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Abstract

This paper addresses the problem of detecting time series outliers,
focusing on systems with repetitive behavior, such as industrial robots
operating on production lines. Notable challenges arise from the fact that
a task performed multiple times may exhibit different duration in each
repetition and that the time series reported by the sensors are irregu-
larly sampled because of data gaps. The anomaly detection approach
presented in this paper consists of three stages. The first stage identifies
the repetitive cycles in the lengthy time series and segments them into
individual time series corresponding to one task cycle, while accounting
for possible temporal distortions. The second stage computes a proto-
type for the cycles using a GPU-based barycenter algorithm, specifically
tailored for very large time series. The third stage uses the prototype to
detect abnormal cycles by computing an anomaly score for each cycle.
The overall approach, named WarpEd Time Series ANomaly Detection
(WETSAND), makes use of the Dynamic Time Warping algorithm and
its variants because they are suited to the distorted nature of the time
series. The experiments show that WETSAND scales to large signals,
computes human-friendly prototypes, works with very little data, and
outperforms some general purpose anomaly detection approaches such as
autoencoders.

1 Introduction

The widespread expansion of connected devices and sensors in any domain (med-
ical, financial, industrial) results in a massive production of data streams - where
values are ordered or explicitly timestamped. This creates opportunities for au-
tomatically monitoring the execution of tasks in order to detect any deviation
from normal execution, and react accordingly.

1



The quality of the data produced by sensors and data collectors can signif-
icantly affect the performance of monitoring approaches. In particular, we are
interested in detecting abnormal cycles inside time series collected during the
execution of repetitive tasks. In this setting, the considerable variation in cycle
time and the need to accommodate missing data pose considerable challenges.

While this work applies to any dataset of cyclostationary time series, it is
initially motivated by the need of monitoring robotic arms that operate on pro-
duction lines. While these are equipped with inner fault detection mechanisms,
they fail to detect problems related to their environment (setup, calibration,
programming, product defects, etc). Our objective is to detect improper execu-
tion of repetitive tasks by the robots through by detecting abnormal execution
cycles in their monitoring data. Several factors make it difficult to reuse the
state of the art. First, the cycles are very long (in the tens of thousands of time
points), and it has been observed that downsampling the time series degrades
the detection quality. Second, the cycles may vary in length, because the robot
program contains physical tasks of variable duration (eg object gripping, bar
code scans), or simply because the operator takes a manual action. Operator
intervention can be as limited as pausing and resuming the whole production
line, or as intrusive as moving the robot in a different position, skipping part
of its task, or re-calibrating it in the middle of a cycle. Ideally, the former
interventions should not be detected as abnormal situations, while the latter
should. Finally, we aim at being robust to a small but significant amount of
data gaps in the acquisition process. This phenomenon produces inter-series
and intra-series irregularities [1]. Inter-series irregularities refer to deviations
that occur between different time series. In contrast, intra-series irregularities
involve deviations within a single time series.

1.1 Scientific problem

This paper addresses the problem of detecting outlier time series inside a set of
time series, in the context of intra-series irregularities. It targets systems ex-
hibiting repetitive behavior and generating cyclostationary time series through
continuous monitoring. The challenges posed are as follows:

� The time series represent cycles extracted from cyclic operation trajecto-
ries. They are ideally periodic, except that the irregularities mentioned
above make them quasiperiodic (as defined in [2]). Given that the global
shape of abnormal trajectories is not affected, the use of clustering would
not be efficient.

� There are no labeled examples of what is considered normal behavior,
therefore an unsupervised approach is required.

� The anomalies manifest themselves as gradual deviations in the time series
rather than as isolated point outliers.

� The large gaps of missing data defeat window-based approaches, empha-
sizing the need to study the cycle signal as a whole.
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The main contributions of this work are summarized as follows:

� A segmentation algorithm based on the Subsequence Dynamic TimeWarm-
ing (Subsequence-DTW) algorithm that enables segmentation of a long
sequence of repetitive task data in cycle sequences despite temporal warp-
ing.

� A novel GPU version of the Soft-DTW barycenter algorithm with chunk-
splitting, which makes possible to obtain in reasonable time a representa-
tive normal cycle as the barycenter of a training set of cycle sequences.

� A time series outlier detection algorithm, named WarpEd Times Series
ANomaly Detection (WETSAND), that allows warping in the time series
similarity scoring used to detect anomalies

� A wide range of experiments involving different parameter settings, com-
paring results with competing algorithms in the field of Deep Learning,
and validating the approach on real industrial robot data.

1.2 Motivating use case

The work reported in this paper is motivated by a plant that manufactures
printed circuit boards. It features a fleet of 6-axis industrial robots by Univer-
sal Robots. Each robot is programmed for a specific task such as palletizing,
stacking, or holding a camera for quality control. The repetitive nature of their
programmed task causes the output time series to be, in theory, cyclic. How-
ever, some physical interactions, such as scanning a bar code or grasping an
object, have variable duration, and as each cycle contains several dozens of such
interactions, its length varies significantly in practice.

All the robots in the plant are connected to a monitor that collects the
timestamp, the angular position of the 6 robot joints, the pose of the robot’s
end effector, and other variables such as the current and voltage measurements
of the joint motors. The monitoring data is sampled at a frequency of 125
Hz. For various design, implementation and deployment reasons, data may be
lost during periods of time of varying length, at irregular intervals. In other
words, sampling is very irregular, and the time series feature large data gaps.
This impacts diagnosis as these gaps contain complex patterns that cannot
be reconstructed via interpolation methods. Prediction approaches also fail to
impute the missing data, because in addition to the missing data, the physical
robot cycles also contain pauses, vary in length, and the interactions with data
gaps impair the accuracy of predictors.

While our approach applies to any robot or even any system that performs
cyclic tasks, this paper focuses on a robot that fills containers with electronic
devices at the end of a production line. Note that the health state of the robot
is unknown and it is not possible to reproduce a laboratory experiment that
could provide a reference behavior for a cycle as in [3].
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The paper is organized as follows. Section 2 provides a state of the art
of time-series anomaly detection and elastic distance measures. Section 3 pro-
vides background material on Soft-DTW and describes the WETSAND ap-
proach with a novel implementation of Soft-DTW. Section 4 describes the use
case and the dataset on which the approach is evaluated. Section 5 evaluates
the performances of WETSAND on the use case and provides a discussion on
the algorithm’s fine tuning. Finally, Section 6 concludes the paper.

2 State of the Art

The analysis of systems that perform repetitive tasks has already been addressed
in various manners. In [3], the authors exploit the repetitive behavior of a robot
- it could be any automated system - to generate fault indicators. They rely
on nominal data, the first execution of the robot task, to estimate the joints
condition, by monitoring the changes in the distribution of data batches. In [2],
a two stage approach is used, where a time series is first segmented into quasi-
periods, that are fed to an anomaly detection algorithm based on a deep neural
network featuring recurrent and convolutional layers. Time series segmentation
can also be performed using Dynamic Time Warping (DTW) [4], and more
precisely its variant Subsequence-DTW [5] as in [6], to identify patterns by
looking for local minimums that are under a fixed threshold. In [7], segmentation
is also achieved through a Subsequence-DTW variant, before anomaly detection
is performed with DTW. This approach relies on a reference trajectory produced
by a high-fidelity simulator, which is costly to produce.

In time series, anomalies or outliers refer to values or patterns that do not
conform with the expected behavior [8]. In [9] the authors present a taxonomy of
outlier detection techniques in time series data. They distinguish three types of
outliers: point outliers, subsequence outliers and outlier time series. The latter
refers to a time series that differs in its entirety from the rest of the multivariate
time series population.

The work of this paper falls within the detection of outlier time series. The
approach is unsupervised because in our context, labels are rarely available.

AutoEncoder approaches are quite widespread, where a neural network is
trained to reconstruct the system’s normal behaviour, and poor reconstruction
quality is interpreted as an anomaly. [10] uses an autoencoder with dilated
convolution and temporal mechanisms to electrocardiogram data. [11] was one
of the first papers to introduce a proper theoretical explanation for anomaly
detection with a VAE on time series. Since then, the detection accuracy of VAE
models has been improved by introducing discriminators to which are fed the
raw and reconstructed data [12].

Many of the aforementioned approaches use deep neural networks (DNNs)
that suffer from a long training time, laborious hyper-parameter tuning, and
require high computational resources. Thus, as the study [13] demonstrates,
before choosing complex DNNs, and especially in the context of real-world ap-
plications, it is crucial to evaluate whether conventional methods are more ap-
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propriate.
Irregularly sampled data can prevent many techniques from performing well,

and is an issue that must be addressed specifically. For instance, in [14], a
classification task is possible despite very sparsely sampled datasets, enabled by
the Gaussian process representation. In [1], the authors propose a time encoding
mechanism that models the irregularities in the signal, and train a Recurrent
Neural Network (RNN) for a prediction task that usually requires a uniform
time distribution

Another approach to handle missing data is to ignore missing data points
and compare time series through elastic distances. [15] performs a comprehensive
evaluation of 71 time series distance measures but the design of new measures
is an active research field. The Dynamic Time Warping (DTW) metric [4] is
well known as an appropriate measure of similarity between time series because
it handles time deformation and irregular sampling. K-Shape is much faster
than Dynamic Time Warping (DTW) [4], however it only accounts for shifting
the time series, and not for warping it. The DTW metric has been widely used
for analysing time series, including for detecting outlier time series. In [16],
DTW is used as the distance of the k-means clustering algorithm. However,
anomaly detection itself is then performed inside each cluster using a decision
tree approach.

Some elastic distances offer “averaging” capabilities, the average time se-
ries being the one that minimizes the value of some elastic distance to a set of
time series. This is useful for computing a barycenter (also known as centröıd,
pseudo-average, prototype or consensus object) that represents a set of time
series. In [17] DTW is extended to a set of N signals, and a genetic algorithm
is used to find a signal that minimizes its value. DTW Barycenter Averaging
(DBA) [18] is a popular algorithm that provides a prototype through a sub-
gradient iterative method. The more recent Soft-DTW formulation of DTW
presented in [19] presents a smoothed DTW that uses the soft-minimum which
makes it differentiable with respect to its inputs. Soft-DTW has several appli-
cations: clustering, prototype learning for a set of time series, or time series
prediction. Similarly, [20] aims at designing the barycenter of spatio-temporal
datasets; the temporal shifts are captured by Soft-DTW and the space and size
invariances are handled with Unbalanced Optimal Transport.

Such barycenters can naturally be used for anomaly detection, by using the
elastic distance between a time series and the barycenter of a given reference
set.

3 Warped time series anomaly detection with
WETSAND

The method presented in this paper, named WETSAND (from WarpEd Time
Series ANomaly Detection), takes as input quasiperiodic time series with missing
data. It is organized in three steps that will be called Step 1, Step 2 and Step
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3 in the paper:

1. Segmentation into cycles: starting with a reference cycle (with possibly
missing data), we use the Subsequence-DTW (Sub-DTW) algorithm to
segment the data stream into quasi periods, or cycles. This stage uses all
the signal dimensions together to better accommodate for the data gaps
that happen irregularly across the cycles.

2. Prototype computation: a set of cycles is used to obtain a prototype cycle
with the Soft-DTW barycenter algorithm [19]. As available implementa-
tions fail to scale up to tens of thousands of time steps, we describe a novel
GPU implementation specifically tailored to long time series.

3. Outlier detection: outlier cycles are detected by checking their similarity
with the prototype cycle according to the DTW metric. Threshold-based
approaches provides satisfactory performance for anomaly detection, more
elaborate approaches are left for future work.

After introducing a few notations, this section describes each step in detail.

3.1 Modeling hypotheses and notations

The input of theWETSAND approach is a multivariate time series Y = [y1, . . . , yK ]
of length K ∈ N, where yi, i = 1, . . . ,K are d-dimensional, d ∈ (N ∪ {nan})∗,
column vectors acquired with a theoretical sampling rate r. The nan values
represent time steps with missing values, however DTW and its variants do not
support them. As a consequence, we simply remove them from the regularly
sampled time series Y and obtain an irregularly sampled time series Y ∈ Rd×N :
Y = [y1, ..., yN ] of length N ≤ K.

The time series Y can be several hours long with repeated patterns; a repe-
tition is called a cycle trajectory. As explained in section 1.2, the length of each
cycle trajectory can significantly vary.

We assume that a reference trajectory Xref ∈ Rd×M is provided by an ex-
pert. Xref describes a single irregularly sampled cycle, and we assume that
M ≪ N . We have deliberately opted for an approach where an expert man-
ually defines the boundaries of the reference cycle. The reference being the
initial input of the method, this ensures that the results of the three steps of
WETSAND remain easily interpretable for the expert involved.

In a first stage, the data stream is segmented into a set of cycle trajectories
that match the reference trajectory. The segments are gathered into a set Ctraj ,
and used to compute a prototype B.

In a second stage, the incoming data stream is also segmented into a set of
cycle trajectories that match the barycenter B. The cycles are gathered into a
set Ctest upon which anomaly detection is performed.

In this paper, for practical reasons and without loss of representativity, a
single data stream Y ∈ Rd×N is gathered and segmented into cycles that match
a reference trajectory X ∈ Rd×M . The identified cycles are gathered into a set
C that is split into Ctrain and Ctest.
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Figure 1: Three trajectories corresponding to three repetitions of the same task,
with missing data and time warping that results from the variable duration of
physical interactions (handling, sensing).

The 3 core functions of WETSAND are now defined in order: segmentation
into cycles, prototype computation, and anomaly detection.

3.2 Segmentation into cycles

The first function of WETSAND uses Subsequence-DTW (Sub-DTW), a pattern-
recognition technique allowing temporal deformations [5]. This section intro-
duces definitions for the DTW and the Sub-DTW metrics.

Definition 1 (Alignment path). Given two multivariate time series of dimen-
sion d represented by X = [x1, ..., xM ] ∈ Rd×M and Y = [y1, ..., yN ] ∈ Rd×N ,
an Alignment path π between X and Y is a sequence of pairs of indices π =
[(i1, j1), . . . , (ik, jk)] such that two consecutive pairs (i, j) and (i′, j′) satisfy:

(i′, j′) ∈
{
(i, j + 1), (i+ 1, j), (i+ 1, j + 1)

}
A subsequence alignment path is an alignment path such that i1 = 1 and ik = M .
A complete alignment path is such that i1 = j1 = 1, ik = M and jk = N , i.e.
it starts at (1, 1) and ends at (M,N).

Definition 2 (Alignment matrix). An alignment path between two time series
X = [x1, ..., xM ] ∈ Rd×M and Y = [y1, ..., yN ] ∈ Rd×N can be represented as an
Alignment matrix A ∈ {0, 1}M×N that contains 1 at the index pairs that belong
to the alignment path and 0 elsewhere.

The set of all alignment matrices for complete alignment paths of size M×N
is denoted AM,N .

The set of all alignment matrices for subsequence alignment paths of size
M ×N is denoted Asub

M,N .

Definition 3 (Distance Matrix). Given two time series X = [x1, ..., xM ] ∈
Rd×M and Y = [y1, ..., yN ] ∈ Rd×N , and a distance function δ : R2×d×M → R,
the distance matrix ∆(X,Y ) ∈ RM×N such that ∆(X,Y )i,j = δ(xi, yj).
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The distance function δ is taken as the Euclidean distance, or l2 norm.

Definition 4 (DTW). Given two time series X = [x1, ...xM ] ∈ Rd×M and
Y = [y1, ..., yN ] ∈ Rd×N , the cost of each alignment path πα is equal to the
inner product of its alignment matrix AM,N with the distance matrix ∆(X,Y ).

The DTW distance between X and Y is defined as the minimal alignment
cost among all possible complete alignment paths between X and Y as follows:

DTW (X,Y ) = min
A∈AM,N

⟨A,∆(X,Y )⟩ (1)

In practice, the optimal alignment path and its associated alignment cost
are obtained through a dynamic programming algorithm [4]. Sub-DTW is a
variant of DTW that considers subsequence alignment paths. It is defined by:

Sub-DTW(X,Y ) = min
A∈Asub

M,N

⟨A,∆(X,Y )⟩

= min
0≤a≤b≤N

DTW (X,Y [a : b])
(2)

Where Y [a : b] = [ya, . . . , yb] is the subsequence of Y between indices a and
b. Intuitively, Sub-DTW matches the whole time series X against the best
subsequence of Y , usually noted Y [a∗ : b∗].

With Sub-DTW defined, the WETSAND segmentation algorithm of a time
series Y = [y1, . . . yN ] ∈ Rd×N with a reference quasi-period X ∈ Rd×M is the
following:

1. Initialize the set Ctraj as the empty set and the sliding window indices at
ws = 0, we = 2M .

2. Compute Sub-DTW(X, Y[ws:we]) and note a∗ and b∗ the first and last
indices along Y in the subsequence alignment path.

3. Add the time series Y [a∗ : b∗] to the set Ctraj .

4. Update the sliding window indices to ws = b∗ − α, we = ws+ 2M .

5. While the sliding window overlaps Y , i.e. ws < N , loop back to step 2).

α is a constant set at 0.15M in order to ensure that missing data between
two cycles does not interfere with the cycle segmentation. When the algorithm
terminates, Ctraj contains the cycles in Y that were matched with X by the
Sub-DTW algorithm. The segmentation step of WETSAND is illustrated in
the evaluation section, in Figure 7.

In practice, there is a possibility that a fragment of the time series Y (be-
tween indices ws and a∗ at step 4) is not part of any cycle, and discarded. While
we did not encounter this situation in our experiments, it does not discredits
our approach: at the prototype computation stage these data can simply be
discarded; at the anomaly detection stage, this unassigned data constitutes in
itself an anomaly. The anomaly detection stage can focus on identified cycles
to detect more subtle anomalies.
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3.3 Prototype computation

The second function of WETSAND relies on the Soft-DTW barycenter algo-
rithm. Soft-DTW is another variant of DTW, first described in [19], that
achieves a soft-minimum of all alignment costs. The principle behind the Soft-
DTW variant is to replace the min operator with a soft minγ operator defined
as follows:

minγ(a1, . . . , an) =

{
minni=1 ai if γ = 0

−γ log
∑n

i=1
e−aiγ if γ > 0

(3)

where a1, . . . , an are the respective costs of the alignment paths π1, . . . , πn and
γ is a smoothing parameter.

Definition 5 (Soft-DTW). Given two multivariate time series X = [x1, ...xM ] ∈
Rd×M and Y = [y1, ..., yN ] ∈ Rd×N ,, the Soft-DTW distance between X and Y
is computed like DTW (X,Y ) in (1), but using the soft minγ operator instead
of min:

Soft-DTWγ(X,Y ) = minγ
A∈AM,N

(
⟨A,∆(X,Y )⟩

)
(4)

The dynamic programming algorithm that computing Soft-DTW is similar
to that of DTW, and consists in computing the cumulative cost matrix.

Definition 6 (Cumulative alignment cost matrix). Given two multivariate time
series X = [x1, ...xM ] ∈ Rd×M and Y = [y1, ..., yN ] ∈ Rd×N , Soft-DTWγ(X,Y )
is computed as follows:

ri,j =


0 if i = j = 0
∞ if i = 0 or j = 0

δi,j +minγ

 ri−1,j−1,
ri−1,j ,
ri,j−1

 otherwise

Soft-DTWγ(X,Y ) = rM,N

(5)

Where δi,j is shorthand for ∆(X,Y )i,j. The cumulative alignment cost matrix
R(X,Y ) of size M ×N retains the values ri,j for i > 0 and j > 0.

Figure 2 depicts the optimal soft alignment obtained with γ = 0 which is
equivalent to the classical DTW alignment, and the alignment obtained with
γ = 1.

The main advantage of Soft-DTW with respect to the standard DTW is that
it is differentiable everywhere with respect to its input signal.

The partial derivative of Soft-DTW(X,Y ) with respect to X is a vector
defined as follows:

∇X Soft-DTWγ(X,Y ) =

(
∂∆(X,Y )

∂X

)T

E, (6)

9



Figure 2: Two time series X and Y and the optimal warping path according to
DTW (left) and according to Soft-DTW (right), illustrated through the align-
ment matrix (graph obtained using Python matplotlib library).

where ∆(X,Y ) is the distance matrix between X and Y , and E is a matrix that
can be computed by a dynamic programming algorithm described in [19] that
requires O(MN) memory, much like the DTW and Sub-DTW computations.

We use this partial derivative to compute an approximation of the Soft-DTW
barycenter of a set of signals by gradient descent in a straightforward manner.

Definition 7 (Soft-DTW barycenter). Given a family of time series Y1, . . . , YT

of dimension d, of respective lengths m1, . . . ,mT and with respective weights
λ1, . . . , λT , a smoothing parameter γ and a barycenter length mb, the Soft-DTW
barycenter B is defined as the time series of length mb that minimizes the sum
of Soft-DTW distances between B and Y1, . . . , YT , normalized by their weights
and lengths:

B = arg min
B∈Rd∗mb

T∑
i=1

λi

mi
Soft-DTWγ(B, Yi) (7)

Unless stated otherwise, we set the barycenter length atmb = max(m1, . . . ,mT ),
and the weights at λ1 = . . . = λT = 1.

A very efficient implementation of Soft-DTW for short time series is found
in the TSlearn library [21]. However, this implementation tends to be slow for
long signals. For instance, computing the barycenter of 5 signals with 18385
time steps takes up to 4 hours on a cloud instance with 16 CPUs and 125GB of
memory.

The barycenter B computation is parallelizable to some extent: the Soft-
DTW distance and its partial derivatives are completely independent for each
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pair (B, Yi), i = 1, . . . ,mT . Furthermore, each row in the R and E matrices can
be computed in parallel with some synchronization. GPU based implementa-
tions of the Soft-DTW algorithm are described in [22] and [23] but they consume
too much GPU memory when applied to long signals. The remainder of this
section describes an implementation focused on fitting the computation in GPU
memory by splitting the R and E matrices into chunks.

The proposed implementation consists in computing the matrices R of cumu-
lative costs, and E of partial derivatives as mentioned in [19], by splitting them
in chunks as illustrated in Figure 3. More precisely, the T -sized stack of R and
E matrices form an R and E tensor of shape

(
T,mb,mY

)
, where T is the num-

ber of time series, mb the length of the barycenter, and my = max(m1, . . . ,mT )
is the length of the longest series in Y (mi being the length of time series i).
They are decomposed into chunks of shape (lT , lb, lY ), where lT ≤ T is the
number time series evaluated in parallel, lb ≤ mb corresponds the number of
synchronized GPU threads, and lY ≤ max(m1, . . . ,mT ) is the number of R
values computed by each thread in a chunk.

Tuning the chunk shape essentially depends on the GPU used and aims at
enhancing parallelism, which is achieved by higher values for lT and lb. Threads
in the lb dimension perform synchronous computation, and current GPUs have
a physical limit for this parameter. Threads in the lT do not need synchro-
nization, so it is desirable to have the highest value for this parameter, the
only limitation being the GPU memory size. Furthermore, a very small value
for lY makes the streaming mechanism (that parallelizes computation and data
transfer) unbalanced and less efficient.

The R tensor computation takes as input the B and Y ′
i s time series, and

computes each chunk in increasing time direction, as illustrated in Figure 3. The
computation of individual values inside each chunk uses thread synchronization
schemes similar to those of [22]. Each chunk of the R tensor is memorized into
a stack in the CPU memory. The E tensor computation is also performed by
chunks in reverse order, and takes as input the B and Y ′

i s time series and the
corresponding R chunk, and produces the E tensor, from which the gradient
vector is computed according to equation (6).

The values of lines, columns and corners between adjacent chunks are trans-
ferred between three buffers hbuf , vbuf and dbuf of respective shapes (T,mb, 1),
(T,mY , 1) and (T, ⌈mb/lb⌉, ⌈mY /lY ⌉) that are kept in GPU memory, in order
to compute the first values of the next chunks, as illustrated in Figure 4. The
individual values of the R and E matrices are computed in the classical dynamic
programming manner described in [19] as well as [22] and [23].

Finally, the division of matrices in chunks helps leverage the stream mecha-
nism of cuda-enabled GPUs. Two streams are used: one stream is in charge of
the data transfer between the main memory and the GPU memory, while the
other stream is in charge of kernel invocation, i.e. computation and allocation
of shared and local memory.

The overall data flow of the proposed computation is as follows:

1. The B and Y ′
i s time series are sent to the GPU memory and the buffers
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R matrix Chunk stack E matrix

Figure 3: The 3-dimensional alignment and gradient matrices are decomposed
into chunks for computation. The R matrix is computed in increasing time step
indices, the E in reverse order.

GPU threads
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Figure 4: Computation of a chunk of the R matrix with several synchronized
GPU threads. Buffers in GPU memory are used to store the initial values of
equation (5). For the top left chunk of the R matrix (resp. bottom right of
E), the vertical and horizontal buffers are initialized at ∞ (resp. 0) and the
diagonal buffer to 0 (resp 1) as detailed in equation (5) (resp. [19]). For the
following chunks the horizontal (B-wise) buffer stores the upper chunks’ last
lines, the vertical buffer (Y -wise) stores the left chunks’ last columns and the
diagonal buffer stores the bottom right value of the upper-left chunk. The E
matrix is computed similarly, but in the opposite direction.
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are initialized to hold the initial conditions of equation (5) (i.e. ∞ in hbuf
and vbuf , and 0 in dbuf).

2. Every chunk of the R tensor is computed on GPU, using equation (5)
adapted to use buffers for initial values. After each chunk is computed,
the buffers are then updated as of Figure 4, and the chunk is sent back to
a LIFO stack in main memory.

3. A B-shaped vector is allocated in GPU memory to store the gradient
vector ∇B

∑
i Soft-DTWγ(B, Yi) and initialized to 0. The buffers are filled

with the initial conditions for computing E (i.e. 0 for hbuf and vbuf , and
1 for dbuf).

4. Fourth, the R memory chunks are sent back in reverse order to GPU
memory, and their corresponding E matrix chunk is computed. After
each E chunk is computed, the gradient vector is incremented according
to equation (6), and both R and E chunks are discarded.

5. After all R and E chunks have been processed, the gradient vector is
returned in the main memory.

When computing the barycenter of signals with above 104 time steps, our
implementation can reduce the computation time by up to 95%. An evaluation
of the computation time reduction is done in subsection 5.2.

The WETSAND prototype computation is obtained by applying the GPU-
based Soft-DTW barycenter computation to the subset Ctrain of Ctraj (cf. Sec-
tion 3.1), Ctraj being a set of cycle trajectories obtained in the segmentation
Step 1. This makes it possible to handle signals of varying length and irregularly
sampled due to missing data. Assuming that data gaps are randomly scattered
throughout the cycles, a sufficiently large Ctrain set should let the Soft-DTW
barycenter B of Ctrain be a realistic prototype of normal cycles.

3.4 Online outlier detection

The third and last function of WETSAND consists in using the barycenter B as
a reference to detect outlier time series online. B is used to compute a similarity
score, inspired by [24], and defined in Equation 8) for each trajectory in the test
set Ctest, issued from Ctraj (cf. Section 3.1). A threshold is chosen to decide
whether a cycle is normal of abnormal.

Definition 8 (Similarity score). Given a barycenter B, a cycle Ck, and their
optimal alignment path π, the similarity score dscore of Ck is a normalization of
the DTW distance that compensates for the fact that trajectories have different
lengths:

dscore(B,Ck) =
DTW(B,Ck)

|π|
(8)
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Here, the DTW score is preferred to the Soft-DTW score to evaluate trajec-
tories because it is deterministic and sometimes more accurate in corner cases.
It is also invariant to time shifts while Soft-DTW is not entirely.

There exist many methods to select a threshold, and choosing one heavily
depends on the distribution of dscore in the population. Section 5.3 evaluates
different methods applied to this particular case. Ultimately, choosing an ap-
propriate threshold is out of the scope of WETSAND and left to the user.

4 WETSAND applied to industrial robots

In this section, WETSAND is evaluated on the case study described in Sec-
tion 1.2. For all our experiments, the Python programming language on a
cloud instance with a NVIDIA A10G GPU, an 8-Core AMD EPYC 7R32 CPU
and a limit of 31GB of memory has been used. When relevant, the proposed
GPU-based Soft-DTW barycenter implementation is compared to that of the
TS Learn library in terms of speed and results. It is a cross-platform soft-
ware package for Python 3.5+ [21] that provides efficient implementations for
Soft-DTW and Dynamic Time Warping Barycenter Averaging (DBA) (see [18])
algorithms. This library is itself based on scikit-learn [25].

The datasets are described in Section 4.1, and the assessment of the results,
based on both quantitative and qualitative evaluations, is described in Section
4.2.

4.1 Datasets production

The task of a robotic arm is defined by a script, that specifies a number of way
points in the robot’s task space. The robot’s controller computes the corre-
sponding target joint trajectory in order to reach these way points. When the
robotic arm moves, its internal encoders read the actual joint trajectory. These
values - way points and joint positions - are collected from the controller into a
data storage and form Y ∈ Rd×N , where d = 9.

For experimentation purposes, a robot, named ”robot A”, whose task is to
fill containers has been selected. This robot fulfills the working hypotheses,
due to the cyclic aspect of its movements on each of its monitored joints (cf.
Figure 5). The monitoring data also features numerous and large gaps.

The dataset for the segmentation step defined in subsection 3.2 is composed
of the robot movement captured from its first three joints (base is joint 0, elbow
is joint 1 and shoulder is joint 2) during 9 hours with no particular incident
documented.

The segmentation results in a pool of 217 cycles Ctrain1 , ..., Ctrain217 repre-
sented by three matrices, one per joint, of 1 row and respectively m1, ...,m217

columns. Several cycles - the number varies across experiments - are randomly
selected to create a training set Ctrain for the prototype computation step.
Then, the evaluation of the results and the outlier detection step is done on a
test set Ctest of 190 randomly selected cycles among the rest. As explained in
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Figure 5: Robot angular position monitored during several task cycles, by in-
ternal sensors in joint 0 (base), joint 1 (elbow) and joint 2 (shoulder).
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Figure 6: Illustration of the computation of Euclidean mean (above) and DBA
barycenter (below) from an input set in grey. DBA tends to optimise better the
sum of DTW distances, but is less interpretable.

subsection 3.1, each cycle has different length; to respect the requirements of
Soft-DTW’s implementation, all the cycle are padded with their respective last
values to the length of the longest.

Another monitored robot, named “robot B”, is used to provide the dataset
for the experiments of 5.1. The task of robot B is to depalletize devices and
place them into a machine. Its movement is much more complex and less smooth
that that of robot A; due to the industrial setup of the data collection, this
behavior increases the amount of missing data. The dataset acquired on robot
B represents the worst case scenario to test the limitations of our approach.

4.2 Evaluation means and metrics

Abnormal cycles detected by WETSAND are meant to be analysed by a main-
tenance operator. This is why strong emphasis is placed on visual inspection
of the results for the segmentation and the prototype computation steps. For
instance, Figure 6 illustrates that a barycenter can easily be assessed visually. It
is clear that the DBA barycenter, despite being excellent at minimizing elastic
distances, looses the shape of the input signals, thus making its inner working
confusing to a non-expert user.

The intraclass inertia with respect to the DTW distance is also used (the
lowest value, the best). In Figure 6 the intraclass inertia for the Euclidean mean
is 354.5 and the one for the DBA barycenter is 97.2, which shows that DBA is
better suited to compare warped trajectories than Euclidean distance.

For computation times, comparison is done with the equivalent algorithms
in the TS Learn library, as they provides high quality, efficient implementations.

For evaluating the overall anomaly detection performance, the whole Ctest

set has been manually annotated into normal and abnormal cycles. While the
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whole WETSAND approach is completely unsupervised, this allows us to com-
pare the results of WETSAND and the other approaches with the annotated
ground truth. Confusion matrices and F1 score are used to evaluate various
means to set the detection threshold, as well as the global WETSAND ap-
proach.

5 Experiments and results

This section provides a detailed analysis of the three steps of WETSAND and
evaluates their performances via the metrics described in subsection 4.2.

5.1 Evaluation of Step 1 – Segmentation into cycles

The aim of the first experiment is to partition a long dataset of monitored
robot movement into cycle trajectories by applying Sub-DTW through a sliding-
window. While [7] demonstrates a similar function, their reference cycle X is
extracted from a simulator, which is better to avoid, given that a simulator is
difficult to build or obtain from the robot manufacturer. Instead, an operator
is asked to limit one cycle even if it is distorted and has data gaps, and use this
cycle as the reference.

Figure 7 reports the result of such segmentation in which each limited cycle
has different color. Qualitative visual evaluation was conducted on each signal
and tends to shows that the segmentation algorithm works well and identifies
the real bounds for the task cycles in the data stream.

The computation time is also satisfactory. The algorithm scales up to Y
streams of around 6.105 time steps. A single segmentation step takes around 3
seconds in the case of robot A that has a reference cycle of 16 300 time steps.

As described in section 4.1 the dataset consists of 9 synchronous time series
for each robot joint and 3 Cartesian coordinates, with synchronous data gaps.
We found that using all of the robot’s joint and task space variables all together
as input to Sub-DTW enhances the accuracy of the segmentation. Thus, cycles
are successfully characterized despite the poor quality of both the query and
the search sequence.

5.2 Evaluation of Step 2 – Prototype computation

The second experiment aims at assessing the quality of the GPU-based Soft-
DTW barycenter implementation presented in Section 3.3. In this experiment,
each joint is analyzed separately. The reason for this is that an anomaly due to
an internal failure may only be visible on one joint. Hence, there is a potential
for the anomaly to become less noticeable when blended with the surrounding
normal joints.

The desired qualitative properties of the barycenter are:

� to accurately represent the true movements of the robot during one cycle;
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Figure 7: Segmentation of the movement data of two robot datasets into cycles.
Above, the reference cycle (a) and segmented data stream (b) for robot A.
Below, the reference cycle (c) and the segmented data stream (d) for robot B.
In (b) and (d) black represents the samples that have not been associated with
a complete cycle.
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Table 1: Hyper-parameters used in WETSAND.
Parameter Description Value
Gamma The DTW softness parameter (used in

softmin)
1 (default)

Bandwidth The Sakoe-Chiba bandwidth, as a frac-
tion of the longest signal length

0.6

Init Initial barycenter to start from for the
optimization process

Euclidean barycen-
ter (default)

Method Optimization method L-BFGS (default)
Max iter (scikit-learn) maximum number of gra-

dient descent updates
40

Max fun (scikit-learn) maximum number of
times soft-dtw barycenter is computed

200

G tol (scikit-learn) gradient-based termina-
tion parameter for the L-BFGS algo-
rithm

1.e−8

Tolerance (scikit-learn) distance-based termina-
tion parameter for the L-BFGS algo-
rithm

1.e−5

Chunk
shape

Tuple (nx, ny, tx, ty) where nx (resp ny)
is the number of signals from X (resp
Y ) and tx (resp ty) is the number of
timesteps from x (resp y)

(1, |Ctraj |, 29, 210)
(default)

� to ensure the absence of any data gaps, despite the presence of numerous
and sizable gaps in the original cycles of the training set Ctrain.

The barycenter computed by the GPU-based Soft-DTW implementation is also
visually compared with the Euclidean mean, and the DBA barycenter provided
by TS Learn. This allows one to assess the accuracy with which each barycenter
faithfully represents a genuine cycle.

As illustrated in Figure 8, the Soft-DTW barycenter has the qualitative
properties, and it obviously outperforms the Euclidean mean and the DBA
barycenter in terms of representation faithfulness. Interestingly, this result has
been obtained with only 5 trajectories in the training set. The hyper parameters
used for the Soft-DTW computation are listed in Table 1.

The same conclusion is obtained with quantitative metrics, as provided in
Table 2. On each of the three joints, Soft-DTW has the lowest intraclass inertia
and mean dscore compared to the Euclidean mean and the DBA barycenter.

A final comparison to the TS Learn package is done regarding the computa-
tion time. The barycenter computation is achieved on the three joints of robot
A with different input training set sizes via both implementations. The results
are displayed in Table 3. The relevance of this comparison is guaranteed by the
fact that the barycenters computed by each implementation are alike - indeed
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Table 2: Comparison of Euclidean mean, DBA and the Soft-DTW barycenters
w.r.t their ability to synthesize a proper robot trajectory

Algorithm
Joint 0 Joint 1 Joint 2

Intraclass Mean Intraclass Mean Intraclass Mean
inertia dscore inertia dscore inertia dscore

Euclidean
mean

30440 0.197 25725 0.159 15979 0.103

DBA 3808 0.028 5411 0.032 3413 0.023
GPU-based
Soft-DTW

1516 0.017 2653 0.025 2484 0.023

Figure 8: Comparison of barycenters obtained by Euclidean mean (top), by
DBA (middle) and by Soft-DTW (bottom) on joint 0’s angular position. In
grey, the 5 input time series and in red the barycenter.
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Table 3: Soft-DTW barycenter computation time with TS Learn and WET-
SAND implementations on signals with 18385 time steps.

Number of cycles in the training
set Ctrain

5 10 25

TSLearn Soft-DTW
computation time (minutes)

777 1217 3933

GPU Soft-DTW
computation time (minutes)

40.3 64 128

the dscore’s order of magnitude between both of them is 10−3 which is extremely
low for normalized signals of length 18385.

5.3 Evaluation of Step 3 – Online outlier detection

The ultimate target of WETSAND is the anomaly detection step that aims
at labeling cycles as ”normal” and ”abnormal” according to their similarity
with their respective joint’s barycenter. Step 3 takes as input the barycenter
computed in the previous experiment (cf. Section 5.2), and the test set Ctest.
It computes the dscore as of equation (8) for each sample of Ctest. For the same
reasons as for Step 2, the dscore is computed independently for each joint.

The evaluation of Step 3 is divided into three parts. First, the distribu-
tion of the dscore values is inspected with box plots to assess the feasibility to
set a detection threshold. Second, the expert annotations on the test dataset
(described earlier in Section 4.2) are used to establish the confusion matrix for
different threshold values. Third, the results are compared with deep-learning
approaches using several variants of autoencoders.

5.3.1 Setting the detection threshold

The boxplots of the distributions of dscore are depicted in Figure 9 for different
sizes of the training set Ctrain: S5 for 5 cycles, S10 for 10 cycles, and S25 for
25 cycles. The illustrated result is the mean of 10 randomly sampled train-
ing sets. The dscore clearly shows a sparse tail distribution for all joints and
configurations, which makes a threshold based approach suitable.

Two possible ways to set the detection threshold are considered. First, the
threshold is set at two standard deviations of the mean - but one could also set
the threshold at three standard deviations. It is then called the 2σ threshold.
Second, the threshold is based on the boxplot. It is then called the boxplot
threshold and set to Qmax = q3 + 1.5 ∗ |q3 − q1|, where q1 and q3 are the first
and the third quartiles of the distribution respectively (cf. Figure 9).

5.3.2 Evaluation against the expert annotations

The remainder of this section only considers the scores computed with a barycen-
ter obtained with a training test of 5 cycles for conciseness. The relationship
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Robot A, joint 0 Robot A joint 1 Robot A joint 2

Figure 9: dscore distribution boxplots for 3 joints of robot A with 5, 10 and 25
cycles in the training set Ctrain, i.e. S5, S10, and S25 sizes for Ctrain respectively.

Table 4: Confusion matrix between ground truth and WETSAND
prediction on joint 0 of robot A using a 2σ and a boxplot threshold.

WETSAND WETSAND
2σ threshold boxplot threshold

Anomaly Normal Anomaly Normal
Ground Anomaly 7 4 11 1
truth Normal 0 179 1 177

between training set size and dscore distribution is further discussed in Sec-
tion 5.4. The following evaluations of the anomaly detection step rely on expert
annotations of the test dataset, as illustrated in Figure 10, which depicts the
Soft-DTW barycenter for joint 0 of robot A, a cycle labeled “normal”, and a
cycle correctly labeled “abnormal”. Similarity can be assessed by counting the
number of peaks - which illustrate the joint going back and forth - and judging
their amplitude.

The resulting confusion matrices are shown in Table 4. These are further
analyzed through the F2 score, a popular metric in Machine Learning. In the
considered industrial context, the drawbacks of having false negatives (unde-
tected anomalies) outweighs those of having false positives (spurious anoma-
lies). In other words, recall is favored against precision, which means obtaining
the highest F2 score. Given that the 2σ threshold results in F2 = 0.69 and
the boxplot threshold results in F2 = 0.92, the threshold is set at the boxplot
threshold for the experiments that follow.

5.3.3 Evaluation against deep autoencoders

The performance of WETSAND is compared against that of a Convolutional
AutoEncoder (CAE). CAE are often used for anomaly detection in time series
through the use of 1D convolutional layers. Autoencoder-based anomaly detec-
tion consists in training the autoencoder on a set that contains only (or mostly)
normal individuals. Under this training protocol, it is assumed that the CAE
reconstructs new normal individuals - which are similar to those used for train-
ing - better than abnormal ones. Then, the reconstruction error that is the loss
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Figure 10: The Soft-DTW barycenter for joint 0 of robot A (top), a normal
(middle), and an abnormal cycle (bottom).
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Figure 11: Reconstruction error (left) and error computed on the latent space
(right) of the baseline CAE on a test set of 190 trajectories.

function used to train the autoencoder naturally becomes a dscore for anomaly
detection.

While autoencoders can learn extremely elaborate datasets, they usually re-
quire massive amounts of training data. This is incompatible with the industrial
setting at hand, where robots are daily recalibrated or reassigned to a different
task. For a fair comparison, autoencoders are trained with the same number of
cycles as the Soft-DTW barycenter, i.e. on a training set Ctrain of 5 trajectories.
As a consequence, architectures that can compact signals of 18 000 time steps
into a small latent space with few parameters are aimed for.

To that end, investigations were conducted to find the best CAE architec-
ture. The time series are first last-value-padded to 24576 time steps, which is
the maximal number of time steps of the cycles in the training set. A first
convolutional layer with layer kernel size 32, stride 32, and 16 output channels
is followed by a rectified linear unit (ReLU) layer used for non linearity. A
second convolutional layer uses kernel size 32, stride 32, and 16 output chan-
nels, thus yielding a latent space of dimension 5 ∗ 16 ∗ 24 = 1 920, and a total
of 17 457 trainable parameters. Decoding is performed with two 1D transpose
convolutional layers with the same parameters, separated by a ReLU layer. Fine
tuning is computed with the adaptative moment estimation (ADAM) algorithm
with a learning rate of 10−3. The parameters were chosen to minimize the loss
score during the training stage, while minimizing the number of parameters
and therefore, the training duration. The reconstruction error distribution is
depicted on the left of Figure 11. Setting the boxplot anomaly threshold yields
the confusion matrix depicted in Table 5, and an F2 score of 0.10, which is a
quite poor result.

Variants of the CAE model have been tested to improve the anomaly de-
tection performance, such as adding Attention layers, which reduces the total
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Table 5: Confusion matrix for anomaly detection using a Convolutional Au-
toencoder

Convolutional
autoencoder

Anomaly Normal
Ground Anomaly 1 11
truth Normal 3 175

number of parameters of the model. In particular, a test was done with a CAE
whose encoder consists of a first layer of kernel size 32, stride 32, 8 output
channels, feeding second layer of 8 channel multihead attention (in all query,
key and value inputs) followed by a third convolutional layer of kernel size
16, stride 16 and 8 output channels, with two ReLU layers in between. The
decoder is symmetric, with the same attention layer and convolutions being re-
placed with transpose convolutions. This CAE has a latent space dimension of
5 ∗ 8 ∗ 48 = 1 920, but only 3 161 trainable parameters. It yields an F2 score
of 0.23, which is better that the previous CAE but is still much lower than the
anomaly detection performance with WETSAND. Other autoencoder variants,
such as variational autoencoders, recurrent layers, or using the latent space dis-
tance as a detection threshold (an idea presented in [26]), did not yield better
results.

An explanation for the poor performance of autoencoders is illustrated in
Figure 12. Even with a low number of parameters, the autoencoders reconstruct
normal and abnormal cycles equally well. Increasing the number of network
trainable parameters only worsens the problem. Conversely, decreasing the
number of trainable parameters to the limit of underfitting only makes the
autoencoder equally bad at reconstructing normal and abnormal cycles. Using
recurrent layers or larger training sets also yields similar results.

An interpretation is that the nature of targeted anomalies does not bode well
with autoencoders. Targeted anomalies rarely cause out of bounds signal points,
but are rather characterised by a missing or an undesired pattern, e.g. longer or
shorter than usual. An autoencoder that has learned the nominal robot pattern
can easily reconstruct a cycle with an additional (or missing) pattern with the
same shape. This explains why autoencoders generalize too well to abnormal
cycles in the presented use case, and fail at detecting them. In contrast, elastic
distances such as DTW used in WETSAND must match each pattern to a
reference, exhibiting high sensitivity to the absence or inclusion of undesired
patterns, which perfectly fits the need of targeted anomalies. Another argument
against CAE in this application is that the tuning of depth and hyperparameters
is long, and it is specific to each type of time series. It is unlikely that in the
industrial context, one would fine tune a model for each robot and each robots’
joints.
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Figure 12: Examples of reconstructed cycles (in red) with the Attention-CAE
compared to the input cycle (in black). Every cycle has a low dscore, even though
the middle and lower ones bear anomalies.

26



5.4 Discussion on hyperparameter tuning

In this subsection, the impact of several hyperparameters of the Soft-DTW
algorithm on the barycenter computation are evaluated. We report on the
tuning of 2 hyperparameters:

� barycenter initial value;

� training set size;

5.4.1 Barycenter initial value tuning experiment

3 initialization methods for the gradient descent phase of the Soft-DTW barycen-
ter are compared: zero, random, and euclidean mean. It has been observed that
initializing the algorithm with an array of zeros makes gradient descent 10%
slower than when randomly initialized. However, the produced barycenter is
more similar to the normal trajectory. Initializing with the euclidean mean of
the training set makes gradient descent 8% faster than zero-initialization, and
yields an even better barycenter.

5.4.2 Training set size tuning experiment

This experiment reports on the influence of the size of the training set Ctrain on
the barycenter computation. The intuitive idea driving this experiment is that
a higher number of cycles in the training set will lead to a more representative
barycenter. Consequently, this is expected to result in a higher similarity score
between the barycenter and the normal test cycles. Here, the GPU-based imple-
mentation is run with the parameters described in Table 1. Three training sets
are tested: the subsets S5, S10, S25, which are randomly selected from the cycle
pool, such that |S5| = 5, |S10| = 10, |S25| = 25, and S5 ⊂ S10 ⊂ S25. Besides,
the experiment is done independently on the three joints of robot A and each
of them is repeated ten times for statistical accuracy; then, the mean result
for each sample is recorded. The dscore between the computed barycenters and
the test set according to the training set size on each joint are presented on
Figures 9. A lower median value for S25 on each experiment demonstrates the
validity of the intuition. It is also noticeable in Table 6 that, depending on the
signal’s shape, the training set size has an impact on the sensitivity of the dscore
to outliers. While joint 0’s barycenter is satisfying with S5 as a training set,
the anomaly detection is improved with a barycenter computed with a larger
training set for joints 1 and 2.

6 Conclusion

In this paper, a frugal and efficient anomaly detection approach named WET-
SAND is introduced. It is designed to handle cyclostationary time series with
irregular sampling and distortion in the time dimension. WETSAND segments
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Table 6: F2 scores on the test set of 190 cycles, with WETSAND implementation
on Robot A’s three joints.

Number of cycles in the training
set Ctrain

5 10 25

F2 score Robot A Joint 0 0.92 0.92 0.92
F2 score Robot A Joint 1 0.42 0.80 0.95
F2 score Robot A Joint 2 0.79 0.97 0.97

a large quasiperiodic time series into quasiperiodic cycles, using as input a (pos-
sibly corrupted) cycle. It then automatically computes a representative proto-
type of the normal cycles using an efficient and new GPU-based implementation
of the Soft-DTW barycenter, specifically tailored for long time series. Outlier
time series detection is then performed using the DTW distance between the
computed barycenter and upcoming data.

WETSAND’s efficiency is evaluated with several experiments performed on
real data from industrial robots. It is demonstrated that WETSAND scales
up to times series in the tens of thousands of time steps, and outperforms
autoencoder based approaches on the data set of repetitive robotic arm motions.
This is another argument in favor of the assertion developed in [13] that says
that deep neural network methods do not necessarily outperform conventional
approaches and should not be used systematically.
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