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Abstract

The notion of spatial spillovers has been widely used in applied spatial econometrics.
In this paper, we consider how they can be identified in both structural and causal
reduced-form models. First, discussing the various threats to identification in structural
models, we point out that the typical estimation framework proposed in the applied
spatial econometric literature boils down to considering spatial spillovers as a side-
effect of a data-driven chosen specification. We also discuss the limits of blindly relying
on interaction matrices purely based on geography to identify the source and content
of spillovers. Then, we present reduced forms impact evaluation models for spatial
data and show that the current spatial versions of usual impact evaluation models
are not fully satisfactory when considering the identification issue. Finally, a set of
recommendations for applied articles aimed at identifying spatial spillovers is proposed.
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1 Introduction

Spatial spillovers, which we define here as referring to both substantive geographical inter-
actions and/or spatial externalities between neighboring observations, are at the heart of
applied spatial econometrics, as typically used in regional/political science, among others.
Building upon Tobler’s first law in geography, countless empirical papers have estimated
spatial spillover effects by specifying a geographically-based connectivity matrix1 and using
one of the classical spatial econometric specifications, such as the spatial Durbin model, the
spatial lag model, etc. In essence, a typical paper in applied spatial econometrics aims to
analyze the “impact” (quotation marks for purpose) of some explanatory variable(s) on an
explained variable based on a model estimated on georeferenced data and accounting for
cross-sectional dependence in various forms.2 Following a long-standing tradition in spatial
econometrics, the analysis is often based on specific-to-general or general-to-specific specifi-
cation search strategies, and is most of the time followed by a discussion of interpretations
in terms of implied spatial spillovers of this data-driven specification search.3

However, this practice has been largely criticized for various reasons. The most heavy cri-
tique probably arose from Gibbons & Overman (2012) who pointed out major identification
problems, when spatial econometric specifications are used for an explanatory purpose, with
the more or less explicit aim of being able to draw causal interpretations of the estimated
parameters. Their conclusion best illustrates their arguments: “Identification problems be-
devil applied spatial economic research. Spatial econometrics usually solves these problems
by deriving estimators assuming that functional forms are known and by using model com-
parison techniques to let the data choose between competing specifications. We argue that
in many situations of interest this achieves, at best, only a very weak identification. Worse,
in many cases, such an approach will be uninformative about the causal economic processes
at work, rendering much applied spatial econometric research “pointless,” unless the main
aim is a description of the data.” Partridge et al. (2012) also point out that standard spatial
econometrics is not capable of “differentiating when outcomes in nearby areas are spatially
correlated [...] versus spatial causality” while McMillen (2012) argues that standard spatial
econometric models are falsely used as a quick fix for any model misspecification. As men-
tioned by Mur (2013), this lack of attention of spatial econometrics to identification and
causality is probably related to its history, as its evolution initially mimicked that of the
time series literature.

As a result, we can only observe that while the standard spatial econometric toolbox
is widely used in empirical articles in regional science and related disciplines, the papers
in top field or top 5 economic journals that make use of “spatial econometric models” are
now almost exclusively anchored in the literature on network econometrics. In the latter,
the connections between individuals are modeled along a social network and the main focus
of interest is to derive identification strategies to disentangle the endogenous effects from
the exogenous and correlated effects, following the terminology of Manski (1993), with the

1This matrix is also called a spatial weights matrix or interaction matrix. In the literature on social
networks, it is referred to as the adjacency matrix. However, we prefer the term connectivity or interaction
to spatial weights for reasons that will become apparent later.

2Recent reviews in spatial econometrics can be found in Kelejian & Piras (2017), Elhorst et al. (2021),
Arbia (2024), Otto et al. (2024), and Yang et al. (2025).

3Figure 1 in Elhorst (2010) illustrates these nested relationships between spatial models in the cross-
sectional case.
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final aim of deriving a causal interpretation of these effects. The empirical literature dealing
with interactions in local policy choices is representative of this trend. Standard spatial
lag or spatial Durbin models were widely used in the early 2000s to assess the existence
and extent of fiscal competition among neighboring local jurisdictions. These models were
labeled first-generation models by Agrawal et al. (2022). Yet, they were widely criticized
on various grounds related to identification: the exclusion restrictions are never discussed,
the instruments are weak, and these models are unable to discriminate between underlying
mechanisms (fiscal competition, yardstick competition, Tiebout sorting, etc.). All these
pitfalls led the recent literature on fiscal federalism to heavily rely on quasi-experiments to
obtain more credible instruments (see Lyytikäinen 2012, Parchet 2019).

In the twentieth century, identification was mainly discussed within the framework of
simultaneous equation models (demand and supply), in the spirit of the Cowles Foundation.
This approach, called structural econometrics, where explicit economic theories are com-
bined with statistical models, has been at the center of the economics literature for a long
period and is based on explicitly stating modeling and behavioral assumptions.4 However,
following the credibility revolution of Angrist & Pischke (2010), much effort has been made
to design identification strategies aimed to be as close as possible to a random experiment:
the experimentalist paradigm. This second approach, also called reduced form, treatment
effect, impact evaluation of public policy, or causal inference, aims at abstracting from be-
havioral assumptions typically made in the structural approach to assess the impact of a
policy on an outcome, but at the cost of eluding the question of transmission channels.
Although in practice, the separation between structural and reduced forms might not be so
clear-cut, we use this distinction as the starting point for clarity purpose.

Our first aim in this paper is to reconsider the notion of spatial spillovers in light of this
fundamental econometric question of identification. Although the econometric literature has
developed many different concepts of identification, our paper focuses only on its most widely
used notion, namely point identification. According to Lewbel (2019, p.842) the parameter
θ is point identified (often just called identified) if there exist no pairs of possible values θ

and θ̃ that are different but observationally equivalent. In this paper, we discuss the (point)
identification of spatial spillovers in both structural and causal reduced-form models. In the
first case, i.e. structural models, spatial spillovers should be the main parameters of interest,
as endogenous effects are the main parameters of interest in network econometrics. Yet, we
point out that the typical statistical strategies (specific-to-general or general-to-specific)
proposed in the spatial econometrics literature boil down to considering spatial spillovers as
a side-effect of the data-driven chosen specification, which is not an appropriate identification
strategy. In addition, we discuss other threats to identification traditionally considered in the
network econometrics literature, such as unobserved heterogeneity and endogenous sorting,
typically not considered. In particular, in line with Neumayer & Plumper (2016), we argue
that the use of interaction matrices based solely on geographical criteria, as a proxy of
numerous transmission mechanisms, prevents the identification of associated spillovers.

In causal reduced models, interest typically relies on assessing the causal impact of a
treatment on an outcome. Among other assumptions, most papers since Rosenbaum & Ru-
bin (1983) impose a noninterference cross unit assumption: the stable unit value assumption
(SUTVA). However, for the past 20 years, there has been an explosion of work relaxing this

4See Reiss & Wolak (2007) for a good overview of the logic of structural econometric models.
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assumption.5 Initially, the articles aimed to assess the bias of the causal effects estimated
under SUTVA and to propose designs of experiments that avoid interference. Then, the
focus has progressively switched to a substantive identification of these spillovers, both in
terms of estimands of interests and design of experiments, as they are a crucial component in
understanding the full impact of an intervention. In particular, if beneficial spillovers exist,
a lower percentage of the population might need treatment. Furthermore, information on
the nature and extent of spillover effects may allow targeting specific individuals or groups
of individuals to increase the overall impact of the intervention. The notion of spillovers and
related concepts has consequently become central in program evaluation (see Angelucci &
Di Maro 2016). Most discussions in this literature focus on spillovers along networks, yet a
limited statistical literature exists with respect to spatial spillovers. We discuss this emerg-
ing literature and also show that the current spatial versions of public policy evaluation
models, such as difference-in-differences models including a spatial lag of the endogenous
variable, are not satisfactory when considered from the identification perspective.

These attempts illustrate how the identification of spatial spillovers has recently wit-
nessed an upsurge of interest. Our second aim is to review the current state of affairs. Some
reviews of this emerging literature are already available on some specific issues. On the one
hand, Gibbons et al. (2015) focus on the structural approach and outline the threats to
the identification and specification of the connectivity matrix. On the other hand, Kolak &
Anselin (2020), Akbari et al. (2023) and Gao et al. (2022) focus more on the causal infer-
ence framework. For example, Kolak & Anselin (2020) review how spatial effects (namely
spatial dependence and spatial heterogeneity) lead to the violation of the SUTVA assump-
tion and provide an overview of existing attempts, within the spatial econometrics/regional
science literature, to extend impact the common evaluation identification strategies and
models (difference-in-differences, propensity score matching, regression discontinuity, and
instrumental variables) in the presence of spatial effects. They focus on the counterfactual
framework and discuss how spatial effects affect the assignment to treatment, the potential
sources of variation in the treatment variables, and the estimands.

Compared to the existing literature, we go one step further in that we consider the
general notion of identification. First, we discuss it in both structural and reduced forms
frameworks so that we are able to provide bridges between them. Second, and complement-
ing the previous reviews, we provide a comprehensive view of identification in the presence
of spatial heterogeneity that we apprehend both in terms of (spatial) varying treatment
effect and spatial confounding. Third, we include a systematic discussion of the other iden-
tification threats, while previous reviews focus on spillovers only. Lastly, we mobilize the
biostatistical literature, which has long focused on the definition of causal estimands in the
presence of interference (spillovers). Conversely, we do not document the concept of Granger
causality in a spatial context, nor do we discuss the empirical dynamic modeling or conver-
gent cross-mapping (CCM) frameworks, as they are more rooted in the time series approach
to causality. Finally, we do not consider graphical models or path analysis models as we
only focus on the counterfactual and potential outcomes approach.6 In a spatial context,
these three approaches are discussed in Akbari et al. (2023) and Gao et al. (2022).7

5See among others VanderWeele (2015), Hong (2015), Angelucci & Di Maro (2016), Reich et al. (2021),
Aronow, Eckles, Samii & Zonszein (2021).

6See Ogburn & VanderWeele (2014) for some insight in specifying causal diagrams with interference.
7See also Mur (2013), Herrera et al. (2016) for an extension of the Granger concept of causality for spatial
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The paper is structured as follows. Section 2 presents a motivating example. Section 3
presents the structural approaches that have been developed to identify spatial spillovers, as
well as the different threats to identification that are often overlooked in the applied spatial
econometrics literature. Section 4 describes the causal inference methods that account for
interference (spillovers) and discusses how they have been extended so far in the spatial
context. Section 5 develops recommendations for applied papers aiming to identify spatial
spillovers: definition of parameters of interest, structural versus reduced-form approaches,
unit of analysis, choice of interaction matrix, spatial heterogeneity and structure of error
terms. Section 6 concludes.

2 Motivating example: Determinants of local expendi-
ture

Our motivating example refers to the determinants of local government expenditure. These
determinants are of significant interest to economists and policymakers, as they play a crucial
role in shaping the distribution and size of public goods, infrastructure, and services that
directly affect economic welfare and local development. Local jurisdictions, responsible for
providing essential services such as education, healthcare, transportation, and public safety,
must carefully allocate resources to meet the needs of their populations while maintaining
budget balance.

A key factor in understanding local government expenditure is the presence of strate-
gic interactions between neighboring local jurisdictions. These interactions arise when the
spending decisions of one jurisdiction affect neighboring jurisdictions. Their existence is
grounded in the theoretical framework of strategic complementarity or substituability (see
for instance Brueckner 2003). For example, if a local government increases its expenditures
on public services, nearby jurisdictions may feel compelled to follow to avoid losing residents
or businesses to neighboring areas with better amenities. This spatial competition can lead
to an upward pressure on public spending, often referred to as a “race to the top”. Neigh-
boring jurisdictions engaging in strategic competition over public services may overextend
their budgets, leading to fiscal imbalances or cuts in other essential areas. Conversely, some
jurisdictions may reduce expenditure if they can benefit from the spending of neighboring
areas, a form of free-riding behavior, leading, in the contrary, to a “race to the bottom”.
Consequently, these spatial interactions have profound implications for local policy choices
as they may lead to inefficient resource allocation or policy competition. Empirical evidence
of such strategic interactions in local public expenditure is well documented, although their
estimation raises major identification issues to disentangle these substantive interactions
from similar behaviors implied by similar characteristics and/or common shocks (Agrawal
et al. 2022).

Although strategic interactions are central to understanding local expenditure, several
other factors also play an important role. Larger populations tend to demand more public
services, which increases total expenditure. However, economies of scale in the provision of
services may imply that per capita expenditure decreases as population size increases, up
to the point where diseconomies of scale arise, leading to a U-curved relationship between

data.
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population size/density and expenditure (Ladd 1992). In addition, the demographic com-
position of a jurisdiction, such as the proportion of children, elderly, or working-age adults,
can influence the types of services demanded. Local economic conditions also significantly
affect local government expenditure. High employment and income levels expand the local
tax base, allowing governments to generate more revenue and thus increase spending on
public goods and services. In addition to demographic and economic variables, institutional
and political factors also shape local government expenditure. Political color may influence
the prioritization of spending on certain services, while institutional configurations, such as
the degree of fiscal decentralization or the presence of intergovernmental transfers, can play
a critical role. More decentralized systems often give local governments greater discretion in
spending decisions, potentially leading to higher levels of local spending (Oates 1972). How-
ever, obviously, most of these factors might be endogenous due to simultaneity or omitted
variables.

In studying these issues, various identification strategies might be adopted depending on
the parameters of interest. On the one hand, one can rely on a structural approach rooted
in the fiscal federalism theory to identify the substantive strategic interactions between local
jurisdictions (see Agrawal et al. 2022). The identification strategy should therefore be able
to identify these interactions in a context where, as mentioned above, neighboring jurisdic-
tions might share similar sociodemographic characteristics or shared infrastructure, leading
to similar expenditure, or might experience common spatial institutional or environmental
shocks. In addition, the spatial range of interactions should be defined in order to opera-
tionalize the notion of neighbors. Finally, when local jurisdictions belong to intermunicipal
groups, an additional issue of self-selection arises. We explore all these topics in Section 3.

On the other hand, when the interest is on the impact of one particular variable, say
population size, on the level of local expenditure, but staying agnostic as to underlying
mechanisms, one can adopt a reduced-form approach and try to leverage shocks, such as
changes in the institutional design of intermunicipal groups, or discontinuities to causally
identify this effect. The identification strategy should then deal with mitigating self-selection
and omitted variables while avoiding the presence of bad controls. In addition, in the
context of local expenditure, local jurisdictions might interact with their neighbors in various
ways, by mimicking their neighbors’ behavior or because they share similar infrastructure or
characteristics, leading to what is called interference, a violation of the SUTVA assumption.
The identification strategy must be adapted to account for this interference, as discussed in
Section 4.

3 Structural approaches to (spatial) interactions

3.1 Related literature

The structural modeling approach is based on the development of a structural model, where
identification focuses on the associated (deep) parameters, giving them a ceteris paribus
interpretation (Clarke & Windmeijer 2012). The literature in structural spatial and network
economics has developed several models to identify spillovers between observations, which
can be microeconomic units individuals or firms, for instance) or more aggregate units
(countries, regions).

Starting with the case of structural models involving aggregate units, Lopez-Bazo et al.
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(2004) model externalities of production between regions. Ertur & Koch (2007) develop
a spatially augmented Solow model where interactions between economies are motivated
by technological interdependencies. Egger & Pfaffermayr (2006) follow their approach to
study the consequences of spatial dependence on convergence, while Pfaffermayr (2009)
contrasts the spatial Solow model with the Verdoon model and demonstrates that the speed
of convergence in both models depends on the remoteness and the income gaps of all regions.
In a subsequent paper, Ertur & Koch (2011) integrate technological interdependencies in a
Schumpeterian growth model, allowing one to cast both models in an integrated theoretical
and methodological framework. When confronting their model to data, the four first papers
rely on a geographically-based interaction scheme. In contrast, Ertur & Koch (2011) further
consider an interaction scheme based on bilateral trade. However, they point out that the
interaction matrix should ideally be theory-based, as the implementation of spatial methods
requires accurate identification of the relevant interacting space (Ertur & Koch 2011, p.236).
A step towards this direction is due to Behrens et al. (2012) who derive a quantity-based
structural gravity equation in which both trade flows and error terms are cross-sectionally
correlated. To the best of our knowledge, this is the only paper in which the channel
through which interactions occur and the precise functional form of the interaction scheme,
constructed from the population shares, are completely derived from economic theory.

At the microeconomic level, Schone et al. (2013) develop a theoretical model which shows
that cities’ growth control decisions are mainly driven by political struggle between different
groups of voters and lobbies. Furthermore, by accounting for the residential mobility of
renters in the city, their model implies spatially interdependent local growth control policies
so that cities engage in strategic interactions.

In the context of social networks, the literature has also developed models to theoretically
justify the presence of peer effects. These models, derived from game theory with strategic
interactions, mainly explain spillovers by conformity or strategic complementarities between
individuals.8

3.2 Applied spatial econometrics

Gibbons et al. (2015) propose a general framework that captures almost all channels through
which spatial effects can be included in a regression model. For the cross-sectional case, this
model is shown in (1):

yi = xiβ + λ

n∑
j=1

wy
ijyj +

n∑
j=1

wx
ijxjγ +

n∑
j=1

wz
ijzjθ +

n∑
j=1

wv
ijvjκ+ εi, i = 1, · · · , n (1)

where yi is the outcome for individual i,
∑n

j=1 w
y
ijyj is some aggregate value of the neighbor-

ing outcomes of i, xi is a vector of individual characteristics and
∑n

j=1 w
x
ijxj represents an

aggregate value of neighborhood’s characteristics,
∑n

j=1 w
z
ijzj is a vector of observed com-

mon factors and
∑n

j=1 w
v
ijvj represents an aggregate of unobservables across observations.

This last term may represent interactions between observations in unobserved dimensions or
spatially autocorrelated errors. Finally, εi is the idiosyncratic error term. In the literature

8Topa & Zenou (2015) and Bramoullé et al. (2020) provide excellent overviews of the literature on these
models.
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on social interactions,
∑n

j=1 w
y
ijyj refers to endogenous effects,

∑n
j=1 w

x
ijxj is named contex-

tual effects while
∑n

j=1 w
v
ijvj represents correlated effects (Manski 1993). Model (1) is also

the starting point for the identification of policy interactions between local jurisdictions as
described in Section 2. In this case, the model corresponds to the policy reaction functions
(Brueckner 2003, Agrawal et al. 2022) with λ ̸= 0 representing strategic interactions (race
to the top / bottom mechanism), while γ ̸= 0 indicates spillovers from neighboring jurisdic-
tions, such as inhabitants of neighboring jurisdictions using public good and services of a
jurisdiction.

Model (1) allows for different connectivity schemes for y, x, z and v. However, in the
vast majority of works, these matrices are identical, notably due to the difficulty of justifying
different interaction schemes for different variables. When individuals interact in separate
groups of the same size (for example, farmers who interact with all other farmers in the
same villages, but not with farmers in other villages, with villages showing the same number
of farmers), Manski (1993) shows that it is impossible to distinguish between endogenous
and contextual effects even in the absence of correlated effects. This is known as the reflec-
tion problem. However, as soon as we depart from this specific interaction scheme, either
by assuming different group sizes (Lee 2007, Davezies et al. 2009) or considering interac-
tions along networks (Bramoullé et al. 2009), these two different types of spillovers can be
disentangled in the absence of correlated effects. Therefore, considering the possibility of
correlated effects is of the greatest importance for identifying spillover effects.

In applied spatial econometrics, the selection of the econometric specification is done
using one of the two main methods developed now. The general-to-specific approach con-
sists in estimating a Spatial Durbin model (SDM), shown in (2), which encompasses the
spatial autoregressive model (SAR) when γ = 0, the spatial X model, (SLX) when λ = 0
and the spatial error model (SEM) when γ = −λβ. However, this SDM assumes away cor-
related effects and observed common factors while both are prevalent in most applied work,
threatening the identification of spillovers. We come back to this point in Section 3.3.3.

yi = xiβ + λ

n∑
j=1

wijyj +

n∑
j=1

wijxjγ + εi, i = 1, · · · , n, (2)

A second issue is that this SDM specification is most of the time not driven by economic
arguments but by statistical considerations. LeSage & Pace (2009) argue that the SDM
generalizes the spatial autoregressive model to account for possible omitted variables that
are spatially autocorrelated (i.e neighborhood characteristics).9 Although this problem is
indeed pervasive in applied economics, other threats to identification, presented in the next
section, also need to be considered to plausibly identify spillovers.

In a large majority of papers, once this SDM is estimated, using quasi-maximum likeli-
hood, Bayesian methods, two-stage least squares10, or a generalized method of moments, the
econometric reduced form is computed and marginal effects are calculated. These marginal
effects are interpreted as the direct, indirect, or total effect of a change in each determinant
on the outcome of interest, accounting for the presence of spillovers between observations.

9The inclusion of neighborhood characteristics also implies more heterogeneity in the total impacts (see
LeSage & Pace 2009, p. 40).

10In the SDM model, internal instruments for the 2SLS may be weak since only higher order contextual
effects can be used while being potentially highly correlated with the contextual effects.
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The marginal effect for determinant k is shown in equation (3) when the reduced form of
model (2) is written in matrix form.

∂E(y | X,W)

∂Xk
= (In − λW)−1(Inβk +Wγk), (3)

with In stands for the identity matrix of dimension n.
The second strategy used to select the correct specification is the specific-to-general

approach. It consists of starting with a linear model (with or without neighborhood’s char-
acteristics) and relies on specification tests (typically of the Lagrange multiplier or Wald
type) to find the most relevant spatial model (namely the one that best fits the data). The
objective of this approach is to assess whether cross-sectional dependence should be mod-
eled as endogenous effects (SAR model), contextual effects (SLX model), and/or in the error
term (spatial lag in the errors or spatial moving average errors). Once the “best” specifica-
tion is selected, the marginal effects (average direct, indirect, and total effects) are reported
and interpreted as the impact change in a given explanatory variable on the outcome. This
model selection procedure borrows from the Box-Jenkins approach developed for time-series
data. As already pointed out in Gibbons & Overman (2012), this specific-to-general model
selection procedure, initially motivated by computational reasons11, is strongly hampered by
the fact that it is not related to any consideration of the economic reasons for the presence
of spillovers and their transmission channels.

An implication of both approaches is that spillover effects, under the form of endoge-
nous and/or contextual effects, are relegated as side-products of the specification. In fact,
interpretations are based on marginal effects, which compute the effect of a change in the
(exogenous) determinants on the outcome, accounting for spillovers. However, the spillovers
per se are not of interest. Yet, given the structural constraints inherent to these specifica-
tions, for instance, the motivation for spillovers, the construction of the interaction scheme
(selection of the relevant interaction space, the functional form of the assumed links), and
its properties (possible evolution over time, endogeneity, mismeasurements, etc.), the proper
identification of these spillovers should be at the center of interest and not considered as a
data-driven consequence of the specification.

3.3 Spatial threats to identification

As the previous section has made clear, the presence of a spatial lag, the endogenous effect,
should be closely related to the behavioral assumptions. The empirical modeling of interac-
tions thus requires questioning the unit of decision and its possible discrepancy with the unit
of observation, something that has been mostly overlooked in applied spatial econometrics.
From the economic perspective, units of decisions might be individuals, firms, local jurisdic-
tions, governments, etc. that typically optimize objective functions under constraints. On
the contrary, the unit of observation is the unit on which the empirical analysis is performed
(typically depending on data availability). Discrepancies between the two types of unit raise
classical caveats largely documented in the spatial statistical literature: the ecological fallacy
and the change of support problem. The ecological fallacy arises when conclusions obtained
for aggregated data do not reflect the reality of individuals belonging to this aggregation.

11Spatial models were traditionally estimated by maximum likelihood method, which required the com-
putation of the Jacobian of the transformation, computationally costly.
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Also called aggregation bias, it has received lots of attention in regional and political sciences
as it is common to have data at aggregated spatial levels while the meaningful mechanisms
are at a lower spatial level. The change of support problem refers to issues related to the
combination of spatial data observed at various scales and support.12 The consequences of
the discrepancy between units of decision and observations are further amplified in studies
of spatial spillovers, as the threats to their identification are even more acute. These threats
can be gathered into three main categories: i) Nature and construction of the interaction
matrix; ii) Use of proxy variables for interaction; iii) Presence of spatial heterogeneity, and
these are the topics of the next sections.

3.3.1 Role of the interaction matrix

The interaction matrix plays a crucial role in spatial econometric models from the identifi-
cation, estimation, or interpretation perspectives. In the context of model (2) and assuming
exogenous explanatory variables, Bramoullé et al. (2009) show that the interaction scheme
should include intransitive triads, i.e. triads such as ”peers of my peers are not my peers”
to identify endogenous effects.13 Developed for social networks, this paper spells out the
conditions originally developed by Kelejian & Prucha (1998, 1999) in the context of SAR
models. Turning to estimation, the (quasi-) maximum likelihood approach requires a correct
definition of the functional form and of the interaction matrix to provide unbiased estima-
tors. Finally, the interpretation of the model is mainly based on marginal effects, which
explicitly depend on this matrix.

The literature has early realized the importance of the specification in the interaction
scheme. As such, several works have studied the consequences of a misspecified interac-
tion matrix (see, among others, Florax & Rey 1995, Paez et al. 2008, and Vande Kamp
2019). Besides, several statistical approaches have been developed to select the connectivity
schemes. Kelejian (2008) has initiated a series of papers that use the J test of Davidson &
MacKinnon (1981) to select the most relevant interaction scheme, among a finite number
of candidates. In addition, Jin & Lee (2013) develop Cox-type tests to choose between two
competing interaction matrices, while Bayesian model averaging procedures have also been
derived (LeSage & Pace 2009, Zhang & Yu 2018). In addition, models that simultaneously
introduce several interaction matrices in the SAR model have been developed (see among
others Lee & Liu 2010, Badinger & Egger 2011, Han et al. 2017, Hazir et al. 2018, Debarsy
& LeSage 2022).

Nevertheless, the large majority of papers in applied spatial econometrics specify the
interaction scheme in terms of geographic proximity such as a function of the k nearest
neighbors, contiguity, or other decreasing functions of distance (distance threshold, inverse
distance, etc.). They also include a robustness section with respect to the choice of the
interaction matrix, typically considering alternative functional forms of distance or different
numbers of neighbors.14

12Gotway & Young (2002), Wakefield & Salway (2001) and Gelfand (2010), among others, provide a
complete overview of the various statistical issues related to these topics. Also, Briant et al. (2010) assess
the effect of the Modifiable Areal Unit Problem (MAUP) on economic geography estimates.

13We assume here that individuals do not interact in groups. For the latter case, Lee (2007) shows that
as soon as the size of the group changes, the identification of endogenous effects is warranted.

14LeSage & Pace (2014) argue that this fine-tuning of the connectivity matrix is unnecessary and consti-
tutes the biggest myth in spatial econometrics.
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The first invoked reason to rely on a geographically-based connectivity matrix is its
exogeneity (and non-stochasticity). This assumption allows to greatly simplify identification
and estimation, but at a very high cost. Indeed, it generally impedes the modeling of
relationships between aggregate units using socio-economic indicators, which generally lies
at the heart of interactions. Furthermore, this precludes taking into account changes in the
interaction matrix resulting from a (exogenous) change in some of the determinants.15

As a solution, Corrado & Fingleton (2012) advocate the use of economically-based in-
teraction matrices, as was already done in Case et al. (1993). This might complicate the
estimation strategy as the exogeneity is not guaranteed, but several methods have been de-
veloped to account for potentially endogenous interaction schemes. In the context of panel
data models, Kelejian & Piras (2014) propose an IV procedure that directly instruments
the elements of W. This procedure has been applied by Agrawal et al. (2024) who use
syndicate membership as instruments for endogenous intermunicipal cooperation between
jurisdictions. Alternatively, Qu & Lee (2015) develop an estimator where the endogeneity
of W is modeled as originating from the (economic) variables used to build the connectivity
scheme. This methodology has been extended to dyadic data (Qu et al. 2021), to panel
data models (Qu et al. 2017a, Shi & Lee 2018), and also to social networks (Johnsson &
Moon 2021). In this context, Jochmans (2023) derives an IV estimator that takes advantage
of the restrictions in W to construct instruments from leave-own-out networks. Besides,
Kuersteiner & Prucha (2020) derive a GMM estimator for a panel data model which allows
for endogenous time-varying networks, common factors and sequentially exogenous determi-
nants. Finally, the peer effects literature has approached the endogeneity of the network by
specifying a structural model of network formation in addition to the outcome model (see,
for instance, Goldsmith-Pinkham & Imbens 2013, Hsieh & Lee 2016, and De Giorgi et al.
2022).

The second reason for the use of geographically based connectivity matrices is that
they may act as a proxy for many economic phenomena (mobility of firms or consumers,
transport costs, traded goods, capital movements, etc.). Following Neumayer & Plumper
(2016), we argue that W must capture the causal mechanism of spillovers and thus reflect
the connectivity between units. In other words, W should define the transmission channel
through which interactions occur. Using geographic proximity as a proxy thus prevents
drawing sound conclusions on spillovers for at least two reasons. Firstly, it remains silent
about their underlying causal mechanism(s) and therefore cannot help distinguish alternative
theories justifying these spillovers. Secondly, a-theoretical geographical proximity is at best
a mismeasurement of connectivity, leading to misspecification problems discussed above,
and at worst, completely unrelated to the true channels driving interactions, leading to
unreliable conclusions.

In the context of microeconomic models, geographical space may play an important role
in understanding spillovers between units. We already mentioned the work of Schone et al.
(2013) on local growth control decisions, which shows that closer (in a spatial sense) cities
interact more than cities located far away from each other. Glaeser et al. (1996) explain the
high variance of the crime rate between cities using a model where the agents’ propensity
to engage in criminal activities partly depends on the propensity of other agents in the
neighborhood. In addition, Kim et al. (2023) develop a new theory of social tie formation

15Boucher & Fortin (2016) develop and discuss a three-case categorization of connectivity matrices de-
pending on their exogeneity and randomness.
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in which people care about the geographical location of other individuals, to account for the
cost of transport inherent in social interactions. In contrast, Del Bello et al. (2015) show
that interactions in education occur through social proximity between students rather than
through their spatial proximity. Finally, Janeba & Osterloh (2013) develop a model of tax
competition between jurisdictions with locally mobile capital assuming different competition
patterns depending on size: small jurisdictions compete locally with their geographically
close neighbors while large jurisdictions (cities) compete both locally and with interregional
cities. The geographical nature of interactions is motivated by recent empirical findings
(notably Brett 2000, Buettner 2001, Brueckner & Saavedra 2001, Strauss-Kahn 2009) and
results of their own survey of political decision-makers on the definition of the relevant
neighbors in terms of competition for businesses.

The discussion above clearly shows the consequences of the discrepancy between units
of decision and units of observation. By specifying a model in which the origin and nature
of interactions are specified,the aggregation level at which the model should be estimated
is known, as is the connectivity matrix that should best reflect the causal mechanism of
spillovers. In contrast, estimating a model with spillovers on some (geographically) aggre-
gated data not linked to decision units does not allow sound interpretations of the results.

The last point we make about the connectivity matrix relates to its normalization. In the
vast majority of papers, the connectivity matrix is row-normalized to interpret the spatial
lag as a weighted average of the neighbors. The problem with this normalization is that it
is not neutral and creates misspecification if not derived from theory. As shown by Kelejian
& Prucha (2010), there is no one-to-one correspondence between the row-normalized model
and the original one due to a different normalizing factor for each row.16 Additionally,
row-normalization alters the informational content of the connectivity matrix by converting
absolute distances (geographic or not) into relative ones. For example, if the connectivity
between two observations should represent transport costs, then bilateral links should be
expressed as absolute distances and not as relative ones. As such, without clear justification,
row normalization should not be used.17 An example of theoretical motivation is the paper
of Patacchini & Zenou (2012), who develop a model showing that conformism to a social
norm deters criminal activities and where conformity is modeled through a row-normalized
connectivity matrix.

As wrap-up, we plead for giving up the blind use of a-theoretical geographically based
connectivity matrices on the ground that it is exogenous, deterministic, and acts as a proxy
for many channels. Geographically based proximity, unless theoretically grounded, such as
in Schone et al. (2013) or Janeba & Osterloh (2013), jeopardizes identification of the causal
mechanism of spillovers and further prevents to figure out the underlying economic reasons
leading observations to interact, as should ideally do structural models, which underpin
spatial econometrics models. Furthermore, the row normalization of the connectivity matrix
should be avoided unless there are theoretical motivations, such as those in Liu et al. (2014).

16Kelejian & Prucha (2010) propose alternative matrix norms that do not alter the model, and which
consist of dividing all elements of the connectivity matrix by the same factor (the spectral radius, or the
minimum between the maximum of the row and column sums).

17Some estimators may require the assumption of row-normalized matrices. Within the framework of
panel data models, Lee & Yu (2010) introduce a QML estimator that uses a transformation approach to
eliminate time-fixed effects. Nevertheless, the existence of the (quasi-)likelihood function necessitates the
row-normalization of the matrix.
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As stated by Neumayer & Plumper (2016, p.177), “Specification choices [of W] should follow
theory rather than convention.”

3.3.2 Proxy variables to model interactions

As seen above, the workhorse model for applied spatial econometrics is the SDM model. A
constrained version of the model, shown in (4) is obtained by reexpressing a linear model
with spatially correlated errors (SEM).

y = Xβ + (In − λW)−1u, u ∼ iid(0, σ2In)

= λWy +Xβ +WXγ + u,
(4)

where γ = −λβ. It is fundamental to distinguish between a true SDM and a SEM as the
economic implications are different. In the SDMmodel (2), a unit’s behavior is affected by its
characteristics and the behavior and characteristics of its neighbors, leading to endogenous
and exogenous spillovers between observed variables. In contrast, in the SEM, interactions
between units come from unobserved variables, leading to completely different economic
interpretations. As noted in Boucher & Fortin (2016), the researcher does not always observe
the ”true” variable of interest and uses proxies. For example, in terms of obesity, papers
use Body Mass Index (BMI) to proxy effort to reduce weight (see among others Christakis
& Fowler 2007, O’Malley et al. 2014). Boucher & Fortin (2016) show that the apparent
contagion effect of BMI may come from the unobserved effort the individual makes to reduce
her weight and which depends on her peers’ effort. Hence, the derived economic model is
similar to an SEM model. If SDM is estimated instead, one might wrongly conclude to the
presence of contagion effects of BMI.

In light of this discussion, the common factor statistic, derived by Burridge (1981),
which tests whether the SDM model can be reduced to a SEM specification, should be a
fundamental part of the empirical spatial toolbox.

3.3.3 Spatial heterogeneity

The spatial econometrics literature is well aware of the observational equivalence between
spatial heterogeneity and spatial spillovers in cross-sectional settings (Anselin & Bera 1998).
In other words, by looking at a map with some clustering, it is impossible to distinguish
between a data-generating process that includes spatial regimes, common factors, spillovers,
or a combination. For instance, when observing a spatial cluster of firms, we cannot know
whether it is due to spatially varying characteristics of the locations in terms of access to
population, amenities, etc. or because of direct interactions between firms. This issue is also
known in epidemiology as ”true” versus ”apparent” contagion (Messner & Anselin 2004).

Nevertheless, spatial heterogeneity has often been presented as a secondary econometric
issue with respect to spatial autocorrelation. For instance, Anselin (2001, p. 311) states
that spatial heterogeneity is “simply structural instability, either in the form of nonconstant
variances in a regression model (heteroskedasticity) or in the form of variable regression
coefficients. Most methodological issues related to spatial heterogeneity can be tackled by
means of the standard econometric toolbox”. However, we argue that spatial heterogeneity
is a major threat to identification that is generally overlooked, which strongly contrasts with
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the literature in network econometrics, where accounting for unobserved heterogeneity is an
important part of the identification strategy.

The first source of spatial heterogeneity results from unmodeled spatially varying coef-
ficients. For example, McMillen (2003) shows that spatial autocorrelation is also often the
result of incorrect functional forms and spatially autocorrelated omitted variables in space.
Typically, discrete spatial heterogeneity can be handled with dummy variables reflecting
the spatial regimes or spatial switching regressions, while continuous spatial heterogeneity
might be tackled with the inclusion of coordinates. Although this may have somewhat
evolved with the advent of geographically weighted regression or semiparametric and non-
parametric spatial approaches (see, among others, McMillen 2010, Basile et al. 2014, Osland
et al. 2016, and Géniaux & Martinetti 2018), there is still a view that spatial heterogeneity
does not involve as many conceptual complexities as spillovers. However, failing to properly
handling spatially varying relations will result in the inability to identify spillovers, whether
they result from endogenous or contextual effects.

The second source of spatial heterogeneity refers to the presence of common factors,
which are frequent whenever spatial units are affected by unobserved shocks or events oc-
curring at a higher spatial scale. While distinguishing between endogenous (direct spatial
interactions) and exogenous (group-average) effects is already challenging, the possible oc-
currence of such unobserved common shocks adds additional complexity. If there are valid
arguments that these unobservables factors are uncorrelated with the included control vari-
ables, robust inference (including clustered standard errors) could be applied. However,
most of the time, these unobserved common factors are likely to be correlated with the
determinants. To account for the effects of common factors, Bai & Li (2021), and Shi &
Lee (2017, 2018) develop a spatial panel models where unobserved heterogeneity is mod-
eled with interactive fixed effects rather than with additive fixed effects, to account for
more flexible unobserved patterns.18 In the context of tax competition, Chirinko & Wil-
son (2017) estimate the common correlated effects model of Pesaran (2006) and find that
heterogeneous responses to common shocks, as well as delayed reaction, are crucial for un-
derstanding spillovers between US States. These authors show that States’ tax rate follow
a “ride on a seesaw” rather than a race to the bottom, as usually found in the literature.
Alternatively, Mı́nguez et al. (2020) develop a semiparametric approach which consists of
including smooth (via penalized splines functions) interactions between the time trend and
the spatial coordinates of the observations, to account for heterogeneous effects common
factors might have on each unit.

Finally, the impact of spatial sorting is not always considered. Spatial sorting refers to the
situation in which heterogeneous individuals self-select themselves into various locations due
to observed but also unobserved characteristics. It may act on the analysis through different
channels. First, it may generate an endogenous interaction matrix as individuals choose their
location. It might also act as an omitted variable bias and generate endogenous regressors.19

If individual unobserved characteristics are correlated with both outcome and location, then
spatial fixed effects (spatial differencing) are of little help in restoring identification.

18In the absence of spillovers, and for panels with “large T,” popular (least-squares type) methods include
those developed by Pesaran (2006) and Bai (2009), known in the literature as common correlated effects
and principal components, respectively.

19For instance, when the control reflects characteristics of the population (structure by age, professional
category, etc.) which are directly linked to the location decisions and hence to the resulting spatial sorting,
including such variables in a policy reaction functions leads to identification issues, as they form bad controls.
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The classical way to deal with endogenous variables consists in finding instruments. In
fact, a large range of papers have considered the estimation of spatial models with endogene-
ity coming from both the endogenous spatial lag and additional endogenous variables. These
papers are reviewed extensively in Le Gallo & Fingleton (2019) for both cross-sectional and
panel data models and for single-equation and multi-equation models. They essentially con-
sist in using moment conditions where, in addition to the traditional powers of spatial lags
of the explanatory variables to instrument for the endogenous spatial lags, external instru-
ments are added. Gibbons & Overman (2012) heavily criticize this identification strategy for
the endogenous spatial lag as it is not clear whether these instruments satisfy the exclusion
restriction. In the context of local policy choices, Agrawal et al. (2022) argue that special
attention should be paid to the selection, ideally grounded in theory, of the spatial lags of
explanatory variables that might be used as instruments. Alternatively, quasi-experiments
might be used as instruments, such as exploiting reforms by higher-level governments in the
context of the identification of tax interactions (Lyytikäinen 2012).

3.4 Structural identification strategies

From an identification perspective, understanding the causes of nonrandom spatial distribu-
tion of observations necessitates discriminating between all these various effects (endogenous
effects, exogenous effects, spatially heterogeneous relations, common shocks, spatial sorting)
while mitigating the impact of omitted variables. In the context of peer effects, Gibbons
et al. (2015), Bramoullé et al. (2020) and An et al. (2022) discuss several identification
strategies, based on exogenous sources of variation (random peers, random shocks), nature
of data (panel), or structural models (network formation or modeling of structured omitted
variables), which may constitute food for thought for applied spatial interactions. A sub-
stantive part of identification strategies developed in the peer effects literature have been
derived to solve the complexities induced by endogenous modeling of the interaction scheme,
constructed from socioeconomic indicators (interpersonal links, for instance).

However, some problems related to the definition of the interaction matrix remain. In
the context of cross-sectional data, Boucher & Houndetoungan (2023) and Lewbel et al.
(2023) develop identification strategies for spillover parameters when the adjacency matrix is
unknown, but individuals are assumed to interact within many small (known) networks, such
as classrooms or villages. The identification results of Boucher & Houndetoungan (2023)
rely on the specification of a network formation model, while Lewbel et al. (2023) focus on
the reduced form of the linear in-means model. Within a panel data model, de Paula et al.
(2024) directly estimate the adjacency matrix from the reduced form of the SDM model and
show the conditions for the identification of spillovers (endogenous and contextual effects
parameters). They further apply their approach to reassess the magnitude of tax competition
between US states. They show that the relevant neighborhood for each state is mainly
based on economic similarity rather than geographic proximity (as typically assumed in the
literature).

Finally, the analysis of time-varying networks are only at their early stages, a topic for
which methods developed in the already extensive theoretical spatial econometric literature
might be useful (see, among others Yu et al. 2008, Kelejian & Piras 2014, Qu et al. 2016,
2017b, Shi & Lee 2017, 2018).
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A summary of issues discussed above is shown in Table 1.

4 Reduced form approach to spillovers

We now turn to reduced-form approaches, where the parameter of interest is a treatment
effect. For instance, we might want to causally assess the impact of the political color or the
belonging to an intermunicipal group on local expenditure without looking for the underlying
causal mechanism. This experimental paradigm, with randomized controlled trials as the
gold standard, is the core of most applied econometrics.20 Although this causal inference
literature avoids behavioral assumptions, one of the founding blocks of all its methods is,
nevertheless, of behavioral nature: the Stable Unit Treatment Value Assumption (see Rubin
1974). This assumption prevents general equilibrium effects, social (spatial) interactions,
spillovers, or dynamic behavior.

In this context, spillovers, named interference in the biostatistics and epidemiology lit-
erature, have been first considered a nuisance that confounds the identification of the pa-
rameter of interest. However, a rapidly growing literature has started to develop new causal
estimands that capture interference, whose presence is viewed as a way to enrich the identi-
fication and interpretation of the parameter of interest.21 In this section, we first review the
canonical causal inference model and describe the concept of interference. We then focus on
how spatial interference has been regarded so far in statistics. Finally, we also critically dis-
cuss the attempts made in the applied spatial econometric literature that have ”spatialized”
reduced-form models by including endogenous spatial lags and/or spatial error terms.

4.1 The canonical impact evaluation model

The canonical impact evaluation model of Rubin (1974) examines the effect of a binary
treatment T , such as a public policy intervention or an environmental shock that only affects
part of the sample.22 Each observation has two potential outcomes: y0i, the outcome that
would be observed for unit i in the absence of intervention (Ti = 0), and y1i, the outcome
that would be observed in case of treatment (Ti = 1). The causal impact of the intervention
for unit i is ∆i = y1i − y0i,∀i = 1, ...N . As only one of these two outcomes is observed,
the fundamental problem for estimating ∆i is then a missing observation problem (Holland
1986).

The definition of a causal effect should precede the stages of identification and estimation
(Heckman & Vytlacil 2007). A causal effect may be defined for an individual, a subpop-
ulation, or the entire population and always involves one or more counterfactuals. At the
population level, the literature focuses mainly on the Average Treatment Effect (ATE),
E(y1i − y0i), and the Average Treatment Effect on Treated (ATT), E(y1i − y0i|Ti = 1). At
the subgroup level, defined for different values of the variables X, the Conditional Average
Treatment Effect (CATE) is also defined as E(y1i|X = x)− E(y0i|X = x). This estimand

20We do not provide an extensive literature review of the potential outcomes approach. The interested
reader may consult, among others, Imbens & Rubin (2015), Abadie & Cattaneo (2018), Fougère & Jacquemet
(2021), Heckman & Pinto (2022) or Imbens (2024) for excellent surveys or textbooks.

21See for instance VanderWeele, Ogburn & Tchetgen Tchetgen (2012), VanderWeele & An (2013), Ogburn
et al. (2020), Reich et al. (2021).

22We only consider here the binary treatment framework.
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accounts for a varying effect along the different values of X. Importantly, the variables in
X should be predetermined relative to the treatment, that is, they cannot be changed by
active manipulation of the treatment T . We come back later to this important issue.

Identification of the causal effects of interest can only be achieved if the counterfactual
quantities can be equated in some way with observable population data without introducing
selection bias. As such, a fundamental identifying assumption in the Rubin causal model is
the Stable Unit Treatment Value Assumption, presented below.

Assumption 1 (Stable Unit Treatment Value Assumption, SUTVA) The potential
outcomes for any unit do not vary with the treatment assigned to other units, and, for each
unit, there are no different forms or versions of each treatment level, leading to different
potential outcomes.

SUTVA first assumes the absence of treatment spillovers between units.23 It also states
that a single version exists for each treatment. Spatial analysis is mainly concerned with the
first point as it imposes the absence of spatial spillovers. The methods developed to relax
this assumption to account for interference will be the subject of the following sections.24

Identification also depends on the assignment mechanism of the treatment. For example,
in the random assignment case, the “prima facie causal effect” E(Y |T = 1) − E(Y |T = 0)
identifies the ATE because the treatment is ignorable by definition (Holland 1986). When
dealing with observational data, this difference between average observed outcomes differs
from a population average causal effect due to selection bias, and further identification
assumptions need to be imposed. If selection in treatment is due to observed determinants,
causal estimands can be recovered under the assumption of strong ignorability, also termed
strong unconfoundedness.25

By contrast, in case of confounding, i.e., the absence of conditional independence between
the treatment and the potential outcomes, other identification strategies such as difference-
in-differences, regression discontinuity or instrumental variables needs to be used, each one
subject to particular assumptions. Confoundedness can occur due to the self-selection of
agents in treatment based on their potential outcomes or when information correlated with
potential outcomes is used for treatment assignment, such as place-based policies targeting
specific areas. In addition, spatial heterogeneity constitutes also major threats to iden-
tification in this framework, which, in the statistical literature, is referred to as spatial
confounding.

4.2 Causal inference without SUTVA

In this section, we analyze how the literature has dealt with the presence of interference
between individuals in the experimentalist paradigm. Interference, a term developed in
the biostatistical literature, “is said to be present when exposure or treatment received by
one individual may affect the outcomes of other individuals” (Tchetgen & VanderWeele
2012). Initially, interference has been considered as a threat to the identification of the

23Manski (2013) calls this first condition the individualistic treatment response assumption.
24To the best of our knowledge, the second condition hasn’t yet been studied in spatial applications.
25This assumption supposes that the treatment assignment is independent of the potential outcome, con-

ditional on the set of determinants (Ignorability) and that for any value of the determinant, the probability
of being treated is bounded away from 0 and 1 (Overlap).

18



main causal estimands, with papers assessing the bias of causal effects estimated under
SUTVA (Sobel 2006) and proposing designs of experiments that avoid interference or adjust
inference (Rosenbaum 2007, Athey et al. 2018). Then, the focus has progressively switched
to a substantive identification of interference, both in terms of the definition of the estimands
of interest and design of experiments.

The literature has first remained agnostic on the source of interference and has proceeded
by extending the standard estimands discussed above to four key estimands, in the context
of a design-based approach at the unit level. By defining aj = (aji,aj(−i)) the treatment
program for all individuals in the group j, composed of the treatment for the individual i
and all other individuals aj(−i), and yji(ai,aj(−i)) as the potential outcome for individual
i in group j, subject to treatment aji ∈ {0, 1}, and the treatment program for all other
individuals established at aj(−i), Hudgens & Halloran (2008) define:

1. Direct effect: DEi(aj(−i)) = yji(aji = 1,aj(−i)) − yji(aji = 0,aj(−i)), i.e. the
difference between the potential outcome of the individual i given treatment compared
to the potential outcome for that individual without treatment, all other things being
equal (including the treatment status of the other individuals).

2. Indirect effect: IEi(aj(−i),a
′
j(−i)) = yji(aji = 0,aj(−i)) − yji(a

′
ji = 0,a′j(−i)). This

estimand is also called the spillover effects, as it compares an untreated subject i under
scenarios where other subjects receive aj(−i) versus a′j(−i). It equals 0 if there is no
interference. The indirect effect may also be computed for the treated individuals
(aji = 1).

3. Total effect: TEi(aj(−i),a
′
j(−i)) = yji(aji = 1,aj(−i)) − yji(a

′
ji = 0,a′j(−i)). This

estimand reflects the difference in responses that would be seen in i, between the
scenarios in which she is treated and the others receive the treatment program aj(−i)

and i is not treated while the others receive another treatment program a′j(−i). In

general, total causal effects are not commutative. Lastly, we have TEi(aj(−i),a
′
j(−i)) =

DEi(a
′
j(−i)) + IEi(aj(−i),a

′
j(−i)).

4. Overall effect: OEi(aj ,a
′
j) = yji(aj) − yji(a

′
j). This effect looks at the overall dif-

ference in potential outcomes for unit i between two alternative population treatment
programs aj and a′j . This is similar to TEi, but OEi allows individual treatment to
be determined by T (whereas TEi imposes aji = 1, a′ji = 0).

Finally, these effects are averaged (Hudgens & Halloran 2008). Allowing for interfer-
ence makes causal inference challenging, so that in practice researchers usually impose an
underlying structure limiting its scope. The first and still most common relaxation of the
no interference assumption is that of partial interference or clustered interference (Sobel
2006). In this case, it is assumed that individuals can be partitioned into distinct groups
and interference can occur within groups only. This assumption should approximately hold
if individuals are clustered in space, time, or some other dimension. Secondly, there is an
expanding literature that addresses cases where observations influence each other through
connecting edges. This implies that the assumptions on interference are driven by the net-
work ’s structure. However, similar to the general practice in applied econometrics, this
literature assume that the network is known and fixed a priori. Finally, general interfer-
ence has been considered (see Aronow & Samii 2017) in which no explicit assumption on
interference is made.
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A popular approach to formalize causal inference under interference has been introduced
by Halloran & Struchiner (1995) and Aronow et al. (2017) with the concept of exposure map-
ping that summarizes the impacts of other individuals’ treatments in sufficient statistics. A
mapping is specified that relates the vector of treatment assignments for the experimental
units to a finite set of exposures. The most frequently used forms of exposure mapping are
calculating the proportion of treated neighbors. Causal effects, called “exposure effects”, can
then be defined in terms of comparisons of outcomes under different exposures. This frame-
work is flexible because one can use any form of mapping to characterize the interference
structure, similar to the role of the connectivity matrix in the econometrics of interactions
framework. In addition, for the spillover effects obtained to be valid, the exposure mapping
must be correctly defined. If the specification is inappropriate, the resulting causal inference
may be misleading (e.g., failure to detect treatment spillovers) with imprecise variance esti-
mation. Sävje et al. (2021), Leung (2022), Sävje (2024) are the first to study these questions
and to provide the assumptions under which these problems can be mitigated.

4.3 Causal inference with spatial interference and spatial confound-
ing

When the validity of SUTVA might be questioned, alternative strategies have been sug-
gested. The first one consists of constructing a control group such that spillovers across
groups are prevented. For instance, buffer zones between the treated and the control obser-
vations might be used. In the context of our motivating example, if the aim is to causally
assess the impact of being part of an intermunicipal group on local expenditure, the treated
observations are all jurisdictions belonging to some intermunicipality group while the con-
trol group could consists of municipalities outside of any group and sufficiently far away to
avoid spillovers arising from shared infrastructure or mobile fiscal base. A second strategy
involves implementing forms of falsification tests, by focusing only on the nearly located
treated and control observations and switching their role. ATE should not be significant if
SUTVA holds.26

The next section focuses on identification strategies built to deal with violation of the
SUTVA assumption and the presence of spatial confounding in observational spatial stud-
ies.27

4.3.1 Regression adjustment and propensity score methods

When the assumption of strong ignorability can be maintained, regression adjustment and/or
propensity score matching methods are used to identify causal effects.

26See for instance Earnhart & Hendricks (2023) for an example in environmental economics.
27There is an extensive literature on causal inference under interference in experiments with design strate-

gies incorporating network information and controlling treatment assignments to mitigate interference (see
among many others Hudgens & Halloran 2008, Liu & Hudgens 2014, Basse & Airoldi 2018, Aronow, Eckles,
Samii & Zonszein 2021, for literature reviews). The specific case of spatial experiments with interference is
reviewed in Aronow, Samii & Wang (2021), Samii et al. (2023). In particular, they define a quantity called
an average marginalized response, which measures how on average outcomes that are a given distance from
an intervention site are affected by activating treatment at that site, taking into account ambient effects
emanating from other intervention sites. Alternatively, Pollmann (2023) proposes an estimator based on
a comparison between individuals near realized treatment locations with individuals near counterfactual
(unrealized) candidate locations.
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In the spatial context, Cerulli (2017) derives a regression adjustment estimator where the
specification of the potential outcome y0i is a parametric function of the potential outcomes
y1j of the neighboring observations. His model is as follows:

y0i = µ0 + xiβ0 + γ

n1∑
j=1

wijy1j + ε0i

y1i = µ1 + xiβ1 + ε1i

(5)

where µ0 and µ1 are scalars, β0 and β1 are two unknown vectors defining the responses of
unit i to the vector of controls, ε0 and ε1 are idiosyncratic error terms, wij are elements of
a row-standardized interaction matrix and n1 is the number of treated units. Cerulli (2017)
then shows that substituting Eq.(5) into yi = y0i + Ti(y1i − y0i) and assuming that the
expectation is conditionally unconfounded (E(ygi|Ti, xi) = E(ygi|xi) with g = 0, 1), yields
a consistent OLS estimator of the ATE when yi is regressed on (1, Ti,xi, Ti(xi − x̄), zi)
with zi = vi + wi(v̄ − vi) and vi =

∑n1

j=1 wijxj . However, this parametric approach is
not the most commonly used in the literature, which prefers to rely on the propensity score
approach.

The propensity score, e(x) = Pr(T = 1|X = x) is the conditional probability of expo-
sure, given X, and acts as a balancing score when the strong ignorability condition holds
(Rosenbaum & Rubin 1983). Propensity scores are typically estimated using a logistic or a
probit regression model. Once the propensity score for each individual has been computed,
different strategies can be used to estimate the ATE, such as inverse-probability weighted
estimator (IPW), doubly robust estimators, or matching procedures.

Let us now consider the case where the ignorability assumption fails for variables specif-
ically related to spatial heterogeneity. Then, as for the structural approach, the problem
of unobserved spatial heterogeneity hampers identification. Several methods have been
proposed to alleviate this issue, such as adding nonparametric functions of coordinates as
additional explanatory variables or including spatial random effects. Gilbert et al. (2024)
provide a recent review of this extensive literature. In the context of causal inference, Davis
et al. (2019) includes a conditional autoregressive prior for the random terms of the propen-
sity score model and the outcome models. They show that the inclusion of spatial random
effects gives a lower bias and a lower RMSE. Papadogeorgou et al. (2019) extend propen-
sity score-based methods to incorporate spatial distance between observations in addition
to covariates. As a consequence, only units that are close in space can be matched.

The literature has also developed some rather ad hoc proposals to account for spatial
spillovers. For example, to estimate propensity scores in the first stage, Chagas et al. (2012)
use a probit model including both a spatial lag term and a spatial error term that they
estimate using Monte Carlo Markov chains. This raises an important issue as the spa-
tial lag term Wy cannot be considered as a predetermined variable. As noted in Gibbons
et al. (2015, p.133), “the endogenous spatial lag, which is an aggregation of the dependent
variable, cannot be directly, exogenously manipulated within the population of sample to
which the model related. Further, it cannot be changed holding other factors (determinants)
constants.” Alternatively, Zigler et al. (2012), considering the impact of environmental reg-
ulations on air quality measures observed at spatial locations throughout the US, include
the spatial information by modeling the two potential outcomes as a function of treatments
and a spatially-varying Gaussian process. Giffin et al. (2023) include spatial spillovers in
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treatment using a Bayesian-spline-based regression model in the first step.
In the (general aspatial) statistical/biostatistical literature dealing with interference,

the first identification and estimation methods under ignorability were derived under the
assumption of partial interference. Hong & Raudenbush (2006) and Verbitsky-Savitz &
Raudenbush (2012) mimic a two-stage experiment and base their identification on the gen-
eralization of the standard conditional randomization assumption made at the individual
level (called a spatial ignorability assumption) and then rely on a multilevel propensity
score stratification to account for partial interference. Also, Ferracci et al. (2014) develop a
two-step identification method, which focuses first on the distribution of treatment between
individuals within groups and then on the distribution of treatment across groups, with the
assumption of ignorability maintained at both stages. Finally, Tchetgen & VanderWeele
(2012) derive several inverse probability weighted estimators as well a new causal effects in
this partial interference structure. A second strand of literature has then extended identifi-
cation and estimation methods under ignorability to the case where interference occurs on a
known network. These papers typically start by defining an exposure mapping function (or
equivalent), which specifies how the treatment is propagated to immediate neighbors, and
then develop either generalized propensity-weighted estimates (Liu et al. 2016), or general-
ized propensity score matching (Forastiere et al. 2021, 2024).

4.3.2 Difference-in-differences methods

Different strategies have been developed to account for confoundedness, relying on particular
identification assumptions and/or specific design of the data.

We start with the difference-in-differences (DiD) model, which relies on the availability
of data on at least two periods (before and after treatment) for both control and treated
groups and the parallel trend assumption. Formally, suppose observations i = 1, ..., n that
are available for two time periods and a binary treatment that takes place in the second
time period only.28 The standard DiD equation reads as:

yit = α0 + α1Xit + α2Di + α3T̃t + α4DiT̃t + εit (6)

where Di is a dummy indicating the treatment status of unit i, and T̃t is a dummy taking
the value of 1 in the second period. As is well known, if εit is an iid error term, uncorrelated
with Di and T̃t, t α4 represents the ATT, so evidence of a causal effect is present when
H0 : α4 = 0 is rejected.

Several papers have considered a “spatial” version of the DiD model by including a spatial
lag term in this equation and/or spatial autoregressive errors29 The use of an endogenous
spatial lag Wy in difference-in-differences models raises serious issues. First, similar to the
case of the propensity score matching procedure, endogenous effects cannot be considered as
a pretreatment variable. In addition, the presence of a spatial lag implies that the remaining
coefficients cannot be interpreted as marginal effects anymore, preventing the interpretation
of α4 as ATT. In the best case, the average direct / indirect / total effects can be calculated
(see LeSage & Pace 2009), but it remains to be demonstrated that the average direct effects
(in spatial econometrics meaning) of the treatment could be causally interpreted.

28Repeated cross-sections or panel data fit this design.
29See among others Sunak & Madlener (2016), Diao et al. (2017), Dubé et al. (2017), Kaneko et al. (2019),

Xu & Liu (2021), Zeng & Bao (2021).
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Delgado & Florax (2015) examine the scenario in which an individual’s potential out-
comes are influenced both by their own treatment and by the treatment status of their
neighbors, akin to a linear exposure mapping method.30 This method has been extended to
the multivariate case by Bardaka et al. (2019). Butts (2021a) instead develop an estimator
that accounts for both local spillovers onto control units and onto treated units. This esti-
mator explicitly relies on the exposure mapping, hence avoiding the linearity assumption of
spillovers. The case of spatially targeted treatment is investigated in Butts (2023) with the
estimation of a treatment effect curve. Also, Huber & Steinmayr (2019) derive an estimator
in the case where SUTVA is satisfied at the aggregate level. This framework allows them to
identify an individual effect and a within-aggregate spillover effect, driven by the treatment
of other individuals in the group. As Roth et al. (2022), we expect in the near future signif-
icant advances in difference-in-differences models, particularly those incorporating spillover
effects.

4.3.3 Regression discontinuity

Regression discontinuity designs are based on the existence of a known cut-off point in a
known forcing variable and are therefore useful in the analysis of public policy characterized
by discrete policy-led interventions above or below certain levels. The usual scenario is
that all individuals or units are treated if their value of the forcing variable is above the
cut-off point. If the unit’s characteristics do not change abruptly at the threshold, then
the causal effect of the treatment can be uncovered by the change in treatment status. Of
particular interest in a spatial context are the geographic RDDs, where geographic borders
serve as thresholds with only one side of the border being treated (see, among others Keele &
Titiunik 2015, 2018, Butts 2021b). With regard to our illustrative example, Agrawal (2015)
uses state borders to identify tax competition, without relying on the slope of the policy
reaction function.

An obvious issue in these designs is spatial spillovers occurring within units on either
side of the border, as well as those extending across the border, which preclude us from in-
terpreting conventional RDD estimates as causal estimands. Aronow et al. (2017) show that
in the context of an arbitrary and unknown interference structure and a local randomization
assumption, the difference in means between units near the boundary can be interpreted as
the average direct effects of Hudgens & Halloran (2008) for this subpopulation. Recently,
Dal Torrione et al. (2024) extend the RDD to encompass scenarios in which units interact
within a network, leading to a multiscore RDD with multidimensional boundaries. Finally,
Auerbach et al. (2024) characterize the estimand of a RDD in which the outcome for a
particular unit is linearly influenced by both the average treatment status and the average
outcome of units with comparable running variable values. When these running variables
are geographic coordinates, it accounts for spillover effects among spatially proximate units.

In the context of voter turnout during a presidential campaign, Keele & Titiunik (2018)
assume, similarly to Verbitsky-Savitz & Raudenbush (2012), that interference occurs only
when treated individuals are in close geographic proximity to a sufficiently high number
of control individuals. This assumption let them define and non-parametrically identify

30Empirical applications of this approach in empirical spatial econometric papers can be found in Chagas
et al. (2016), Han et al. (2018), Feng et al. (2021), Kosfeld et al. (2021), Madeira Triaca et al. (2021), Yu
(2021).
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estimands for the direct and indirect effects. Finally, Cornwall & Sauley (2021) consider
the question of spatial spillovers in regression discontinuity design. Their approach consists
in residualizing the outcome by applying a spatial Durbin model and then proceeding with
the RDD usual estimates. The causal estimands at hand are unfortunately not defined
clearly and, as we mentioned above, using parametric specifications with a spatial lag in a
reduced-form context raises important identification issues.

4.3.4 Instrumental variables

Finally, the literature has also started to address the problem of non-compliance with treat-
ment in the presence of interference, which calls for an instrumental variables framework.
The idea of the first contributions in this field has been to extend the local average treat-
ment effect framework of Imbens & Angrist (1994) to the presence of spillovers (see, among
others, Kang & Imbens 2016, Kang & Keele 2018, and Imai et al. 2021). Vazquez-Bare
(2023) goes one step further by developing a model allowing for spillovers on the outcome
of interest, on treatment intake and multiple types of compliers under partial interference.31

Still in the context of binary treatment (and binary instrument), Hoshino & Yanagi (2024)
investigate the case of noncompliance into treatment for an unknown network and propose
the concept of instrument exposure mapping, which extends the exposure mapping to the
reduced form equation of the treatment and summarizes potentially complicated spillover
effects into a fixed dimensional statistic of instrumental variables. Finally, Hoshino (2024)
explore the framework of a continuous intervention framework incorporating spillover effects
where people self-select into treatment (noncompliance). They develop a control function
approach estimator based on some separability assumption in the reduced form equation,
and instrument peers’ treatment by the weighted sum of the value of the instruments for the
peers (similarly to Kelejian & Prucha 1998 and Bramoullé et al. 2009). At last, they apply
their model to determine the causal impact of regional unemployment on crime using data
from Japan’s city level. In this application, unemployment rate in neighboring cities is also
accounted for, where neighborhood is defined as sharing a city-border, while unemployment
rate is instrumented with childcare facilities.

A summary of issues discussed in this section can be found in Table 2.

4.4 From the sources of interferences to a convergence of approaches

An emerging literature in biostatistics focuses on sources of interference. According to
Ogburn & VanderWeele (2014), there are three specific mechanisms, not mutually exclusive,
that could cause interference. In the case of direct interference, the treatment Ti of individual
i directly impacts the outcome Yj of individual j, regardless of the value of Yi. Contagion
interference occurs when there is a dependence between outcomes Yi and Yj , and therefore
treatment Ti can impact Yj through its relationship to Yi. Peer effects might be an example.
Finally, allocation interference refers to the assignment of subjects to groups and Yi can be
impacted by the characteristics of the other subjects in that group.

31DiTraglia et al. (2023) consider a constrained model with one-sided compliance and spillovers in outcome
only.
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Interestingly, this classification is similar to the typology of Manski (1993), of, respec-
tively, contextual effects, endogenous effects, and correlated effects. Disentangling the
sources of interference requires more structured approaches relying on models and iden-
tification issues that are close to those detailed in Section 3, and include the need to control
for confounding and homophily (Tchetgen & VanderWeele 2012, VanderWeele, Tchetgen
& Halloran 2012, Ogburn & VanderWeele 2017, Liu & Tchetgen Tchetgen 2021, and Og-
burn & Shpitser 2021). In the tax competition literature, an example of such an approach
is Agrawal (2016) who shows how spillovers drive the differences in equilibrium tax rates
between neighboring jurisdictions and then uses these differences to identify tax competition.

These developments point to a form of convergence between structural and reduced
form approaches. In the former, we saw that some papers use exogenous institutional
or environmental shocks to improve identification even when starting from a structural
model. In the latter, exploring the underlying mechanisms and the sources of interference
necessitates that some structure is added in the model. As stated by Lewbel (2019, p.872),
“best practice will often be to combine features of both methodologies”.

5 Recommendations for applied spatial econometrics

In this section, we propose some recommendations for good practice in applied spatial
econometrics, which might help to identify spatial spillover effects. These recommenda-
tions include a clear discussion on the parameters of interest, the internal logic of using a
structural versus a reduced approach, the unit of decision, and, related to this, the choice
of interaction scheme, the issue of spatial heterogeneity and spatial confounding, and the
nature of inference.

Parameters of interest. It is fundamental to clearly define the parameters of interest, i.e.
those for which one wishes to provide a causal interpretation. These parameters might be
spatial spillovers (endogenous and/or contextual spillovers), or they might also be the impact
of changes in variables on the outcome. While this recommendation might seem trivial or
unnecessary, one has to admit that many applied spatial econometric papers are not explicit
enough, especially when the identification strategy is blurred with spatial spillovers solely
obtained as a side-product of a data-driven chosen specification. When spatial spillovers
are the main parameters of interest, a structural approach with special care devoted to
the identification conditions and adequate considerations of the spatial threats discussed in
section 3 might be appropriate. Otherwise, a reduced-form approach, where identification,
interference and confounding are carefully discussed, should be considered.

Methodological approaches. The necessity of a clear discussion of the parameters of inter-
est leads to our second recommendation, which is to keep in mind the specific features of
identification in each of the structural and reduced-form frameworks. On the one hand,
in structural models, the mechanisms of underlying interactions should ideally be set up.
For instance, in the context of our motivating example, one can rely on the various mod-
els of local government policy interactions: fiscal competition, bidding for firms, yardstick
competition, expenditure spillovers and Tiebout sorting (Agrawal et al. 2022). A purely
structural approach is not without difficulties, as these various mechanisms yield the same
reduced reaction function. Likewise, in the peer effects literature, it has only very recently
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been proposed a structural model allowing to distinguish between the behavioral sources of
interactions (conformism or spillovers) within a linear-in-means model (see Boucher et al.
2024).

On the other hand, in causal reduced forms, an important first step consists in precisely
defining the causal estimands of interest. As we point out above, some papers introduce a
spatial lag term of the exogenous or the endogenous variables ex-post in PSM, or DiD designs
without defining the appropriate causal estimands at hand, resulting in ambiguity about
what is truly being identified. Moreover, except in very specific cases, such as in Auerbach
et al. (2024) or Vazquez-Bare (2023), it is not possible to obtain a causal interpretation of
the endogenous effect (Wy) since it is impossible to exogenously manipulate it while keeping
all other variables constant.

Linked to this, we point out several major issues in the practice of applied spatial econo-
metrics, which heavily relies on the spatial Durbin model. This model is widely used in
applied spatial econometrics on the argument that, in the presence of spatially autocorre-
lated omitted variables, this model provides consistent estimates of the parameters (LeSage
& Pace 2009). However, it should now be apparent that this strategy is only valid if all
other threats to identification are adequately considered. Furthermore, it assumes that the
exogenous variables and their spatial lags are plausibly exogenous, a major aspect that is
rarely discussed. In other words, the standard spatial Durbin model is an adequate answer
to identification in very restrictive cases only, characterized by assumptions that are rarely
encountered in observational data.

As a consequence, the impacts (total, direct, indirect impacts, developed by LeSage &
Pace 2009) traditionally computed in SAR or SDM specifications can only be considered
as impacts in the causal sense when all the possible threats to identification have been
addressed. Otherwise, they should only be viewed as marginal changes without any causal
interpretation.

Finally, as the presence of an endogenous spatial lag term introduces many complex-
ities (in terms of identification, interpretation, and estimation), which is not appropriate
in a purely reduced-form model, the spatial Durbin model should ideally be rooted in an
underlying theory.

For all the reasons set above, when the main parameter of interest is not some spillover
effect (or if the theory does not clearly state that structural spillovers should be accounted
for), reduced forms with appropriate treatment of interference might be more adequate.

Unit of decision vs unit of observation. Identification of spatial spillovers also requires that
the unit of observation (the geographical level at which the empirical analysis is conducted)
matches the unit of decision. When it is not the case, a specification including spillovers
(endogenous spatial lag, neighborhood characteristics or both) is mostly not relevant, unless
there are strong theoretical foundations that imply interdependence at equilibrium (for
instance, microfounded gravity models).

Moreover, despite conducting empirical research centered on decision units, Gibbons
et al. (2015) point out that the scope for including an endogenous spatial lag is generally
more restricted than commonly applied. For instance, in the context of hedonic price mod-
els, it is generally assumed that a house price is a function of the price at which neighboring
houses were sold. However, this cannot be a structural model as the price of houses already
sold cannot be dependent on the price of future houses (Gibbons et al. 2015, p134). As
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such, the simultaneous nature of decisions should be discussed much more.

Interaction matrix. In the context of a structural model, identification of spillover effects
is tightly linked to the definition of the interaction scheme. Defining links between obser-
vations based on geographical proximity avoids Manski’s reflection problem. However, as
pointed out by Gibbons et al. (2015), in a two-stage least squares framework, this definition
of neighborhood might generate weak instruments if the matrix is not sufficiently sparse. Be-
sides, identification of spillovers also requires the connectivity matrix to capture the causal
transmission channel of interactions. This hinders the consideration of changes in public
policy that affect the framework of interactions.

As we argued above, an a-theoretical geographically based matrix precludes the identifi-
cation of the causal mechanism underlying interactions, as it acts as a catch-all of different
interaction theories (see Neumayer & Plumper 2016 and Agrawal et al. 2022 for exam-
ples). In addition, the effects of a change in a public policy variable on the structure of
interactions cannot be accounted for, leading to potential biases in measuring the impact
of a public policy. As such, if the causal mechanism of interactions is not based on geo-
graphic similarity, alternative definitions of neighborhood, possibly based on socioeconomic
proximities, should be considered. Evidently, these economically driven interactions present
numerous econometric challenges, yet they are beneficial from the identification perspective.

Spatial heterogeneity. An important point is that spatial heterogeneity should be carefully
accounted for, both in structural and reduced forms approaches. In the structural frame-
work, heterogeneous effects of spillovers (or other variables of interest) could be considered,
using the QML approach developed by Aquaro et al. (2021), the GMM approach of Konstan-
tinidi et al. (2023), a combination of GMM and nonparametric methods such as in Sun &
Malikov (2018) and Hong et al. (2024) or the Bayesian framework of Pace & LeSage (2004)
and Cornwall & Parent (2017). Theoretical models developed by Ertur & Koch (2007) and
Behrens et al. (2012) imply heterogeneous parameters for spillovers and determinants be-
tween countries. Also, Agrawal (2016) studies the influence of local tax rates on the location
of retail activity, with an emphasis on cross-border shoppers. He shows that in the presence
of multiple counties, the strength of town strategic interactions can be heterogeneous with
respect to distance to the county’s border. Within a reduced-form approach, spatially dif-
ferentiated treatment effects may be obtained by interacting the treatment with a spatial
indicator. Spatial heterogeneity can also act as a confounder of spillovers, notably through
sorting or hierarchical structure (common factors). This form of spatial heterogeneity is
typically overlooked in applied spatial econometrics papers, preventing clear interpretations
of findings. Several approaches have been developed in the statistical literature to mitigate
this form of unobserved spatial heterogeneity, such as relying on flexible spline functions
of latitude-longitude coordinates (see Reich et al. 2021, for a recent overview). Related to
this, we emphasize that the econometric consequences of spatial sorting have received a lot
of attention in the urban economics literature, but less so in applied spatial econometrics.
This problem might arise due to spatially mobile units of decision or whether some control
variables are the results of outcomes of spatially mobile decision units, such as the share of
each economic activity in a given country, leading to the bad controls issue.

Statistical inference. Unless theoretical reasons imply the parametrization of spillovers in
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the error terms, we follow Kelejian (2016) who states p.115: “errors are the unknown part of
the model; we should not model them!” (Highlights from Kelejian). In the context of gravity
equation, the model developed by Behrens et al. (2012) leads to an econometric model that
includes spatial moving average errors. Another example is Calvò-Armengol et al. (2009),
who develop a model of peer effects in education characterized by a spatial autoregressive
process for the error terms, aimed at capturing spillovers effects between unobserved efforts.

A large battery of tests have been developed in spatial econometrics. However, contrary
to the usual approach that consists in using LM-based tests for specification search, we
contend that it is preferable to use diffuse statistics such as nonparametric tests (López
et al. 2010) or scan tests (Kulldorff & Nagarwalla 1995, López et al. 2015, and Chasco
et al. 2018) for diagnostic purposes. These tests are indeed very powerful in detecting the
remaining structure in the residuals. For example, in studying a Spanish hedonic price
model, Chasco et al. (2018) use the scan test to uncover local spatial clusters of low or
high values in the residuals, pinpointing to spatial omitted variables. This information
has been then integrated in the main model to improve the specification. Due to their
diffuse alternative hypothesis, these aforementioned tests are uninformative with respect to
the causes of the violations of i.i.d.’ness, but should invite to revise the whole estimation
strategy. Indeed, as seen earlier, cross-sectional dependence in the error term might result
from unobserved confounding unobserved variables, local common factors, misspecification
of the interaction matrix, or a combination of these elements.

To wrap up, we advocate the use of general spatial diagnostic tests to check that no
remaining spatial structure is present in the error terms and then apply some robust inference
method (see Conley & Molinari 2007 and Kelejian & Prucha 2007) rather than specifying a
strong parametric process in the errors (such as spatially correlated errors).

6 Conclusion

Our objective is to provide insights into the conditions under which the widely used notion
of spatial spillovers has a meaningful empirical content, by looking at this question from the
identification perspective.

First, we argue that one should stop systematically considering spillovers as side effects
of specifications and either see them as the parameters of interest or consider them as inter-
ference that need to be accounted for. Indeed, modeling interactions through the use of a
matrix imposes a lot of structure on the model, such as explicitly specifying the channel(s)
through which interactions occur as well as the functional form of the links between obser-
vations. This also implies that these models necessarily fall into the structural econometrics
approach as endogenous spatial lags are generally not compatible with a causal inference
framework.32 If spillovers are considered only as confounding the identification of another
parameter of interest, then causal reduced forms approaches should be preferred. Second,
scaling up the importance of spillover effects in the analysis requires giving up selecting the
econometric model based on a mechanical application of specification tests. Indeed, this
selection procedure, borrowed from time series analysis, is not compatible with a causal
interpretation of spillovers, as the model is selected according to data considerations rather

32Exogenous spatial lags play a different role as they might be viewed as a particular way of modeling
exposure mapping, a topic that needs to be further investigated.
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than from an economic model. Third, a careful attention to the matching between the
observational unit and the unit of decision is important to provide sound interpretations.
Fourth, except when the economic model involves cross-sectional dependence in the error
term, we also recommend to first using diffuse tests to model the potential residual cross-
sectional dependence and then use a robust approach to account for the non-iid behavior of
the error term, rather than trying to parametrize it. Fifth, the identification of spillovers
requires a thorough investigation of the multiple facets of spatial heterogeneity to control
for all potential confounding effects and be more confident about the interpretations to be
extracted from the estimated model. Last but not least, much more thought should be given
to the selection of the interaction matrix and except in some very specific cases, avoid us-
ing geographic proximity to construct the links scheme between observations. As discussed
above, the costs associated with the use of geographical space far outweigh the benefits of a
simplified econometric estimation.

To conclude somewhat provocatively, we advocate to stop using the confusing name of
spatial econometrics. In fact, this term encompasses both the methodological tool (spillover
modeling) and a particular type of spillover (based on locational similarity). We believe
that econometrics of spatial interactions would be a much better name since it would focus
on the identification challenges inherent to the use of spatial data. This term would also
be in line with the econometrics of social networks (or peer effects), which is understood
to deal with all the difficulties raised by interactions between individuals. We also suggest
using spatial data econometrics to refer to all methods specific to spatial data.
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in Y. Bramoullé, A. Galeotti & B. Rogers, eds, ‘The Oxford Handbook of the Economics
of Networks’, Oxford University Press.

Boucher, V. & Houndetoungan, A. (2023), Estimating peer effects using partial network
data, Technical report.

Boucher, V., Rendall, M., Ushchev, P. & Zenou, Y. (2024), ‘Toward a general theory of peer
effects’, Econometrica forthcoming.
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Otto, P., Doğan, O., Taşpinar, S., Schmid, W. & Bera, A. (2024), ‘Spatial and spatiotem-
poral volatility models: A review’, Journal of Economic Surveys pp. 1–55.

Pace, R. & LeSage, J. (2004), Spatial auroregressive local estimation, in G. A., M. J. &
H. Zoller, eds, ‘Spatial Econometrics and Spatial Statistics’, Palgrave MacMillan: New
York, p. 31–51.

Paez, A., Scott, D. & Volz, E. (2008), ‘Weight matrices for social influence analysis: An
investigation of measurement errors and their effect on model identification and estimation
quality’, Social Networks 30, 309–317.

Papadogeorgou, G., Choirat, C. & Zigler, C. M. (2019), ‘Adjusting for unmeasured spatial
confounding with distance adjusted propensity score matching’, Biostatistics 20(2), 256–
272.

Parchet, R. (2019), ‘Are local tax rates strategic complements or strategic substitutes?’,
American Economic Journal: Economic Policy 11(2), 189–224.

Partridge, M. D., Boarnet, M., Brakman, S. & Ottaviano, G. (2012), ‘Introduction: Whither
spatial econometrics?’, Journal of Regional Science 52(2), 167–171.

Patacchini, E. & Zenou, Y. (2012), ‘Juvenile delinquency and conformism’, The Journal of
Law, Economics and Organization 28, 1–31.

Pesaran, H. M. (2006), ‘Estimation and inference in large heterogenous panels with a mul-
tifactor error structure’, Econometrica 74, 967–1012.

Pfaffermayr, M. (2009), ‘Conditional β and σ convergence in space: A maximum likelihood
approach’, Regional Science and Urban Economics 39, 63–78.

Pollmann, M. (2023), ‘Causal inference for spatial treatments’.

Qu, X. & Lee, L.-f. (2015), ‘Estimating a spatial autoregressive model with an endogenous
spatial weight matrix’, Journal of Econometrics 184(2), 209–232.

Qu, X., Lee, L.-f. & Yang, C. (2021), ‘Estimation of a sar model with endogenous spatial
weights constructed by bilateral variables’, Journal of Econometrics 221, 180–197.

Qu, X., Lee, L.-f. & Yu, J. (2017a), ‘QML estimation of spatial dynamic panel data mod-
els with endogenous time varying spatial weights matrices’, Journal of Econometrics
197(2), 173–201.

41



Qu, X., Lee, L.-f. & Yu, J. (2017b), ‘Qml estimation of spatial dynamic panel data mod-
els with endogenous time varying spatial weights matrices’, Journal of Econometrics
197, 173–201.

Qu, X., Wang, X. & Lee, L.-f. (2016), ‘Instrumental variable estimation of a spatial dynamic
panel model with endogenous spatial weights when t is small’, The Econometrics Journal
19, 261–290.

Reich, B. J., Yang, S., Guan, Y., Giffin, A. B., Miller, M. J. & Rappold, A. (2021), ‘A review
of spatial causal inference methods for environmental and epidemiological applications’,
International Statistical Review 89(3), 605–634.

Reiss, P. C. & Wolak, F. A. (2007), Structural econometric modeling: Rationales and ex-
amples from industrial organization, in J. J. Heckman & E. E. Leamer, eds, ‘Handbook
of Econometrics’, Vol. 6, Elsevier, pp. 4277–4415.

Rosenbaum, P. R. (2007), ‘Interference between units in randomized experiments’, Journal
of the American Statistical Association 102(477), 191–200.

Rosenbaum, P. R. & Rubin, D. B. (1983), ‘The central role of the propensity score in
observational studies for causal effects’, Biometrika 70(1), 41–55.

Roth, J., Sant’Anna, P. H. C., Bilinski, A. & Poe, J. (2022), ‘What’s trending in difference-
in-differences? A synthesis of the recent econometrics literature’, arXiv:2201.01194 [econ,
stat] .

Rubin, D. B. (1974), ‘Estimating causal effects of treatments in randomizes and nonran-
domized studies’, Journal of Educational Psychology 66, 688–701.

Samii, C., Wang, Y., Sullivan, J. & Aronow, P. (2023), ‘Inference in spatial experiments
with interference using the SpatialEffect package’, Journal of Agricultural, Biological and
Environmental Studies 55(1), 56–89.
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