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BRAIN HEALTH

Alzheimer’s disease beyond amyloid: strategies for future therapeutic
interventions
Jiong Shi and colleagues discuss recent evidence of clinical trials for Alzheimer’s disease and new
development strategies

Jiong Shi, 1 Marwan N Sabbagh, 1 Bruno Vellas2

Neurodegenerative diseases encompass a variety of
medical conditions that affect the survival and
function of neurons in the brain. Neuronal loss often
results in a decline of cognitive function and
advances to dementia. Dementia is the common
denominator of neurodegenerative diseases. The
World Health Organization estimated that the number
of people living with dementia worldwide in 2015 was
47.47 million. As the population ages, this number
is expected to reach 75.63 million in 2030 and 135.46
million in 2050. Alzheimer’s disease is the most
common cause of dementia in older people. The
natural course of dementia, particularly Alzheimer’s
disease, results in significant disability and
dependence. The effect on care givers and the public
health system is staggering. The total estimated costs
of dementia were $604bn (£471bn; €519bn) in 2010,
roughly 1% of the world’s gross domestic product
(www.who.int). No disease modifying treatment
exists for dementia.

Pathology
Alzheimer’s disease is characterised by progressive
memory decline and deficits in at least one other
cognitive domain that significantly impairs normal
occupational and social function.1 Pathologically, in
addition to neuronal and synaptic loss, the disease
is defined by pathological hallmarks—namely,
amyloid β accumulation as diffuse and neuritic
plaques and hyperphosphorylated tau protein in the
form of neurofibrillary tangles.2

Amyloid β peptide was first sequenced in 1984 and
later identified as the main component of neuritic
plaques.3 4 Amyloid β is a product of the larger
transmembrane amyloid precursor protein. Acting
together, β-secretase and γ-secretase break down and
slice amyloid precursor protein into smaller
fragments. Amyloid β monomers are formed by
backbone hydrogen bonds between their β strands.5
These monomers are prone to misfolding and are
considered critical to the neurodegenerative process.
The misfolded proteins trigger production of further
misfolded proteins, which accumulate into aggregates
or plaques.

Human genetic studies on autosomal dominant early
onset familial Alzheimer’s disease have shown that
mutations in one of the three genes encoding amyloid
precursor protein, presenilin 1, or presenilin 2 result
in increased production of amyloid β. Apolipoprotein
E ɛ4 allele is the strongest genetic risk factor for late
onset sporadic Alzheimer’s disease. It increases the

risk of the disease by three to four times in
heterozygotes and by around 12 times in
homozygotes. The apolipoprotein E ɛ4 allele has been
shown to reduce the clearance, and increase the
seeding, of amyloid β.6 These data from human
genetic studies led to the hypothesis of the amyloid
cascade.7 Evidence from transgenic amyloid β mouse
models provided mechanistic support for the
hypothesis, in which amyloid β accumulation is the
critical initial step in the pathogenesis of Alzheimer’s
disease.8 Amyloid β triggers subsequent
hyperphosphorylation and accumulation of tau
protein, neuronal and synaptic loss, and, ultimately,
results in clinical symptoms.7

Additionally, Alzheimer’s disease is a tauopathy as
shown by abnormal levels of hyperphosphorylated
tau protein. The pathological aggregation of these
proteins lead to neurofibrillary tangles. The
non-pathological tau protein is involved in stabilising
microtubules, which make up the cytoskeleton of the
cell. When the tau protein is hyperphosphorylated,
it induces the breakdown of microtubules and the
formation of insoluble aggregates of neurofibrillary
tangles in the brain. In Alzheimer’s disease,
neurofibrillary tangles emerge from the internal brain
structures to more distal regions—namely, from the
transentorhinal cortex to the hippocampus and then
the neocortex.9 Cognitive impairment is evident only
after tau pathology manifests in the neocortex.10 In
contrast to amyloid β, tau pathology has shown a
strong correlation with declining cognitive
performance based on longitudinal pathological and
imaging studies.11

Pathological hallmark targetedclinical trials
for Alzheimer’s disease
During the past two decades, treatments targeting
amyloid β have been designed to lower amyloid β
concentrations and prevent the amyloid β triggered
cascade. Several compounds have been developed
to target various forms of amyloid β, monomeric,
oligomeric, aggregates, and plaques. The initial trial
(AN1792) attempted to achieve active immunisation
by injections of a full length amyloid β peptide in
patients with Alzheimer’s disease. This study was
terminated early owing to complications of
encephalomeningitis.12 Additional treatments were
designed to increase amyloid β clearance from the
brain, including inoculations with amyloid β antigens
(ABvac40, CAD-106), anti-amyloid β monoclonal
antibodies (bapineuzumab, solanezumab, and
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crenezumab), and anti-amyloid β polyclonal antibodies
(immunoglobulins). Trials to decrease the production and
aggregation of amyloid β included amyloid β aggregation inhibitors
(tramiprosate, scyllo-inositol, PBT2), γ-secretase inhibitors
(avagacestat and semagacestat), γ-secretase modulators
(tarenflurbil), and β site amyloid precursor protein cleaving enzyme
inhibitors (LY2886721, umibecestat, elenbecestat, verubecestat,
atabecestat, and lanabecestat). No clinical efficacy was shown in
any of these studies. The β site amyloid precursor protein cleaving
enzyme inhibitors worsened cognitive function, probably because
they have other functions critical to neuronal development.
Furthermore, the use of γ-secretase inhibitors caused adverse effects
because of their function on Notch signalling pathways.

Recognition of the clinical significance of tau pathology in
comparison with amyloid β has resulted in a resurgence of interest
in targeting tau protein. Treatments designed to inhibit production
of phosphorylated tau protein have been investigated.
Leuco-methylthioninium bis(hydromethanesulphonate) is a
methylene blue derivative that reduces fibrillation and aggregation
of tau protein. Tideglusib is a glycogen synthase kinase 3 inhibitor
that blocks tau kinase and thus the abnormal hyperphosphorylation
of tau protein. Neither of these treatments was found to be clinically
efficacious. Immunotherapies targeting tau protein (AADvac-1,
ACI-35, BIIB092, and ABBV-8E12) are currently in phase II trials for
patients with early Alzheimer’s disease.13 ABBV-8E12 has already
been studied in patients with progressive supranuclear palsy.
Progressive supranuclear palsy is considered a “pure” tauopathy
because it has abundant tau pathology but lacks amyloid pathology.
This study of progressive supranuclear palsy was terminated early
owing to ineffectiveness.

Analysis of clinical trials targeting biomarkers
Several reasons have been proposed for the lack of efficacy of
pathology targeted treatment in clinical trials. Firstly, it has been
suggested that the dose used to affect the disease could be
inadequate or result in unacceptable adverse effects. One of the
earliest clinical trials (AN1792) was effective in reducing amyloid β
concentrations in the brain. Unacceptable levels of
encephalomeningitis developed, however, and the trial was
terminated. This set the tone for future investigations, and
subsequent trials focusing on amyloid β immune treatments have
used doses to minimise the adverse effects rather than maximise
the benefits. Many trial regimens were terminated early as a
precaution when there was evidence of inflammatory changes or
microhaemorrhages in the brain, although some argued that this
could have been early evidence of the immunotherapy efficacy
rather than a risk of future encephalitis. Additionally, the human
blood-brain barrier is much more discriminating than that of lower
species. Therefore, higher concentrations may be required to achieve
the therapeutic effect seen in animal models. For instance,
solanezumab penetration into the central nervous system is only
0.1% to 0.3% of the concentration measured in plasma. Aducanumab
and gantenerumab showed a better and more clinically meaningful
outcome when higher doses were used.14

Secondly, considerable controversy exists about the stage at which
Alzheimer’s disease is reversible. Most of the failed phase III trials
enrolled patients with mild to moderate disease. Longitudinal
clinical imaging/pathological correlation studies have disclosed a
preclinical phase of Alzheimer’s disease that precedes the onset of
symptoms by a couple of decades.15 It has been hypothesised that
the onset of pathological deposition is the time when the disease
may be amenable to immune treatments. Thus several large scale
prevention trials, such as the Anti-Amyloid Treatment in

Asymptomatic Alzheimer’s (A4) trial, Alzheimer Prevention Initiative
(API), and the Dominantly Inherited Alzheimer Network Trial
(DIAN-TU), were designed to capture patients in the presymptomatic
stage. These clinical trials test anti-amyloid treatments in cognitively
normal patients who are at high risk for developing Alzheimer’s
disease.

Thirdly, amyloid β and tau protein may synergistically and
simultaneously cause pathological changes in Alzheimer’s disease.
Amyloid β enhances phosphorylation, truncation, and aggregation
of tau protein, whereas tau protein further induces the production
of amyloid β species. The effective suppression of only one of these
two factors is probably insufficient to produce a clinical benefit.
Thus an approach targeting them simultaneously or sequentially
may be necessary to affect the course of the disease.

Finally, although the amyloid hypothesis and tau pathology are
supported by considerable genetic and biomarker studies, the data
from failed clinical trials suggest that other potential targets should
be explored.

Non-biomarker targets
In most patients, Alzheimer’s disease is late onset, and the most
common risk factor for Alzheimer’s disease is ageing. Ageing in the
industrialised world is associated with cardiovascular and
cerebrovascular diseases, as well as an increased incidence of risk
factors such as hyperlipidaemia, hypertension,
hyperhomocysteinaemia, and diabetes mellitus. Autopsy studies
have shown that more than half of patients with Alzheimer’s disease
have mixed vascular pathology. Amyloid β generates reactive
oxygen species, which cause capillary constriction in the human
cortex, resulting in reduced cerebral blood flow. Hypoxia can also
increase amyloid β production, thus generating a vicious cycle.
Vascular impairment can ultimately lead to hypoperfusion, oxidative
stress, inflammation, and dysfunction of the neurovascular unit.
The Systolic Blood Pressure Intervention Trial—Memory and
Cognition in Decreased Hypertension (SPRINT-MIND) showed that
intensive systolic blood pressure control reduced the incidence of
mild cognitive impairment. The Finnish Geriatric Intervention Study
to Prevent Cognitive Impairment and Disability (FINGER) focused
on the treatment of modifiable vascular and lifestyle related risk
factors. The intervention was effective in reducing the risk of
cognitive decline. Similarly, the Multidomain Alzheimer Preventive
Trial (MAPT) has shown that a multidomain intervention alone or
in combination with omega-3 fatty acids improved cognitive
outcome in subjects with positive amyloid status.16 The validity of
these results will be further tested by the worldwide FINGERS
network, which shares core methodology with consideration of
local culture and adaptations. Hyperhomocysteinaemia is a
modifiable risk factor for cognitive impairment. The relative risk of
dementia is up to 2.5 in older people with moderately raised
homocysteine. Homocysteine lowering treatment with B vitamins
could slow down the rate of brain atrophy and cognitive decline.17

The role of inflammation, also significant in cerebrovascular disease
and ageing, has been studied for its effect on Alzheimer’s disease.
Systemic inflammatory markers such as C reactive protein and
interleukin 6 are associated with neuronal and synaptic loss and
poor cognitive performance in older people.18 However,
anti-inflammatory treatment, including low dose prednisone, low
dose aspirin, non-steroidal anti-inflammatory drugs, selective
cyclo-oxygenase-2 inhibitors, and etanercept, has failed to show
clinical efficacy in patients with mild to moderate and preclinical
Alzheimer’s disease. One explanation for the lack of efficacy of
systemic anti-inflammatory agents could be their poor penetration
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across the blood-brain barrier. In the central nervous system, there
is a growing body of evidence linking the role of immunogenicity
to pathology and the clinical manifestations of Alzheimer’s disease.

Whole genome analysis studies have disclosed the evidence leading
to clinical trials. They identified several immune related genetic
risk factors which may contribute to the inflammatory process and
increased cytokine production in Alzheimer’s disease,19 including
triggering receptor expressed on myeloid cells 2 (TREM2) and CD33.
Both are involved in microglial activation, cytokine production,
and inflammation. The TREM2 activating antibody and CD33
blocking antibody are in phase I trials. Although microglial
activation is related to the pathology of Alzheimer’s disease, further
work is needed to examine the Janus faced effects of microglia and
associated cytokines. Furthermore, increasing evidence has shown
that interactions between the gut microbiome and the central
nervous system innate immune system (gut-brain axis) may be
involved in the pathogenesis of Alzheimer’s disease. Microglial
activation and function are regulated by the microbiome via
microbiome derived metabolites.20

Conclusion
Biomarkers for Alzheimer’s disease have been clearly identified yet
the disease remains a complex and multifaceted disorder. Few
would argue against the value of biomarkers for diagnosis and
tracking the course of Alzheimer’s disease. As our understanding
of these biomarkers advances, however, the limitation of these
signature proteins as targets of treatment also emerges. We have
delineated several promising strategies, which may improve the
clinical outcome of future trials. Firstly, the use of higher
concentrations of monoclonal treatments to adjust for poor
penetration of the blood-brain barrier; secondly, early identification
and treatment of patients at high risk for Alzheimer’s disease, and
targeting treatment at asymptomatic patients with limited biomarker
deposition; and finally, the simultaneous or sequential targeting
of both biomarkers with monoclonal treatment to determine whether
synergy is needed to achieve efficacy. In the meantime, we need to
explore promising areas of research that target pathological changes
associated with Alzheimer’s disease and affect cognitive
performance, such as vascular and inflammatory risk factors.
Whether or not these cognitive benefits directly correlate with, or
significantly affect, biomarker deposition requires further
investigation. Cerebrovascular parameters, which may affect clinical
outcome in monoclonal trials, should be evaluated. The combination
of cerebrovascular risk modification and monoclonal treatments
targeting amyloid β/tau protein could have a therapeutic effect not
seen in isolation.

Key messages

• Alzheimer’s disease has distinct pathological hallmarks, but clinical
trials targeting these biomarkers have failed, indicating the need for
new treatment strategies

• Treatment modifications targeting biomarkers include the use of
higher concentrations of therapeutic compounds, early identification
and treatment of patients at high risk for Alzheimer’s disease, and
simultaneous or sequential targeting of both amyloid β and tau protein

• Promising non-biomarker targeted strategies include modification of
cerebrovascular risk factors and targeting inflammatory factors
associated with Alzheimer’s disease

• Combination therapy of cerebrovascular risk modification and use of
monoclonal therapies targeting amyloid β/tau protein could have a
therapeutic effect.
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