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February 23, 2024

Abstract

The notion of spatial spillovers has been widely used in applied spatial
econometrics. In this paper, we consider their empirical content under the
lens of identification in both structural and causal reduced-form models.
Discussing the various threats to identification in structural models, we
point out that the typical estimation framework proposed in the applied
spatial econometric literature boils down to considering spillovers as a
side-effect of a data-driven chosen specification, which strongly hampers
their empirical content. We also discuss the limits of using interaction
matrices purely based on geography to identify the source and content of
spillovers. Then, we present reduced forms impact evaluation models for
spatial data and show that the current spatial versions of usual impact
evaluation models are not fully satisfactory when considering the identifi-
cation issue. Finally, a set of recommendations for applied papers aimed
at identifying spatial spillovers is proposed.

JEL Classification: C18, C21
Keywords: spatial spillovers; causal inference; interference; structural and re-
duced form identification.

1 Introduction

Spatial spillovers, which we loosely define here as geographical interactions
and/or externalities between neighboring observations, are at the heart of ap-
plied spatial econometrics, as typically used in regional/political science, among
others. Building upon Tobler’s first law in geography, countless empirical pa-
pers have estimated spatial spillover effects by specifying a geographically-based
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connectivity matrix1 and using one of the classical spatial econometric specifi-
cations, such as the spatial Durbin model, the spatial lag model, etc. In essence,
a typical paper in applied spatial econometrics aims at analyzing the “impact”
(quotation marks for purpose) of some explanatory variable(s) on an explained
variable based on a model estimated on georeferenced data and accounting for
cross-sectional dependence in various forms. Following a long-standing tradi-
tion in spatial econometrics, the analysis is often based on specific-to-general or
general-to-specific specification search strategies, and is generally followed by a
discussion of interpretations in terms of implied spatial spillovers.2

However, this practice has been largely criticized for various reasons. The
most heavy criticism probably arose from Gibbons & Overman (2012) who
pointed out major identification problems, when spatial econometric specifi-
cations are used for an explanatory purpose, with the more or less explicit aim
of being able to draw causal interpretations of the estimated parameters. Their
conclusion best illustrates their arguments: “Identification problems bedevil
applied spatial economic research. Spatial econometrics usually solves these
problems by deriving estimators assuming that functional forms are known and
by using model comparison techniques to let the data choose between compet-
ing specifications. We argue that in many situations of interest this achieves,
at best, only very weak identification. Worse, in many cases, such an approach
will be uninformative about the causal economic processes at work, rendering
much applied spatial econometric research “pointless,” unless the main aim is
a description of the data.” Partridge et al. (2012) also point out that standard
spatial econometrics is not capable of ”differentiating when outcomes in nearby
areas are spatially correlated [...] versus spatial causality” while McMillen (2012)
argues that standard spatial econometric models are falsely used as a quick fix
for any model misspecification. As mentioned by Mur (2013), this lack of atten-
tion of spatial econometrics to identification and causality is probably related to
its history, as its evolution initially mimicked that of the time series literature.

As a result, one can only observe that, while the standard spatial economet-
ric toolbox is widely used in empirical papers in regional science and related
disciplines, the papers in top field or top 5 economic journals that make use of
“spatial econometric” models are now almost exclusively anchored in the net-
work econometrics literature. In the latter, the connections between individuals
are modeled along a social network and the main focus of interest is to derive
identification strategies to disentangle the endogenous effects from the exoge-
nous and correlated effects, following the terminology of Manski (1993) with
the final aim of deriving a causal interpretation of these effects. The fiscal fed-
eralism literature is representative of this trend. Spatial lag or spatial Durbin
models were widely used in the early 2000s to assess the existence and extent
of fiscal competition among neighboring local jurisdictions. These models were

1This matrix is also called a spatial weights matrix or interaction matrix. In the literature
on social networks, it is referred to as the adjacency matrix. However, we prefer the term
connectivity or interaction to spatial weights for reasons that will become apparent later.

2Figure 1 in Elhorst (2010) illustrates these nested relationships between spatial models in
the cross-sectional case.
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labeled first-generation models by Agrawal et al. (2022). Yet, they were widely
criticized on various grounds related to identification: the exclusion restrictions
are never discussed, the instruments are weak, and these models are unable
to discriminate between underlying mechanisms (fiscal competition, yardstick
competition, Tiebout sorting, etc.). All these pitfalls led the recent literature
on fiscal federalism to heavily rely on quasi-experiments to obtain more credible
instruments (see among others Parchet 2019, Lyytikäinen 2012).

At the heart of these criticisms is the notion of identification. In the twen-
tieth century, identification was mainly discussed within the framework of si-
multaneous equation models (demand and supply), in the spirit of the Cowles
Foundation. This approach, called structural, has been at the center of the eco-
nomics literature for a long period and is based on explicitly stating modeling
and behavioral assumptions. However, following the credibility revolution of
Angrist & Pischke (2010), much effort has been made to design identification
strategies aimed to be as close as possible to a random experiment: the experi-
mentalist paradigm. This second approach, also called reduced form, treatment
effect, impact evaluation of public policy, or causal inference, aims at abstract-
ing from behavioral assumptions typically made in the structural approach to
assess the impact of a policy on an outcome, but at the cost of eluding the ques-
tion of transmission channels. Although in practice, the separation between
structural and reduced forms might not be so clear-cut, we use this distinction
as the starting point for clarity purposes.

Our first aim in this paper is to reconsider the notion of spatial spillovers in
light of this fundamental econometric question of identification. Although the
econometric literature has developed many different concepts of identification,
our paper only considers its most widely used notion, namely point identifi-
cation. According to Lewbel (2019, p.842) the parameter θ is point identified

(often just called identified) if there exist no pairs of possible values θ and θ̃
that are different but observationally equivalent. In this paper, we consider the
(point) identification of spatial spillovers in both structural and causal reduced-
form models. In the first case, i.e. structural models, spatial spillovers should be
the main parameters of interest, as endogenous effects are the main parameters
of interest in network econometrics. Yet, we point out that the typical statistical
strategies (specific-to-general or general-to-specific) proposed in the literature
boil down to considering spatial spillovers as a side-effect of the data-driven cho-
sen specification, which strongly hampers their empirical content. Additionally,
the other threats to identification traditionally considered in the network econo-
metrics literature, such as unobserved heterogeneity and endogenous sorting, are
typically not discussed. We consider all of these issues. In particular, in line
with Neumayer & Plumper (2016), we discuss how the use of interaction ma-
trices based solely on geographical criteria as a proxy of numerous transmission
mechanisms cannot allow identification of associated spillovers.

In causal-reduced models, interest typically relies on assessing the causal
impact of a treatment on an outcome. Among other assumptions, most pa-
pers since Rosenbaum & Rubin (1983) assume a cross-unit no-interference as-
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sumption: the Stable Unit Value Assumption (SUTVA). However, for the past
20 years, there has been an explosion of work relaxing the no-interference as-
sumption.3 Initially, the articles aimed to assess the bias of the causal effects
estimated under SUTVA and to propose designs of experiments that avoid in-
terference. Then, the focus has progressively switched to a substantive identifi-
cation of these spillovers, both in terms of estimands of interests and design of
experiments, as they are a crucial component in understanding the full impact
of an intervention.4 Therefore, the notion of spillovers and related concepts has
become central in program evaluation (see Angelucci & Di Maro 2016). Most
discussions in this literature focus on spillovers along networks, yet, a limited
statistical literature exists with respect to spatial spillovers. We discuss this
emerging literature and also show that the current spatial versions of usual
econometric impact evaluation models, such as difference-in-differences models
including a spatial lag of the endogenous variable, are not satisfactory when
considered in the light of identification.

These attempts illustrate the fact that the question of identification in a
spatial context has recently witnessed an upsurge of interest. Our second aim
is then to make a statement on the current state of affairs. Some reviews of this
emerging literature are available in Gibbons et al. (2015) mainly for the struc-
tural approach, while Kolak & Anselin (2020), Akbari et al. (2023) and Gao
et al. (2022) focus more on the causal inference framework. For example, Kolak
& Anselin (2020) review how spatial effects (namely spatial dependence and
spatial heterogeneity) lead to the violation of the SUTVA assumption and pro-
vide an overview of existing attempts, within the spatial econometrics/regional
science literature, to extend impact the common evaluation identification strate-
gies and models (difference-in-differences, propensity score matching, regression
discontinuity, and instrumental variables) in the presence of spatial effects. They
focus their presentation on the counterfactual framework and discuss how spa-
tial effects affect the assignment to treatment, the potential sources of variation
in the treatment variables, and the estimands.

Our approach goes one step further in that we consider the notion of iden-
tification in general: not only do we also discuss this notion in both structural
and reduced forms, but we are also able to provide bridges between these ap-
proaches together with a comprehensive view of identification in the presence
of spatial heterogeneity that we apprehend both in terms of (spatial) varying
treatment effect and spatial confounding. We also consider a range of other
identification threats. Conversely, we do not document the concept of Granger
causality in a spatial context, nor do we discuss the empirical dynamic model-
ing or convergent-cross mapping (CCM) frameworks, as they are more rooted
in the time series approach to causality. In addition, we do not consider graph-
ical models or path analysis models as we only focus on the counterfactual and

3See among others VanderWeele (2015), Hong (2015), Angelucci & Di Maro (2016), Reich
et al. (2021), Aronow, Eckles, Samii & Zonszein (2021).

4If beneficial spillovers exist, a lower percentage of the population might need treatment.
Furthermore, information on the nature and extent of spillover effects may allow targeting
specific individuals or groups of individuals to increase the overall impact of the intervention.

4



potential outcomes approach.5 In a spatial context, these three approaches are
discussed in Akbari et al. (2023), Gao et al. (2022).6

The paper is structured as follows. Section 2 presents the structural ap-
proaches that have been developed to identify spatial spillovers as well as the
different threats to identification that are often overlooked in the applied spatial
econometrics literature. Section 3 describes the causal inference methods that
account for interference (spillovers) and discusses how they have been extended
so far in a spatial context. Section 4 develops recommendations for applied
papers aiming to identify spatial spillovers: definition of parameters of interest,
structural versus reduced-form approaches, unit of analysis, choice of interaction
matrix, spatial heterogeneity and structure of error terms. Section 5 concludes.

2 Structural approach to (spatial) spillovers

2.1 Related literature

The structural modeling approach is based on the development of a structural
model, where the identification focuses on the associated (deep) parameters, giv-
ing them a ceteris paribus interpretation (Clarke &Windmeijer 2012). Some pa-
pers in structural spatial and network economics have developed several models
to account for spillovers between observations, which can be decision units (mi-
croeconomic agents for instance) or more aggregate units (countries, regions).

Starting with the case of structural models involving aggregate units, in the
field of economic growth, Lopez-Bazo et al. (2004) model externalities of produc-
tion between regions. Ertur & Koch (2007) develop a spatially augmented Solow
model where interactions between economies are motivated by technological in-
terdependencies. Egger & Pfaffermayr (2006) follow their approach to study the
consequences of spatial dependence on convergence, while Pfaffermayr (2009)
contrasts the spatial Solow model with the Verdoon’s model and demonstrates
that the speed of convergence in both models depends on the remoteness and the
income gaps of all regions. In a subsequent paper, Ertur & Koch (2011) integrate
technological interdependencies in a Schumpeterian growth model, allowing to
cast both models in an integrated theoretical and methodological framework.
Turning to the empirical applications of the models, Lopez-Bazo et al. (2004),
Egger & Pfaffermayr (2006), Ertur & Koch (2007), Pfaffermayr (2009) assume
a geographically-based interaction scheme. In contrast, Ertur & Koch (2011)
consider an interaction scheme based on geographic proximity or bilateral trade.
However, they point out that this interaction matrix should ideally be theory-
based as the implementation of spatial methods requires accurate identification
of their localization (Ertur & Koch 2011, p.236). A step towards this direction
is due to Behrens et al. (2012) who derive a quantity-based structural gravity

5See Ogburn & VanderWeele (2014) for some insight in specifying causal diagrams with
interference.

6See also Mur (2013), Herrera et al. (2016) for an extension of the Granger concept of
causality for spatial data.
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equation in which both trade flows and error terms are cross-sectionally corre-
lated. To the best of our knowledge, this is the only paper in which the channel
through which interactions occur and the precise functional form of the inter-
action scheme, constructed from the population shares, are completely derived
from economic theory.

At the microeconomic level, Schone et al. (2013) develop a theoretical model
to analyze the determinants of cities’ growth control decisions, showing that it
is the political struggle between different groups of voters and lobbies that is the
source of these decisions. Furthermore, by accounting for the residential mobility
of renters in the city, their model implies spatially interdependent local growth
control policies so that cities engage in strategic interactions. In the context
of social networks, the literature has also developed models to theoretically
justify the presence of peer effects. These models, derived from game theory
with strategic interactions, mainly explain spillovers by conformity or strategic
complementarities between individuals.

2.2 Applied spatial econometrics

Gibbons et al. (2015) propose a general framework that captures almost all
channels through which spatial effects may be included in a regression model.
In the cross-sectional case, this model is shown in (1).

yi = xiβ+λ

n∑
j=1

wy
ijyj+

n∑
j=1

wx
ijxjγ+

n∑
j=1

wz
ijzjθ+

n∑
j=1

wv
ijvjκ+εi, i = 1, · · · , n

(1)
where yi is the outcome for individual i,

∑n
j=1 w

y
ijyj is the aggregate7 value of

the neighboring outcomes of i, xi is a vector of individual characteristics and∑n
j=1 w

x
ijxj represents the aggregate value of neighborhood’s characteristics,∑n

j=1 w
z
ijzj is a vector of observed common factors and

∑n
j=1 w

v
ijvj represents

the spatial aggregate of unobservables. This last term may represent interac-
tions between observations in unobserved dimensions or spatially autocorrelated
errors. Finally, εi is the idiosyncratic error term. In the social interactions liter-
ature,

∑n
j=1 w

y
ijyj refers to endogenous effects,

∑n
j=1 w

x
ijxj is named contextual

effects while
∑n

j=1 w
v
ijvj represents correlated effects (Manski 1993).

This model allows different connectivity schemes for y, x, z and v. However,
in the vast majority of works, these matrices are the same, notably due to the
difficulty of justifying different interaction schemes. When individuals interact
in separate groups of the same sizes (for example, farmers who interact with
all other farmers in the same villages, but not with farmers in other villages,
with villages displaying the same number of farmers), Manski (1993) shows that
it is impossible to distinguish between endogenous and contextual effects even
in the absence of correlated effects. This is known as the reflection problem.
However, as soon as we depart from this specific interaction scheme, either by

7W is not row-standardized, this point is discussed below.
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assuming different group sizes (Lee 2007) or considering interactions along net-
works (Bramoullé et al. 2009), it is possible to distinguish between these two
different types of spillovers if correlated effects are absent. Therefore, consid-
ering the possibility of correlated effects is of the greatest importance for the
identification of spillover effects.

In applied spatial econometrics, two approaches dominate the selection of the
econometric specification. The first one, a general-to-specific approach, consists
in estimating a Spatial Durbin model, shown in (2), which already constitutes
a constrained version of model (1 where the vectors θ and κ are set to 0.8

yi = xiβ + λ

n∑
j=1

wijyj +

n∑
j=1

wijxjγ + εi, i = 1, · · · , n, (2)

As such, the SDM assumes away correlated effects and observed common
factors, which are prevalent in applied work. We return to this issue in Sec-
tion 2.3.3. Moreover, most of the time, this SDM specification is not driven
by economic arguments, but by statistical properties. LeSage & Pace (2009)
argue that the SDM generalizes the spatial autoregressive model to account for
possible omitted variables that are spatially autocorrelated (i.e neighborhood
characteristics).9 Although this problem is indeed pervasive in applied eco-
nomics, other threats to identification, presented in the next section, need to be
tackled to identify spillovers.

In a large majority of papers, once this model is estimated, using quasi-
maximum likelihood, Bayesian methods, two-stages least squares10, or general-
ized method of moments, the reduced form is computed and marginal effects are
calculated (LeSage & Pace 2009). These marginal effects are interpreted as the
direct, indirect, or total effect of a change in each determinant on the outcome
of interest, accounting for the presence of spillovers between observations, as
shown in (3) when the reduced form of model (2) is written in matrix form:

∂E(y | X,W)

∂Xk
= (In − λW)−1(Inβk +Wγk), (3)

where In stands for the identity matrix of dimension n.
The second approach used in applied spatial econometrics papers is the

specific-to-general strategy. It consists of starting with a linear model (with
or without neighborhood’s characteristics) and relies on specification tests (typ-
ically of the Lagrange multiplier or Wald type) to find the most relevant spatial
model (namely the one that best fits the data). The objective of this approach

8The SDM further encompasses the spatial lag model (SAR) when γ = 0, the spatial X
model (SLX) when λ = 0 and the spatial error model (SEM) when γ = −λβ. Note that in
the tax competition literature, the spatial lag model is used as a point of departure, assuming
that contextual effects play the role of the excluded instruments for the endogenous effect.

9The inclusion of neighborhood characteristics also implies more heterogeneity in the total
impacts (see LeSage & Pace 2009, p.40)

10In the SDM model, internal instruments for the 2SLS may be weak since only higher
order contextual effects can be used, the latter being potentially highly correlated with the
contextual effects.
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is to assess whether cross-sectional dependence should be modeled in the depen-
dent variable (SAR model), in the explanatory variables (SLX model) and/or
in the error term (spatial lag in the errors or spatial moving average errors).
Once the “best” specification is selected, the “impact” measures (average direct,
indirect, and total effects) are reported and interpreted as the impact change in
a given explanatory variable on the outcome. This model selection procedure
borrows from the Box-Jenkins approach developed for time-series data. As al-
ready pointed by Gibbons & Overman (2012), this specific-to-general model
selection procedure, initially motivated by computational reasons11, is strongly
hampered by the fact that it is not linked to any consideration on the economic
reasons for the presence of spillovers and their transmission channels.

An implication of both approaches is that spillover effects, under the form
of endogenous and/or contextual effects, are relegated as side-products of the
specification. Indeed, interpretations are based on marginal effects, which com-
pute the effect of a change in the (exogenous) determinants on the outcome,
accounting for spillovers. However, the spillovers per se are not of interest. Yet,
given the structural constraints inherent to these specifications, for instance, the
motivation for spillovers, the construction of the interaction scheme (selection of
the relevant interaction space, the functional form of the assumed links) and its
properties (possible evolution over time, endogeneity, mismeasurements, etc.),
the proper identification of these spillovers should be at the center of interest
and not considered as a data-driven consequence of the specification.

2.3 Spatial threats to identification

As the previous section has made clear, the presence of a spatial lag, the endoge-
nous effect, should be closely related to behavioral assumptions. The empiri-
cal modeling of interactions thus requires questioning the unit of decision and
its possible discrepancy with the unit of observation, something that has been
mostly overlooked in applied spatial econometrics. From an economic point of
view, units of decisions might be individuals, firms, local jurisdictions, govern-
ments, etc. that typically optimize objective functions under constraints. On
the contrary, the unit of observation is the unit on which the empirical analysis is
performed (typically depending on data availability). The discrepancy between
the unit of decision and the unit of observations raises classical caveats largely
documented in the spatial statistical literature: the ecological fallacy and the
change of support problem. The ecology fallacy arises when conclusions ob-
tained for aggregated data do not reflect the reality of individuals belonging to
this aggregation. Also called aggregation bias, it has received lots of attention in
regional and political sciences as it is common to have data at aggregated spatial
levels while the meaningful mechanisms are at a lower spatial level. The change
of support problem refers to issues related to the combination of spatial data

11Spatial models were traditionally estimated by maximum likelihood method, which re-
quired the computation of the Jacobian of the transformation, computationally costly.
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observed at various scales and support.12 The consequences of the discrepancy
between units of decision and of observations are further amplified in studies of
spatial spillovers as the threats to their identification are even more acute. We
now discuss these threats, that can be gathered into three main categories: i)
Nature and construction of the interaction matrix; ii) Use of proxy variables for
interaction; iii) Presence of spatial heterogeneity.

2.3.1 Role of the interaction matrix

The interaction matrix plays a crucial role in spatial econometric models from
the identification, estimation, or interpretation perspectives. With respect to
identification, in the context of model (2) and assuming exogenous explanatory
variables, Bramoullé et al. (2009) show that the interaction scheme should in-
clude intransitive triads, i.e triads such as ”peers of my peers are not my peers”
to identify endogenous effects.13 Developed for social networks, this seminal pa-
per spells out the conditions originally developed by Kelejian & Prucha (1998,
1999) in the context of SAR models. Turning to estimation, the (quasi-) max-
imum likelihood approach requires a correct definition of the functional form
and of the interaction matrix to provide unbiased estimators. Finally, the in-
terpretation of the model is mainly based on marginal effects, which explicitly
depend on W. As such, papers have studied the consequences of a misspecified
interaction matrix (Florax & Rey 1995, Paez et al. 2008, Vande Kamp 2019).
Further, in the context of non-stochastic exogenous connectivity matrices, sev-
eral statistical approaches have been developed to help the researcher to use
relevant connectivity schemes. Kelejian (2008) has initiated a series of papers
that use the J test of Davidson & MacKinnon (1981) to select the most relevant
interaction scheme, among a finite number of candidates. Also, Jin & Lee (2013)
develop Cox-type tests to choose between two competing interaction matrices,
while Bayesian model averaging procedures have also been derived (LeSage &
Pace 2009, Zhang & Yu 2018). In addition, models that simultaneously intro-
duce several interaction matrices in the (SAR) model have been developed (see
among others Lee & Liu 2010, Badinger & Egger 2011, Han et al. 2017, Hazir
et al. 2018, Debarsy & LeSage 2022).

Nevertheless, the large majority of papers in applied spatial econometrics
specify the interaction scheme between observations in terms of geographic prox-
imity. For instance, they consider k nearest neighbors, contiguity or other de-
creasing functions of distance (distance threshold, inverse distance, etc.). They
further include a robustness section with respect to the choice of the interaction
matrix, typically considering alternative functional forms of distance or different
numbers of neighbors.14

12Gotway & Young (2002), Wakefield & Salway (2001), among others, provides a complete
overview of the various statistical issues related to these topics.

13We assume here that individuals do not interact in groups. For the latter case, Lee (2007)
shows that as soon as the size of the group changes, the identification of endogenous effects
is warranted.

14LeSage & Pace (2014) argue that this fine-tuning of the connectivity matrix is unnecessary
and constitutes the biggest myth in spatial econometrics.
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The first invoked reason to rely on a geographically-based connectivity ma-
trix is its exogeneity (and non-stochasticity). This assumption allows to greatly
simplify identification and estimation, but the cost of this exogeneity is never-
theless very high. Indeed, it generally prevents the modeling of relationships
between aggregate units from socio-economic indicators, which generally lies
at the heart of interactions. Furthermore, it prevents one from accounting for
changes in the connectivity structure following an (exogenous) shock in some of
the determinants.15

Alternatively, Corrado & Fingleton (2012) advocate the use of economically-
based interaction matrices, as was already done in Case et al. (1993). This might
complicate the estimation strategy as the exogeneity is not guaranteed, but sev-
eral methods have been developed to account for potentially endogenous inter-
action schemes. Kelejian & Piras (2014) propose an IV procedure that directly
instruments the elements ofW, in the context of panel data models. This proce-
dure has been applied by Agrawal et al. (2020) who use syndicate membership as
instruments for endogenous inter-municipal cooperation between jurisdictions.
Qu & Lee (2015) assume that the endogeneity inW originates from the variables
used for its construction. This methodology has been extended to dyadic data
(Qu et al. 2021), to panel data models (Qu et al. 2017a, Shi & Lee 2018) and to
endogenous social networks (Johnsson & Moon 2021). In the context of social
networks, Jochmans (2023) develops an IV estimator that exploits restrictions
in W to construct instruments from leave-own-out networks.

The second reason which motivates the use of geographically-based connec-
tivity matrices is that it may act as a proxy of many economic phenomena (mo-
bility of firms or consumers, transport costs, traded goods, capital movements,
etc.). Following Neumayer & Plumper (2016), we argue that W must capture
the causal mechanism of spillovers and thus reflect connectivity. In other words,
W should define the transmission channel through which interactions occur.16

Using geographic proximity as a proxy for connectivity thus prevents drawing
sound conclusions with respect to interactions for at least two reasons. Firstly,
it says nothing with respect to the causal mechanism of spatial dependence
and thus cannot help distinguish alternative theories justifying cross-sectional
dependence. Secondly, a-theoretical geographical proximity is at best a mismea-
surement of connectivity, leading to misspecification problems discussed above,
and at worst, completely unrelated to the true channels driving interactions,
leading to unreliable conclusions with respect to spatial dependence.

However, in the context of microeconomic models, geographical space may
play an important role in understanding spillovers between units. We already
mentioned the work of Schone et al. (2013) on local growth control decisions,
who show that closer (in a spatial sense) cities interact more than cities located

15Boucher & Fortin (2016) develop and discuss a three-case categorization of the connec-
tivity matrices depending on their exogeneity and randomness.

16Neumayer & Plumper (2016) discuss crucial specification choices of the connectivity ma-
trix, which are most of the time overlooked in the applied spatial econometrics literature. In
our paper, we focus on the geographical nature of proximity, but refer the reader to Neumayer
& Plumper (2016) for further details.
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far away from each other. Glaeser et al. (1996) explain the high variance of crime
rate across cities using a model where agents’ propensity to engage in criminal
activities partly depends on the propensity of other agents in the neighborhood.
By contrast, in the context of network effects in education, Del Bello et al.
(2015) examine the relative importance of spatial proximity versus peer effects
in education outcomes. They show that once a precise definition of spatial
neighbors is used, and when one accounts for neighbors’ choices, there is no
evidence of spatial proximity effects on education. Furthermore, they show that
peer effects are important in education and operate mainly in schools. Finally,
Kim et al. (2020) develop a new theory of social-tie formation where individuals
care about the geographical location of other individuals, to account for the
transport cost inherent to social interactions.17

This discussion clearly shows the consequences of the discrepancy between
units of decision and units of observation. By specifying a model in which
the origin and nature of interactions are clearly specified, we know at which
aggregation level the model should be estimated and which connectivity matrix
will accurately reflect the causal mechanism of spillovers. In contrast, estimating
a model with spillovers on some (geographically) aggregated data not linked to
decision units leads to a loss of modeling of relationships between these aggregate
data, which prevents sound interpretations of the results.

The last point we make concerns the normalization of the connectivity ma-
trix. In the vast majority of papers, the connectivity matrix is row-normalized,
to interpret the spatial lag as the average value of the neighbors. The problem
with this normalization is that it is not neutral and creates misspecifications
if not derived from theory. The reason is that there is not a one-to-one cor-
respondence between the row-normalized model and the original one due to a
different normalizing factor for each row. In addition to this problem, row-
normalization also changes the informational content of the connectivity matrix
by converting absolute distances (geographic or not) into relative ones. For ex-
ample, if the connectivity between two observations should represent transport
costs, then it is the absolute distance that matters, not the relative one. On the
contrary, focusing on juvenile delinquency, Patacchini & Zenou (2012) develop a
model where they show that conformism to a social norm deters criminal activ-
ities, with conformity modeled through a row-normalized connectivity matrix.
As such, without theoretical justification, the row-normalization should not be
used. Kelejian & Prucha (2010) propose alternative matrix norms that do not
alter the model specifications, and which consist in dividing all elements of the
connectivity matrix by the same factor (the spectral radius, or the minimum
between the maximum of the row and column sums).

To summarize this section, we plead for giving up the blind use of a-theoretical
geographically-based connectivity matrices on the ground that it is exogenous,
deterministic, and acts as a proxy for many channels. Geographically-based

17The interested reader may consult Topa & Zenou (2015) for an extensive literature review
on the modeling of spatial spillover effects.
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proximity, unless theoretically grounded such as in Schone et al. (2013), jeop-
ardizes identification of the causal mechanism of spillovers and further prevents
the underlying economic reasons leading observations to interact, as should ide-
ally do structural models, which underpin spatial econometrics models. Further-
more, the row-normalization of the connectivity matrix should be avoided unless
theoretical motivations, such as those in Liu et al. (2014) exist. As stated by
Neumayer & Plumper (2016, p.177), “Specification choices [of W] should follow
theory rather than convention.”

2.3.2 Proxy variables to model interactions

As seen above, the workhorse model for applied spatial econometrics is the SDM
model as it accounts for omitted variables that are spatially autocorrelated,
when all other threats to identification are addressed. In addition, a constrained
version of the SDM, shown in (5) corresponds to the rewriting of the model with
spatially correlated errors (SEM), presented in (4).

y = Xβ + (In − λW)−1u, u ∼ iid(0, σ2In) (4)

= λWy +Xβ +WXγ + u (5)

where γ = −λβ. While the link between a constrained spatial Durbin model and
a spatial error model is a well-known issue since Burridge (1981), it is fundamen-
tal to distinguish between a true SDM and a SEM as the economic implications
are different. In the SDM (2), the behavior of an (statistical) unit is affected by
its characteristics and the behavior and characteristics of its neighbors, leading
to endogenous and exogenous spillovers between observed variables. In contrast,
in the SEM, interactions between units come from unobserved variables, leading
to completely different economic interpretations. As noted by Boucher & Fortin
(2016), the researcher does not always observe the ”true” variable of interest
and use proxies. For example, in terms of obesity, papers use Body Mass Index
(BMI) to proxy effort to reduce weight (see among others Christakis & Fowler
2007, O’Malley et al. 2014). Boucher & Fortin (2016) show that the apparent
contagion effect of BMI may come from the unobserved effort the individual
makes to reduce her weight, and which depends on her peers’ effort. Hence, the
derived economic model is similar to a SEM model. If the SDM is estimated
instead, one might wrongly conclude to the presence of contagion effects of BMI.

In light of this discussion, the common factor statistic, derived by Burridge
(1981), which tests whether the SDM model can be reduced to a SEM specifi-
cation, should be a fundamental part of the spatial empirical toolbox.

2.3.3 Spatial heterogeneity

In the applied spatial econometrics literature, spatial heterogeneity has often
been presented as a secondary econometric issue, with respect to spatial auto-
correlation. For instance, Anselin (2001, p. 311) states that spatial heterogene-
ity is “simply structural instability, either in the form of non-constant variances
in a regression model (heteroskedasticity) or in the form of variable regression
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coefficients. Most methodological issues related to spatial heterogeneity can be
tackled by means of the standard econometric toolbox”. Typically, discrete spa-
tial heterogeneity can be handled with dummy variables reflecting the spatial
regimes or spatial switching regressions, while continuous spatial heterogeneity
might be tackled with the inclusion of coordinates. Although this may have
somewhat evolved with the advent of geographically weighted regression or spa-
tial semi-parametric or nonparametric approaches as a way to tackle flexible
forms of spatial heterogeneity (see, among others McMillen 2010, Basile et al.
2014, Osland et al. 2016, Géniaux & Martinetti 2018), there is still a view that
spatial heterogeneity does not involve as many conceptual complexities as spa-
tial dependence. Yet, whenever looked at from the identification point of view,
we contend that spatial heterogeneity is a major threat to identification that is
generally overlooked, while conversely, the issue of unobserved heterogeneity is
at the heart of the identification strategy in network econometrics.

First, it is well known that in a cross-section, there is observational equiv-
alence between spatial heterogeneity and spatial dependence in cross-sectional
settings (Anselin & Bera 1998). In other words, when looking at a map showing
some clustering, it is impossible to know whether the underlying GDP is that of
spatial regimes or one that includes spatial interactions. For instance, we might
observe spatial clustering of firms and the underlying causes might be spatially
varying characteristics of the locations in terms of access to population, ameni-
ties, etc. or because there are direct interactions between firms. This issue is
also known in epidemiology as ”true” versus ”apparent” contagion (Messner &
Anselin 2004). Related to this, numerous authors have pointed out that spa-
tial interactions might be the result of unmodelled spatial heterogeneity under
the form of spatially varying coefficients. For example, McMillen (2003) shows
that spatial autocorrelation is also often the result of incorrect functional forms
and spatially autocorrelated omitted variables in space. Overall, this means
that a lack of proper handling of spatial heterogeneity will result in an under-
or overestimation of the spatial lag coefficient, and possibly spurious spatial
autocorrelation, and hence spurious assessment of spatial spillovers.

Second, common factors are frequent whenever spatial units are affected
by unobserved shocks or events occurring at a higher spatial scale. While
distinguishing between endogenous (direct spatial interactions) and exogenous
(group-average) effects is already challenging, the possible occurrence of such
unobserved common shocks adds additional complexity. If there are valid ar-
guments that these unobservables factors are uncorrelated with the included
control variables, robust inference can be applied. In this respect, we follow
Conley & Molinari (2007) and Kelejian & Prucha (2007) whose approach is
preferable to specifying a strong parametric form for the error terms. However,
most of the time, these unobserved common factors are likely to be correlated
with the determinants. Bai & Li (2021) develop a spatial panel model where
unobserved heterogeneity is modeled with interactive fixed effects rather than
with additive fixed effects, to account for more flexible unobserved patterns. In
the context of tax competition, Chirinko & Wilson (2017) estimate the factor
model of Pesaran (2006) and found that heterogeneous responses to common
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shocks, as well as delayed reaction, are crucial for understanding spillovers be-
tween US States. These authors show that States’ tax rate follow a “ride on a
seesaw” rather than a race to the bottom, as usually found in the literature.

Third, the impact of spatial sorting is not always considered. Spatial sorting
refers to the situation where heterogeneous individuals self-select themselves
into various locations following observed but also unobserved characteristics.
When the analysis refers to units of decisions, spatial sorting directly affects the
structure ofW which may be endogenous (see above). Yet, spatial sorting might
also be an issue regarding the control variables, which then correlate with the
error terms, whether the observations are units of decision or for aggregated spa-
tial data. If individual unobserved characteristics are correlated with both the
outcome and location, then spatial fixed effects (spatial differencing) is of little
help to restore identification. For instance, when the control reflects character-
istics of the population (structure by age, professional category, etc.) that are
directly linked to the location decisions and hence to the resulting spatial sort-
ing, they will be endogenous. The network econometrics literature has largely
approached this issue by specifying a structural model of network formation in
addition to the outcome model. Otherwise, one might think to use instrumental
variables. A large range of papers have in effect considered the estimation of
spatial models with endogeneity coming from both the endogenous spatial lag
and additional endogenous variables. These papers are reviewed extensively in
Le Gallo & Fingleton (2019) for both cross-sectional and panel data models
and for single-equation and multi-equation models. They essentially consist in
using versions of instrumental variables/GMM with an extended set of instru-
mental variables, where, in addition to the traditional powers of spatial lags of
the explanatory variables to instrument for the endogenous spatial lags, other
instruments are added. Discussions are then about the asymptotic properties of
the IV/GMM estimators. Another route, and if one is not willing to put even
more structure in the model and at the same time, prevent identification and
interpretation complications whenever several endogenous variables are present
is to avoid the inclusion of bad controls altogether.

2.4 Structural identification strategies

From an identification perspective, understanding the causes of non-random
spatial distribution of observations necessitates discriminating between all these
various possibilities (endogenous effects, exogenous effects, spatial heterogene-
ity, common shocks, spatial sorting) while mitigating the impact of omitted
variables. The identification strategies developed in the literature on peer ef-
fects may constitute food for thought for applied spatial interactions. Gibbons
et al. (2015) and Bramoullé et al. (2020) discuss several identification strate-
gies, based on exogenous sources of variations (random peers, random shocks),
nature of data (panel), or structural models (network formation or modeling of
structured omitted variables). A substantive part of identification strategies de-
veloped in the peer effects literature have been derived to solve the complexities
induced by endogenous modeling of the interaction scheme, constructed from
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socioeconomic indicators (interpersonal links, for instance). Nevertheless, some
problems related to the definition of the interaction matrix remain. For exam-
ple, partial network knowledge only has started to receive some attention (see
Boucher & Houndetoungan 2023, Lewbel et al. 2023, for further details), while
time-varying networks are only at their early stages, a topic for which meth-
ods developed in the already extensive theoretical spatial econometric literature
might be useful (see, among others Yu et al. 2008, Kelejian & Piras 2014, Qu
et al. 2016, 2017b, Shi & Lee 2017).

3 Reduced form approach to spillovers

We now turn to reduced-form approaches where the parameter of interest is
a treatment effect. This experimentalist paradigm with randomized controlled
trials as the gold standard18 is the core of most applied econometrics. Although
this causal inference literature avoids behavioral assumptions, one of the found-
ing blocks of all its methods nevertheless is a behavioral nature: the Stable Unit
Treatment Value Assumption (SUTVA) (see Rubin 1974). When imposed, this
assumption prevents the presence of general equilibrium effects, social (spatial)
interactions, spillovers, or dynamic behavior. In this context, spillovers, named
interference in the impact evaluation literature, have been first considered a
nuisance that confounds the identification of the parameter of interest. How-
ever, in biostatistics and epidemiology, a growing, but very active, and rapid
literature starts to deal with this limit by deriving estimators that allow interfer-
ence, which is considered as a way to enrich the identification of the parameter
of interest.19 This section discusses all these issues together with the way the
specific characteristics of spatial data have been considered so far.

3.1 The canonical impact evaluation model

The canonical impact evaluation model of Rubin (1974) starts with the effect
of a binary treatment T , Ti ∈ {0, 1}, which refers to the action that applies
to the units, such as a public policy intervention.20 Each observation has two
potential outcomes: y0i is the outcome that would be observed for unit i in the
absence of intervention, Ti = 0, and y1i is the outcome that would be observed
in its presence, Ti = 1. The causal impact of the intervention for unit i is
∆i = y1i − y0i,∀i = 1, ...N . For each unit, only one of these two outcomes
is observed, the other being the counterfactual. The fundamental problem for
estimating ∆i is then a missing observation problem (Holland 1986).

At the population level, the literature focuses mainly on the Average Treat-
ment Effect (ATE), E(y1i − y0i), and the Average Treatment Effect on the

18We do not provide an extensive literature review of the potential outcomes approach. The
interested reader may consult, among others, Imbens & Rubin (2015), Abadie & Cattaneo
(2018), Fougère & Jacquemet (2021) for surveys.

19See for instance VanderWeele, Ogburn & Tchetgen Tchetgen (2012), VanderWeele & An
(2013), Ogburn et al. (2020), Reich et al. (2021).

20We only consider binary treatments.
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Treated (ATT), E(y1i − y0i|Ti = 1). At the subgroup level, for values of the
pretreatment variables, X, the Conditional Average Treatment Effect (CATE)
is also defined as E(y1i|X = x)− E(y0i|X = x) to account for a varying treat-
ment effect along the various strata ofX. Importantly, the variables inX should
be predetermined relative to the treatment, in the sense that the values of X
cannot be changed by active manipulation of the treatment T , such as the char-
acteristics of the units measured before T is known. We will come back later to
this important issue.

According to Heckman & Vytlacil (2007), the definition of a causal effect
should precede the stages of identification and estimation. A causal effect may
be defined for an individual, a subpopulation, or the entire population and al-
ways involves one or more counterfactuals. Then, a causal effect defined for a
subpopulation or the population is identified only if the counterfactual quantities
can be equated in some way with observable population data without introduc-
ing selection bias. Identification of this causal effect depends on the assignment
mechanism in the treatment. For example, in a randomized controlled experi-
ment, the ”prima facie causal effect” (Holland 1986), E(Y |T = 1)−E(Y |T = 0)
equals ATE. For observational data, it is generally not equal to a population
average causal effect, and identification assumptions must be made:

Assumption 1 (Stable Unit Treatment Value Assumption, SUTVA) The
potential outcomes for any unit do not vary with the treatment assigned to other
units, and, for each unit, there are no different forms or versions of each treat-
ment level, leading to different potential outcomes.

Assumption 2 (Ignorability) Given X, treatment assignment T is indepen-
dent to the potential outcomes: T ⊥ (y0i, y1i)|X

Assumption 3 (Positivity) For any value of X, treatment assignment is not
deterministic: 0 < P (T = t|X = x) < 1,∀t, x

Assumption 1 first assumes the absence of interactions between units.21 It
also states that a single version exists for each treatment. Spatial analysis
is mainly concerned with the first point as it involves the absence of spatial
spillovers.22 Assumption 2 holds in observational studies when there are no
confounding variables that bring dependence between Y and T . Conversely, lack
of independence between the treatment and the potential outcomes is referred to
as confounding, which can occur due to the self-selection of agents in treatment
based on their potential outcomes or when information correlated with potential
outcomes is used for treatment assignment, such as place-based policies targeting
specific areas.23 Then omitted variables or spatial heterogeneity are also major
threats to identification in this framework.

21Manski (2013) calls this first condition the individualistic treatment response assumption.
22To the best of our knowledge, the second point covered by SUTVA hasn’t yet been studied

in spatial applications.
23Assumptions 2 and 3 together are called Strong Ignorability or Strong Unconfoundedness.

16



3.2 Interference

SUTVA includes within its definition a no-interference assumption. Interference,
the term used in the biostatistical literature rather than spillovers, ”is said to
be present when exposure or treatment received by one individual may affect
the outcomes of other individuals” (Tchetgen & VanderWeele 2012). Initially,
it was merely considered as a threat to the identification of the main causal esti-
mands with papers assessing the bias of causal effects estimated under SUTVA
(Sobel 2006) and proposing designs of experiments that avoid interference or
adjusting inference (Rosenbaum 2007, Athey et al. 2018). Then, the focus has
progressively switched to a substantive identification of interference, both in
terms of estimands of interests and design of experiments.

The literature has first remained agnostic on the source of interference and
has proceeded by extending the standard estimands presented in section 3.1
to four key estimands, in the context of a design-based approach at the unit
level belonging to some groups. By defining aj = (aji,aj(−i)) the treatment
program for all individuals in group j, composed of the treatment for individual
i and all other individuals aj(−i), and yji(ai,aj(−i)) as the potential outcome
for individual i in group j, subject to treatment aji = 0, 1, and the treatment
program for all other individuals established at aj(−i), Hudgens & Halloran
(2008) define:

1. Direct effect: DEi(aj(−i)) = yji(aji = 1,aj(−i)) − yji(aji = 0,aj(−i)),
ie. the difference between the potential outcome for individual i given
treatment compared to the potential outcome for that individual without
treatment, all other things being equal (including the treatment status of
the others individuals.

2. Indirect effect: IEi(aj(−i),a
′
j(−i)) = yji(aji = 0,aj(−i)) − yji(a

′
ji =

0,a′j(−i)). This estimand is also called the spillover or peer influence effects
as it compares untreated subject i under scenarios where other subjects
receive aj(−i) versus a′j(−i). It equals 0 if there is no interference. The

indirect effect may also be computed for treated individuals (aji = 1)

3. Total effect: TEi(aj(−i),a
′
j(−i)) = yji(aji = 1,aj(−i))−yji(a

′
ji = 0,a′j(−i)).

This estimand reflects the difference in responses that would be seen
in i, between the scenarios in which she is treated and the others re-
ceive treatment program aj(−i) and i is not treated and the others re-
ceive another treatment program a′j(−i). Note that total causal effects

are not commutative, in general. Lastly, we have TEi(aj(−i),a
′
j(−i)) =

DEi(a
′
j(−i)) + IEi(aj(−i),a

′
j(−i)).

4. Overall effect: OEi(aj ,a
′
j) = yji(aj) − yji(a

′
j). This effect looks at the

overall difference in potential outcomes for unit i between two alternative
population treatment programs aj and a′j . This is similar to TEi, but
OEi allows for individual treatment to be determined by T (whereas TEi

always includes aji = 1, a′ji = 0). Once these effects are considered over
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more general treatment scenarios, OEi will correspond to the effect as
“averaged over a treatment policy”.

These effects are then averaged (Hudgens & Halloran 2008). Allowing for in-
terference makes causal inference challenging, so that in practice researchers
usually impose an underlying structure limiting its scope. The first and still
the most common relaxation of the no interference assumption is that of partial
interference or clustered interference (Sobel 2006). In this case, it is assumed
that individuals can be partitioned into distinct groups, such that interference
can occur between individuals in the same group, but there is no interference
between individuals in different groups. This assumption should approximately
hold if individuals are clustered in space, time, or some other fashion. Second,
a growing literature tackles the case where interference arises on a network,
with observations interfering with others along connected edges. This implies
that assumptions about interference are driven by the structure of the network.
Most papers studying network interference assumes that the network is known
and given a priori, as in the applied spatial econometrics literature. Finally,
general interference has been considered, in which no explicit assumption on
interference is made. Such a setting presents major difficulties and, therefore,
has rarely been used.

A popular approach to formalize causal inference under interference has
been introduced by Halloran & Struchiner (1995) and Aronow et al. (2017)
with the concept of exposure mapping that summarizes the impacts from other
individuals’ treatments into sufficient statistics. A mapping is specified that
relates the vector of treatment assignments for the experimental units to a
finite set of exposures that can be assigned to them. Causal effects, called
’exposure effects’, can then be defined in terms of comparisons of outcomes
under different exposures. This framework is flexible because one can use any
form of mapping to characterize the interference structure. The link to the
connectivity matrix is obvious and, likewise, for the obtained spillover effects
to be valid, the specification of the exposure mapping must be justified. If
the chosen specification is inappropriate, the resulting causal inference may be
misleading (e.g., failure to detect treatment spillovers) with imprecise variance
estimation. Sävje et al. (2021), Sävje (2023) are the first to study these questions
and provide assumptions under which these problems can be mitigated.

3.3 Causal inference with spatial interference

We now describe the main strategies used when the SUTVA assumption is not
verified, focusing our exposition on observational spatial data.24

24There is an extensive literature on causal inference under interference in experiments with
design strategies incorporating network information and controlling treatment assignments to
mitigate interference (see among many others Hudgens & Halloran 2008, Liu & Hudgens
2014, Basse & Airoldi 2018, Aronow, Eckles, Samii & Zonszein 2021, for literature reviews).
The specific case of spatial experiments with interference is reviewed in Aronow, Samii &
Wang (2021), Samii et al. (2023). In particular, they define a quantity called an average
marginalized response, which measures how on average outcomes that are a given distance

18



3.3.1 Spatial interference under unconfoundedness

In the spatial context, Cerulli (2017) makes a first proposal to account for inter-
ference under unconfoundedness. His idea is to specify the potential outcome
yi0 as a parametric function of the potential outcomes yj1 of the neighboring
observations. His model is as follows:

y0i = µ0 + xiβ0 + γ

n1∑
j=1

wijy1j + ε0i

y1i = µ1 + xiβ1 + ε1i (6)

where µ0 and µ1 are scalars, β0 and β1 are two unknown vectors defining the
responses of unit i to the vector of covariates, ε0 and ε1 are idiosyncratic error
terms, wij are the elements of a row standardized interaction matrix and n1

is the number of treated units. He then shows that substituting Eq.(6) into
yi = y0i + Ti(y1i − y0i) and assuming that the expectation is conditionally
unconfounded (E(ygi|Ti, xi) = E(ygi|xi) with g = 0, 1), yields a consistent OLS
estimator of the ATE when yi is regressed on (1, wi,xi, wi(xi − x̄), zi) with
zi = vi +wi(v̄− vi) and vi =

∑n1

j=1 wijxj . However, this parametric approach
is not the most commonly used in the literature, which rather prefers to rely on
the propensity score approach.

The propensity score, e(x) = Pr(T = 1|X = x) is the conditional probability
of exposure, given X, where the overlap condition, i.e. 0 < e(x) < 1 is assumed
to hold. e(x) acts as a balancing score when both overlap and unconfoundedness
hold (Rosenbaum & Rubin 1983). Propensity scores are typically estimated
using a logistic or a probit regression model. Then, to estimate the ATE, various
strategies can be used, such as inverse-probability weighted (IPW) estimator,
doubly robust estimators, or matching procedures.

Spatially explicit versions of propensity score-based procedures have been
developed to deal with spatial confounding, i.e. unobserved spatially structured
variables affecting both the outcome and the treatment. Davis et al. (2019) in-
clude a conditional autoregressive prior for the random terms of the propensity
score model and the outcome models. They show that the inclusion of spa-
tial random effects gives lower bias and lower RMSE. Another route has been
taken by Papadogeorgou et al. (2019) who propose to combine the similarity of
propensity scores with spatial similarity to perform the matching between the
treated and control units to estimate a distance-adjusted propensity score.

With respect to spatial interactions, some rather ad hoc proposals exist. For
example, in order to estimate the propensity scores in the first stage, Chagas
et al. (2012) use a probit model including both a spatial lag term and a spatial
error term that they estimate using Monte Carlo Markov Chains. This raises an
important issue as the spatial lag term Wy cannot be considered as a predeter-
mined variable. Indeed, if the outcome y is determined by the treatment vector

from an intervention site are affected by activating treatment at that site, taking into account
ambient effects emanating from other intervention sites. See also Pollmann (2023).
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T, then so will be Wy. As noted in Gibbons et al. (2015, p.133), “the endoge-
nous spatial lag, which is an aggregation of the dependent variable, cannot be
directly, exogenously manipulated within the population of sample to which the
model related. Further, it cannot be changed holding other factors (determi-
nants) constants.”. Alternatively, Zigler et al. (2012), in considering the impact
of environmental regulations on air quality measures observed at spatial loca-
tions throughout the US, includes the spatial information by modeling the two
potential outcomes as a function of treatments and a spatially-varying Gaus-
sian process. Giffin et al. (2023) include spatial spillovers in treatment using a
Bayesian-spline-based regression model in the first step.

In the statistical/biostatistical literature dealing with interference, the first
identification and estimation methods were derived under the assumption of
partial interference. Hong & Raudenbush (2006) and Verbitsky-Savitz & Rau-
denbush (2012) mimic a two-stage experiment and base their identification on
a generalization of the standard conditional randomization assumption made at
the individual level, which they call a spatial ignorability assumption, and then
use a multilevel propensity score stratification that allows for partial interfer-
ence. Finally, we note that a growing statistical literature derives identifica-
tion and estimation methods under unconfoundedness when interference occurs
on a known network (Liu et al. 2016, Aronow & Samii 2017, Forastiere et al.
2021). Typically, these papers start by defining an exposure mapping function
(or equivalent), which specifies how the treatment is propagated to immediate
neighbors and then gives propensity-weighted estimates. Spatial extensions of
these proposals still need to be developed.

3.3.2 Spatial interference with confounding

A confounding variable is an unobserved variable that influences both the hy-
pothesized treatment and the hypothesized outcome. When not carefully ad-
dressed, it can generate an association between treatment and outcome that can
be falsely considered as evidence of a causal effect of the former on the latter.
Examples include common spatial shocks that affect neighboring observations.
When the ignorability assumption cannot be maintained, several identification
strategies are possible with various identification assumptions and/or relying on
the specific design of the data.

We start with the difference-in-differences (DiD) model, which relies on the
availability of data on at least two periods (before and after treatment) for
both control and treated groups, and the parallel trend assumption. Formally,
suppose that there is a binary treatment and that observations i = 1, ..., n are
available at two time periods. The treatment occurs in one group during the
second period, and then the standard DiD equation reads as:

yit = α0 + α1Xit + α2Dit + α3T̃it + α4DitT̃it + εit (7)

where Dit is a dummy indicating treatment status for unit i at time t, and T̃it is
a dummy indicating period. As is well known, under the assumption of parallel
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trend and assuming that εit is an iid error term, uncorrelated with Dit and
T̃it, the ATE is equal to α4, so that evidence of a causal effect is present when
H0 : α4 = 0 is rejected.

Several papers have estimated a ”spatial” version of the DiD model by in-
cluding a spatial lag term in this equation and/or a spatial autoregressive process
in the error term.25 The use of an endogenous spatial lag Wy in difference-in-
differences models raises more serious issues, similar to our previous discussion
of the papers including such a spatial lag in the first step of a propensity score
matching procedure. Because of simultaneity, a spatial lag term cannot be
considered as a pre-treatment variable. Moreover, the presence of a spatial
lag implies that the remaining coefficients cannot be considered marginal effects
anymore, and consequently, the parameter α4 cannot be interpreted as the ATE.
At best, average direct/indirect/total effects can be calculated (see LeSage &
Pace 2009), but it remains to be demonstrated that the average direct effects
(in the spatial econometrics meaning) of the treatment could be interpreted as
the ATE. Other proposals have taken a more rigorous approach to identification
in DiD models on spatial data.

Delgado & Florax (2015) consider the case where causal spatial spillover
effects where the potential outcome of an individual depends on her own treat-
ment, as well as on the treatment status of proximate neighbors. They define
Ws as the (nT, nT ) block-diagonal row-standardized interaction matrix contain-
ing non-zero elements for neighboring spatial units. This entails the presence of
the term (I + ρWs)D ◦ T̃ in equation (8), where ◦ is the element-by-element
multiplication, or Hadamard product, giving the model with spatial interaction
in the responses in matrix form:

y = α0 + α1X+ α2D+ α3T̃+ α4(I+ ρWs)D ◦ T̃+ ε (8)

= α0 + α1X+ α2D+ α3T̃+ α4D ◦ T̃+ α5WsD ◦ T̃+ ε (9)

with α5 = ρα4 in equation (9), leading to the average treatment effect ATE =
α4(1+ρWD), where WD is the average proportion of treated neighbors. Con-
sequently, ATE is a function of the magnitude of the direct effect of treatment
α4 and an indirect effect α5WD.26 This method has been extended to the
multivariate case by Bardaka et al. (2019) while Butts (2021a) proceeds with
the notion of exposure mapping, hence not relying on a linearity assumption
of spillovers, and allowing for both local spillovers onto control units and onto
treated units. The case of spatially-targeted treatment is investigated in Butts
(2023) with the estimation of a treatment effect curve. Huber & Steinmayr
(2019) start with a partial interference assumption, where SUTVA is verified
at an aggregate level, allowing the identification of an individual effect and a

25See among others.Sunak & Madlener (2016), Diao et al. (2017), Dubé et al. (2017), Kaneko
et al. (2019), Xu & Liu (2021), Zeng & Bao (2021).

26Empirical applications of this approach in empirical spatial econometric papers can be
found in Chagas et al. (2016), Han et al. (2018), Feng et al. (2021), Kosfeld et al. (2021),
Madeira Triaca et al. (2021), Yu (2021).
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within-aggregate spillover effect driven by the treatment of other individuals in
the group. As Roth et al. (2022), we expect more development on DiD models
with spillovers in the coming years.

Another strategy relying on a specific design of the data is that of the re-
gression discontinuity design. These designs are based on the existence of a
known cut-off and are therefore useful in the analysis of public policy charac-
terized by discrete policy-led interventions above or below certain levels. The
usual scenario is that all individuals or units receive a score and the treatment
is offered to the individuals whose score is above (below) the threshold. If the
unit’s characteristics do not change abruptly at the cutoff point, then the causal
effect of the treatment can be uncovered by the change in treatment outcome
as determined by the treatment assignment rule. Of particular interest in a
spatial context are RDDs where the thresholds are geographic borders, a case
that the literature refers to as a geographic RDD (Keele & Titiunik 2015, 2018,
Butts 2021b). In this case, the geographic border is considered as a natural
experiment. One side of the border is treated (for example, a regional subsidy
or other form of policy intervention), while the other side doesn’t receive the
treatment. However, an obvious issue in these designs is spatial spillovers within
units on each side of the border together with spatial spillovers operating across
the border, which do not allow us to interpret the usual estimates of RDD as
ATEs. Some papers have tackled this issue. For instance, Aronow et al. (2017)
show that allowing for interference of arbitrary and unknown nature under a
local randomization assumption, the causal effect consisting of the difference in
means applied to subjects near the boundary can be interpreted as the Hudgens
& Halloran (2008)’s average direct effects for this subpopulation of subjects. In
the context of voter turnout during a presidential campaign, Keele & Titiunik
(2018) assume, similarly to Verbitsky-Savitz & Raudenbush (2012), that inter-
ference occurs only when treated individuals are in close geographic proximity to
a sufficiently high number of control individuals. This allows them to define and
identify non-parametrically estimands for the direct and indirect effects. Corn-
wall & Sauley (2021) also consider the question of spatial spillovers in regression
discontinuity design. Their approach consists in residualizing the outcome by
applying a spatial Durbin model and then proceeding with the RDD usual esti-
mates. The causal estimands at hand are unfortunately not defined clearly and
as we mentioned above, using parametric specifications with a spatial lag in a
reduced-form context raises important identification issues.

3.3.3 Sources of interferences

An emerging literature in biostatistics focuses on sources of interference. Ac-
cording to Ogburn & VanderWeele (2014), there are three specific mechanisms,
not mutually exclusive, that might cause interference. In the case of direct in-
terference, the treatment Ti of individual i directly impacts the outcome Yj of
individual j, regardless of the value of Yi. Contagion interference occurs when
there is dependence between the outcomes Yi and Yj , and therefore treatment
Ti can impact Yj through its relationship to Yi. Peer effects might be an ex-
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ample. Finally, allocation interference refers to the assignment of subjects to
groups and Yi can be impacted by the characteristics of the other subjects in
that group. Several mechanisms might be present simultaneously.

This classification is close to the typology of Manski (1993), of, respectively,
contextual effects, endogenous effects, and correlated effects. Disentangling the
sources of interference requires more structured approaches relying on models
and identification issues that are close to the ones detailed in section 3, including
the need to control for confounding and homophily (Tchetgen & VanderWeele
2012, VanderWeele, Tchetgen & Halloran 2012, Ogburn & VanderWeele 2017,
Liu & Tchetgen Tchetgen 2021, Ogburn & Shpitser 2021). In the tax compe-
tition literature, an example of such an approach is Agrawal (2016) who shows
how spillovers drive the differences in equilibrium tax rates between neighboring
jurisdictions and then uses these differences to identify tax competition.

4 Recommendations for applied spatial econo-
metrics

In this section, we propose some recommendations for good practice in applied
spatial econometrics, based on our discussion on identification in spatial struc-
tural and reduced forms. These recommendations include a clear discussion
on the parameters of interest, the internal logic of using a structural versus a
reduced approach, the unit of decision, and, related to this, the choice of in-
teraction, the issue of spatial heterogeneity and spatial confounding, and the
nature of inference.

Parameters of interest. The first recommendation is related to the need to
clearly define the parameters of interest, i.e. those for which the researcher
wishes to provide a causal interpretation. These parameters might be spatial
spillovers (endogenous and/or contextual spillovers) or they might be other co-
efficients related to the impact of some variable on another variable. As we
saw in section 2, both are of interest when the analysis of spatial spillovers en-
riches the impact analysis. While this recommendation might seem trivial or
unnecessary, one has to admit that many applied spatial econometric papers
are not explicit enough, especially when the identification strategy is blurred
with spatial spillovers solely obtained as a side-product of a data-driven chosen
specification. When spatial spillovers are the main parameters of interest, a
structural approach with special care devoted to the identification conditions
and adequate considerations of the spatial threats discussed in section 2.3 is
appropriate. Otherwise, a reduced-form approach (where identification and in-
terference are also carefully discussed) might be considered.

Approaches. The necessity of a clear discussion of the parameters of interest
leads to our second recommendation, which is to keep in mind the specific fea-
tures of identification in each of the structural and reduced-form approaches.
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On the one hand, in structural models, the mechanisms of underlying interac-
tions should ideally be set up. For instance, in the case of fiscal federalism,
one can rely on the various models of local government policy interactions: fis-
cal competition, bidding for firms, yardstick competition, expenditure spillovers
and Tiebout sorting (Agrawal et al. 2022). A purely structural approach is not
without difficulties, as these various mechanisms yield the same reduced reac-
tion function. Likewise, in the peer effects literature, it is only very recently
that a structural model managed to distinguish between the behavioral sources
of interactions (conformism or spillovers) within a linear-in-means model(see
Boucher et al. 2024). On the other hand, in causal reduced forms, an important
first step consists in precisely defining the causal estimands of interest. As we
point out above, some papers introduce a spatial lag term of the exogenous or
the endogenous variables ex-post in PSM, DiD or RDD designs without defin-
ing the causal estimands at hand, making it unclear what is really identified.
Moreover, an endogenous spatial lag term (Wy) cannot be included in a causal
reduced form model, as it cannot be considered as a pretreatment variable in the
sense that it is impossible to exogeneously manipulate it while keeping all other
variables constant. This issue can be related to the problem of bad controls,
that is, the introduction of control variables that can be affected by the treat-
ment (see for instance Zeldow & Hatfield 2021). The inclusion of neighborhood
characteristics variables (WX) might be relevant to mitigate spatial mismatch
issues, yet, if the individual characteristics are bad controls, as it is often the
case when spatial sorting is present for instance, including the neighborhood
characteristics in the model might worsen the problem. If one thinks that spa-
tial spillovers might be an issue in an impact evaluation, the contributions that
view them as interferences (see section 3.2) are more relevant.

Linked to this recommendation, we point out two major issues related to
the current practice in applied spatial econometrics, which heavily relies on
the spatial Durbin model (SDM). First, as mentioned above, the SDM model
is widely used in applied spatial econometrics based on the argument that in
the presence of spatially autocorrelated omitted variables, this model provides
consistent estimates of parameters (LeSage & Pace 2009). However, it should
now be apparent that this strategy is only valid if all other threats to identifi-
cation are adequately considered, which is usually not the case. Furthermore,
it assumes that the exogenous variables (X) and their spatial lags (WX) are
plausibly exogenous, a major aspect that is rarely discussed. In other words,
the standard spatial Durbin model is an adequate answer to identification in
very restrictive cases only, characterized by assumptions that are rarely, if ever,
met when working with observational data. More fundamentally, as the pres-
ence of an endogenous spatial lag term introduces many complexities (in terms
of identification, interpretation, and estimation), which is not appropriate in a
purely reduced-form model, the spatial Durbin model should ideally be rooted
in an underlying theory, as is done in the social network literature for instance.

Second and related to this, the impacts (total, direct, indirect impacts, de-
veloped by LeSage & Pace 2009) traditionally computed in SAR or SDM spec-
ifications cannot be considered as impacts in the causal sense without having
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addressed all possible threats to identification. Otherwise, they should only be
viewed as marginal changes without causal interpretation.

For all the reasons set above, when the main parameter of interest is not
some spillover effect (or if the theory does not clearly state that structural
spillovers should be accounted for), reduced forms with appropriate treatment
of interference might be more adequate.

Unit of decision vs unit of observation. Once the approach is chosen and the
identification strategy adopted, related specifications will have to be estimated.
We set forth to precisely consider the implications of the potential discrepancy
between the unit of observation of the analysis and what we call the unit of
decision. Most of the time, the literature in applied regional science considers
aggregate spatial units (municipalities, counties, regions, countries) to perform
the quantitative analysis, but without questioning its adequacy with respect the
the decision making process. For instance, using regional data to study policies
that are set up at a different geographic scale is not particularly relevant. In
relation to these, we raise a more fundamental issue related to identification. In-
deed, many papers estimate the SAR or the SDM model using aggregate spatial
units, such as counties, municipalities, etc. in contexts where these spatial units
are not units of decisions; sometimes, they may be only aggregations of units
of decision. Following our discussion on structural models, we state that when
the unit of observation is not a unit of decision, a specification including an en-
dogenous spatial lag (as in SAR or SDM models) is mostly not relevant, unless
there are strong theoretical foundations that imply interdependence at equi-
librium (for instance, microfounded gravity models). Otherwise, as discussed
above, the spatial lag coefficient should be linked to behavioral assumptions
with stringent conditions in terms of identification, and where there should be
coincidence between the unit of observation and the unit of decision. However,
even for this case, Gibbons et al. (2015) advocate that the scope for including an
endogenous spatial lag is more limited than the current practice (at least in the
cross-sectional case), pointing out an additional limitation that the simultaneity
between decisions is rarely discussed.

Interaction matrix. Another more traditional issue in applied spatial economet-
rics concerns the definition of the interaction matrices. Our point related to the
question of identification is to make sure, in the context of a structural form,
that the choice of the interaction matrix allows the identification of spillover
effects. This is almost always the case for geographically-based connectivities
(since they are not of the group type and include intransitive triads). How-
ever, as pointed out by Gibbons et al. (2015), such weights might generate weak
instruments if they are not sufficiently sparse. More fundamentally, the con-
nectivity matrix should capture the causal transmission channel of interactions
and plays a fundamental role in the identification of spillover effects.

To sum up, it is important to consider the cost of using an a-theoretical
geographically-based interaction matrix. Indeed, such a matrix precludes the
identification of the causal mechanism of interactions between observations, as it
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constitutes a catch-all of different interaction theories (see Neumayer & Plumper
2016, Agrawal et al. 2022, for examples). Further, it does not allow to account
for the effects of a change in a public policy variable on the structure of inter-
actions, and may therefore miss out on public policy effects. Finally, a purely
spatial interaction structure completely ignores the socio-economic sources of
interactions. These socio-economic channels contain many econometric chal-
lenges, but are much richer in terms of interpreting and understanding spillovers.

Spatial heterogeneity. An important point is that spatial heterogeneity should
not be undermined, either in structural forms nor in reduced forms. In the
structural framework, heterogeneous effects of spillovers (or other variables of
interest) could be considered, using the QML approach developed by Aquaro
et al. (2021) or the Bayesian framework of Pace & LeSage (2004) and Cornwall
& Parent (2017). In fact, the theoretical models developed by Ertur & Koch
(2007) and Behrens et al. (2012) imply heterogeneous parameters for spillovers
and determinants across countries. Agrawal (2016) model strategic interactions
as a function of distance to the borders between local jurisdictions. Within a
reduced form approach, spatially differentiated treatment effects may be ob-
tained by interacting the treatment with a spatial indicator. However, as we
have forcefully argued previously, spatial heterogeneity is a crucial issue to be
considered in order to obtain estimates that can be interpreted causally, both in
structural or in reduced forms as spatial heterogeneity also acts as a confounder
of spillovers, notably through sorting or hierarchical structure (common factors).
This treatment of spatial heterogeneity is typically overlooked in applied spatial
econometrics work, preventing clear interpretations of findings. We recommend
that much more attention be paid to the presence and form of spatial heterogene-
ity. There are several possibilities to mitigate the impact of unobserved spatial
heterogeneity, such as using flexible spline functions of latitude-longitude coor-
dinates (Reich et al. 2021). Related to this, we emphasize that the econometric
consequences of spatial sorting have received a lot of attention in the urban
economics literature, but less so in applied spatial econometrics. This problem
might arise whether the analysis pertains to spatially mobile units of decision or
whether some control variables are the results of outcomes of spatially mobile
decision units, such as the percentage of each activity category in a country and
should be viewed as bad controls.

Structure of error terms. Unless theoretical reasons imply the parametrization of
spillovers in the error terms, we follow Kelejian (2016) who states p.115: “errors
are the unknown part of the model; we should not model them!” (Highlights
from Kelejian). Indeed, by definition, all variables that are in the error term are,
in essence, unobserved. As such, imposing a strong structure on the error term
needs to be carefully motivated by theory. For instance, in the context of gravity
equation, the model developed by Behrens et al. (2012) leads to an econometric
model that includes spatial moving average errors. In addition, in the literature
on peer effects in education, Calvò-Armengol et al. (2009) develops a model of
peer effects characterized by a spatial autoregressive process for the error terms.
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A large battery of tests have been developed in spatial econometrics. How-
ever, contrary to the usual approach that consists in using LM-based tests for
specification search, we contend that it is preferable to use diffuse tests such as
non-parametric tests (López et al. 2010) or scan tests (Kulldorff & Nagarwalla
1995, López et al. 2015, Chasco et al. 2018) for diagnostic purposes. These tests
are indeed very powerful in detecting the remaining structure in the residuals.
For example, Chasco et al. (2018) using a scan test on the residuals of a hedonic
model allows improving its specification by uncovering local spatial clusters of
high or low residuals pinpointing to spatial omitted variables. Due to their dif-
fuse alternative hypothesis, these aforementioned tests do not allow us to know
what is wrong but should invite to revise the whole estimation strategy. In-
deed, cross-sectional dependence in the error term may come from confounding
unobserved variables, local common factors, misspecification of the interaction
matrix, or several of them at the same time.

In other words, we advocate the use of general spatial specification tests
to check that no remaining spatial structure is present in the error terms and
second, using some robust inference method (Conley & Molinari 2007, Kelejian
& Prucha 2007).

5 Conclusion

Our objective in this paper is to provide insights into the conditions under which
the widely used notion of spatial spillovers has a meaningful empirical content,
by looking at this question from the side of identification.

First, one should stop systematically considering spillovers as side effects of
specifications and see them as the main objective. Indeed, modeling interactions
through the use of a matrix imposes a lot of structure on the model, such as
explicitly specifying the channel(s) through which interactions occur and the
functional form of the links between observations. This also implies that these
models necessarily fall into the structural econometrics approach as endogenous
spatial lags are not compatible with a causal inference framework.27 If spillovers
are only an effect that might confound the identification of another parameter
of interest, then causal reduced forms approaches should be preferred. Second,
scaling up the importance of spillover effects in the analysis implies avoiding
selecting the econometric model using mechanical specification tests. Indeed,
this selection procedure, borrowed from time series analysis, is not compatible
with a causal interpretation of spillovers, as the model is selected according
to the data and not from the economic model. Third, it is important to pay
better attention to the matching between the observational unit and the unit of
decision, to provide sound interpretations. Fourth, except if the economic model
involves cross-sectional dependence in the error term, we also recommend using
diffuse tests to assess whether remaining cross-sectional dependence in the error
term is present and use a robust approach to model the non-iid behavior of the

27Exogenous spatial lags play a different role as they might be viewed as a particular way
of modeling exposure mapping, a topic that needs to be further investigated.
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error term rather than parametrizing it. Fifth, the identification of spillovers
requires a thorough investigation of the multiple facets of spatial heterogeneity
to control for all potential confounding effects and be more confident about the
interpretations to be extracted from the estimated model. Last but not least,
much more thought should be given to the selection of the interaction matrix
and except in some very specific cases, avoid using geographic proximity to
construct the links scheme between observations. As discussed above, the costs
associated with the use of geographical space far outweigh the benefits obtained
in terms of simplified econometric estimation.

To conclude somewhat provocatively, we advocate renunciating the confusing
name of spatial econometrics. Indeed, this term encompasses both the method-
ological tool (spillover modeling) and a particular type of spillover (based on lo-
cational similarity). We believe that econometrics of spatial interactions would
be a much better name since it would focus on the challenges inherent to the
use of spatial data. This term would further be in line with the econometrics
of social networks (or peer effects), which is understood as concentrating on all
difficulties raised by interactions between individuals. We also suggest to use
spatial data econometrics to refer to all methods specific to spatial data.
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