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ON ALMOST-FUCHSIAN SUBMANIFOLDS OF HADAMARD SPACES

AND THE ASYMPTOTIC PLATEAU PROBLEM

SAMUEL BRONSTEIN

Abstract. We consider minimal submanifolds of negatively curved spaces with small cur-
vature. We show that in a Hadamard space with negatively pinched curvature −C ≤ K ≤
−1, complete minimal submanifolds with second fundamental form less than 1 everywhere
bound a class of spheres at infinity for which the asymptotic Plateau problem is uniquely
solvable.
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1. Introduction

In 1983, Uhlenbeck [Uhl83] introduced the notion of almost-fuchsian representation. A
representation of a surface group in PSL(2,C) is almost-fuchsian if it is discrete, faithful
and there is an equivariant minimal disc in H3 whose principal values lie in a compact set of
(−1, 1). Since then, almost-fuchsian representations have been a very fruitful field of study,
see for instance [Eps86, KS07, HW13, Sep16, San17, Jia21, EES22, BS23] We consider here
a generalization of almost-fuchsian submanifolds in negatively curved spaces: Let X be a
complete simply connected riemannian manifold whose sectional curvature is less or equal
than −1.

Definition 1.1. An immersion f : Y → X is almost-fuchsian if it is minimal, proper, and
it satisfies

(1.1) sup
y∈Y

|IIf | < 1

Remark that Y can always be endowed with the induced metric which will be complete
by the properness assumption. By extension, a submanifold Y ⊂ X will be said to be
almost-fuchsian if the inclusion map is almost-fuchsian.

In this paper, we prove the following embedding theorem:

Theorem 1.2. Let f : Y → X be an almost-fuchsian immersion. Then Y is contractible.

Denote by NY the normal bundle to Y . The exponential map exp : NY → X is a diffeo-

morphism. Also, f extends at infinity to an embedding from a sphere S → ∂∞X.
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We also consider the following asymptotic Plateau problem: given a sphere S ⊂ ∂∞X, can
we count the complete minimal submanifolds of X asymptotically bounding S ? Jiang [Jia21]
and Huang–Lowe–Seppi [HLS23] considered this problem for spheres in ∂∞Hn bounding
respectively an almost-fuchsian disc or an almost-fuchsian hypersurface. They proved that
in that case, the unique minimal submanifold of the given dimension bounding S is the
almost-fuchsian one, which is unique.

Here we prove that this statement holds in a broader generality, provided that X has
negatively pinched curvature between −C and −1.

Theorem 1.3. Let X be an n-dimensional negatively pinched Hadamard space with sectional

curvature less or equal than −1. Let Y ⊂ X be a k-dimensional almost-fuchsian submanifold

bounding a (k − 1)-dimensional sphere S ⊂ ∂∞X. Then Y is the unique k-dimensional

complete minimal submanifold of X asymptotically bounding S.

We don’t know whether this statement holds when the sectional curvature of X has no
lower bound, because we lack of convex sets to work with. Note that Huang–Lowe–Seppi
[HLS23] also cover the case of weakly-almost-fuchsian discs in H3, that is when the supremum
of the principal values is allowed to be one.

This paper is divided in three parts. The first part is about a very standard fact, that
minimal submanifolds of a space X with negatively pinched sectional curvature remain in the
convex hull of their asymptotic boundary. Surprisingly, we couldn’t prove it without a lower
bound on the curvature of X. The second part is devoted to the proof of the embedding
theorem, with some explicit estimates on the geometry of an almost-fuchsian submanifold.
Finally, the third part is devoted to the proof of the uniqueness to the asymptotic Plateau
problem for spheres bounding an almost-fuchsian submanifold.

The author thanks Andrea Seppi, Graham Smith and Nicolas Tholozan for their help,
insights and discussions on these topics.

2. The convex hull barrier

This section is devoted to the proof of the following theorem:

Theorem 2.1. Let X be a Hadamard space with negatively pinched curvature. Let Y be a

minimal submanifold of X, bounding a subset F ⊂ ∂∞X. Denote C the convex hull of F .

Then Y ⊂ C.

While this theorem is well known when X = H
n, we didn’t find a general proof of this

fact in negative curvature. A very elegant proof in Hn uses totally geodesic hypersurfaces as
barriers, as the convex hull is the intersection of all half spaces containing C [Jia21]. While
this proof can be word for word done in a symmetric space of a semisimple Lie group of
rank 1, here we need to be more careful, as totally geodesic hypersurfaces might not exist.

In all this section X will denote a negatively pinched Hadamard space, its boundary ∂∞X

will be its ideal boundary which equals its Gromov boundary in that case [BGS85, Gro78,
EO73]. The main idea is to use the following property:

Proposition 2.2. Let F be a closed set of ∂∞X, and denote by C its convex hull. Let

p ∈ X − C. Then there is a closed domain D ⊂ X ∪ ∂∞X disjoint from C ∪ F such that

p ∈ D, and D is foliated by smooth strictly convex hypersurfaces.

Proof. We use a theorem of Bowditch [Bow94]. As X has negatively pinched curvature, there
is a metric on X ∪ ∂∞X compatible with the topologies such that the map F 7→ CH(F ) is
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continuous on the closed sets of X ∪ ∂∞X equipped with the Hausdorff distance. Therefore,

there is a neighborhood V of F such that C̃ the convex hull of V does not contain p. The

complement of C̃ is then foliated by the equidistant to C̃, which are strictly convex.
Now a priori the convex C̃ has no smooth boundary, and so our foliation is only C1,1.

However, Parkkonen–Paulin [PP12] (Proposition 6) proved that a ε-neighborhood of C̃ con-

tains a smooth convex set, so up to replacing C̃ by this smooth convex set we assume the
foliation of the complement to be by smooth convex hypersurfaces. Denote D the closure of

the complement of C̃. �

Proof of theorem 2.1. Let Y be a minimal submanifold and let C denote the convex hull of
∂∞Y . Let p ∈ X− C and D denote the domain provided by proposition 2.2.

Suppose that Y intersects D. Because D does not bound ∂∞Y , the intersection Y ∩D is
compact. Then there must some point q at which Y is tangent to one of the strictly convex
hypersurfaces foliating D. This contradicts the minimality of Y . Hence Y ∩ D is empty.
Repeating this argument for any p ∈ X− C proves that Y ⊂ C. �

Remark 2.1. The lower bound assumption on the curvature of X is crucial here, otherwise
there might not be enough convex sets to pursue our proof. See for instance Ancona [Anc94],
there are spaces with curvature less than −1 such that the convex hull of any nontrivial open
set at infinity is the full space X.

3. Almost-fuchsian submanifolds

This part is about the notion of almost-fuchsian submanifold. First introduced for surface
group representations in PSL(2,C) by Uhlenbeck [Uhl83], almost-fuchsian discs and hyper-
surfaces have a rich literature [Eps86, KS93, Sep16, San17, Jia21, EES22, BS23, HLS23].

Throughout this section X will be a Hadamard space with sectional curvature less or equal
than −1. Note that we do not require its curvature to admit a lower bound. We consider an
immersion f : Y → X, where Y is connected. We assume f to be complete, i.e. the induced
metric on Y is complete.

We will prove the following theorem.

Theorem 3.1. Assume f : Y → X is minimal and satisfies:

(3.1) sup
y∈Y

|IIf | < 1

Then Y is contractible. Denote by NY the normal bundle to Y . The exponential map

exp : NY → X is a diffeomorphism. Also, f extends at infinity to an embedding from a

sphere S → ∂∞X

The proof is divided in several steps. First, we show that the induced metric by exp is
nondegenerate on NY . This will imply that exp is a covering map to X, and so it is a
diffeomorphism. Finally, we will see that f is a quasi-isometric embedding from Y to X, so
it extends at infinity to an embedding S → ∂∞X.

First note that because of the condition on f , the induced metric has negatively pinched
curvature on Y , and it makes sense to talk about its boundary ∂∞Y , which is constructed in
the works of Gromov [Gro78], Eberlein–O’NEill [EO73] and Ballmann–Gromov–Schroeder
[BGS85].
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Lemma 3.2. Let f : Y → X be an almost-fuchsian immersion. Let ε > 0 such that

(3.2) sup
y∈Y

|IIf | ≤ 1− ε .

Endow Y with the induced metric by f . Then its sectional curvature is less than −ε(2− ε).
If the sectional curvature of X is lower bounded by −C, then the sectional curvature of f ∗gX
is bigger than −C − 2(1− ε)2.

Remark 3.1. When Y is a surface, the minimality condition ensures that we have more
precise bounds: The sectional curvature of an almost-fuchsian surface is then less than −1
and bigger than −C − (1− ε)2.

Proof. This is a consequence of the Gauss condition: For u, v an orthonormal basis of a
tangent plane to Y , By the Gauss’ equation, the curvature of f ∗gX is then

(3.3) Rf∗gX(u, v, v, u) = RgX(u, v, v, u) + gX(IIf(u, u), IIf(v, v))− gX(IIf(u, v), IIf(u, v))

As RgX(u, v, v, u) ≤ −1 and |IIf(u, u)| ≤ 1− ε, we directly get

(3.4) Rf∗gX(u, v, v, u) ≤ −1 + (1− ε)2 = −ε(2− ε) .

as desired. Moreover, if RgX(u, v, v, u) ≥ −C, we directly get that

(3.5) Rf∗gX(u, v, v, u) ≥ −C − 2(1− ε)2 ,

as claimed. �

Proposition 3.3. Let f : Y → X be an almost-fuchsian immersion. Denote by NY the

normal bundle to Y , and note G the induced metric by the exponential map on NY . For

t > 0, denote by NtY the tangent bundle to the distance t hypersurface to Y . Let (x, tv) ∈ NY

with v a unit normal vector. Let Bt be the parallel transport map from TxX ∩ (v)⊥ to

Texp tv(NtY ). Let w ∈ Tv(UY ) and let f be the function:

(3.6) f(t) = |Btw|
2

If X is the hyperbolic space, f satisfies the following controls:

(3.7) (
√
f)′′ =

√
f

If X has sectional curvature strictly less than −1, then

(3.8) (
√
f)′′ >

√
f

Also, in both cases

(3.9) (ln f)′′ +
(ln f)′2

2
≥ 2

with the same equality and inequality conditions.

Proof. With the introduced notations, fix γ : I → UY a smooth path such that γ(0) = v

and γ′(0) = w. The family cs(t) is a smooth variation of geodesics, hence J(t) = ∂scs(t)|s=0

is a Jacobi field along c0. Evaluate the characteristic equation of Jacobi fields against J :

(3.10) gX(J̈ , J) +RX(J, ∂tc, ∂tc, J) = 0

In the second term, we recognize the sectional curvature of the tangent plane spanned by
J and ∂tc. Choose a local orthonormal chart of TxX such that B0 = Ik ⊕ On−k−1 and
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Ḃ0 = B(v) ⊕ In−k−1, where B(v) is the shape operator of f at v. Then equation 3.10
rewrites as

(3.11) ⊥wB̈tBtw +RX(J, ∂tc, ∂tc, J) = 0

and as the sectional curvature is less than −1, we replace the second term with the control

(3.12) RX(J, ∂tc, ∂tc, J) ≤ −⊥w⊥BtBtw

to get the following

(3.13) ⊥w⊥(B̈t −Bt)Btw ≥ 0

Now remark that

(3.14)

{
f ′(t) = 2⊥w⊥BtḂtw

f ′′(t) = 2⊥w⊥BtB̈tw + 2⊥w⊥ḂtḂtw

So the characteristic equation rewrites as

(3.15) f ′′(t) ≥ 2f(t) +
f ′(t)2

2f(t)

with equality when X is the hyperbolic space, and strict inequality if X has sectional curvature
strictly less than −1. As a direct consequence,

(3.16) (
√

f)′′ ≥
√
f

with the same equality and inequality conditions. Finally, introduce g = ln(f). As long as
it is well defined, we deduce from 3.15 that

(3.17) g′′ +
(g′)2

2
≥ 2

�

Remark 3.2. When X has varying curvature less or equal than −1, up to rescaling the metric
we can assume its sectional curvature to be strictly less than −1.

Proof of theorem 3.1. With the notations introduced, Fix w ∈ Tv(UY ) and consider the
function f defined in proposition 3.3. Denote w1 the projection of w on TY , and assume it
is nonzero. The initial conditions, by construction of f ,

(3.18)

{
f(0) = α2 = |w1|2 > 0
f ′(0) = 2αβ = 2⊥w1B(v)w1 < 2α

From proposition 3.3, we deduce that

(3.19)





f(t) ≥ (α cosh(t) + β sinh(t))2

f ′(t) ≥ 2(α cosh(t) + β sinh(t))(α sinh(t) + β cosh(t))

g′(t) = f ′(t)
f(t)

≥ 2α sinh(t)+β cosh(t)
α cosh(t)+β sinh(t)

with equality when X is hyperbolic, and strict inequality when the curvature of X is stricly
less than −1.

A first consequence is that f never vanishes. Hence (Bt) has trivial kernel, and the metric
induced by exp on NY is nondegenerate. So exp is a local diffeomorphims from NY to X.

Moreover, because the immersion Y → X is complete, it is proper. Hence for any point
of x ∈ X there is at least one point in Y which minimizes the distance to x. This implies
that the map exp is surjective. As a proper surjective local diffeomorphism, exp satisfies the
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path lifting property, so it is a covering map. But Y is connected and X is contractible, so
exp is a global diffeomorphism, Y is embedded and contractible too.

It remains to prove that f is a quasi-isometric embedding. In order to prove we introduce
a metric on NY for which the inverse map of the exponential map will be Lipschitz, and
such that Y sits in NY totally geodesically with the induced metric by f :

Consider (x, tv) ∈ NY and decompose its tangent space into T(x,tv)NY = Tt(x,Rv) ⊕
TxY ⊕ TvS

n−k−1.
Introduce the metric h on NY which in that decomposition is:

(3.20) h(x,tv) = 1⊕ cosh2(t)f ∗gX,x ⊕ sinh2(t)gSn−k−1

By construction, Y sits inside NY totally geodesically with the metric induced by f , that
we denote gY .

The equation on f 3.19 ensures that:

(3.21) exp∗ gX ≥ 1⊕ (cosh(t)Ik +B(v) sinh(t))2gY ⊕ sinh2(t)gSn−k−1

Denote δ = 1− sup |IIf | > 0. Then

(3.22) exp∗ gX ≥ δ2(1⊕ cosh2(t)gY ⊕ sinh2(t)gSn−k−1) = δ2h

Hence the inverse map of the exponential map is 1
δ
-Lipschitz.

As a consequence, f is a quasi-isometric embedding, as it satisfies:

(3.23) dX(f(x1), f(x2)) ≤ dY (x1, x2) ≤
1

δ
dX(f(x1), f(x2))

Combined with the fact that Y has negatively pinched sectional curvature proven in lemma 3.2,
it ensures that f extends at infinity to an embedding from a sphere Sk−1 → ∂∞X. �

As a corollary of the computations we made, we have some explicit estimates of the
geometry of NY , endowed with the induced metric by exp.

Corollary 3.4. Let f : Y → X be a complete almost-fuchsian immersion, with X a Hadamard

space. Denote by NtY the distance t hypersurface to Y . At a point expx(tv) ∈ NtY , consider

λ1 ≤ . . . ≤ λk the eigenvalues of B(v) the shape operator of Y evaluated at (x, v).
Then the second fundamental form IIt of NtY has eigenvalues λt

1 ≤ . . . ≤ λt
n−1 which

satisfy

∀i ≤ k,

i∑

j=1

λt
j ≥

i∑

j=1

λj + tanh(t)

1 + λj tanh(t)
(3.24)

∀i > k,

i∑

j=1

λt
j ≥

k∑

j=1

λj + tanh(t)

1 + λj tanh(t)
+ (i− k)

1

tanh(t)
(3.25)

In particular, NtY is k-convex in the sense of Sha [Sha86].

Proof. This is a consequence of the control on f ′

f
gotten in 3.19. The trace of IIt on a k-plane

P is the sum of 1
2
f ′(t)
f(t)

for w spanning a basis of the plane P .

The almost-fuchsian condition ensures that the sum of the λi is 0, and that they live in a
compact set of (−1, 1), which ensures the k-convexity of IIt. �
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4. The asymptotic Plateau problem

The Plateau problem was introduced in 1847, originally about a mathematical proof of
the existence of soap films bounding a wire frame. It was solved by Douglas [Dou31] and
Rado [Rad30]. Here we are interestes in a noncompact analogous problem: the asymp-
totic Plateau problem. Fix X a Hadamard space of sectional curvature less than −1, the
asymptotic Plateau problem can be formulated as

Problem 4.1 (Asymptotic Plateau Problem). Let S be a (k− 1)-sphere embedded in ∂∞X.
Is there a minimal k-dimensional submanifold M of X asymptotically bounding S ? Is M

unique ?

The asymptotic Plateau problem has been studied by Anderson [And83]. The problem
has since had a rich history, see the survey of Cozkunuzer [Cos09].

Recently, Huang–Lowe–Seppi [HLS23] considered the asymptotic Plateau problem for a
class of almost-fuchsian submanifolds of Hn. If a sphere in ∂∞Hn bounds an almost-fuchsian
hypersurface, then it is the unique minimal hypersurface bounding it. Jiang [Jia21] also
solved the asymptotic Plateau problem for Jordan curves bounding an almost-fuchsian disc
in ∂∞Hn. In this section, we generalize these results to any sphere bounding an almost-
fuchsian submanifold in a space X, under the assumption that X has negatively pinched
curvature.

Theorem 4.2 (Asymptotic Plateau Problem for almost-fuchsian spheres). Let X be a nega-

tively pinched Hadamard space with sectional curvature less or equal than −1. Let Y ⊂ X be

an almost-fuchsian submanifold of dimension k, bounding at infinity a (k − 1)-dimensional

sphere S ⊂ ∂∞X. Then Y is the unique complete k-dimensional minimal submanifold of X

bounding S.

In all the remainder of the article, X is assumed to have pinched sectional curvature
between −C and −1. Y ⊂ X is a complete almost-fuchsian k-dimensional submanifold, and
S is its asymptotic boundary in ∂∞X.

The first step in the proof is that eventual other minimal submanifolds bounding S remain
at bounded distance from Y :

Proposition 4.3. Let Z be a minimal submanifold of X bounding S. Then Z ⊂ NrY , where

NrY is the r-uniform neighborhood of Y , and r = tanh−1(1− sup |IIf |).

Proof. Thanks to theorem 2.1, we know that Z is included in the convex hull of S. But the
explicit bounds shown in corollary 3.4 show that for r ≥ tanh−1(1 − sup |IIf |), the uniform
neighborhoods Nr(Y ) are convex, and contain Y so bound S too. As a consequence, Nr(Y )
contains the convex hull of Y which contains Z. �

Remark 4.1. The same corollary 3.4 shows that all uniform neighborhoods are k-convex,
which directly implies that the function z ∈ Z 7→ d(z, Y ) cannot have a local maximum.
When the induced metric of Z has lower bounded sectional curvature, we could apply the
Omori–Yau [Omo67, Yau75] maximum principle to conclude that Z = Y . Here we don’t
prove that Z has lower bounded sectional curvature, but we prove that the maximum princi-
ple is still applicable. This property is called stochastical completeness, cf Pigola–Rigoli–Setti
[PRS05].

We want to apply a maximum principle to the distance function to Y restricted on a
minimal submanifold Z, so we first prove it satisfies a strong subharmonicity condition.
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Proposition 4.4. Let Z ⊂ X be a minimal k-dimensional submanifold. Consider the func-

tion u : z ∈ Z 7→ d(z, Y )2. Then there is C > 0 such that

(4.1) ∆u ≥ Cu

Proof. Consider d the distance function to Y , defined on the whole space X . Because Y is
almost-fuchsian, for any point of X− Y , the distance is attained at a unique point of X, so
the function d is smooth on X − Y .

Furthermore, at a point x where d(x) = t > 0, we have the formula

(4.2) ∇2d = 0⊕ IINt(Y )

the 0 is simply because d is linear in the direction of the minimizing geodesic to Y . Using
the formula

(4.3) ∇2(d2) = 2∇d · ∇d+ 2d∇2d

We deduce that

(4.4) ∇2(u) ≥ 2⊕ 2dIINt(Y )

Now, because Z is a minimal submanifold of X , the laplacian of the restriction of u equals
the trace of the restriction of its Hessian to the tangent space of Z

(4.5) ∆(u|Z) = Tr((∇2u)|TZ)

Hence the bounds on the eigenvalues of IINt(Y ) computed in corollary 3.4 and the control

(4.6)
tanh(t) + λi

1 + λi tanh(t)
≤ 1

allow us to get the control:

(4.7) ∆(u|Z) ≥ 2d inf
λ1+...+λk=0,|λi|≤1−ε

∑

i=1,...,k

tanh(d) + λi

1 + tanh(d)λi

= 2dΦ(d)

Remark that Φ(d) is continuous, positive, vanishes only when d = 0, and satisfies

(4.8) Φ′(0) ≥ k(1− (1− sup |IIf |)
2) > 0

As d is bounded by a constant r = tanh−1(1− sup |IIf |), there is a constant C > 0 such that
on [0, r], Φ(d) ≥ Cd. We deduce that the restriction of u to Z satisfies

(4.9) ∆u ≥ 2Cu

, as claimed. �

Now we want to prove that we can apply the maximum principle to u. In order to do so,
we will use the Khas’minskii test [Km60], as stated in Theorem 3.1 and Proposition 3.2. of
[PRS05].

Theorem 4.5. Let M, g be a Riemannian manifold, and assume that M supports a C2

function γ, which tends to infinity at infinity, and satisfies

(4.10) ∆γ ≤ λγ off a compact set

for some λ > 0. Then M, g is stochastically complete, or equivalently for every λ > 0 the

only non-negative bounded smooth solution u of ∆u ≥ λu on M is zero.
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Note that the equivalence between stochastical completeness and the applicability of the
maximum principle is due to Grigor’Yan [Gri99].

The following proposition will ensure that we can apply our maximum principle on Z:

Proposition 4.6. Let Z ⊂ X be a proper submanifold of X complete contractible space with

sectional curvature pinched between −b and −a, b ≥ a ≥ 0. Fix p ∈ X and denote f the

distance function to the point p. Then out of a compact set K, there is a constant C > 0
such that the restriction of f to Z satisfies

(4.11) ∆(f |Z) ≤ C

Proof. As X is negatively pinched, there are b ≥ a ≥ 0 such that −b ≤ KX ≤ −a. By
the Hessian comparison Theorem, the Hessian of f is bounded between the hessian of the
distance functions in the spaceforms of sectional curvature −b and −a. Explicitely, this
means

(4.12) a coth(af)gX ≤ ∇2f ≤ b coth(bf)gX

If a is zero, one has to replace a coth(af) by 1
f
, but it doesn’t change anything to the proof.

In particular, out of a compact set K containing p, the hessian of f is bounded by a constant
C. Now because Z is proper, the intersection K ∩Z is a compact subset of Z. Also, because
Z is minimal, the laplacian of the restriction of f satisfies

(4.13) ∆(f |Z) = Tr(∇2f |TZ) ≤ C dimZ .

as desired. �

Applying theorem 4.5, we deduce that the maximum principle is applicable on a proper
submanifold of such a space X.

Corollary 4.7. Let X be a complete contractible space whose sectional curvature is bounded

between −b and 0 for some b > 0. Let Z ⊂ X a proper minimal submanifold. Then for any

u ∈ C2(Z) such that sup u < ∞, for every c < sup u,

(4.14) inf
z∈Z:u(z)>c

∆u ≤ 0

Proof. Thanks to proposition 4.6, the function f |Z tends to ∞ at ∞, and out of a compact
set K, it satisfies

(4.15) ∆f ≤ C ≤ C ′f

for some constant C ′ > 0. In particular, we can apply theorem 4.5 to deduce that Z is
stochastically complete, which is equivalent to the statement of our corollary by Theorem 3.1.
of [PRS05]. �

We now have everything needed to prove our main theorem.

Proof of theorem 4.2. Introduce u : Z → R, such that u(z) = d(z, Y )2. Thanks to proposi-
tion 4.3, u is bounded. But thanks to proposition 4.4, there is C > 0 such that

(4.16) ∆u ≥ Cu

Now because of corollary 4.7, we can apply the maximum principle on u to get that u = 0.
Hence Z ⊂ Y , and by completeness Z = Y , as desired. �
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