NO PATTERN FORMATION IN A QUASILINEAR CHEMOTAXIS MODEL WITH LOCAL SENSING
Résumé
Convergence to spatially homogeneous steady states is shown for a chemotaxis model with local sensing and possibly nonlinear diffusion when the intrinsic diffusion rate $\phi$ dominates the inverse of the chemotactic motility function $\gamma$, in the sense that $(\phi\gamma)'\ge 0$. This result encompasses and complies with the analysis and numerical simulations performed in Choi & Kim (2023). The proof involves two steps: first, a Liapunov functional is constructed when $\phi\gamma$ is non-decreasing. The convergence proof relies on a detailed study of the dissipation of the Liapunov functional and requires additional technical assumptions on $\phi$ and $\gamma$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|