound associated to (A.145) yields (A.142) hence (A.140). Thus, all in all, (A.138) holds.

Appendiz A.8.0.4. < Step 4:. As in the final step of the proof of Theorem 4.2, (A.132) and
(A.138) yield that lim,, oo ™ = & defined by (53), as well as the convergence in disrtibution
(59). O

Appendixz A.9. Proof of Theorem 6.1
Setting k = k,, in (56), and remembering from (48) that S,, = ¥y, (¥, Yin+1.n), We get

1) 1 1
+7 :Ks<k +)
, Fn PNV , Fn

61

5
NG

S

n

N 1




The convergence (57) in Proposition 6.3 implies that ‘ Sn/\/ﬁ‘ ‘2 = O(1). The trick here is to

choose ky, = [cIn(n)] where ¢ < —1/(2InA_) which implies that lim,, e A™\/n/k, = o0, s0
that the upper bound on the righthanside of the above inequality is an O(1/k,) = O(1/In(n)),
proving the inequality (49). Finally, the convergence in probability of N,, comes from the a.s.

convergence of Y, towards O and the convergence in probability of e>» (the latter stemming
from the convergence in L2 of S,,) towards \g, coupled with Relation (7). O

Appendiz A.10. Proof of Theorem 6.2
The increment theorem of function vy, at point U(ky,) := (C1,ug, ) gives

Sn(kn)

S, (U (k) = v, (U(/m n

)—wknw (kn)) = Vi, <U(k:n) +n Snffn>> Sn(kn)

n

(A.147)
for some r.v. ¢, € (0,1). Using again the increment theorem to Vi, at some point U(ky,),
we get, thanks to the upper bound (A.88) for D23y, obtained in the upcoming Lemma Ap-
pendix A.10, that

S (kn
e [, (U0 + e 0 ) - 9, @]
< knAg" sup (| Dy, (a,b)]]- Cnsn(kn)‘
(a,b)eR? n
gKknA’gn% ¢ 2 En) 'gKknA’g" kl S”(k")‘ (A.148)
AT Nem/m || v/

for some constant K > 0. Furthermore, for n large enough we have from (13) as well as
Assumption (A6) that [CZ — ug, | = Ak [ S0 AT7x; + Ao(CF — 02)‘ > MnK,./2, so that
the definition (42) of wy, entails that wy, (|C7 — ug,|) = 1 and @), (|C} — ug,|) = 0. This
in turn entails that Vi, (U(kn)) = (2C1/(kn|CF — ug,|), —1/(kn|CF — ukn\))/ (see the up-
coming calculation of 0,1 in (A.93) and a similar calculation for 9y for all k in the proof

of Lemma Appendix A.10 in Section Appendix A.7). Since k, obviously satisfies (58), the
central limit theorem (59) in Proposition 6.4 holds, and thanks to the expression (13) we thus

have

Sn(kn)
Vn
where & is given by (53) and V is given by (52). Now, the choice of k,, := |clnn| where
¢ < —1/(2In)_) implies that lim, .o A*"\/n = oo, and ||S,(k,)/v/n|| is bounded in L2
thanks to (57), so that (A.148) implies that

kn 6" Vb, (U (kn)) DN (0,VEV!), n— oo (A.149)

o [ 40, ] 52
< ’ kX" [Wkn (U(kn) + cns"ff”)> - Vi, (U(kn))] H . Hsfé’%") ‘
< Kk Al Al;ﬁ Sﬂ;%n) "
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as n — oo (in the above inequalities, it is convenient to take a multiplicative matrix norm ||- ||
which verifies ||Mvl|| < ||M||.||v]| for all matrix M and vector v). Coupled with (A.149), we
then get the following asymptotic normality

knXg" iy, <U (kn) + cn S"ff”) 5 ’1%”) 2N (0,VeV), n— . (A.150)

Having considered the righthandside in (A.147), we now study its lefthandside. Since we saw
that wy, (|C? —uy, |) = 1 for n large enough, we thus have that vy, (U(ky)) = k,; ' In |C? —uy,,|
so that, from (13):

kn
kX6 [, (U (k) = In o] = AG™ In | Y~ Ag7xj + Mo(CF = Co)
7=0

- = b1 A7 X;
=2 In > A7 + Ao(CF = Co)| + A In |1 — 2iizhnt1 207X (A.151)

=0 ‘Z?io X7 X + Xo(CF = Ca)

The assumption v, = O(¢") entails from the definition (5) and ¢ < A_ < Ao that y; = O(¢?)
so that > 72, ) A(;jxj =0 ((Q/Ao)k”>, a quantity that tends to 0 as n — co. We thus
deduce from (A.151) and the classical expansion In(1 4+ u) = O(u) as u — 0 that

kn MG [n, (U (k) — In o] = g™ In | > Ag7x; + Ao(CF — Co)| + O(¢F"), n— 00, (A.152)
j=0

Gathering (A.147) and (A.152) yields

. 1o~
n =0

1
_|_ -
ik N

ZONEC

[knx’gnwkn (U(kn)+cn = NG +O(v/nck| .

Now, the assumption ¢ > —1/(2In() implies that lim, ;. /(¥ = 0, so that the expansion
(50) holds with Z, := Ek,A"Viby, (U(kn) 4 caSn(kn)/n) Su(kn)/v/n + O(y/n¢*), which
converges in distribution towards N (0,0) thanks to (A.150), with o defined as (51). Also
note that the assumption ¢ < —1/(2In\_) implies that Z,/y/nk,\i" is indeed as second
asymptotic term, as indeed we have lim,, o \/ﬁ)\on = 00. ]
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