N
N

N

HAL

open science

Online Bin Packing with Predictions *

Spyros Angelopoulos, Shahin Kamali, Kimia Shadkami

» To cite this version:

Spyros Angelopoulos, Shahin Kamali, Kimia Shadkami. Online Bin Packing with Predictions *. Jour-
nal of Artificial Intelligence Research, 2023, 78, pp.1111-1141. 10.1613/jair.1.14820 . hal-04549514

HAL Id: hal-04549514
https://hal.science/hal-04549514

Submitted on 17 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04549514
https://hal.archives-ouvertes.fr

Online Bin Packing with Predictions*

Spyros Angelopoulos’ Shahin Kamali* Kimia Shadkami 3

Abstract

Bin packing is a classic optimization problem with a wide range of applications, from load
balancing to supply chain management. In this work, we study the online variant of the problem,
in which a sequence of items of various sizes must be placed into a minimum number of bins of
uniform capacity. The online algorithm is enhanced with a (potentially erroneous) prediction con-
cerning the frequency of item sizes in the sequence. We design and analyze online algorithms with
efficient tradeoffs between the consistency (i.e., the competitive ratio assuming no prediction er-
ror) and the robustness (i.e., the competitive ratio under adversarial error), and whose performance
degrades near-optimally as a function of the prediction error. This is the first theoretical and exper-
imental study of online bin packing under competitive analysis, in the realistic setting of learnable
predictions. Previous work addressed only extreme cases with respect to the prediction error, and
relied on overly powerful and error-free oracles.

1 Introduction

Bin packing is a classic optimization problem and one of the original NP-hard problems (Garey & John-
son, 1979). Given a set of items, each with a (positive) size, and a bin capacity, the objective is to assign
the items to the minimum number of bins so that the sum of item sizes in each bin does not exceed
the bin capacity. Bin packing is instrumental in modelling resource allocation problems such as load
balancing and scheduling (Coffman, Garey, & Johnson, 1996), and has many applications in areas such
as supply chain management, e.g., capacity planning in logistics and cutting stock, but also in cloud
computing, where a cloud provider must decide how many physical machines are needed in order to
accommodate the incoming jobs (Cohen, Keller, Mirrokni, & Zadimoghaddam, 2019). Several approx-
imation algorithms have been proposed, e.g., (de la Vega & Lueker, 1981; RothvoB, 2013; Hoberg &
RothvoB, 2017), and efficient exact heuristics motivated by Al settings are often used in practice (Korf,
2002, 2003; Fukunaga & Korf, 2007; Schreiber & Korf, 2013).

In this work, we focus on the online variant of bin packing, in which the set of items is not known
in advance but is rather revealed in the form of a sequence. Upon the arrival of a new item, the online
algorithm must either place it into one of the currently open bins, as long as this action does not violate
the bin’s capacity, or into a new bin. The online model has several applications related to dynamic

*A preliminary version of this work appeared in the Proceedings of the 31st International Joint Conference on Artificial
Intelligence (Angelopoulos, Kamali, & Shadkami, 2022).

*Sorbonne Université, CNRS, LIP6, Paris, France

*Department of Electrical Engineering and Computer Science, York University, Toronto, Canada

SDepartment of Computer Science, University of Manitoba, Winnipeg, Canada



resource management, such as virtual machine placement for server consolidation (Song, Xiao, Chen,
& Luo, 2013; Wang, Meng, & Zhang, 2011) and memory allocation in data centers (Bein, Bein, &
Venigella, 2011). Online bin packing has a long history of study; in Section 1.2 we discuss, in more
detail, some of the most significant known results in this setting.

In order to analyze the performance of an online algorithm, we will rely on the well-established
framework of competitive analysis, which provides strict, theoretical performance guarantees against
worst-case scenarios. In fact, as stated in (Coffman et al., 1996), bin packing has served as “an early
proving ground for this type of analysis in the broader context of online computation”. The competitive
ratio of an online algorithm is defined as the worst-case ratio of the algorithm’s cost (total number
of opened bins) over the optimal offline cost (optimal number of opened bins given knowledge of all
items). For bin packing, in particular, the standard performance metric is the asymptotic competitive
ratio, in which the optimal offline cost is arbitrarily large (Coffman et al., 1996).

While the standard online framework assumes that the algorithm has no information on the input
sequence, a recently emerged and very active direction in Machine Learning seeks to leverage predic-
tions on the input. More precisely, the algorithm has access to some machine-learned information on
the input, which, however, may be erroneous; namely, there is a prediction error n associated with
it. The objective is to design algorithms which perform well if the prediction is accurate, maintain
an efficient competitive ratio is the prediction is highly erroneous (i.e., adversarial), and also exhibit
a gentle degradation of the competitive performance, as a function of the prediction error. Follow-
ing the influential work (Lykouris & Vassilvitskii, 2021), we refer to the competitive ratio of an al-
gorithm with an error-free prediction as the consistency of the algorithm, and to the competitive ratio
with an adversarial prediction as its robustness. Several online optimization problems have been stud-
ied in this learning-augmented setting, including caching (Lykouris & Vassilvitskii, 2021; Rohatgi,
2020), ski rental and non-clairvoyant scheduling (Purohit, Svitkina, & Kumar, 2018; Wei & Zhang,
2020), makespan scheduling (Lattanzi, Lavastida, Moseley, & Vassilvitskii, 2020), rent-or-buy prob-
lems (Banerjee, 2020; Anand, Ge, & Panigrahi, 2020; Gollapudi & Panigrahi, 2019), secretary and
matching problems (Antoniadis, Gouleakis, Kleer, & Kolev, 2020b; Lavastida, Moseley, Ravi, & Xu,
2020), and metrical task systems (Antoniadis, Coester, Elids, Polak, & Simon, 2020a). This is only a
partial list of some representative results; see also the survey (Mitzenmacher & Vassilvitskii, 2020).

1.1 Contribution

We give the first theoretical and experimental study of online bin packing with machine-learned predic-
tions. Previous work on this problem has assumed ideal and error-free predictions that must be provided
by a very powerful oracle, without any learnability considerations, as we discuss in more detail in
Section 1.2. In contrast, our algorithms exploit natural, and PAC-learnable predictions concerning the
frequency at which item sizes occur in the input, and our analysis incorporates the prediction error into
the performance guarantee. As in other Al-motivated works on bin packing, namely (Korf, 2002, 2003;
Fukunaga & Korf, 2007; Schreiber & Korf, 2013), we assume a discrete model in which item sizes
are integers in [1, k] for some constant k (see Section 2). This assumption is not indispensable, and in
Section 5.2 we extend the analysis to items that may have fractional sizes.

We first present and analyze an algorithm called PROFILEPACKING, that achieves optimal consis-
tency, and is also efficient if the prediction error is relatively small. The algorithm builds on the concept
of a profile set, which serves as an approximation of the items that are expected to appear in the se-



quence, given the frequency predictions. This is a natural concept that, perhaps surprisingly, has not
been exploited in the long history of competitive analysis of bin packing, and which can be readily
applicable to other online packing problems, such as multi-dimensional packing (Christensen, Khan,
Pokutta, & Tetali, 2017) and vector packing (Azar, Cohen, Kamara, & Shepherd, 2013), as we discuss
in Section 7.

As the prediction error grows, PROFILEPACKING may not be robust; we show, however, that this is
an unavoidable price that any optimally-consistent algorithm with frequency predictions must pay. We
thus design and analyze a more general class of hybrid algorithms that combine PROFILEPACKING and
any one of the known robust online algorithms, and which offers a more balanced theoretical tradeoff
between robustness and consistency.

We perform extensive experiments on our algorithms. Specifically, we evaluate them on a variety
of publicly available benchmarks, such as the BPPLIB benchmarks (Delorme, lori, & Martello, 2018),
but also on distributions studied specifically in the context of offline bin packing, such as the Weibull
distribution (Castifieiras, Cauwer, & O’Sullivan, 2012). The results show that our algorithms outper-
form the known efficient algorithms without any predictions. We also evaluate a heuristic that updates
the predictions based on previously served items, and which is better suited for inputs generated from
distributions that change over time (e.g., in the case of evolving data (Gomes, Barddal, Enembreck, &
Bifet, 2017)).

Last, we show that our algorithms can be applicable in other settings. Specifically, we show an appli-
cation of our algorithms in the context of Virtual Machine (VM) placement in large data centers (Mann,
2015): here, we obtain a more refined competitive analysis in terms of the consolidation ratio, which
reflects the maximum number of VMs per physical machine, in typical scenarios. Furthermore, we
show that our analysis of PROFILEPACKING has a direct application in the sampling-based setting, in
which the algorithm can access a small sample of the input, and the objective is to obtain an online
algorithm that performs efficiently as a function of the number of sampled input items. Thus, our online
algorithms can also serve as fast approximations to the offline problem, since frequency prediction with
bounded error can be attained with a small sample size.

In terms of analysis techniques, we note that the theoretical analysis of the algorithms we present is
specific to the setting at hand and treats items “collectively”. In contrast, almost all known online bin
packing algorithms are analyzed using a weighting technique (Coffman et al., 1996), which treats each
bin “individually”” and independently from the others (by assigning weights to items and independently
comparing a bin’s weight in the online algorithm and the optimal offline solution). In terms of the
experimental analysis, in our experiments, the prediction error is a natural byproduct of the learning
phase, and predictions are obtained by observing a small prefix of the input sequence. This is in contrast
to several works in learning-enhanced algorithms, in which a perfect prediction is first generated by a
very powerful oracle, then some random error is applied in order to simulate the imperfect prediction.

1.2 Related Work

Online bin packing has a long history of study. The simplest algorithm is NEXTFIT, which places
an item into its single open bin when possible; otherwise, it closes the bin (does not use it anymore)
and opens a new bin for the item. FIRSTFIT is another simple heuristic that places an item into the
first bin of sufficient space and opens a new bin if required. BESTFIT works similarly, except that it
places the item into the bin of minimum available capacity, which can still fit the item. NEXTFIT has



a competitive ratio of 2, while both FIRSTFIT and BESTFIT are 1.7-competitive (Coffman et al., 1996;
Johnson, Demers, Ullman, Garey, & Graham, 1974). Improving upon this performance requires more
sophisticated algorithms, and many have been proposed in the literature. These algorithms are variants
of the classic Harmonic algorithm (Lee & Lee, 1985), which places items of approximately equal sizes,
according to a harmonic sequence, in the same bin. The currently best algorithm is the Advanced
Harmonic (AH) algorithm, which has a competitive ratio of 1.57829 (Balogh, Békési, Désa, Epstein, &
Levin, 2018), whereas the best-known lower bound on the competitive ratio is 1.54278 (Balogh, Békési,
Désa, Epstein, & Levin, 2021). However, one should note that the Harmonic family of algorithms are
designed specifically for improving the competitive ratio, and their typical performance is inferior to
heuristics that are widely used in practice such as FIRSTFIT and BESTFIT, as shown in (Kamali &
Lépez-Ortiz, 2015a).

Beyond competitive analysis, the bin packing problem has been studied under stochastic settings,
in which the sizes of items are independent and identically distributed samples from some distribu-
tion (Csirik, Johnson, Kenyon, Orlin, Shor, & Weber, 2006a; Rhee & Talagrand, 1993; Gupta &
Radovanovic, 2020). In this setting, the objective is to minimize the expected loss, defined as the differ-
ence between the number of bins opened by the algorithm, and the total size of all items normalized by
the bin capacity. Ideally, one aims for a loss that is as small as o(n), where n is the number of items in
the sequence. For example, the Sum-of-Squares (SS) algorithm of (Csirik et al., 2006a) has an expected
loss of O(y/n). The same guarantee can be achieved by an algorithm whose actions only depend on the
size of the arriving item, and the levels of the bins in the current packing (Gupta & Radovanovic, 2020).
The algorithms in the above works are oblivious to the distribution; however, if the length of the input
n and the distribution are known to the algorithm, the expected loss can be reduced to O(1) (Banerjee
& Freund, 2020). We note, however, that all these algorithms are designed for stochastic inputs, and do
not provide efficient worst-case guarantees on the competitive ratio. For example, the Sum-of-Square
algorithm has a competitive ratio in the range [2,2.7] (Csirik et al., 2006a), which is as bad as (and
possibly worse than) the naive NEXTFIT algorithm.

Online bin packing has also been studied under the advice complexity model (Boyar, Kamali, Larsen,
& Loépez-Ortiz, 2016; Mikkelsen, 2016; Angelopoulos, Diirr, Kamali, Renault, & Rosén, 2018), in
which the online algorithm has access to some error-free information on the input called advice. The
objective is to quantify the tradeoffs between the competitive ratio and the size of the advice (i.e., the
number of bits in the binary encoding of the advice). For instance, (Angelopoulos et al., 2018) showed
that O(1) advice bits suffice to improve the competitive ratio of the problem to 1.5 + ¢, for any constant
e > 0. We emphasize, however, that such studies are only of theoretical interest for two reasons:
First, the advice is assumed to have no errors, and it is possible that a single bit flip gravely affects the
competitive ratio; Second, the advice is assumed to encode any information, without any learnability
considerations, and it may thus be provided by an omnipotent oracle that knows the optimal solution.
To illustrate with an example, typical advice in the above works encodes information about the number
of bins in the optimal offline packing that contain relatively large items (of size at least a third of the bin
capacity) or relatively small items (less than a third of the bin capacity).

Online bin packing was recently studied under an extension of the advice complexity model, in
which the advice may be untrusted (Angelopoulos, Diirr, Jin, Kamali, & Renault, 2020). Here, the
algorithm’s performance is evaluated only at the extreme cases in which the advice is either error-free
or adversarially generated, namely with respect to its consistency and its robustness, respectively. The
objective is to find Pareto-efficient algorithms concerning these two metrics, as a function of the advice



size. However, this model is not concerned with the algorithm’s performance in typical cases in which
the prediction does not fall in one of the two above extremes, does not incorporate the prediction error
into the analysis, and does not consider the learnability aspects of the advice. In particular, even with
error-free predictions, the algorithm of (Angelopoulos et al., 2020) has a competitive ratio as large as
1.5, whereas a single bit error may result in a competitive ratio that is as large as 6.

Concerning the application of frequency predictions in competitive online optimization, we note
that, perhaps surprisingly, such predictions have not been used widely, despite their simplicity and ef-
fectiveness. (Mahdian, Nazerzadeh, & Saberi, 2007) gave improved competitive ratios for a generalized
online matching problem motivated by advertisement space allocation, using unreliable frequency esti-
mates of keywords. Recently, and concurrently with the conference version of our work, (Im, Kumar,
Qaem, & Purohit, 2021) studied the online knapsack problem under frequency predictions, where each
item has a value and a size, and the objective is to maximize the value of items that are accepted (and
can fit) in the knapsack. Here, the concept of “frequency prediction” has a more liberal notion: it de-
scribes, for each possible value, an estimate of the total size of all items of that value. In contrast, in
the bin packing setting, item frequency is a less complicated concept, which benefits the design and
applicability of the corresponding algorithms.

2 Online Bin Packing: Model and Predictions

We begin with some preliminary discussions related to online bin packing. The input to the online
algorithm is a sequence o = ay, ..., a,, where a; is the size of the i-th item in 0. We denote by n the
length of o, and by o[i, j] the subsequence of ¢ that consists of items with indices 7, ..., j in o.

We denote by k € Z* the bin capacity. Note that & is independent of n, and is thus constant. We
assume that the size of each item is an integer in [1, k], where k is the bin capacity. This is a natural
assumption on which many efficient algorithms for bin packing rely, e.g., (Schreiber & Korf, 2013;
Fukunaga & Korf, 2007; Csirik, Johnson, Kenyon, Orlin, Shor, & Weber, 2006b). Furthermore, without
any restriction on the item sizes, (Mikkelsen, 2016) showed that no online algorithm with advice of
size sublinear in the size of the input can have competitive ratio better than 1.17 (even if the advice is
error-free). This negative result implies that some restriction on item sizes is required so as to leverage
frequency predictions. Nevertheless, in Section 5.2 we show how to handle fractional items, and how to
express the performance loss due to such items.

Given an online algorithm A (with no predictions), we denote by A(c) its output on input o, i.e., the
packing it produces, and by | A(c)| the number of bins in its output. We denote by OPT (o) the offline
optimal algorithm with knowledge of the input sequence. The (asymptotic) competitive ratio of A is
defined (Coffman et al., 1996) as

lim su M
p .
=00 4:|o|=n ’OPT(J)‘

Consider a bin b. For the purpose of the analysis, we will often associate b with a specific configu-
ration of items that can be placed into it. We thus say that b is of type (s1, s2, ..., s, €), with s; € [1, k],
e € [0,k] and 22:1 sj + e = k, in the sense that the bin can pack [ items of sizes s1,...,s;, with a
remaining empty space equal to e. We specify that a bin is filled according to type (s1, S2, ..., s;,€), if
it contains [ items of sizes sq, ..., s;, with an empty space e. Note that a type induces a partition of k
into [ + 1 integers; we call each of the [ elements sy, ..., s; a placeholder, and denote by 75 the number



of all possible bin types. Observe that 7, depends only on k£ and not on the length n of the sequence,
and is constant, since k is constant.

Consider an input sequence o. For any = € [1, k], let n, , denote the number of items of size z in
0. We define the frequency of size x in o, denoted by f; ,, to be equal to n, ,/n, hence f,, € [0,1],
and er[l, K] fz,e = 1. Our algorithms will use size frequencies as predictions. Namely, for every
x € [1,k], there is a predicted value of the frequency of size x in o, which we denote by fg’w. The
predictions come with an error, and in general, fg’c’c, # fu.0; for instance, it may very well be the case
that er[l’ K] fg’w # 1. To quantify the prediction error, let f, and f. denote the frequencies and their
predictions in o, respectively, as points in the k-dimensional space. In line with previous work on online
algorithms with predictions, e.g. (Purohit et al., 2018), we can define the error 7 as the L; norm of the
distance between f, and f.. These size frequencies are PAC-learnable, due to the following (folklore)
fact:

Remark 1. (Canonne, 2020). for any given e > 0 and § € (0, 1], a sample of size ©((k+1og(1/6))/€?)
is sufficient (and necessary) to learn the frequencies of k item sizes with accuracy € and error probability
0, assuming the distance measure is the L1-distance.

We denote by A(o, f~.) the output of A on input o and predictions f.. To simplify notation, we will
omit o when it is clear from context, i.e., we will use f’ in place of f.

3 Profile Packing

In this section, we present and analyze an online algorithm with predictions f/, which we call PRO-
FILEPACKING. The algorithm is based on the concept of a profile, denoted by Py/, which we define as
the multiset that consists of [ f,m/| items of size x, for all z € [1, k]. Here, m is a parameter that is a
sufficiently large, but constant integer, which will be specified later. One may thus think of the profile
as an “approximation” of the multiset of items that is expected as input, given the predictions f”.

Consider an optimal packing of the items in Pys. Since the size of items in Py is bounded by
k, it is possible to compute such an optimal packing in constant time, e.g., using an efficient exact
heuristic (Korf, 2002)). We will denote by py the number of bins in the optimal packing of all items
in the profile. Note that each of these py+ bins is filled according to a certain type that is specified
by the optimal packing of the profile. We simplify notation and use P and p instead of Py, and py-,
respectively, when f’ is implied.

We define the actions of PROFILEPACKING. Prior to serving any items, PROFILEPACKING opens
p empty bins of types that are in accordance with the optimal packing of the profile (so that there are
[ f2m] placeholders of size x in these empty bins). When an item, say of size z, arrives, the algorithm
will place it into any placeholder reserved for items of size z, provided that such one exists. Otherwise,
i.e., if all placeholders for size x are occupied, the algorithm will open another set of p bins, again of
types determined by the optimal profile packing. We call each such set of p bins a profile group. Note
that the algorithm does not close any bins at any time, that is, any placeholder for an item of size x can
be used at any point in time, so long as it is unoccupied.

We require that PROFILEPACKING opens bins in a lazy manner, that is, the p bins in the profile group
are opened virtually, and each bin contributes to the cost only after receiving an item. Last, suppose that
for some size x, it is f, > 0, whereas its prediction is f, = 0. In this case, z is not in the profile set P.



We call items of such size special. PROFILEPACKING packs these special items separately from others,
using FIRSTFIT. Algorithm 1 describes PROFILEPACKING in pseudocode.

Algorithm 1 PROFILEPACKING
Input: o: the input sequence with items in [1, k]
f': predicted item frequencies (Vz € [1, k], f. € [0,1])

Output: a packing of o (a set of bins that contain all items in o)

>
1: Pf/ — ¢
2: forxz € {1,...k} do
3 Py < Ppr UA{[ fom] items of size x}
4: end for
>

OPT/(P) = optimal packing of Py.

pyr 4 |OPT 4/ (P))

Group < py empty bins in accordance with OPT ¢/ (P). >
Empty < Group >
NonEmpty <+ ¢ >

R e A

10: fori e (1,...,n) do >
11z <« ol
12:  if OPT# (P) has no placeholder of size x then

13: use FIRSTFIT to pack o[ >
14:  else

15: N, <+ bins in NonEmpty with placeholder for x

16: if N; # ¢ then >
17: B < any bin of N,

18: place o[i] in a placeholder of size x in B

19: else

20: FE, < bins in Empty with placeholder for x

21: if £, = ¢ then >
22: Group < py new bins as in OPT ¢/ (P)

23: Empty < Empty U Group

24: end if

25: >

26: B < any bin of F;,

27: place o[i] in a placeholder of size = in B

28: Empty < Empty \ {B}

29: NonEmpty <+ NonEmpty U {B}

30: end if

31:  endif

32: end for

33: return NonEmpty >




Example 1. Suppose that k = 10, m = 20, and that the predictions f’ are given in the following table.

x 1 2 3 4 |5 6 7 181 9 |10
fo 0111053015010 |0]|0.03]|005|01]0.03]| 0

The profile based on these frequencies is Ppr = {3 x 1,11 x 2,3 x 3,2 x 4,6,7,9}, where i x x
indicates i items of size x. For example, there are | fim| = [0.11 - 20| = 3 items of size x = 1 in the
profile. There is an optimal packing of Py: that consists of 7 bins. Figure 1 illustrates this packing, as
well as the packing of PROFILEPACKING on an example online sequence.

I
3 } 5 || 2 > ! 3 i S| 2 ;
2 2 2 2
9 3| 2 9 35 2] 2 @
" 4 4 K "l 4 4 ok :
3 o) 3 2
By By, B3 By Bs Bs By B, By, By By, Bs Bs B

Figure 1:  The packing output by PROFILEPACKING on the input sequence o =
2,3,1,4,10,2,9,4,6,9,2,6,5. The predictions and the corresponding profile are as given in
Example 1. The optimal packing of the profile consists of seven bins By, ..., B7. When serving o,
the algorithm opens two profile groups, denoted by P; and P». The profile group P, is opened upon
serving the second item of size 9, namely the 10th request in the sequence. The placeholders that have
received an item are highlighted. Items 10 and 5 are special items and are packed using FIRSTFIT. The
total cost for serving o is equal to 9, and there are 7 bins that are only opened virtually, hence they do
not contribute to the cost.

3.1 Analysis of PROFILEPACKING

We first show that in the ideal setting of error-free prediction, PROFILEPACKING is near-optimal (Lemma 2).
This result will be very useful in the analysis of the more realistic setting of erroneous predictions (The-
orem 3). We denote by ¢ any fixed constant less than (0.5, and in order to achieve consistency equal to

1 + ¢, it will suffice to define m to be such that m > 37;k/e, as will become evident in the proof of
Lemma 2. Given that £ (and thus 7;,) and € are constants, m is also a constant.

Lemma 2. For any constant ¢ € (0,0.5], and error-free prediction (f' = f), PROFILEPACKING has
competitive ratio at most 1 + €.

Proof. Given an input sequence o, denote by PP(o, f’) the packing output by the algorithm. This
output can be seen as consisting of g profile group packings for some positive integer g (since each time
the algorithm allocates a new set of p bins, a new profile group is generated). Since the input consists of
n items, and the profile has at least m items, we have that g < [n/m].



Given an optimal packing OPT(o), we define a new packing, denoted by N, that not only packs
items in o, but also additional items as follows. IV contains all (filled) bins of OPT (o), along with their
corresponding items. For every bin type in OPT(c), we want that N contains a number of bins of that
type that is divisible by g. To this end, we add up to g — 1 filled bins of the same type in N.

We can argue that | V| is not much bigger than |OPT(c)|. We have that

|IN| < |OPT(0)| + (9 — 1)1 < |OPT(0)| + n1i/m < |OPT(0)|(1 + 11k /m),

Specifically, the first inequality holds from the way N was generated, the second inequality holds be-
cause g < [n/m] (thus g — 1 < n/m), and the last inequality holds because |OPT(o)| > [n/k] (each
bin can contain at most k items). Let € = ¢/3 and recall that we have chosen m so that m > 7k /€.
We conclude that

IN| < (1+€)|0pT(0)]. (1)

By construction, N contains g copies of the same bin (i.e., bins that are filled according to the same
type). Equivalently, N consists of g copies of the same packing, which we denote by N. Define
q = |N| to be the number of bins in this packing. We will show that p is not much bigger than ¢, which
is crucial in the proof. The number of items of size z in the packing N is at least [n;/g], since N
contains at least n, items of size z. We can give the following lower bound on [n,/g].

(/g1 > na/[n/m] (9 < [n/m))
> nym/(n+m) ([n/m] < (n+m)/m)
= ng(m/n —m?/(n® + mn))
> ngm/n —m?/(n+m) (ng <n)
> Tngm/n] — 1 —m?/(n+m) (y > [y] — 1 forany y)
> [nzm/n| — 2. (m? < n)

The last inequality holds because m is a constant with respect to n, which defines the input size. We
conclude, from the above, that [n,/g| > [n,m/n] — 1. Given that there are [ f.m] = [n,m/n] items
of size x in the profile set, we can further conclude that for any = € [1,k], N packs all items of size
x that appears in the profile set, with the exception of at most one such item. From the statement of
PROFILEPACKING, and its optimal packing of the profile set, we infer that

q+k=p, 2)



and recall that p denotes the size of the optimal packing of the profile. Moreover, we have:

q=|N|=|N|/g (by definition of q)
> |OpT(0)|/g > n/(kg) (IN| = |OPT(0)| > n/k)
> n/(k[n/m]) (g < [n/m])

> ([n/m]lm —m)/(k[n/m])

>m/k —m?/kn

>m/k—¢ (m?/kn € o(1) and € € O(1))
> 7/ — € (m > ik/€)
> (1 — 1)/ > k/€. (€ <1/d, i, >k+1)

We thus showed that ¢ > k/¢€’, hence (2) implies that
p<q(l+€). (3)

We conclude that the number of bins in each profile group is within a factor (1 + ¢’) of the number of
bins in N. Moreover, recall that PP(a, ') consists of g profile groups, and N consists of g copies of
N. Combining this with previously shown properties, we have that

|PP(o, f)|<g-p

g(1+¢€)q (by Inequality (3))
< (1+€)(1+€)|opT(o)] (by Inequality (1))
< (1+ 3€")|OopT(0)| (1+€)2 <1+36€)

— (1 + ¢)oPT(0)],
which concludes the proof. O

We will now use Lemma 2 to prove a more general result that incorporates the prediction error
into the analysis. To this end, we will relate the cost of the packing of PROFILEPACKING to the pack-
ing that the algorithm would output if the prediction were error-free, which will allow us to apply the
result of Lemma 2. Specifically, we will argue that in the presence of prediction error, the cost of PRO-
FILEPACKING may be affected in two ways: The number of bins in a single profile of PROFILEPACKING
may increase, and more profiles may have to be opened. In the proof of the following theorem, for each
of these two cases, we bound the number of additional opened bins as a function of error.

Theorem 3. For any constant € € (0,0.5], and predictions f’ with error 7, PROFILEPACKING has
competitive ratio at most 1 + (2 + 5e)nk + e.

Proof. Let f be the frequency vector for the input o, where f is unknown to the algorithm. In this
context, PP(o, f) is the packing output by PROFILEPACKING with error-free prediction, and from
Lemma 2 we know that |[PP(c, f)| < (1 + €)|OPT(0)|. Recall that Pys denotes the profile set of
PROFILEPACKING on input o with predictions f’, and p¢ denotes the number of bins in the optimal
packing of Pgr; Py and py are defined similarly. We will first relate p¢ and py- in terms of the error 7.
Note that the multisets Py and Py differ in at most 22:1 o elements, where i, = |[ fam] — [ fom]|.

10



We call these elements differing. We have i, < |(fo — f2)m|+1, hence S-F_ iy <k + 3% (o —
f2)ym| < k + nm, where the last inequality holds because 7 is the L1 norm of the distance between fo
and f/, thatis p = S%_, |[(f» — f.)]. We conclude that the number of bins in the optimal packing of
Pgr exceeds the number of bins in the optimal packing of Py by at most k+nm, i.e., ppr < pp+k+nm.

Let g and ¢’ denote the number of profile groups in PP(o, f) and PP(o, f’), respectively. We
aim to bound |PP(o, f’)|, and to this end we will first show a bound on the number of bins opened by
PP(c, f)inits first g profile groups, then in on the number of bins in its remaining ¢’ — g profile groups
(if ¢ < g, there is no such contribution to the total cost). For the first part, the bound follows easily:
There are g profile groups, each one consisting of p ¢+ bins, therefore the number of bins in question is at
most g - pgr < g(pg + k + nm). For the second part, since PROFILEPACKING is lazy, any item packed
by PP(o, f’) inits last ¢’ — g packings has to be a differing element, which implies from the discussion
above that PP(o, f’) opens at most g(k -+ nm) bins in its last g’ — g profile groups. The result follows
then from the following inequalities:

|PP(a, f')]
< g(ps +k+nm)+ g(k+nm)
g(pg + 2k + 2nm)

< g(pg + 2nm(1 +€)) (k < em)
< g(pg +2nppk(1+¢)) (pg = [m/k])
=g-pr(l1+2nk(1 +¢))

< |PP(, f)|(1 + 2nk(1 + €))

< (1+€)(1+2nk(1+€))|OPT(0)| (since |PP(o, f)| < (14 ¢€)|OPT(0)))

1+ 2nk(1 + € + 2¢) + €)|OPT(0)|

P

(

(1+277k(1+6) +€)|OPT(0)|

= (

< (14 nk(2 + 5¢) + €)|OPT(0)|. (2 < €¢/2)

O]

Theorem 3 shows that PROFILEPACKING has robustness that is linear in k. The following result
proves that this is an unavoidable price that any online algorithm with frequency-based predictions must

pay.

Theorem 4. Let ¢ be any constant with ¢ < 1. Then for any a < c¢/k, any algorithm with frequency
predictions that is (1 + «)-consistent must have robustness at least (1 — ¢)k /2.

Proof. For simplicity, we can assume that n is divisible by k. Suppose that the prediction indicates that
in the input sequence o, half of the items have size 1, while the remaining items have size k — 1, i.e., we
have f; , = 1/2,ifx € {1,k — 1}, and f; , = 0, otherwise. Define oy as the sequence that consists of
n items of size 1 followed by n items of size k — 1, and o3 as the sequence that consists of n items of
size 1 followed by n items of size 1.

Suppose first that the input is o1, then the above-defined prediction is error-free. Moreover, OPT(01) =
n and hence for an algorithm A to be (1 + «)-consistent, it must open at most (1 + a)n + o(n) bins.
Out of these bins, n bins each receive an item of size £ — 1 and possibly an item of size 1. Each of the

11



remaining an + o(n) bins may contain up to k items of size 1; that is, they contain at most kan + o(n)
items of size 1. Therefore, n — kan — o(n) items of size 1 must each be placed together with items of
size k — 1. This implies that A opens at least (1 — ka)n — o(n) bins when serving the first n items of
size 1.

Next, suppose that the input is oo. We have f1,, = 1 and fr_1,, = 0, and consequently the
error is 7 = 1. The optimal packing is formed by 2n/k bins, each containing & items of size 1; that is,
OPT(02) = 2n/k. On the other hand, by the above observation, the cost of A is at least (1—ka)n—o(n).

Hence, the robustness of A is at least % Given that o < ¢/k, it follows that A has robustness

at least (1 — ¢)k/2. O

We conclude that the robustness of PROFILEPACKING is close-to-optimal and no (1 + €)-consistent
algorithm can do asymptotically better. It is possible, however, to obtain more general tradeoffs between
consistency and robustness, as we discuss in the next section.

Time complexity of PROFILEPACKING We bound the overall time complexity of PROFILEPACKING
for serving a sequence of n items as a function of n, k£, and m. The initial phase of the algorithm, which
involves computing the profile and its optimal packing, runs in time independent of n and does not
impact the asymptotic time complexity. It is possible to find the optimal packing of the profile set
using efficient exact heuristics such as (Fukunaga & Korf, 2007; Schreiber & Korf, 2013). If faster pre-
processing is required, one can replace the exact optimal packing with an approximate packing using
simple heuristics like FIRSTFITDECREASING (Ddsa, 2007), which has a competitive ratio of 11/9. This
will improve the empirical running time, while increasing the number of opened bins by the same ratio.
Such an approach is also useful in settings where predictions are updated based on previously served
items, and thus the packing of the profile set must be computed periodically. Overall, the worst-case
time complexity of PROFILEPACKING is O(kmn). Note that each item is served in amortized time
O(km), which is constant since k£ and m are constants.

4 A Broader Class of Algorithms

In this section, we describe and analyze a more general class of algorithms which offer better robustness
in comparison to PROFILEPACKING, at the expense of slightly worse consistency. To this end, we will
combine PROFILEPACKING with any algorithm A that has efficient worst-case competitive ratio, in the
standard online model in which there is no prediction. Specifically, we will define a class of algorithms
based on a parameter A € [0, 1] and the robust algorithm A, and which we denote by HYBRID()); we
will also say that HYBRID(]) is based on A. Let a,b € N be such that A = a/(a + b). We require that
the parameter m in the statement of PROFILEPACKING is a sufficiently large constant, namely

m > 57 max{k,a + b} /e, 4)

as it will become clear in the proof of Theorem 5.

Upon arrival of an item of size x € [1, k], HYBRID(A) marks it as either an item to be served by
PROFILEPACKING, or as an item to be served by A; we call such an item a PP-item or an A-item,
in accordance to this action. Moreover, for every € [1, k], HYBRID(\) maintains two counters:

12



count(z), which is the number of items of size z that have been served so far, and ppcount(z), which
is the number of PP-items of size x that have been served so far.

We describe the actions of HYBRID(A). Suppose that an item of size x arrives. If there is an empty
placeholder of size x in a non-empty bin, then the item is assigned to that bin (and to the correspond-
ing placeholder), and declared PP-item. Otherwise, there are two possibilities: If ppcount(z) < A-
count(z), then it is served using PROFILEPACKING and is declared PP-item. If ppcount(z) > A
count(x), then it is served using A and declared A-item. Thus, A is a measure of the “involvement”
of the two algorithms in serving a given sequence. For extreme values of A, HYBRID(\) reduces to one
of its two components: if A = 1, then HYBRID()) reduces to PROFILEPACKING, whereas if A = 0, it
reduces to A.

Note that in HYBRID(A), A and PROFILEPACKING maintain their own bin space, so when serving
according to one of these algorithms, only the bins opened by the corresponding algorithm are consid-
ered. Thus, we can partition the bins used by HYBRID(\) into PP-bins and A-bins.

Example 2. Suppose that k = 10, m = 20, and that the predictions f’ are as in Example 1. Figure 2
illustrates the packing of the HYBRID(A) algorithm that is based on FIRSTFIT as algorithm A, with a
parameter A = (.5.

: 3 i 2 2 2
2 2
9 3 21| 2 10 9
7| 6 21l 2 s & .
a4, 5 5

By, By, B3 By Bs Bs By

Figure 2: The packing of HYBRID(A) on the input sequence o = 2,3,1,4,10,2,9,4,6,9,2,6,5. The
predictions and profile are described in Example 1. The total cost incurred by the algorithm on o is
equal to 9, with PROFILEPACKING and FIRSTFIT contributing 6 and 3 bins, respectively.

Before presenting the analysis of HYBRID()), we review two other approaches towards robustifying
PROFILEPACKING based on a given (robust) algorithm A, and we show that these approaches do not
perform as well as HYBRID(A). Recall that HYBRID(\) will first place an item x to a placeholder of
size z if such a placeholder is available. The first approach could be to skip this step; that is, consider
an algorithm that serves a fraction A of items of size x as PP-items, and the remaining 1 — X fraction as
A-items. To exemplify the problem with this approach, suppose that k is divisible by 5, and consider a
situation where the prediction specifies that half of the items have size 0.6k, and the other half have size
0.4k. Then, PROFILEPACKING will use two placeholders per profile bin, one of size 0.6k and another
of size 0.4k in the optimal packing of the profile set. Suppose that the input sequence o of length n,
and it consists only of items of size 0.4k and 0.6k, in non-decreasing order of size. Moreover, the total
frequency of items of size 0.4k is equal to 0.5 4 1/2, whereas the total frequency of items of size 0.6k
is equal to 0.5 — 1)/2, for some 7 > 0 (hence 7 is the prediction error). Then, the above algorithm opens

13



An /2 bins for PP-items, each including an item of size 0.4k and a placeholder of size 0.6k. Given that
the initial check for placeholders is skipped, only An(0.5 — 7/2) item of size 0.6k are placed in these
placeholders. That is, in the final packing of the algorithm, there are Ann /2 bins with a single item of
size 0.4k and an empty placeholder of size 0.6k. HYBRID(A), on the other hand, places an item of size
0.6k in each of these bins, and thus saves Ann /4 bins.

A second approach could be along the lines of (Mahdian, Nazerzadeh, & Saberi, 2012), which de-
scribe a general method for combining an optimistic algorithm that trusts the prediction (in our context,
PROFILEPACKING) and a pessimistic algorithm that ignores the prediction (in our context, the online
algorithm A). The optimistic and pessimistic algorithms optimize for situations where the prediction
is perfect and adversarial, respectively. (Mahdian et al., 2012) showed that their combined algorithm
attains the best of both worlds performance for problems such as load balancing and facility location.
Their algorithm serves an input item using the optimistic one, if the optimistic algorithm would have
incurred a total cost that would be bounded by a constant factor of the corresponding cost that would
be incurred by the pessimistic algorithm, up to that point in time; otherwise, it serves the item using the
pessimistic algorithm. In our context, this approach would treat an item as PP-item if the total cost of
PROFILEPACKING on the prefix of the input observed so far is within a constant factor > 0 of the
cost of A on the same prefix. Unfortunately, this approach fails for the bin packing problem. Consider a
worst-case example, where half of the items are predicted to be of size 0.4k, and the remaining half are
predicted to be of size 0.6k. Suppose that this prediction is error-free and all items of size 0.4k appear
before items of size 0.6k in the sequence. Then PROFILEPACKING reserves place-holders of size 0.6k
in its bins, and its cost on any prefix of the input formed by items of size 0.4k is exactly twice as large
as the cost of A for on the same prefix: this is because A must place two such items in the same bin,
because of its pessimistic nature. We observe that if a < 2, this combined algorithm treats all items
of size 0.4k as A-items, and its final packing will be the same as the one of A. Similarly, if « > 2,
the algorithm treats all items as PP-items and thus reduces to PROFILEPACKING. In other words, this
approach fails to meaningfully combine the two algorithms.

4.1 Analysis of HYBRID()\)

The following theorem establishes the performance of HYBRID(\).

Theorem 5. For any € € (0,0.5] and X € [0,1], HYBRID(\) has competitive ratio (1 + €)((1 + (2 +
S5e)nk + €)X+ ca(1 — X)), where c4 is the competitive ratio of the algorithm A on which HYBRID(\)
is based.

Proof. We define two partitions of the multiset of items in o. The first partition is SppU.S 4, where Spp
and S, are the PP-items and A-items of HYBRID()), respectively. The second partition is S p U S,
where S and S, are defined such that for any = € [1, k] there are | An, | items of size = in S and
ng — | Ang] items of size x in S’;. Given OPT(o), we will define a new packing N, such that every bin
in N contains only items in S} p or only items in 514. Let Npp and N4 denote the set of bins in NV
that include items in S%p and in S, respectively. Similarly, let Bpp and B4 denote the set of bins in
the packing of HYBRID(A) that contain only PP-items (PP-bins) and A-items (A-bins), respectively. We
will prove the following bounds for NV, Bpp and B 4:

(i) |N| < (1+¢)|OpPT(0)

b

14



(i) |Bpp| < (14 (24 5€)nk + €)|Nppl;
(ii1) ‘BA| < CA‘NA|.

To prove the above bounds, we first explain how to derive N from a given optimal packing OPT(0).
This is done in a way that N contains the filled bins of OPT(o) and up to (a + b)7 additional filled
bins so as to guarantee that, for each bin type in OPT (o), the number of bins of each given type in N is

a

divisible by a + b; recall that a, b are the smallest integers such that A = 2. Using (4), we obtain that

IN| < |OPT(0)| + (a+ b — 1)1 < |OPT(0)|(1 + Tk /m),

Since the number of bins of each type in IV is divisible by a + b, we can partition N into Npp and
Ny so that [Npp| < a(l + €)|OpT(0)|/(a + b) and |[N4| < b(1 + €)|OPT(0)|/(a + b). That is,
INpp| < A(1 4 €)|OPT(0)| and |[N4| < (1 — X)(1 4 €)|OPT(0)|. Note that N packs not only items in
o but also additional items in the added bins. That implies that all items S;D p are packed in Npp and
all items in .S f4 are packed in IV 4, and hence (i) follows.

To prove (ii) and (iii), we note that S4 C S’; which implies S%, C Spp. This is because the
algorithm declares an item of size = as an A-item only if ppcount(z) > A count(z). Hence, at any
given time during the execution of HYBRID()), the number of A-items of size x is no more than a
fraction (1 — \) of count(z).

Next, we will show the property (ii). First, note that |[Bpp| = |PP(opp, f’)|, where opp is
the subsequence of o formed by the P P-items, and PP abbreviates the output of PROFILEPACKING.
Consider a sequence o', obtained by removing, for every = € [1, k], the last d,;, items of size = from
opp, where d, is the number of items of size z in Spp \ Spp. We show next that |PP(opp, f')| =
|PP(c’sp, f')|. For any z, consider the last PP-item L, of size = for which HYBRID(\) opens a new
bin. At the time L, is packed, ppcount(z) < A-count(x). Thus, by removing items of size x that
appear after L, in o pp, the remaining items form a subsequence of o, and the number of bins does
not decrease. That implies that |[PP(opp, f')| = |PP(0/pp, f’)|. From Theorem 3, we obtain

|Bpp| = |PP(opp, f')]
= |PP(opp, f')|
< (1+ (2 + 5€)nk + €)|OPT(cpp )|
< (14 (24 5e)nk +€)|Npp].

Last, to show (iii), we note that the number of bins that HYBRID()) opens for items in .S 4 is at most
ca|OPT(S4)| < ca|OPT(S")| < ca|Nal. This is because S4 C 5.
Using Properties (i)-(iii), we obtain

|Hybrid(o, f')| = |Bpp| + | B4l

< (14 (24 5€)nk + €)|Npp| + ca|Na|
< (14 (24 5€)nk + e)A(1 + €)|OPT(0)| + ca(l — A)(1 + €)|OPT(0)|
— (L4 )((1+ 2+ 56)mk + A+ ca(l = X)|0PT(0)],
which concludes the proof. O

15



To obtain the best theoretical performance, we can choose A as the algorithm of the best known
competitive ratio, that is Advanced Harmonic algorithm (Balogh et al., 2018). However, as discussed in
Section 2, such algorithms belong to a class that is tailored to worst-case competitive analysis, and do
not tend to perform well in typical instances (Kamali & Lopez-Ortiz, 2015b). For this reason, simple
algorithms such as FIRSTFIT and BESTFIT are preferred in practice (Coffman et al., 1996). We obtain
the following corollary.

Corollary 6. For any ¢ € (0,0.5] and A € [0,1], there is an algorithm with competitive ratio (1 +
€)(1.5783+\((2+5¢)nk —0.5783+¢)). Furthermore, HYBRID(\) based on FIRSTFIT has competitive
ratio (1 + €)(1.7 4+ A((2 4 5e)nk — 0.7 + ¢€)).

We can do even better if an upper bound estimation of the error is known to the algorithm. Such
an upper bound, which we denote by H, may be available depending on the quality of historical data
and the characteristics of typical sequences. Specifically, let H-AWARE denote the algorithm which
executes HYBRID(1), if H < (ca — 1 — €)/(k(2 + 5¢)), and HYBRID(0), otherwise. An equivalent
statement is that H-AWARE executes PROFILEPACKING if H < (¢4 — 1 — €)/(k(2 + 5¢)), and A,
otherwise. The following corollary follows directly from Theorem 5 with the observation that as long
asn < (ca —1—¢€)/(k(2 + 5¢)), PROFILEPACKING has a competitive ratio that is better than c 4.

Corollary 7. Forany e € (0,0.5], H-AWARE using algorithm A has competitive ratio min{c4, 1+ (2+
5e)nk + €}, where c4 is the competitive ratio of A. In particular, choosing FIRSTFIT as A, H-AWARE
has competitive ratio min{1.7,1 + (2 + 5e)nk + €}.

S Applications & Extensions

In this section, we discuss extensions and further applications of our algorithms.

5.1 YVirtual Machine Placement

An important application of online bin packing is Virtual Machine (VM) placement in large data centers.
Here, each VM corresponds to an item whose size represents the resource requirement of the VM, and
each bin corresponds to a physical machine (i.e., host) of a given capacity k. In the context of this appli-
cation, the consolidation ratio (Mann, 2015) is the number of VMs per host, in typical scenarios. Note
that the consolidation ratio is typically much smaller than k. For example, VMware server virtualization
achieves a consolidation ratio of up to 15:1 (VMware, 2021), while Intel’s virtualization infrastructure
gives a consolidation ratio of up to 20:1 (Intel, 2010).

Let r denote the consolidation ratio (but note that this quantity is an integer). The following result
shows that we can express the competitive ratio of HYBRID(A) in Theorem 5 so that the capacity £ is
replaced by the consolidation ratio . We can thus exploit the fact that typically » is much smaller than
k, and improve the theoretical analysis of our algorithms.

Theorem 8. Consider an instance of online bin packing with bins of capacity k, in which the item sizes
are such that at most r items can fit into a bin, for some r < k. Then, for any constant € € (0,0.2],
and predictions f’ with error n, the following hold: (1) PROFILEPACKING has competitive ratio at most
14 (2 4 5e)nr + €; and (D) for any A € [0, 1], HYBRID()) has competitive ratio (1 + €)((1 + (2 +

16



S5e)nr + €)X + ca(1 — X)), where c4 is the competitive ratio of the algorithm A on which HYBRID())
is based.

Proof. The proof of (I) is identical to that of Theorem 3, except that in the fourth inequality that bounds
|PP(c,f")|, we use the fact that py > [m/r] (instead of py > [m/k]), given that at most r items
can fit into each bin. Moreover, in all subsequent inequalities in the proof, k is replaced with r. The
proof of (I) is identical to that of Theorem 5, except that part (ii) of Theorem 5 is replaced by |Bpp| <
(1 + (2 + 5e)nr + €)|Npp|, which directly follows from the same arguments and by applying part (I)
instead of Theorem 3. O

Similarly, we can generalize Theorem 4 and obtain the following improved impossibility result. The
proof is identical to that of Theorem 4, with & replaced by r.

Theorem 9. Consider an instance of online bin packing with bins of capacity k, in which the item sizes
are such that at most r items can fit into a bin, for some r < k. Then, for any constant ¢ < 1, and for
any a < ¢/r, any algorithm with frequency predictions that is (1 + «)-consistent has robustness at least
(1—c)r/2

5.2 Handling Items with Fractional Sizes

As stated in Section 2, we assume a discrete model in which items have integral sizes in [1, k]. While this
is a natural model for many Al applications, our algorithms can also handle fractional item sizes in [1, k|,
by treating them as “special” items, in the sense that they are not predicted to appear. PROFILEPACKING
and HYBRID(\) will then pack these fractional items separately from all integral ones, using FIRSTFIT.
For the analysis in this setting, we need a measure of “deviation” of the input sequence o (that may
contain fractional items) from a sequence of integral sizes. The first, and perhaps most natural, approach
is to define this deviation as the L, distance between o, and the sequence in which each item is rounded
to the closest integer in [0, k]. However, we show that this definition can be overly restrictive.

Theorem 10. Let |x| denote the integer closest to x, and define d(o) = > . |x — [x]|. Then
no online algorithm in the fractional setting can have a competitive ratio better than 4/3, even if all
frequency predictions are error-free (that is, n = 0), and even if d(o') = €, for arbitrarily small € > 0.

Proof. Let 0 = o109, where o1 consists of n items of size 0.5 — €/(2n), and o9 consists of n items of
size 0.5 + €¢/(2n). For simplicity, we assume that n and k are even integers. Suppose also that f’ is
such that f, ;) = L ifx =k /2, and 0, otherwise (i.e., only items of size k/2 are predicted to appear
in o). From the definition of error, it also follows that = 0, and from the definition of the deviation d,
we have that d(o) = e.

Let A be any online algorithm, then from the definition of o, we have that A(o1, f') = ¢n, for some
¢ > 1/2. Given that OPT(01) = n/2, the competitive ratio of A is at least 2¢. Out of the cn bins of
A(o1, f'), n— cn bins must have two items, whereas the remaining ¢n — (n — ¢n) = 2en — n bins must
have one item. Any of these remaining bins can each accommodate another item from o». Therefore,
out of the n items in o9, A can pack at most 2cn — n such items in the c¢n bins opened for oy, and
it must place the remaining n — (2cn — n) = 2n — 2c¢n items in separate (new) bins. It follows that
A(o, f') > en+ (2n—2en) = 2n— cn. Given that OPT(o’) = n, the competitive ratio of A is therefore
at least 2 — c. In summary, the competitive ratio of A is max{2c, 2 — ¢}, which is minimized at 4/3 for
c=2/3. O

17



In light of the above negative result, a different measure of “deviation” can be defined the ratio
between the total size of fractional items in o over the total size of all items in 0. The following theorem
shows that this measure can better capture the performance of the algorithm in the fractional setting.

Theorem 11. Define a?(a) = W Let A be any algorithm with frequency predictions that has

rEoT

competitive ratio c if all items have integral size. Then there is an algorithm A’ that has competitive
ratio at most ¢ + 2d(o) for inputs with fractional sizes.

Proof. Let o1 and o be the subsequences of o formed by integer and fractional items, respectively. We
can write A(o) = A(oy) + FF(op), where FF (o) denotes the number of bins opened by FIRSTFIT
when serving o . For the number of bins opened for integer items, we have A(o7) < A(o) < ¢-OPT(0).
Let S(o) and S(or) denote the total size of items in o and o, respectively, that is S(o) = > .,
and S(oF) = > ey 44|, ©- From definition, we have d(o) = S(or)/S(c). Note that FF(op) <
2S5(or)/k + 1; this is because any pair of consecutive bins contains items of total size k/2 or larger.
Therefore,
FF(op) < 2d(0)S(0)/k +1 < 2d(c)OPT(5) + 1.

In summary, we have A(c) < ¢ - OPT(c) + 2d(c)OPT(c) + 1, therefore the (asymptotic) competitive

~

ratio of A is at most ¢ + 2d(0). O

Example 3. Suppose that the prediction specifies that half of the items are of size 4 and the remaining
half are of size 6. Suppose also that the input o consists of n/2 items of size 4, In/20 items of size 6,

and n/20 items of size 6.1. Then, d(c) = %_4+§_§i%_6'1 = 0L < 0.061. Theorem 11 shows that

the worst-case, asymptotic competitive ratio of the algorithm cannot exceed c + 0.0122 in the fractional
setting.

5.3 A Sampling-based Algorithm for Online Bin Packing

Our analysis of PROFILEPACKING, as stated in Theorem 3, in conjunction with the PAC-learnability of
frequency predictions, can help obtain a sampling-based algorithm with an efficient tradeoff between
the number of sampled items and its attained competitive ratio. More precisely, consider the setting
in which the online algorithm is allowed to observe s items of the request sequence, and we would
like to express its (asymptotic) competitive ratio as a function of s. Similar types of sampling-based
competitive analysis have recently attracted attention in the context of other online problems such as
ski rental and prophet inequalities (Diakonikolas, Kontonis, Tzamos, Vakilian, & Zarifis, 2021), match-
ing (Kaplan, Naori, & Raz, 2022), and network optimization problems (Argue, Frieze, Gupta, & Seiler,
2022).

Given any small constant € > 0, define § = 1/V 2s€’—k et ON* denote the best online algo-
rithm in the standard setting, which is currently the Advanced Harmonic algorithm (Balogh et al., 2018)
with competitive ratio 1.5783. We define RANDOM-MIX to be the algorithm that works as follows:
With probability §, RANDOM-MIX executes ON*, whereas, with probability 1 — J, it executes PRO-
FILEPACKING. The analysis of this algorithm follows directly from Theorem 3 and Remark 1.

Corollary 12. For any constant ¢ > 0 and k € Nt, RANDOM-MIX with s samples has expected
competitive ratio 1.5783 - § + (1 — 8)(1 + (2 + 5e)nk + €), where § = 1/v/25¢*—k,

18



Note that Corollary 12 bounds the expected competitive ratio of a randomized algorithm which
commits to its choice (that is, it executes either ON* or PROFILEPACKING, and this decision is made
once the sample is revealed). In contrast, Corollary 6 expresses the competitive ratio of a deterministic
algorithm which judiciously switches between ON* and PROFILEPACKING throughout its execution, in
order to achieve deterministic guarantees.

6 Experimental Evaluation

In this section, we present an experimental evaluation of the performance of our algorithms'. Specif-
ically, in Section 6.1 we describe the benchmarks and the input generation model; in Section 6.2, we
expand on the predictions and error measurement; and in Section 6.3, we present and discuss the main
experimental results. In addition, in Section 6.4 we report further experiments on the profile size, and
in Section 6.5 we provide further methodology for reporting the average performance of our algorithms
over multiple runs. Last, in Section 6.6, we study the performance of our algorithms in dynamic settings
in which the input is generated from an evolving distribution.

6.1 Benchmarks and Input Generation

Several benchmarks have been used in previous work on offline bin packing; we refer to the discussion
by (Castifieiras et al., 2012) for a list of related work. Many of these previous benchmarks typically rely
on either uniform or normal distributions. There are two important issues to take into account. First,
such simple distributions are often unrealistic and do not capture typical applications of bin packing such
as resource allocation, as observed in (Gent, 1998). Second, in what concerns online algorithms, simple
algorithms such as FIRSTFIT and BESTFIT are very close to optimal for input sequences generated
from uniform distributions (Coffman et al., 1996) and very often outperform, in practice, many online
algorithms of better competitive ratio (Kamali & Lépez-Ortiz, 2015b).

We evaluate our algorithms on two types of benchmarks. The first type is based on the Weibull
distribution, which was first proposed in (Castifieiras et al., 2012) as a model of several real-world ap-
plications of bin packing, e.g., the 2012 ROADEF/EURO Challenge on a data center problem provided
by Google and several examination timetabling problems. The Weibull distribution is specified by two
parameters: the shape parameter sh and the scale parameter sc (with sh, sc > 0). The shape param-
eter defines the spread of item sizes: lower values indicate greater skew towards smaller items. The
scale parameter represents the statistical dispersion of the distribution. In our experiments, we chose
sh € [1.0,4.0]. This is because values outside this range result in trivial sequences with items that are
generally too small (hence easy to pack) or too large (for which any online algorithm tends to open a
new bin). The scale parameter is not critical, since we scale items to the bin capacity, as we will discuss
later; we thus set sc = 1000, in accordance with (Castifieiras et al., 2012).

The second type of benchmarks is generated from the BPPLIB library (Delorme et al., 2018), a col-
lection of bin packing benchmarks used in various works on (offline) algorithms for bin packing. In par-
ticular, we report results on the benchmarks “GI” (Gschwind & Irnich, 2016), “Schwerin” (Schwerin &
Wiischer, 1997), “Randomly_Generated” (Delorme, lori, & Martello, 2014), “Schoenfield_Hard28” (Schoen-
field, 2002) and “Wischer” (Wischer & Gau, 1996).

!The code on which the experiments are based is available at https:/github.com/shahink84/BinPackingPredictions.

19



We fix the size of the sequence to n = 10°. We set the bin capacity to k& = 100, and we also
scale down each item to the closest integer in [1, k]. This choice is relevant for applications such as
Virtual Machine placement (Section 5.1), as explained in Section 5.1. We generate two classes of input
sequences. For Weibull benchmarks, the input sequence consists of items generated independently and
uniformly at random, and the shape parameter is set to sh = 3.0. For BPPLIB benchmarks, we first
select a file of the benchmark uniformly at random, then generate input items from the chosen file, again
uniformly at random.

6.2 Compared Algorithms, Predictions and Error

We evaluate HYBRID()) for A € {0,0.25,0.5,0.75,1}, based on FIRSTFIT. This means that Hy-
BRID(0) is identical to FIRSTFIT, whereas HYBRID(1) is identical to PROFILEPACKING. We fix the
size of the profile set to m = 5000. To simplify the implementation of PROFILEPACKING, we use
the algorithm FIRSTFITDECREASING (Coffman et al., 1996) to compute the profile packing, instead
of an optimal algorithm. Specifically, FIRSTFITDECREASING first sorts items in the non-increasing
order of their sizes and then packs the sorted sequence using FIRSTFIT. Using FIRSTFITDECREASING
helps reduce the time complexity, and the results only improve by using an optimal algorithm for profile
packing, instead.

We generate the frequency predictions to HYBRID()) as follows: For a parameter b € N, we
define the predictions f’ as Jo[1,6)- In words, we use a prefix of size b of the input o s0 as to estimate
the frequencies of item sizes in . In our experiments, we consider 100 different prefix sizes. More
precisely, we consider all b of the form b = |100 - 1.05%], with i € [25,125]. We define the prediction
error 7 as the L, distance between the predicted and the actual frequencies. Note that for a given input
sequence, 7 is a function of the prefix size b. Since we consider 100 distinct values for b, for each
sequence we consider up to 100 possible error values. As expected from Remark 1, the prediction error
decreases with b.

As explained earlier, FIRSTFIT and BESTFIT perform very well in practice, and we use them as
benchmarks for comparing our algorithms. As often in offline bin packing, we also report the L2 lower
bound (Martello & Toth, 1990; Fukunaga & Korf, 2007) as a lower-bound estimation of the optimal
offline bin packing solution. That is, no algorithm, online or offline, can perform better than this lower
bound.

6.3 Results and Discussion

Figure 3 depicts the cost of the algorithms for a typical sequence, as a function of the prediction error.
The chosen files are “csBA125_9” (for “GI”), “Schwerin2_BPP32” (for “Shwerin”), “BPP_750_50_0.1_0.8_2”
(for “Randomly_Generated”), “Hard28 _BPP832” (for “Schoenfield_Hard28"), and “Waescher TEST0082”
(for “Wischer”). Here, we consider a single sequence, as opposed to averaging over multiple sequences,
because each input sequence is associated with its own prediction error, for any given prefix size (and
naively averaging over both the cost and the error may produce misleading results). We can use a single
sequence because the input size is considerable (n = 10°), and the distribution is fixed. Nevertheless,
in Section 6.5 we explain how to properly average over multiple sequences, and we report similar plots
and conclusions.

For all benchmarks, we observe that PROFILEPACKING (A = 1) degrades quickly as the error

20



= w= |2 Lower Bound (Opt) == First Fit Best Fit 4 Hybrid (A =0.25) = w= |2 Lower Bound (Opt) == First Fit Best Fit 4 Hybrid (A =0.25)

W Hybrid(A=0.5) A Hybrid (A\=0.75) @ Profile Packing (A= 1) M Hybrid (A=0.5) A Hybrid (A\=0.75) @ Profile Packing (A =1)
410000 480000
400000
460000
2 2
£ 390000 5
s 5 440000
& 380000 8
g E
€ - S 420000
E I e e e e e T EEEE T EEEEE EEEEE SRR B
360000 400000
0.05 0.10 0.15 0.20 0.25 0.30 035 0.05 0.10 0.15 0.20 0.25 0.30
Error (n) Error (n)
(a) Weibull distribution. (b) GI benchmark from BPPLIB.
w= = L2 Lower Bound (Opt) == First Fit BestFit 4 Hybrid (A = 0.25)
== == |2 Lower Bound (Opt) == First Fit Best Fit # Hybrid (A = 0.25) W Hybrid (A\=0.5) A Hybrid (A\=0.75) @ Profile Packing (A =1)
® Hybrid (A\=0.5) A Hybrid (A\=0.75) @ Profile Packing (A = 1) 525000
200000
195000 500000
v P e = z—1 2
< hiecand —a- s
5 190000 S 475000 //AN
5 5
g 185000 €
Q 3
5 B 4B0000 e T T oo
S 180000 ST oSS TTmoTm oo mmmmEmEE T
425000
175000 0.02 0.04 0.06 0.08 010 0.05 0.10 0.15 0.20 0.25 030 0.35
error (n) Error (n)
(c) Shwerin benchmark from BPPLIB. (d) Randomly_Generated benchmark from BPPLIB.
) ) . ) == == |2 Lower Bound (Opt) == First Fit Best Fit 4 Hybrid (A = 0.25)
-—— L2 Lower Bound (Opt) == First Fit BestFit @ Hybrid (A =0.25) B Hybrid (A\=0.5) A Hybrid (\=0.75) @ Profile Packing (A = 1)
® Hybrid (A\=0.5) A Hybrid (A\=0.75) ® Profile Packing (A = 1)
420000 295000
415000
410000 »
2 405000 £ 290000
i 400000 kS
5 395000 8
€ 390000 E 285000
2 385000 <
R
375000 280000
0.05 0.10 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.25
error (n) error (n)
(e) Schoenfield_Hard28 benchmark from BPPLIB. (f) Wiischer benchmark from BPPLIB.

Figure 3: Number of opened bins for sequences from a given distribution. For the purpose of visualiza-
tion, some of the plots are truncated, e.g., the plot of PROFILEPACKING in (c) and (d).

increases, even though it has very good performance for small values of error. As A decreases, we

observe that HYBRID(\) becomes less sensitive to error, which confirms the statement of Corollary 6.
Specifically, we observe that for the Weibull benchmarks, HYBRID(\) dominates both FIRSTFIT

and BESTFIT for all A € {0.25,0.5,0.75} and for all » < 0.27, approximately. For the GI benchmarks,

21



L2 Lower Bound(Opt) == First Fit Best Fit 4 Hybrid (A = 0.25)

L2 Lower Bound(Opt) == First Fit BestFit @ Hybrid (A =0.25) X ~ N X _ X 8 _
® Hybrid (A =05) A Hybrid (\=0.75) ® Profile Packing (A = 1) W Hybrid (A=0.5) 4 Hybrid (A=0.75) @ Profile Packing (A =1)
390000 480000 |
460000
P
® TR ——
g 380000 5
k) 8 440000
3 2
£ 370000 €
3 20420000 |
360000 400000
0 25000 50000 75000 0 25000 50000 75000
profile size (m) profile size (m)
(a) Weibull benchmark. (b) GI benchmark from BPPLIB.

Figure 4: Number of opened bins as a function of the profile size.

HYBRID()) dominates FIRSTFIT and BESTFIT for A € {0.25,0.5}, and for practically all values of
error. In the “Shwerin” benchmark, all items have sizes in the range [15,20]. As such, very good
predictions can be obtained by observing a tiny part of the input sequence, i.e., for small values of the
prefix size b. In particular, the smallest value of b, namely b = 391 results in 1 < 0.099. As illustrated
in Figure 3c, the smaller the parameter A, the better the performance of HYBRID()); in particular,
PROFILEPACKING performs the best, which suggests that for inputs from a small set of item sizes, it
is beneficial to choose a small value of A\. This can be explained by the fact that the prediction error
is relatively smaller for these types of inputs. This finding can be useful in the context of applications
such as VM placement: this is because there is only a small number of different VMs that can be
assigned to any given physical machine, as we discussed in Section 5.1. For the remaining benchmarks,
namely “Randomly_Generated”, “Schoenfield_Hard28”, and “Wischer”, the relative performance of
the algorithms is similar to that for the GI benchmark, with the difference that the divergence of the
algorithms becomes observable at different values of the prediction error.

The results demonstrate that frequency-based predictions indeed lead to performance gains. Even for
very large prediction error (i.e., a prefix size as small as b = 338) HYBRID(A) with A < 0.5 outperforms
both FIRSTFIT and BESTFIT, therefore the performance improvement comes by only observing a tiny
portion of the input sequence.

6.4 Experiments on the Profile Size

In previous experiments, we assumed that the profile size is m = 5000. In this section, we report exper-
iments on other values of m. More precisely, we evaluated the performance on two random sequences
of length n = 10° in which the item sizes are generated using Weibull distribution (with sh = 3)
and the GI-benchmark, respectively, as detailed in Section 6.2. As before, we choose k = 100. Pre-
dictions are generated based on a prefix of length b = 1000 of the input; this resulted in error values
of n = 0.1922 and n = 0.2045 for the Weibull and Gl-instances, respectively. We run HYBRID(\)
(A € {0.25,0.5,0.75, 1}) for 100 different values of m, equidistant in the interval [100, 100100].
Figure 4 depicts the number of bins opened by the algorithms. The experiments show that the
parameter m has little impact on the performance of HYBRID()\), that is, as long as m is sufficiently

22



large (e.g., when m > 1000), the performance of HYBRID()) is consistent and independent of the
choice of m.

6.5 Experiments on the Average Cost and Rounded Error

In the experiments that we discussed in Section 6.3, we reported the performance of the algorithm on
a typical sequence. More precisely, we considered a single randomly generated sequence, as opposed
to averaging the cost of the algorithm over multiple input sequences, because each input sequence is
associated with its own prediction error, for any given size of the prefix (and averaging naively over
both the cost and the error, simultaneously, may produce misleading results). We argued that this should
not be an issue, because the input sequence is of considerable size (n = 10°).

In this section, we present further experimental results based on averaging over both the cost and
the error which give further justification for this choice. Our setting here is as follows: Given a fixed
distribution (either Weibull with sh = 3, or a file from the GI Benchmark), we generate 20 random se-
quences of length 10°. For each sequence, we compute FIRSTFIT, BESTFIT, and the L2 lower bound.
The average costs of these algorithms, over the 20 sequences, serve as the benchmark costs for compar-
ison.

For HYBRID()), and every A € [0.25,0.5,0.75, 1], we generate predictions for 100 values of the
prefix size b (where recall that b is of the form b = 100 - 1.05%, with i € [25, 125]). Consider a sequence
o. For each of the above predictions for o, we compute the prediction error as well as the cost of
HYBRID(A) on o with the corresponding prediction and store a pair of the form (ERROR, COST), where
ERROR is the error with a two-digit decimal precision, and the cost is the cost of the algorithm. For
example, if ERROR = 0.2341 and COST = 143000, we store the pair (0.23, 143000). This means that
for a fixed sequence, we store up to 100 such pairs (assuming n < 1). Last, we evaluate the average of
pairs with the same rounded error over the 20 sequences. For example, if for ; we have obtained the
pair (0.23,100000), for o3 the pair (0.23, 150000), and for o3 the pair (0.23, 350000), then we take the
average as the pair (0.23, 200000).

Figure 5 depicts the plots obtained by this method, for both the Weibull and the GI benchmarks.
We observe that HYBRID() exhibits similar performance tradeoffs as the plots for a single sequence
(Figure 3), but the differences are less pronounced due to averaging.

6.6 Evolving Distributions

In this section, we address the situation in which the input is not drawn according to a fixed distribution
but instead is generated from distributions that change with time, e.g., when dealing with evolving data
streams. This is a complex setting that has not been studied in any previous work on online bin packing,
with or without predictions.

We define a heuristic called ADAPTIVE(w), in which predictions are updated dynamically using a
sliding window approach; see e.g. (Gomes et al., 2017). ADAPTIVE(w) uses a parameter w € N as
follows. In the initial phase, ADAPTIVE(w) serves o1, w] using FIRSTFIT; moreover, at the end of this
phase, it computes f,[1,.], namely the frequency vector of all sizes in o[1, w]. From this point onwards,
the algorithm will serve items using PROFILEPACKING with predictions f’/ which are initialized to
Sol1,w]- Specifically, every time ADAPTIVE(w) encounters item oliw], for i € NT, it updates f’ to

fa[(i—l)'w—l—l,iw] .

23



L2 Lower Bound(Opt) == First Fit Best Fit @ Hybrid (A =0.25) L2 Lower Bound(Opt) == First Fit Best Fit @ Hybrid (A = 0.25)

B Hybrid(A\=05) A Hybrid(A\=0.75) ® Profile Packing (A= 1) B Hybrid(A\=05) A Hybrid (A\=0.75) ® Profile Packing (= 1)

410000 480000

400000 450000
2 2
S 390000 5
5 /‘/\ 5 440000 /
é 2380000 — N é S======= e e = = S

s e msCSesE AN SOE e

=1 P =
< 370000 ————————————————————————————————— < 420000 ———————————————————————————————————

360000 400000

005 010 0415 0.20 0.25 0.30 035 0.05 0.10 0.15 0.20 025 0.30
error (n) error (n)
(a) Weibull benchmark. (b) GI Benchmark from BPPLIB.

Figure 5: Average number of bins vs. average error over twenty sequences.

For the analysis, we use the benchmarks described in Section 6.1. The distribution of the input
sequence changes every 50000 items. Namely, the input sequence is the concatenation of n,/50000 sub-
sequences. For Weibull benchmarks, each subsequence is a Weibull distribution, whose shape parameter
is chosen uniformly at random from [1.0, 4.0]. For BPPLIB benchmarks, each subsequence is generated
by choosing a file uniformly at random, then generating 50000 items uniformly at random from that
specific file.

We evaluate ADAPTIVE(w) for 100 values of the sliding window w, equidistant in the range [100, 100000].
This is a crucial parameter: if w is too small, we do not obtain sufficient information on the frequencies,
whereas if w is too big, the predictions become “stale”.

Figure 6 depicts the number of bins opened by ADAPTIVE(w) as a function of w for different
benchmarks. Here, we report the average cost of the algorithms over 20 randomly generated sequences.
We observe that for the Weibull and “GI” benchmarks, there is a relatively wide range for w that leads
to performance improvement, in comparison to FIRSTFIT and BESTFIT, namely it suffices to choose
w € [2100,25000]. For “Randomly_Generated” and “Schoenfield_Hard28”, the performance curve of
ADAPTIVE(w) is similar to that on the GI benchmark, and ADAPTIVE(w) improves upon FIRSTFIT and
BESTFIT when w takes values in the shorter range [2000,4000]. For “Schwerin”, ADAPTIVE(w) always
performs better, which can be explained by the discussion in Section 6.3. For “Wischer”, ADAPTIVE(w)
does not offer any advantage over FIRSTFIT and BESTFIT. However, these two baseline algorithms are
remarkably close to the L2 lower bound, which means that they output essentially optimal packings for
this benchmark, and which in turn leaves very little room for any potential improvement.

When ADAPTIVE(w) opens a new profile group, the predicted frequencies are updated based on the
w most recently packed items. These w items follow a distribution that may have changed since the time
a new profile group was opened. As such, the performance of ADAPTIVE(w) depends on the diversity
of the distributions that form the benchmark. For example, for “Schwerin”, the distribution does not
evolve drastically, which explains why ADAPTIVE(w) performs consistently better than FIRSTFIT and
BESTFIT, unlike the “Wischer” benchmark.

24



== == |2 Lower Bound (Opt) == First Fit Best Fit @® Adaptive = == |2 Lower Bound (Opt) == First Fit Best Fit ® Adaptive

400000
360000
395000 W
1] w0
= £
o
2 3855000 o 390000
o o
o] A M 9]
2 \WN«-—/"‘/V 8 385000
E 350000 E
= O S R S o 1
345000 375000
0 25000 50000 75000 0 25000 50000 75000
sliding window (w) sliding window (w)
(a) Weibull distribution. (b) GI benchmark from BPPLIB.
== == |2 Lower Bound(Opt) == First Fit Best Fit @ Adaptive == == |2 Lower Bound(Opt) == First Fit Best Fit @ Adaptive
200000 480000
195000 470000
° 2
S 190000 £
s S 460000
2 185000 2 St
£ 5
g 000 ... 2 450000
175000 440000
0 25000 50000 75000 0 25000 50000 75000
sliding window (w) sliding window (w)
(c) Shwerin benchmark from BPPLIB. (d) Randomly_Generated benchmark from BPPLIB.
== == L2 Lower Bound(Opt) == FirstFit BestFit @ Adaptive == == | 2 Lower Bound(Opt) == First Fit BestFit @ Adaptive
200000
410000
190000
405000
2 2
5 S 180000
S 400000 k3
5 5]
2 2 170000
5 395000 \‘“,,/"’ £
2
___________________________________ 160000
390000
150000
385000
0 25000 50000 75000 100000 0 25000 50000 75000
sliding window (w) sliding window (w)
(e) Hard28 benchmark from BPPLIB. (f) Wiischer benchmark from BPPLIB.

Figure 6: Number of opened bins for sequences from an evolving distribution. For the Shwerin bench-
mark, FIRSTFIT and BESTFIT open a similar number of bins and they practically coincide in the plot.

7 Conclusion

We gave the first results on the competitive analysis of online bin packing, in a setting in which the
algorithm has access to learnable predictions concerning the size frequencies. Our approach exploits
the concept of profile packing, which can be applicable in more generalized packing problems, such
as two-dimensional setting studied by Chung, Garey, and Johnson (1982) and Huang and Korf (2013)
and three-dimensional setting studied by Zhao, She, Zhu, Yang, and Xu (2021) and, more generally, in
vector bin packing studied by Azar et al. (2013). These are well-studied extensions of the basic online

25



bin packing problem, with many applications in transportation logistics and cloud computing. In these
problems, a main challenge will be to leverage, or develop new offline heuristics for computing the
profile packing, since the profile size increases exponentially with the dimension.

Another class of problems for which the approach may be useful is the class of multicontainer
packing problems, such as multiple knapsack, bin covering, and min-cost covering. For this class of
problems, Fukunaga and Korf (2007) gave efficient bin completion offline algorithms that can be very
useful towards the design of profile-based online algorithms. Last, a further direction for future work on
bin packing problems is to incorporate a distributional model of predictions, as studied by Diakonikolas
et al. (2021), in which the prediction is given as the cumulative distribution function of the item size
distribution.

Acknowledgements

This research was supported by the CNRS-Emergence project ONFIN, and by the project PREDIC-
TIONS, grant ANR-19-CE48-0016 from the French National Research Agency (ANR). We acknowl-
edge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [fund-
ing reference number DGECR-2018-00059].

References

Anand, K., Ge, R., & Panigrahi, D. (2020). Customizing ML predictions for online algorithms. In
International Conference on Machine Learning (ICML), pp. 303-313. PMLR.

Angelopoulos, S., Diirr, C., Jin, S., Kamali, S., & Renault, M. P. (2020). Online computation with
untrusted advice. In Proceedings of the 11th Innovations in Theoretical Computer Science Con-
ference (ITCS), pp. 52:1-52:15.

Angelopoulos, S., Diirr, C., Kamali, S., Renault, M. P., & Rosén, A. (2018). Online bin packing with
advice of small size. Theory of Computing Systems, 62(8), 2006-2034.

Angelopoulos, S., Kamali, S., & Shadkami, K. (2022). Online bin packing with predictions. In Proceed-
ings of the 31st International Joint Conference on Artificial Intelligence (IJCAI), pp. 4574-4580.
ijcai.org.

Antoniadis, A., Coester, C., Elids, M., Polak, A., & Simon, B. (2020a). Online metric algorithms with

untrusted predictions. In Proceedings of the 37th International Conference on Machine Learning
(ICML), pp. 345-355.

Antoniadis, A., Gouleakis, T., Kleer, P., & Kolev, P. (2020b). Secretary and online matching problems
with machine learned advice. In Proceedings of the 33rd Conference on Neural Information
Processing Systems (NeurlPS).

Argue, C., Frieze, A. M., Gupta, A., & Seiler, C. (2022). Learning from a sample in online algorithms.
In Proceedings of the 31st Conference on Neural Information Processing Systems (NeurlPS).

Azar, Y., Cohen, I. R., Kamara, S., & Shepherd, B. (2013). Tight bounds for online vector bin packing.
In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC), pp. 961—
970.

26



Balogh, J., Békési, J., Désa, G., Epstein, L., & Levin, A. (2018). A new and improved algorithm for
online bin packing. In Proceedings of the 26th European Symposium on Algorithms (ESA), Vol.
112, pp. 5:1-5:14.

Balogh, J., Békési, J., Dosa, G., Epstein, L., & Levin, A. (2021). A new lower bound for classic online
bin packing. Algorithmica, 83(7), 2047-2062.

Banerjee, S., & Freund, D. (2020). Uniform loss algorithms for online stochastic decision-making with
applications to bin packing. In Abstracts of the Performance Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), pp. 1-2.

Banerjee, S. (2020). Improving online rent-or-buy algorithms with sequential decision making and ML
predictions. In Proceedings of the 33rd Conference on Neural Information Processing Systems
(NeurlIPS).

Bein, D., Bein, W., & Venigella, W. (2011). Cloud storage and online bin packing. In Proceedings of the
Sth International Symposium on Intelligent Distributed Computing (IDC), pp. 63—68. Springer.

Boyar, J., Kamali, S., Larsen, K. S., & Lépez-Ortiz, A. (2016). Online bin packing with advice. Algo-
rithmica, 74(1), 507-527.

Canonne, C. L. (2020). A short note on learning discrete distributions.. arXiv math.ST:2002.11457.
Castifieiras, 1., Cauwer, M. D., & O’Sullivan, B. (2012). Weibull-based benchmarks for bin packing.

In Proceedings of the 18th International Conference on Principles and Practice of Constraint
Programming (CP), Vol. 7514, pp. 207-222.

Christensen, H. 1., Khan, A., Pokutta, S., & Tetali, P. (2017). Approximation and online algorithms for
multidimensional bin packing: A survey. Comput. Sci. Rev., 24, 63-79.

Chung, F. R., Garey, M. R., & Johnson, D. S. (1982). On packing two-dimensional bins. SIAM Journal
on Algebraic Discrete Methods, 3(1), 66-76.

Coffman, E. G., Garey, M. R., & Johnson, D. S. (1996). Approximation algorithms for bin packing: A
survey. In Approximation Algorithms for NP-Hard Problems, p. 46-93. Springer.

Cohen, M. C., Keller, P. W., Mirrokni, V., & Zadimoghaddam, M. (2019). Overcommitment in cloud
services: Bin packing with chance constraints. Management Science, 65(7), 3255-3271.

Cisirik, J., Johnson, D. S., Kenyon, C., Orlin, J. B., Shor, P. W., & Weber, R. R. (2006a). On the sum-of-
squares algorithm for bin packing. Journal of the ACM, 53, 1-65.

Cisirik, J., Johnson, D. S., Kenyon, C., Orlin, J. B., Shor, P. W., & Weber, R. R. (2006b). On the sum-of-
squares algorithm for bin packing. Journal of the ACM (JACM), 53(1), 1-65.

de la Vega, W. F., & Lueker, G. S. (1981). Bin packing can be solved within 1+epsilon in linear time.
Comb., 1(4), 349-355.

Delorme, M., lori, M., & Martello, S. (2014). Bin packing and cutting stock problems: mathematical
models and exact algorithms. In Decision models for smarter cities.

Delorme, M., lori, M., & Martello, S. (2018). BPPLIB: a library for bin packing and cutting stock
problems. Optim. Lett., 12(2), 235-250.

27



Diakonikolas, 1., Kontonis, V., Tzamos, C., Vakilian, A., & Zarifis, N. (2021). Learning online al-
gorithms with distributional advice. In ICML, Vol. 139 of Proceedings of Machine Learning
Research, pp. 2687-2696. PMLR.

Désa, G. (2007). The tight bound of first fit decreasing bin-packing algorithm is f fd(i) < 11/9opt (i) +
6/9. In Combinatorics, Algorithms, Probabilistic and Experimental Methodologies: First Inter-
national Symposium, ESCAPE 2007, pp. 1-11. Springer.

Fukunaga, A. S., & Korf, R. E. (2007). Bin completion algorithms for multicontainer packing, knapsack,
and covering problems. Journal of Artificial Intelligence Research (JAIR), 28, 393-429.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman.

Gent, I. P. (1998). Heuristic solution of open bin packing problems. Journal of Heuristics, 3(4), 299—
304.

Gollapudi, S., & Panigrahi, D. (2019). Online algorithms for rent-or-buy with expert advice. In Pro-
ceedings of the 36th International Conference on Machine Learning (ICML), pp. 2319-2327.

Gomes, H. M., Barddal, J. P., Enembreck, F., & Bifet, A. (2017). A survey on ensemble learning for
data stream classification. ACM Computing Surveys (CSUR), 50(2), 1-36.

Gschwind, T., & Irnich, S. (2016). Dual inequalities for stabilized column generation revisited. IN-
FORMS Journal on Computing, 28(1), 175-194.

Gupta, V., & Radovanovic, A. (2020). Interior-point-based online stochastic bin packing. Operations
Research, 68(5), 1474-1492.

Hoberg, R., & RothvoB3, T. (2017). A logarithmic additive integrality gap for bin packing. In Proceed-
ings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2616-2625.
SIAM.

Huang, E., & Korf, R. E. (2013). Optimal rectangle packing: An absolute placement approach. Journal
of Artificial Intelligence Research (JAIR), 46, 47-87.

Im, S., Kumar, R., Qaem, M. M., & Purohit, M. (2021). Online knapsack with frequency predictions.
In Proceedings of the 34th Annual Conference on Neural Information Processing Systems 2021
(NuerlPS), pp. 2733-2743.

Intel (2010). Implementing and expanding a virtualized environment (white paper)..

Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., & Graham, R. L. (1974). Worst-case per-
formance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing
(SICOMP), 3, 256-278.

Kamali, S., & Lépez-Ortiz, A. (2015a). All-around near-optimal solutions for the online bin packing
problem. In Proceedings of the 26th International Symposium on Algorithms and Computation
(ISAAC), Vol. 9472, pp. 727-739.

Kamali, S., & Lopez-Ortiz, A. (2015b). All-around near-optimal solutions for the online bin packing
problem. In International Symposium on Algorithms and Computation (ISAAC), pp. 727-739.

Kaplan, H., Naori, D., & Raz, D. (2022). Online weighted matching with a sample. In SODA, pp.
1247-1272. STAM.

28



Korf, R. E. (2002). A new algorithm for optimal bin packing. In Proceedings of the 18th AAAI Confer-
ence on Artificial Intelligence, pp. 731-736.

Korf, R. E. (2003). An improved algorithm for optimal bin packing. In Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pp. 1252-1258.

Lattanzi, S., Lavastida, T., Moseley, B., & Vassilvitskii, S. (2020). Online scheduling via learned
weights. In Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp- 1859-1877.

Lavastida, T., Moseley, B., Ravi, R., & Xu, C. (2020). Learnable and instance-robust predictions for
online matching, flows and load balancing. CoRR, abs/2011.11743.

Lee, C. C., & Lee, D.-T. (1985). A simple on-line bin-packing algorithm. Journal of the ACM (JACM),
32(3), 562-572.

Lykouris, T., & Vassilvitskii, S. (2021). Competitive caching with machine learned advice. Journal of
the ACM (JACM), 68(4), 1-25.

Mahdian, M., Nazerzadeh, H., & Saberi, A. (2007). Allocating online advertisement space with unre-
liable estimates. In Proceedings of the 8th ACM Conference on Electronic Commerce (EC), pp.
288-294. ACM.

Mahdian, M., Nazerzadeh, H., & Saberi, A. (2012). Online optimization with uncertain information.
ACM Trans. Algorithms, 8(1), 2:1-2:29.

Mann, Z. A. (2015). Allocation of virtual machines in cloud data centers - A survey of problem models
and optimization algorithms. ACM Comput. Surv., 48(1), 11:1-11:34.

Martello, S., & Toth, P. (1990). Lower bounds and reduction procedures for the bin packing problem.
Discrete Applied Mathematics, 28(1), 59-70.

Mikkelsen, J. W. (2016). Randomization can be as helpful as a glimpse of the future in online com-
putation. In Proceedings of the 43rd International Colloquium on Automata, Languages, and
Programming (ICALP), Vol. 55, pp. 39:1-39:14.

Mitzenmacher, M., & Vassilvitskii, S. (2020). Algorithms with predictions. In Roughgarden, T. (Ed.),
Beyond the Worst-Case Analysis of Algorithms, pp. 646—662. Cambridge University Press.

Purohit, M., Svitkina, Z., & Kumar, R. (2018). Improving online algorithms via ML predictions. In Pro-
ceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS), Vol. 31,
pp- 9661-9670.

Rhee, W. T., & Talagrand, M. (1993). On line bin packing with items of random size. Math. Oper. Res.,
18(2), 438-445.

Rohatgi, D. (2020). Near-optimal bounds for online caching with machine learned advice. In Proceed-
ings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1834—1845.

RothvoB, T. (2013). Approximating bin packing within o(log opt - log log opt) bins. In Proceedings of
the 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 20-29.

Schoenfield, J. E. (2002). Fast, exact solution of open bin packing problems without linear program-
ming. Draft, US Army Space and Missile Defense Command.

29



Schreiber, E. L., & Korf, R. E. (2013). Improved bin completion for optimal bin packing and number
partitioning. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI), pp. 651-658.

Schwerin, P., & Wischer, G. (1997). The bin-packing problem: A problem generator and some numeri-
cal experiments with FFD packing and MTP. International Transactions in Operational Research,
5(4), 377-389.

Song, W., Xiao, Z., Chen, Q., & Luo, H. (2013). Adaptive resource provisioning for the cloud using
online bin packing. IEEE Transactions on Computers, 63(11), 2647-2660.

VMware (2021). Server consolidation..
https://www.vmware.com/ca/solutions/consolidation.html, accessed: 2024-04-17.

Wang, M., Meng, X., & Zhang, L. (2011). Consolidating virtual machines with dynamic bandwidth de-
mand in data centers. In Proceedings of the 30th IEEE Conference on Computer Communications
(INFOCOM), pp. 7T1-75.

Wischer, G., & Gau, T. (1996). Heuristics for the integer one-dimensional cutting stock problem: A
computational study. Operations-Research-Spektrum, 18(3), 131-144.

Wei, A., & Zhang, F. (2020). Optimal robustness-consistency trade-offs for learning-augmented online
algorithms. In Proceedings of the 34th Annual Conference on Neural Information Processing
Systems (NeurIPS).

Zhao, H., She, Q., Zhu, C., Yang, Y., & Xu, K. (2021). Online 3d bin packing with constrained deep
reinforcement learning. In Proceedings of the 35th AAAI Conference on Artificial Intelligence,
pp. 741-749.

30



