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NO PATTERN FORMATION IN A QUASILINEAR CHEMOTAXIS MODEL

WITH LOCAL SENSING

PHILIPPE LAURENÇOT AND ARIANE TRESCASES

Abstract. Convergence to spatially homogeneous steady states is shown for a chemotaxis model
with local sensing and possibly nonlinear diffusion when the intrinsic diffusion rate φ dominates the
inverse of the chemotactic motility function γ, in the sense that (φγ)′ ≥ 0. This result encompasses
and complies with the analysis and numerical simulations performed in Choi & Kim (2023). The
proof involves two steps: first, a Liapunov functional is constructed when φγ is non-decreasing. The
convergence proof relies on a detailed study of the dissipation of the Liapunov functional and requires
additional technical assumptions on φ and γ.

1. Introduction

In [2], Choi & Kim study the emergence of patterns in the chemotaxis model with local sensing

∂tu = ∆
(

φ(u)γ(v)
)

, (t, x) ∈ (0,∞)× Ω, (1.1a)

∂tv = ∆v − v + u, (t, x) ∈ (0,∞)× Ω, (1.1b)

∇
(

φ(u)γ(v)
)

· n = ∇v · n = 0, (t, x) ∈ (0,∞)× ∂Ω, (1.1c)

(u, v)(0) = (uin, vin), x ∈ Ω, (1.1d)

where Ω is a smooth bounded domain of Rn, n ≥ 1, n denotes the outward unit normal vector field
to ∂Ω, uin and vin are non-negative initial conditions, and the functions φ and γ are given by

φ(s) = sm, γ(s) = a+
b

(s+ s0)k
, s > 0, (1.2a)

with parameters

m > 0, a ≥ 0, b > 0, k > 0, s0 ≥ 0. (1.2b)

The system (1.1) describes the dynamics of the density u ≥ 0 of a population of cells secreting
a chemical or signal with concentration v ≥ 0, in the spirit of the class of systems introduced by
Keller & Segel [11, 12], considered in the context of local sensing (as opposed to gradient sensing,
see [3, 12, 15] for discussions in the case φ = id). The motion of cells is triggered by diffusion and
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a chemotactic bias, both being mediated by the density of cells u (when m 6= 1) and the chemical
concentration v,

∂tu = div
(

φ′(u)γ(v)∇u+ φ(u)γ′(v)∇v
)

,

while the chemical spreads by classical diffusion, thereby resulting in a triangular system of two
second-order parabolic equations with a cross-diffusion term involving both variables. Observe that,
owing to the choice (1.2) of the motility γ with γ′ ≤ 0, the chemical plays the role of a chemoattractant
and the larger the chemical concentration, the weaker the chemotactic bias.
The analysis performed in [2] relies, in particular, on a detailed study of the set

E :=

{

s > 0 : −φγ
′

φ′γ
(s) > 1

}

=

{

s > 0 :
k

m

s

s+ s0

b

b+ a(s + s0)k
> 1

}

(1.3)

of excitable density values and the emergence and the shapes of patterns are shown to be intimately
connected to the structure of E, a feature supported as well by numerical simulations. In particular,
no pattern formation is expected when E is empty, and the main contribution of this paper is to show
that this is indeed the case. Specifically, when φ and γ are given by (1.2), we prove the following
result.

Theorem 1.1. Assume that φ and γ satisfy (1.2) with (φγ)′ ≥ 0. Let (u, v) be a non-negative weak
solution to (1.1) in the sense of Definition 2.1 below with non-negative initial conditions

uin ∈ L1(Ω) ∩H1(Ω)′, vin ∈ C
(

Ω
)

,

satisfying

either

(

s0 > 0 and m ≥ k

2

)

or inf
Ω
vin > 0.

Then, there is p0 ∈ [1, 2) depending only on m and k such that, for p ∈ [1, p0] and q ∈ [1, 2),

lim
t→∞

‖v(t)−M‖q = lim
t→∞

∫ t+1

t

‖u(τ)−M‖pp dτ = 0 (1.4)

with

M :=
1

|Ω|

∫

Ω

uin(x) dx (1.5)

Moreover, if m > k + 1, then the convergence of v in (1.4) holds true for any q ∈ [1, m+ 1− k).

Theorem 1.1 is a consequence of Theorems 2.4 and 2.7 (see Section 5) and extends and improves [4,
Theorem 1.5] dealing with the semilinear case m = 1. The proof of [4, Theorem 1.5] relies on the
construction of a Liapunov functional involving the (H1)′-norm of u and the L1-norm of G0(v) with
the function G0 given by G′

0(s) = 2sγ(s)− γ(M)s−Mγ(M) for s > 0 and G0(M) = 0, and requires
the function s 7→ sγ(s) to be non-decreasing. Though it does not seem possible to adapt this
construction to the quasilinear setting φ 6= id, we nevertheless succeed in constructing a Liapunov
functional for (1.1) when φγ is non-decreasing. The construction, performed in Section 3, is far more
tricky and the Liapunov functional we obtain features the (H1)′-norm of u − v and u besides the
L2-norm of v and the L1-norm of Ψ(v) with ψ given by Ψ′ = φγ and Ψ(0) = 0. The next step is
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to exploit both the Liapunov functional and its dissipation to derive compactness and stabilization
properties of the families U := {u(t) : t ≥ 0} and V := {v(t) : t ≥ 0}. As the topology for U is
rather weak, additional technical assumptions on φ and ψ are needed to show the convergence of u
and v to the spatially homogeneous steady state (M,M) and three different settings are considered
in the next section. In particular, the topology in which the convergence of u takes place depends
on these technical assumptions.
Let us now describe the contents of this paper: in the next section, we introduce the general

class of functions φ and γ to be handled in this paper and identify three cases in which we can
prove long term convergence of weak solutions to spatially homogeneous steady states. We already
point out here that we obtain only weak convergence as t → ∞ of u in L2(t, t + 1;H1(Ω)′) in
Theorem 2.2, while convergence in L1((t, t + 1) × Ω) and Lp((t, t + 1) × Ω) for some p ∈ (1, 2) is
established in Theorem 2.4 and Theorem 2.7, respectively. Section 3 is devoted to the derivation
of time-independent estimates and the construction of the Liapunov functional. The main property
used in this section is the monotonicity of φγ, along with a growth condition on φγ, see (2.3) below.
The long term behaviour is studied in Section 4 and begins with a lemma collecting properties of
cluster points of {v(t) : t ≥ 0} in L1(Ω) as t→ ∞. The identification of these cluster points is the
step which requires additional assumptions on φ and γ. Finally, in Section 5, we come back to the
case where φ and γ are given by (1.2) and prove Theorem 1.1. A short discussion on its outcome
ends the paper.

2. Main results

Throughout this paper, we assume that the diffusion rate φ and the motility γ satisfy the following
properties:

φ ∈ C([0,∞)) ∩ C1((0,∞)), φ(0) = 0, φ > 0 and φ′ > 0 on (0,∞), (2.1)

and

γ ∈ C([0,∞)) ∩ C1((0,∞)), γ > 0 on (0,∞). (2.2)

We further assume that there is κ > 0 such that

(φγ)(s) ≤ κ
(

1 + Ψ(s)
)

, s ≥ 0, (2.3)

where

Ψ(s) :=

∫ s

0

(φγ)(s∗) ds∗ ≥ 0, s ≥ 0. (2.4)

We note that Ψ is well-defined, non-negative, and non-decreasing on [0,∞), according to (2.1)
and (2.2). The condition (2.3) implies that Ψ grows at most exponentially fast at infinity. Let
us mention at this point that the functions φ and γ given by (1.2) satisfy (2.1), (2.2), and (2.3) for
s0 > 0. The forthcoming analysis however does not require the monotonicity of γ.

Before state our result, let us define the notion of weak solution to (1.1) to be used in the sequel.
Owing to the possible degeneracy of (1.1a), when either u or γ(v) vanishes, we do not expect classical
solutions to exist.
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Definition 2.1 (weak solution). Consider non-negative initial conditions uin and vin satisfying

uin ∈ L1(Ω) ∩H1(Ω)′, vin ∈ L2(Ω), Ψ(vin) ∈ L1(Ω). (2.5)

A (global) weak solution of (1.1) is a couple of non-negative functions (u, v) such that, for all T > 0,

u ∈ L∞(0, T ;L1(Ω)) ∩ L∞(0, T ;H1(Ω)′),

v ∈ L∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)′),

φ(u)γ(v) ∈ L1((0, T )× Ω), Ψ(v) ∈ L∞(0, T ;L1(Ω)),

which satisfies
∫

Ω

uinϕ(0) dx−
∫ ∞

0

∫

Ω

u∂tϕ dx dt−
∫ ∞

0

∫

Ω

φ(u)γ(v)∆ϕ dx dt = 0

and
∫

Ω

vinϕ(0) dx−
∫ ∞

0

∫

Ω

v∂tϕ dx dt+

∫ ∞

0

∫

Ω

v (ϕ−∆ϕ) dx dt =

∫ ∞

0

∫

Ω

uϕ dx dt

for all ϕ ∈ C2
c ([0,∞)× Ω) with ∇ϕ · n = 0 on (0,∞)× ∂Ω.

We shall not discuss here the existence of weak solutions to (1.1), postponing this issue to future
research. Besides the semilinear case φ = id which has been throroughly studied [1, 3, 4, 13, 18] and
for which classical solutions are also available [6–10,14,21], weak solutions are constructed in [19] for
φ(s) = sm, m > 1, and γ ∈ C3((0,∞)) satisfying γ > 0 on (0,∞), along with

γ ∈ W 1,∞(s0,∞) for any s0 > 0 and inf
s>1

{skγ(s)} > 0 for some k ≥ 0,

when n ≥ 2, m > n/2, and

k < min

{

nm− 2

n− 2
,
2(m+ 1)

n− 2

}

.

Related chemotaxis models featuring (1.1a) with m > 1 are considered in [16] and [20].

We now turn to the long term behaviour of weak solutions to (1.1) and first consider the case
where φγ is increasing.

Theorem 2.2 (convergence for increasing φγ). Consider two functions φ and γ satisfying (2.1),
(2.2), and (2.3), and assume that

(φγ)′ > 0 on (0,∞).

Let (u, v) be a global weak solution to (1.1) in the sense of Definition 2.1 with non-negative initial
conditions (uin, vin) satisfying (2.5) and

M :=
1

|Ω|

∫

Ω

uin(x) dx > 0. (2.6)

Then, for q ∈ [1, 2), and for any ϑ ∈ H1(Ω),

lim
t→∞

‖v(t)−M‖q = lim
t→∞

∫ t+1

t

∫

Ω

(

u(τ, x)−M
)

ϑ(x) dx dτ = 0. (2.7)
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Remark 2.3. Theorem 2.2 applies to the specific choice (1.2) of functions φ and γ when m ≥ k > 0
and s0 > 0, as already observed in numerical simulations by Choi & Kim [2]. We refer to Section 5
for more details.

While pointwise strong convergence of v is achieved in Theorem 2.2, we only obtain weak conver-
gence on time averages of u. We shall now improve the convergence of u, assuming in particular the
positivity of the initial condition vin.

Theorem 2.4 (convergence for initial positive concentrations). Consider two functions φ and γ
satisfying (2.1), (2.2), and (2.3), and assume that for all λ > 1, there exists ηλ > 1 such that

φ(λs) ≥ ηλφ(s), s > 0, and (φγ)′ ≥ 0 on (0,∞). (2.8)

Let (u, v) be a global non-negative weak solution to (1.1) in the sense of Definition 2.1 with non-
negative initial conditions (uin, vin) satisfying (2.5), (2.6), and

vin ∈ C(Ω) with inf
Ω
vin > 0. (2.9)

Then, for q ∈ [1, 2),

lim
t→∞

‖v(t)−M‖q = lim
t→∞

∫ t+1

t

‖u(τ)−M‖1 dτ = 0.

Remark 2.5. Thanks to assumption (2.9) and to the parabolic equation (1.1b), the function v has a
uniform positive lower bound v∗, which we recall in (4.15) below. Therefore, (u, v) is also a solution
to (1.1) with γ replaced by any function γ̃ that coincides with γ on [v∗,∞). In particular, we can
relax (2.2), so that the result of Theorem 2.4 holds true for any positive γ ∈ C1((0,∞)) without
assuming the continuity of γ at s = 0.

Remark 2.6. Theorem 2.4 applies to the specific choice (1.2) of functions φ and γ under the mere
condition (φγ)′ ≥ 0, see Section 5. This includes in particular the case s0 = 0, where the condition
(φγ)′ ≥ 0 translates into m ≥ k > 0. The possibility of allowing s0 to vanish, which corresponds to a
singular motility γ, is clearly due to the assumed positivity (2.9) of the initial concentration vin, as
already pointed out in Remark 2.5. Theorem 2.4 also applies to the choice φ(s) = eAs− 1 with A > 0
and γ(s) = s−k with k ∈ (0, 1].

The final result applies to a more restricted class of functions φ and γ, as it requires a lower
algebraic bound on the slope of φ, as well as an upper algebraic bound on 1

γ
. It however does not rely

on the positivity of vin like Theorem 2.4, while still providing a strong convergence of time averages
of u but now in Lp(Ω) for some p ∈ (1, 2).

Theorem 2.7 (improved convergence). Consider two functions φ and γ satisfying (2.1), (2.2),
and (2.3), and

(φγ)′ ≥ 0 on (0,∞).

Assume that there exist θ ≥ 0, α ≥ 1, m > 0, and k > 0 satisfying

2α ≥ θ + k, and m ≥ k

2
,
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and (Kφ, Kγ) ∈ (0,∞)2 such that

φ(r)− φ(s)

r − s
≥ Kφ

[

1( 1
2
,2)

(r

s

) |r − s|α−1

(1 + max{r, s})θ + 1[0, 1
2
]∪[2,∞)

(r

s

)

|r − s|m−1

]

(2.10)

for (r, s) ∈ (0,∞)2, r 6= s, and

1

γ(s)
≤ Kγ(1 + s)k, s > 0. (2.11)

Let (u, v) be a global non-negative weak solution to (1.1) in the sense of Definition 2.1 below with
non-negative initial conditions (uin, vin) satisfying (2.5) and (2.6).
Then, for q ∈ [1, 2) and p ∈

[

1,min
(

2 α+1
k+θ+2

, 2m+1
k+2

)]

with p < 2,

lim
t→∞

‖v(t)−M‖q = lim
t→∞

∫ t+1

t

‖u(τ)−M‖pp dτ = 0.

Remark 2.8. Theorem 2.7 again applies to the specific choice (1.2) of functions φ and γ, see
Section 5. As already mentioned in Remark 2.5, in the case where vin verifies (2.9) one can relax
the continuity assumption of γ at s = 0.

Notation. Given f ∈ H1(Ω)′, we define

〈f〉 := 1

|Ω| 〈f, 1〉(H1)′,H1,

and we note that, if f ∈ H1(Ω)′ ∩ L1(Ω), then

〈f〉 = 1

|Ω|

∫

Ω

f(x) dx.

For f ∈ H1(Ω)′ with 〈f〉 = 0, let K[f ] ∈ H1(Ω) be the unique (variational) solution to

−∆K[f ] = f in Ω, ∇K[f ] · n = 0 on ∂Ω, (2.12a)

satisfying

〈K[f ]〉 = 0. (2.12b)

3. Time-independent estimates

We first compute the time evolution of 〈u〉 and 〈v〉 which are both explicit and easy to obtain,
as well as a classical duality estimate which takes the form of a differential identity satisfied by
‖∇K[u−M ]‖22.
Lemma 3.1. For t ≥ 0,

〈u(t)〉 =M = 〈uin〉, (3.1)

〈v(t)〉 =M + (〈vin〉 −M)e−t. (3.2)
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Also,
1

2

d

dt
‖∇P‖22 =

∫

Ω

(M − u)φ(u)γ(v) dx, (3.3)

where

P := K[u−M ]. (3.4)

Proof. The conservation of mass (3.1) readily follows from (1.1a) and (1.1c), while integration
of (1.1b) over Ω gives

d

dt
〈v〉+ 〈v〉 =M, t ≥ 0. (3.5)

We then solve (3.5) to obtain (3.2).
We next infer from (1.1a) and (3.4) that

1

2

d

dt
‖∇P‖22 =

∫

Ω

∇P · ∇∂tP dx = −
∫

Ω

P∆∂tP dx

=

∫

Ω

P∂tu dx =

∫

Ω

φ(u)γ(v)∆P dx

=

∫

Ω

(M − u)φ(u)γ(v) dx,

as claimed. �

We next construct a functional which turns out to be a Liapunov functional for (1.1) only when
〈vin〉 ≥M , but still provides valuable information otherwise.

Lemma 3.2. We set

Q := K[v − 〈v〉], R := P −Q = K[u−M − v + 〈v〉], (3.6)

and define

ℓ0(u, v) := ‖∇R‖22 ≥ 0, ℓ1(u, v) := ‖v‖22 − |Ω|〈v〉2 ≥ 0, ℓ2(u, v) := 2

∫

Ω

Ψ(v) dx ≥ 0,

d0(u, v) :=

∫

Ω

γ(v)
[

φ(v)− φ(u)
]

(v − u) dx ≥ 0, d1(u, v) := ‖∇∂tQ‖22 ≥ 0,

d2(u, v) :=

∫

Ω

(φγ)′(v)|∇v|2 dx.

Introducing

L0(u, v) :=
2
∑

j=0

ℓj(u, v) ≥ 0, D0(u, v) :=
2
∑

j=0

dj(u, v),

there holds
1

2

d

dt
L0(u, v) +D0(u, v) = (M − 〈v〉)

∫

Ω

φ(u)γ(v) dx. (3.7)
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Proof. We first observe that, by (1.1b) and (3.6),

∂t
(

−∆Q+ 〈v〉
)

−∆v = u− v = −∆R +M − 〈v〉 = −∆R + ∂t〈v〉 in (0,∞)× Ω.

Hence, −∆
(

∂tQ + v −R
)

= 0 in (0,∞)× Ω, from which we deduce that

∂tQ+ v − R = 〈v〉 in (0,∞)× Ω. (3.8)

It follows from (1.1), (3.6), and (3.8) that

1

2

d

dt

(

‖∇R‖22 + ‖v‖22
)

=

∫

Ω

(∇R · ∇∂tR + v∂tv) dx =

∫

Ω

(−R∆∂tR + v∂tv) dx

=

∫

Ω

(R∂tu− R∂tv +R∂t〈v〉+ v∂tv) dx

=

∫

Ω

φ(u)γ(v)∆R dx+

∫

Ω

(v − R)∂tv dx

=

∫

Ω

φ(u)γ(v) (−u+M + v − 〈v〉) dx+

∫

Ω

(〈v〉 − ∂tQ) ∂tv dx

=

∫

Ω

φ(u)γ(v)(v − u) dx+ (M − 〈v〉)
∫

Ω

φ(u)γ(v) dx

+
|Ω|
2

d

dt
〈v〉2 −

∫

Ω

∂tQ∂t(v − 〈v〉) dx.

Since
∫

Ω

∂tQ∂t(v − 〈v〉) dx = −
∫

Ω

∂tQ∆∂tQ dx = ‖∇∂tQ‖22,

we obtain the identity

1

2

d

dt

(

‖∇R‖22 + ‖v‖22 − |Ω|〈v〉2
)

=

∫

Ω

φ(u)γ(v)(v − u) dx

+ (M − 〈v〉)
∫

Ω

φ(u)γ(v) dx− ‖∇∂tQ‖22.
(3.9)

Next, using (1.1b),
∫

Ω

φ(u)γ(v)(v − u) dx =

∫

Ω

[

φ(u)− φ(v)
]

γ(v)(v − u) dx+

∫

Ω

(φγ)(v)(v − u) dx

= −
∫

Ω

γ(v)
[

φ(v)− φ(u)
]

(v − u) dx+

∫

Ω

(φγ)(v)(∆v − ∂tv) dx

= −
∫

Ω

γ(v)
[

φ(v)− φ(u)
]

(v − u) dx−
∫

Ω

(φγ)′(v)|∇v|2 dx

− d

dt

∫

Ω

Ψ(v) dx.
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Combining (3.9) and the above inequality, we find (3.7) and we are left with identifying the signs of
the various terms involved in the definition of L0 and D0. The non-negativity of ℓ0 and d1 is obvious,
while that of ℓ1 readily follows from Jensen’s inequality

|Ω|〈z〉2 ≤ ‖z‖22, z ∈ L2(Ω),

and that of d0 from the monotonicity (2.1) of φ and the non-negativity (2.2) of γ. Finally, the
non-negativity of ℓ2 is a straightforward consequence of the non-negativity (2.1) and (2.2) of φ and
γ and the definition (2.4) of Ψ. �

We now split the analysis according to the sign of M − 〈vin〉 and begin with the case 〈vin〉 ≥M .

Proposition 3.3. Assume that φγ is non-decreasing and that

〈vin〉 ≥ M. (3.10)

Then

0 ≤ L0(u(t), v(t)) ≤ L0(u
in, vin), t ≥ 0, (3.11)

0 ≤
∫ ∞

0

D0(u(t), v(t)) dt ≤
1

2
L0(u

in, vin). (3.12)

Proof. We first notice that (3.2) and (3.10) imply that M − 〈v(t)〉 ≤ 0 for all t ≥ 0, so that, owing
to the non-negativity (2.1) and (2.2) of φ and γ,

(M − 〈v(t)〉)
∫

Ω

φ(u(t, x))γ(v(t, x)) dx ≤ 0, t ≥ 0. (3.13)

Also, the monotonicity of φγ ensures the non-negativity of d2. Consequently,

D0(u(t), v(t)) ≥ 0, t ≥ 0.

Gathering (3.7) and (3.13) leads us to

1

2

d

dt
L0(u, v) +D0(u, v) ≤ 0, t ≥ 0.

Integrating the above differential inequality and using the non-negativity of L0(u, v) and D0(u, v)
immediately give (3.11) and (3.12). �

We next turn to the case 〈vin〉 < M and first observe that the right-hand side of (3.7) is now
non-negative due to the positivity (2.1) and (2.2) of φ and γ and the positivity of M −〈v〉 stemming
from (3.2). We actually need to modify L0 to deal with this additional term.

Proposition 3.4. Assume that φγ is non-decreasing and that

〈vin〉 < M. (3.14)

Introducing

ℓ3(u, v) := (M − 〈v〉)‖∇P‖22 ≥ 0,
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d3(u, v) := (M − 〈v〉)
∫

Ω

uφ(u)γ(v) dx ≥ 0,

L1(u, v) := L0(u, v) + ℓ3(u, v) ≥ 0,

D1(u, v) := D0(u, v) +
ℓ3(u, v)

2
+ d3(u, v) ≥ 0,

there are C1 > 0 and C2 > 0 depending only on Ω, φ, κ, and M such that

0 ≤ L1(u(t), v(t) ≤ C1

[

1 + L1(u
in, vin)

]

, t ≥ 0, (3.15)

0 ≤
∫ ∞

0

D1(u(t), v(t)) dt ≤ C2

[

1 + L1(u
in, vin)

]

. (3.16)

Proof. Owing to (3.2) and (3.14),

M − 〈v(t)〉 > 0, t ≥ 0, (3.17)

which guarantees the non-negativity of ℓ3, as well as that of d3, once combined with the non-negativity
of u, φ, and γ. Next, the non-negativity of L1 and D1 follows from the already established non-
negativity of L0, ℓ3, D0, and d3.
We then infer from (3.3) and (3.5) that

1

2

d

dt
ℓ3(u, v) = −1

2
(M − 〈v〉)‖∇P‖22 + (M − 〈v〉)

∫

Ω

(M − u)φ(u)γ(v) dx

= −ℓ3(u, v)
2

− (M − 〈v〉)
∫

Ω

uφ(u)γ(v) dx (3.18)

+M(M − 〈v〉)
∫

Ω

φ(u)γ(v) dx.

Summing (3.7) and (3.18), we obtain

1

2

d

dt
L1(u, v) +D1(u, v) = (M + 1)(M − 〈v〉)

∫

Ω

φ(u)γ(v) dx. (3.19)

Since
∫

Ω

φ(u)γ(v) dx =

∫

Ω

1[0,2(M+1)](u)φ(u)γ(v) dx+

∫

Ω

1(2(M+1),∞)(u)φ(u)γ(v) dx

≤ φ(2(M + 1))

∫

Ω

1[0,2(M+1)](u)γ(v) dx

+
1

2(M + 1)

∫

Ω

1(2(M+1),∞)(u)uφ(u)γ(v) dx

≤ φ(2(M + 1))

∫

Ω

γ(v) dx+
1

2(M + 1)

∫

Ω

uφ(u)γ(v) dx,



No pattern formation in a quasilinear chemotaxis model with local sensing 11

we deduce from (3.17) and (3.19) that

1

2

d

dt
L1(u, v) +D1(u, v) ≤ (M + 1)φ(2(M + 1))(M − 〈v〉)

∫

Ω

γ(v) dx

+
M − 〈v〉

2

∫

Ω

uφ(u)γ(v) dx

≤ (M + 1)φ(2(M + 1))(M − 〈v〉)‖γ(v)‖1

+
D1(u, v)

2
.

Hence
d

dt
L1(u, v) +D1(u, v) ≤ 2(M + 1)φ(2(M + 1))(M − 〈v〉)‖γ(v)‖1. (3.20)

It remains to estimate the L1-norm of γ(v). To this end, we notice that (2.1), (2.2), and (2.3) imply
that

γ(s) ≤ sup
[0,1]

{γ}, s ∈ [0, 1],

γ(s) ≤ (φγ)(s)

φ(1)
≤ κ

φ(1)
(1 + Ψ(s)), s > 1.

Consequently,

‖γ(v)‖1 ≤
(

sup
[0,1]

{γ}+ κ

φ(1)

)

(|Ω|+ ‖Ψ(v)‖1) ,

so that, setting

C0 := (M + 1)φ(2(M + 1))

(

sup
[0,1]

{γ}+ κ

φ(1)

)

,

we infer from (3.17), (3.20), and the above inequality that

d

dt
L1(u, v) +D1(u, v) ≤ 2C0(M − 〈v〉) (|Ω|+ ‖Ψ(v)‖1)

≤ C0(M − 〈v〉)
[

2|Ω|+ ℓ2(u, v)
]

≤ C0(M − 〈v〉)
[

2|Ω|+ L1(u, v)
]

. (3.21)

Owing to the non-negativity of D1 and (3.2), the function L1(u, v) satisfies the differential inequality

d

dt
L1(u(t), v(t)) ≤ C0(M − 〈vin〉)e−t

[

2|Ω|+ L1(u(t), v(t))
]

, t ≥ 0,

which gives, after integration,

2|Ω|+ L1(u(t), v(t)) ≤
(

2|Ω|+ L1(u
in, vin)

)

exp
{

C0(M − 〈vin〉)
(

1− e−t
)

}

, t ≥ 0,
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and from which we deduce (3.15) with C1 :=
(

1 + 2|Ω|
)

eC0M . We next integrate (3.21) with respect
to time and infer from (3.2) and (3.15) that, for t > 0,

∫ t

0

D1(u(τ), v(τ)) dτ ≤ L1(u(t), v(t)) +

∫ t

0

D1(u(τ), v(τ)) dτ

≤ L1(u
in, vin) + C0

∫ t

0

(M − 〈v(τ)〉
[

2|Ω|+ L1(u(τ), v(τ))
]

dτ

≤ L1(u
in, vin) + C0(M − 〈vin〉)

[

2|Ω|+ C1 + C1L1(u
in, vin)

]

∫ t

0

e−τ dτ

≤ C2

[

1 + L1(u
in, vin)

]

,

with C2 := 1 + C0M
(

2|Ω|+ C1

)

. Letting t→ ∞ in the above estimate gives (3.16). �

Summarizing the outcome of Propositions 3.3 and 3.4, we have derived the following bounds.

Proposition 3.5. Assume that φγ is non-decreasing on (0,∞). Then there is C3 > 0 such that

sup
t∈[0,∞)

{

‖P (t)‖H1 + ‖v(t)‖2 + ‖Ψ(v(t))‖1
}

≤ C3, (3.22a)

∫ ∞

0

∫

Ω

[

γ(v)(φ(v)− φ(u))(v − u) + (φγ)′(v)|∇v|2
]

dx dt ≤ C3, (3.22b)

∫ ∞

0

[

‖∂tQ(t)‖2H1 + ‖∂tv(t)‖2(H1)′

]

dt ≤ C3. (3.22c)

Proof. Let t ≥ 0. On the one hand, by (3.2), (3.11), and (3.15),

‖v(t)‖22 ≤ ℓ1(u(t), v(t)) + |Ω|〈v(t)〉2

≤ max
{

L0(u(t), v(t)),L1(u(t), v(t))
}

+ |Ω|max
{

M2, 〈vin〉2
}

≤ max
{

L0(u
in, vin), C1[1 + L1(u

in, vin)]
}

+ |Ω|max
{

M2, 〈vin〉2
}

. (3.23)

On the other hand, we infer from (2.12) and the Poincaré-Wirtinger inequality

‖z − 〈z〉‖2 ≤ CPW‖∇z‖2, z ∈ H1(Ω), (3.24)

that

‖∇Q(t)‖22 =
∫

Ω

(Qv)(t, x) dx ≤ ‖Q(t)‖2‖v(t)‖2

≤ CPW‖∇Q(t)‖2‖v(t)‖2 ≤
‖∇Q(t)‖22

2
+
C2

PW

2
‖v(t)‖22.

Consequently, ‖∇Q(t)‖2 ≤ CPW‖v(t)‖2, from which we deduce that

‖P (t)‖2 ≤ CPW‖∇P (t)‖2 ≤ CPW

[

‖∇R(t)‖2 + ‖∇Q(t)‖2
]

≤ CPW‖∇R(t)‖2 + C2
PW‖v(t)‖2.

(3.25)
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Thanks to (3.23) and (3.25), the estimates (3.22a) and (3.22b) readily follows from Propositions 3.3
and 3.4.
Next, by (3.24),

‖∂tQ(t)‖22 ≤ C2
PW‖∇∂tQ(t)‖22. (3.26)

We also infer from (3.2), (3.6), and Hölder’s inequality that, for t ≥ 0 and ϑ ∈ H1(Ω),
∣

∣

∣
〈∂tv(t), ϑ〉

∣

∣

∣
=

∣

∣

∣

∣

〈

−∆∂tQ(t) +
d

dt
〈v(t)〉, ϑ

〉
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Ω

∇Q(t) · ∇ϑ dx

∣

∣

∣

∣

+ |〈vin〉 −M |‖ϑ‖1e−t

≤ ‖∇∂tQ(t)‖2‖∇ϑ‖2 + |〈vin〉 −M |
√

|Ω|‖ϑ‖2e−t

≤
(

‖∇∂tQ(t)‖2 + |〈vin〉 −M |
√

|Ω|e−t
)

‖ϑ‖H1 .

Therefore,

‖∂tv(t)‖(H1)′ ≤ ‖∇∂tQ(t)‖2 + |〈vin〉 −M |
√

|Ω|e−t,

from which we deduce that

‖∂tv(t)‖2(H1)′ ≤ 2‖∇∂tQ(t)‖22 + 2|〈vin〉 −M |2|Ω|e−2t. (3.27)

Collecting (3.26) and (3.27) and using (3.12) and (3.16) give (3.22c). �

4. Large time behaviour

We now begin the study of the large time behaviour and first collect some information about the
compactness of (P,Q, v) and their cluster points in suitable topologies as t→ ∞.

Lemma 4.1. Assume that φγ is non-decreasing on (0,∞). Then V = {v(t) : t ≥ 0} is relatively
compact in Lq(Ω) for q ∈ [1, 2).
Consider now a cluster point v∞ ∈ L1(Ω) of V in L1(Ω) as t → ∞; that is, there is a sequence

(tj)j≥1 in (1,∞) such that

lim
j→∞

tj = ∞ and lim
j→∞

‖v(tj)− v∞‖1 = 0. (4.1)

Then
v∞ ∈ L2(Ω) with 〈v∞〉 =M and lim

j→∞
‖v(tj)− v∞‖q = 0 (4.2)

for all q ∈ [1, 2). Moreover, introducing Q∞ := K[v∞ −M ] and

(uj, vj , Pj, Qj)(τ, x) := (u, v, P,Q)(tj + τ, x), (τ, x) ∈ [0, 1]× Ω, j ≥ 1,

there holds, after possibly extracting a subsequence,

lim
j→∞

sup
τ∈[0,1]

‖vj(τ)− v∞‖q = lim
j→∞

sup
τ∈[0,1]

‖Qj(τ)−Q∞‖2 = 0, (4.3)

lim
j→∞

∫ 1

0

‖∇Qj(τ)−∇Q∞‖22 dτ = lim
j→∞

∫ 1

0

‖Pj(τ)−Q∞ − v∞ +M‖2q dτ = 0, (4.4)

for any q ∈ [1, 2).
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Proof. We first recall that (1.1b), (1.1c), (3.1), and the regularizing properties of the heat semigroup
imply that, for each q ∈ [1, n/(n− 1)), there is C4(q) > 0 such that

‖v(t)‖W 1,q ≤ C4(q), t ≥ 0. (4.5)

In particular, owing to the compactness of the embedding ofW 1,1(Ω) in L1(Ω) and the L2-bound (3.22a),

V = {v(t) : t ≥ 0} is relatively compact in Lq(Ω) for each q ∈ [1, 2). (4.6)

We now consider a cluster point v∞ ∈ L1(Ω) of V in L1(Ω) as t→ ∞ satisfying (4.1), its existence
being guaranteed by (4.6). The property (4.2) is then an immediate consequence of (3.2), (3.22a),
and (4.1). Next, according to (1.1), vj solves

∂τvj = ∆vj − vj + uj, (τ, x) ∈ (0, 1)× Ω,

∇vj · n = 0, (τ, x) ∈ (0, 1)× ∂Ω,
(4.7)

and
vj(0) = v(tj)

for j ≥ 1. Let q ∈ (1, n/(n− 1)) ∩ (1, 2), ϑ ∈ W n,q′(Ω) with q′ = q/(q − 1), and recall that W n,q′(Ω)
embeds continuously in L∞(Ω). It follows from (3.1), (4.5), (4.7), and Hölder’s inequality that, for
τ ∈ (0, 1),

|〈∂τvj(τ), ϑ〉| ≤
∫

Ω

|∇vj(τ)||∇ϑ| dx+ ‖vj(τ)‖q‖ϑ‖q′ + ‖uj(τ)‖1‖ϑ‖∞

≤ ‖∇vj(τ)‖q‖∇ϑ‖q′ + ‖vj(τ)‖q‖ϑ‖q′ + C(q)|Ω|M‖ϑ‖Wn,q′

≤ C(q)‖ϑ‖Wn,q′ .

Therefore,
(∂tvj)j≥1 is bounded in L∞((0, 1),W n,q′(Ω)′). (4.8)

Since W 1,q(Ω) is compactly embedded in Lq(Ω) and Lq(Ω) embeds continuously in W n,q′(Ω)′, we
infer from (4.5), (4.8), and [17, Corollary 4] that

(vj)j≥1 is relatively compact in C([0, 1], Lq(Ω)).

There are thus a subsequence of (vj)j≥1 (not relabeled) and w ∈ C([0, 1], Lq(Ω)) such that

lim
j→∞

sup
τ∈[0,1]

‖(vj − w)(τ)‖q = 0. (4.9)

We now use Hölder’s inequality to obtain, for ϑ ∈ W 1,q′(Ω), j ≥ 1, and τ ∈ [0, 1],
∣

∣

∣

∣

∫

Ω

(

w(τ)− v∞
)

ϑ dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Ω

(

w − vj
)

(τ)ϑ dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

(

vj(τ)− vj(0)
)

ϑ dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

(

vj(0)− v∞
)

ϑ dx

∣

∣

∣

∣

≤ ‖
(

w − vj
)

(τ)‖q‖ϑ‖q′ +
∣

∣

∣

∣

∫ τ

0

∫

Ω

∂τvj(τ∗)ϑ dxdτ∗

∣

∣

∣

∣

+ ‖vj(0)− v∞‖q‖ϑ‖q′
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≤ ‖
(

w − vj
)

(τ)‖q‖ϑ‖q′ +
∫ τ

0

‖∂τvj(τ∗)‖(H1)′‖ϑ‖H1 dτ∗ + ‖v(tj)− v∞‖q‖ϑ‖q′

≤
(

‖
(

w − vj
)

(τ)‖q +
√
τ

(
∫ τ

0

‖∂τvj(τ∗)‖2(H1)′ dτ∗

)1/2

+ ‖v(tj)− v∞‖q
)

‖ϑ‖W 1,q′ .

We may then take the limit j → ∞ in the above inequality and deduce from (3.22c), (4.2), and (4.9)
that

∫

Ω

(

w(τ)− v∞
)

ϑ(x) dx = 0, ϑ ∈ W 1,q′(Ω), τ ∈ [0, 1].

Consequently,

w(τ) = v∞, τ ∈ [0, 1],

so that the convergence (4.9) becomes

lim
j→∞

sup
τ∈[0,1]

‖vj(τ)− v∞‖q = 0.

Recalling the L2-bound (3.22a), we have actually established that, for all q ∈ [1, 2),

lim
j→∞

sup
τ∈[0,1]

‖vj(τ)− v∞‖q = 0; (4.10)

that is, the first statement in (4.3).
We now turn to the proof of the second statement in (4.3) and first observe that the definition of

Q, Qj, and Q∞ entails that Qj −Q∞ is a variational solution to

∂τ (Qj −Q∞)−∆(Qj −Q∞) = ∂τQj + vj − v∞ − 〈vj〉+M, (τ, x) ∈ (0, 1)× Ω,

∇(Qj −Q∞) · n = 0, (τ, x) ∈ (0, 1)× ∂Ω,

Qj(0)−Q∞ = Q(tj)−Q∞, x ∈ Ω.

Let p ∈ (2n/(n + 2), 2). We infer from the above equations, the continuous embedding of H1(Ω) in
Lp/(p−1)(Ω), Hölder’s inequality, and the Poincaré-Wirtinger inequality (3.24) that

1

2

d

dt
‖Qj −Q∞‖22 + ‖∇(Qj −Q∞)‖22
≤ ‖Qj −Q∞‖2‖∂τQj‖2 + ‖Qj −Q∞‖p/(p−1)‖vj − v∞ − 〈vj〉+M‖p
≤ CPW‖∇(Qj −Q∞)‖2‖∂τQj‖2 + C‖∇(Qj −Q∞)‖2‖vj − v∞‖p.

We next use Young’s inequality to obtain

1

2

d

dt
‖Qj −Q∞‖22 +

1

2
‖∇(Qj −Q∞)‖22 ≤ C

(

‖∂τQj‖22 + ‖vj − v∞‖2p
)

.
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Hence, after integrating with respect to time,

sup
τ∈[0,1]

‖Qj(τ)−Q∞‖22 +
∫ 1

0

‖∇(Qj(τ)−Q∞)‖22 dτ

≤ ‖Q(tj)−Q∞‖22 + C

(

∫ 1

0

‖∂τQj(τ)‖22 dτ + sup
τ∈[0,1]

‖vj(τ)− v∞‖2p

)

.

(4.11)

On the one hand, it follows from the continuous embedding of H1(Ω) in Lp/(p−1)(Ω), Hölder’s in-
equality, and the Poincaré-Wirtinger inequality (3.24) that

‖Q(tj)−Q∞‖2 ≤ CPW‖∇(Q(tj)−Q∞)‖2
and

‖∇(Q(tj)−Q∞)‖22 =
∫

Ω

(

Q(tj)−Q∞

)(

v(tj)− 〈v(tj)〉 − v∞ +M
)

dx

=

∫

Ω

(

Q(tj)−Q∞

)(

v(tj)− v∞
)

dx

≤ ‖Q(tj)−Q∞‖p/(p−1)‖v(tj)− v∞‖p
≤ C‖∇(Q(tj)−Q∞)‖2‖v(tj)− v∞‖p.

Consequently,
‖Q(tj)−Q∞‖2 ≤ CPW‖∇(Q(tj)−Q∞)‖2 ≤ C‖v(tj)− v∞‖p

and we deduce from (4.2) that
lim
j→∞

‖Q(tj)−Q∞‖H1 = 0. (4.12)

On the other hand, since p ∈ (1, 2), the integrability (3.22c) and the convergence (4.10) imply that

lim
j→∞

[

∫ 1

0

‖∂τQj(τ)‖22 dτ + sup
τ∈[0,1]

‖vj(τ)− v∞‖2p

]

= 0. (4.13)

Combining the above statement with (4.11) and (4.12) completes the proof of (4.3) and proves the
first statement in (4.4).
Finally, let q ∈ [1, 2). We infer from (3.8) and Hölder’s inequality that

∫ 1

0

‖Pj(τ)−Q∞ − v∞ +M‖2q dτ

=

∫ 1

0

‖∂τQj(τ) +Qj(τ) + vj(τ)− 〈vj(τ)〉 −Q∞ − v∞ +M‖2q dτ

≤ 4|Ω|(2−q)/q

∫ 1

0

‖∂τQj(τ)‖22 dτ + 4|Ω|(2−q)/q sup
τ∈[0,1]

‖Qj(τ)−Q∞‖22

+ 8 sup
τ∈[0,1]

‖vj(τ)− v∞‖2q.
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In view of (4.3) and (4.13), the right-hand side of the above inequality converges to zero as j → ∞
and the proof of Lemma 4.1 is complete. �

Proof of Theorem 2.2. According to Lemma 4.1, V = {v(t) : t ≥ 0} is relatively compact in L1(Ω)
and we are left with identifying the cluster points of V in L1(Ω) as t→ ∞.
We thus consider a cluster point v∞ ∈ L1(Ω) of V in L1(Ω) as t → ∞ satisfying (4.1) and keep

the notation introduced in Lemma 4.1. For ε ∈ (0, 1), we deduce from the positivity and continuity
of (φγ)′ on [ε, 1/ε] that

µε := min
[ε,1/ε]

{(φγ)′} > 0.

Introducing

vεj := min

{

max
{

vj, ε
}

,
1

ε

}

, j ≥ 1,

which satisfies

∇vεj = 1[ε,1/ε](vj)∇vj a.e. in (0, 1)× Ω,

we infer from the Poincaré-Wirtinger inequality that
∫ 1

0

‖vj(τ)− 〈vj(τ)〉‖1 dτ

≤
∫ 1

0

‖vεj (τ)− 〈vεj (τ)〉‖1 dτ +

∫ 1

0

‖(vj − vεj )(τ)− 〈(vj − vεj )(τ)〉‖1 dτ

≤ C

∫ 1

0

‖∇vεj (τ)‖1 dτ + 2 sup
τ∈[0,1]

‖(vj − vεj )(τ)‖1

≤ C√
µε

∫ 1

0

∫

Ω

√
µε1[ε,1/ε](vj(τ, x))|∇vj(τ, x)| dxdτ + 2 sup

τ∈[0,1]

‖1(0,ε)(vj(τ))vj(τ)‖1

+ 2 sup
τ∈[0,1]

‖1(1/ε,∞)(vj(τ))vj(τ)‖1

≤ C√
µε

∫ 1

0

∫

Ω

√

(φγ)′(vj(τ, x))|∇vj(τ, x)| dxdτ + 2|Ω|ε+ 2ε sup
τ∈[0,1]

‖vj(τ)‖22.

Owing to (3.22a) and Hölder’s inequality, we further obtain that
∫ 1

0

‖vj(τ)− 〈vj(τ)〉‖1 dτ

≤ C
√

|Ω|
√
µε

[
∫ 1

0

∫

Ω

(φγ)′(vj(τ, x))|∇vj(τ, x)|2 dxdτ

]1/2

+ 2|Ω|ε+ 2C2
3ε

≤ C
√

|Ω|
√
µε

[

∫ ∞

tj

∫

Ω

(φγ)′(v(t, x))|∇v(t, x)|2 dxdt

]1/2

+ 2|Ω|ε+ 2C2
3ε.
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Therefore, owing to (3.2), (3.22b), (4.1), and (4.3),

‖v∞ −M‖1 =
∫ 1

0

‖v∞ −M‖1 dτ = lim
j→∞

∫ 1

0

‖vj(τ)− 〈vj(τ)〉‖1 dτ ≤ 2|Ω|ε+ 2C2
3ε.

The above inequality being valid for all ε ∈ (0, 1), we conclude that v∞ =M a.e. in Ω.
We have thus shown that the constant state M is the only possible cluster point of the family

V = {v(t) : t ≥ 0} in L1(Ω) as t → ∞. Together with the compactness of V in L1(Ω) already
established in Lemma 4.1, this property implies the convergence of v(t) to M in L1(Ω) as t → ∞.
Since V is a bounded subset of L2(Ω) according to (3.22a), we conclude that

lim
t→∞

‖v(t)−M‖q = 0 for all q ∈ [1, 2). (4.14)

Furthermore, it follows from (1.1b) that, for t > 0 and ϑ ∈ C2
c (Ω),

∫ t+1

t

∫

Ω

(

u(τ, x)−M
)

ϑ(x) dx dτ

=

∫ t+1

t

∫

Ω

[

∂t
(

v(τ, x)− 〈v(τ)〉
)

−∆v(τ, x) + v(τ, x)− 〈v(τ)〉
]

ϑ(x) dx dτ

=

∫ t+1

t

∫

Ω

[

−∆
(

∂tQ+ v
)

(τ, x) + v(τ, x)− 〈v(τ)〉
]

ϑ(x) dx dτ

=

∫ t+1

t

∫

Ω

∂t∇Q(τ, x) · ∇ϑ(x) dx dτ +

∫ t+1

t

∫

Ω

(

v(τ, x)− 〈v(τ)〉
)

(ϑ−∆ϑ)(x) dx dτ.

Hence, by Hölder’s inequality,
∣

∣

∣

∣

∫ t+1

t

∫

Ω

(

u(τ, x)−M
)

ϑ(x) dx dτ

∣

∣

∣

∣

≤ ‖ϑ‖H1

(
∫ t+1

t

‖∂tQ(τ)‖2H1 dτ

)1/2

+ ‖ϑ−∆ϑ‖∞ sup
τ∈[t,t+1]

{

‖v(τ)−M‖1 +
∣

∣M − 〈v(τ)〉
∣

∣

}

,

and we use (3.2), (3.22c), and (4.14) to pass to the limit t→ ∞ and obtain

lim
t→∞

∫ t+1

t

∫

Ω

(

u(τ, x)−M
)

ϑ(x) dx dτ = 0.

A density argument and (3.22a) allow us to extend the above limit to all ϑ ∈ H1(Ω) and complete
the proof. �

Proof of Theorem 2.4. Since vin is positive and continuous in Ω by (2.9), it follows from (3.1) and [5,
Lemma 2.6] that there is v∗ > 0 such that

v(t, x) ≥ v∗ > 0, (t, x) ∈ [0,∞)× Ω. (4.15)
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Owing to the positivity and monotonicity of φγ, we further obtain that

(φγ)(v)(t, x) ≥ ω∗ := (φγ)(v∗) > 0, (t, x) ∈ [0,∞)× Ω. (4.16)

For ε ∈ (0, 1) and j ≥ 1, we define

Aj,ε :=
{

(τ, x) ∈ (0, 1)× Ω : uj(τ, x) ≥ (1 + ε)vj(τ, x)
}

,

Bj,ε :=
{

(τ, x) ∈ (0, 1)× Ω : uj(τ, x) ≤ (1− ε)vj(τ, x)
}

,

Ij,ε :=
{

(τ, x) ∈ (0, 1)× Ω : (1− ε)vj(τ, x) < uj(τ, x) < (1 + ε)vj(τ, x)
}

,

and note that (0, 1)× Ω = Aj,ε ∪ Ij,ε ∪Bj,ε.
On the one hand, on Aj,ε, uj ≥ vj and we infer from (2.8), (4.16), and the monotonicity of φ that

γ(vj)
(

φ(uj)− φ(vj)
)

(uj − vj) ≥ γ(vj)
(

φ((1 + ε)vj)− φ(vj)
)

(uj − vj)

≥ (η1+ε − 1)(φγ)(vj)(uj − vj)

≥ (η1+ε − 1)ω∗|uj − vj |.
Consequently, thanks to (3.22b),

lim
j→∞

∫

Aj,ε

|uj − vj| dx dτ

≤ 1

(η1+ε − 1)ω∗
lim
j→∞

∫

Aj,ε

γ(vj)
(

φ(uj)− φ(vj)
)

(uj − vj) dx dτ

≤ 1

(η1+ε − 1)ω∗
lim
j→∞

∫ 1

0

∫

Ω

γ(vj)
(

φ(uj)− φ(vj)
)

(uj − vj) dx dτ = 0.

(4.17)

Similarly, on Bj,ε, uj ≤ vj and we infer from (2.8), (4.16), and the monotonicity of φ that

γ(vj)
(

φ(uj)− φ(vj)
)

(uj − vj) = γ(vj)
(

φ(vj)− φ(uj)
)

(vj − uj)

≥ γ(vj)
(

φ(vj)− φ((1− ε)vj)
)

(vj − uj)

≥
(

1− 1

η1/(1−ε)

)

(φγ)(vj)(vj − uj)

≥ η1/(1−ε) − 1

η1/(1−ε)

ω∗|uj − vj |.

We then argue as above to conclude that

lim
j→∞

∫

Bj,ε

|uj − vj| dx dτ = 0. (4.18)

On the other hand, −εvj ≤ uj − vj ≤ εvj on Ij,ε, so that
∫

Ij,ε

|uj − vj| dx dτ ≤ ε

∫ 1

0

∫

Ω

vj dx dτ ≤ ε|Ω|max{M, 〈vin〉} (4.19)

by (3.2).
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Gathering (4.17), (4.18), and (4.19), we find that

lim sup
j→∞

∫ 1

0

‖(uj − vj)(τ)‖1 dτ ≤ ε|Ω|max{M, 〈vin〉}

for all ε ∈ (0, 1). Therefore,

lim
j→∞

∫ 1

0

‖(uj − vj)(τ)‖1 dτ = 0,

and, recalling (4.3), we have established that

lim
j→∞

∫ 1

0

‖uj(τ)− v∞‖1 dτ = 0. (4.20)

We now combine (4.4) and (4.20) to obtain that, for ϑ ∈ C∞
c (Ω),

∫

Ω

(v∞ −M)ϑ dx =

∫ 1

0

∫

Ω

(v∞ −M)ϑ dx dτ = lim
j→∞

∫ 1

0

∫

Ω

(uj(τ)−M)ϑ dx

= − lim
j→∞

∫ 1

0

∫

Ω

Pj(τ)∆ϑ dx dτ = −
∫ 1

0

∫

Ω

(

Q∞ + v∞ −M
)

∆ϑ dx dτ

=

∫

Ω

(v∞ −M)ϑ dx−
∫

Ω

(v∞ −M)∆ϑ dx.

Therefore,

−
∫

Ω

Q∞ϑ dx =

∫

Ω

(v∞ −M)∆ϑ dx = 0, ϑ ∈ C∞
c (Ω),

a property which implies thatQ∞ = 0 and thus v∞ =M . As in the proof of Theorem 2.2, we have thus
shown that the constant stateM is the only possible cluster point of the family V = {v(t) : t ≥ 0} in
L1(Ω) as t→ ∞, from which the convergence (4.14) follows. An immediate consequence is that (4.1)
holds true with tj = j and we infer from (4.20) that

lim
j→∞

∫ j+1

j

‖u(t)−M‖1 dt = 0,

which completes the proof. �

Proof of Theorem 2.7. Again, we start by proving that the only cluster point of V in L1(Ω) as t→ ∞
is M . We first use assumption (2.11), together with (3.22a), to obtain that, for any θ′ ≥ 0,

sup
t∈[0,∞)

∫

Ω

(

(1 + v)θ
′

γ(v)

)

2

k+θ′

dx ≤ 2K
2

k+θ′

γ

(

|Ω|+ C2
3

)

. (4.21)

In view of assumption (2.10) we now split the analysis into two cases, depending on how close u and
v are.
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On the set
{

1
2
v < u < 2v

}

, we use assumption (2.10), together with (3.22b), and deduce that
∫ ∞

0

∫

Ω

1( 1
2
,2)

(u

v

) |u− v|α+1

(1 + v)θ
γ(v) dx dt

≤2θ
∫ ∞

0

∫

Ω

1( 1
2
,2)

(u

v

) |u− v|α+1

(1 + max{u, v})θγ(v) dx dt ≤ 2θ
C3

Kφ

.

(4.22)

Let pα = 2 α+1
2+k+θ

≥ 1. We use Hölder’s inequality and (4.21) with θ′ = θ to get
∥

∥

∥
(u− v)1( 1

2
,2)

(u

v

)
∥

∥

∥

pα

pα

=

∫

Ω

1( 1
2
,2)

(u

v

)

|u− v|pα
(

γ(v)(1 + v)−θ
)pα/(α+1) (

γ(v)(1 + v)−θ
)−pα/(α+1)

dx

≤
(
∫

Ω

1( 1
2
,2)

(u

v

) |u− v|α+1

(1 + v)θ
γ(v) dx

)pα/(α+1)
(

∫

Ω

(

(1 + v)θ

γ(v)

)pα/(α+1−pα)

dx

)(α+1−pα)/(α+1)

≤ 2
k+θ

2+k+θK
2

2+k+θ
γ

(

|Ω|+ C2
3

)
k+θ

2+k+θ

(
∫

Ω

1( 1
2
,2)

(u

v

) |u− v|α+1

(1 + v)θ
γ(v) dx

)2/(2+k+θ)

.

Combining this last inequality with (4.22), we finally get
∫ ∞

0

∥

∥

∥
(u− v)1( 1

2
,2)

(u

v

)
∥

∥

∥

α+1

pα
dt ≤ C5 := 2

k+3θ
2 Kγ

(

|Ω|+ C2
3

)
k+θ
2
C3

Kφ
. (4.23)

On the set
{

1
2
v ≥ u} ∪ {u ≥ 2v

}

, assumption (2.10), together with (3.22b), gives
∫ ∞

0

∫

Ω

1[0, 1
2
]∪[2,∞)

(u

v

)

|u− v|m+1γ(v) dx dt ≤ C3

Kφ

.

Then, setting pm := 2m+1
2+k

≥ 1, similar computations as before with θ and α replaced by 0 and m,
respectively, give

∫ ∞

0

∥

∥

∥
(u− v)1[0, 1

2
]∪[2,∞)

(u

v

)
∥

∥

∥

m+1

pm
dt ≤ C6 := 2

k
2Kγ

(

|Ω|+ C2
3

)
k
2
C3

Kφ

. (4.24)

Finally, let p ∈
[

1,min{pα, pm}
]

⊂
[

1,min{α+ 1, m+ 1}
]

. Thanks to Hölder’s inequality, applied
first over the domain Ω then over (tj , tj + 1), we have, for j ≥ 1,

∫ 1

0

‖(uj − vj)(τ)‖pp dτ

=

∫ 1+tj

tj

∥

∥

∥
1( 1

2
,2)

(u

v

)

(u− v)
∥

∥

∥

p

p
dt+

∫ 1+tj

tj

∥

∥

∥
1[0, 1

2
]∪[2,∞)

(u

v

)

(u− v)
∥

∥

∥

p

p
dt

≤ |Ω|
pα−p

pα

(

∫ 1+tj

tj

∥

∥

∥
1( 1

2
,2)

(u

v

)

(u− v)(t)
∥

∥

∥

α+1

pα
dt

)
p

α+1
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+ |Ω|
pm−p
pm

(

∫ 1+tj

tj

∥

∥

∥
1[0, 1

2
]∪[2,∞]

(u

v

)

(u− v)(t)
∥

∥

∥

m+1

pm
dt

)
p

m+1

,

so that (4.23) and (4.24) imply

lim
j→∞

∫ 1

0

‖(uj − vj)(τ)‖pp dτ = 0. (4.25)

Recalling (4.3), we deduce from (4.25) that (4.20) holds, and we can proceed as in the proof of
Theorem 2.4 to prove (4.14).
Finally, for t ≥ 0,

∫ t+1

t

‖u(τ)−M‖pp dτ ≤ 2p−1

∫ t+1

t

‖(u− v)(τ)‖pp dτ + 2p−1 sup
τ∈[t,t+1]

{‖v(τ)−M‖pp}.

Thus, assuming further that p < 2, we may pass to the limit as t→ ∞ in the above inequality with
the help of (4.14) and (4.25) and find

lim
t→∞

∫ t+1

t

‖u(τ)−M‖pp dτ = 0,

thus completing the proof. �

5. Application to φ and γ satisfying (1.2)

We now come back to the case where φ and γ are given by (1.2) and satisfy (φγ)′ ≥ 0. We first
prove Theorem 1.1 and then shortly comment its outcome.

Proof of Theorem 1.1. We first note that φ(s) = sm, s ≥ 0, satisfies (2.8) with ηλ = λm so that, in
the case where infΩ v

in > 0, a direct application of Theorem 2.4 (together with Remarks 2.5 and 2.6)
yields (1.4) for all q ∈ [1, 2) and for p = 1.
Let us now suppose that s0 > 0 and m ≥ k

2
> 0. We verify that φ(s) = sm satisfies the

condition (2.10) for any α ≥ 1 with α ≥ m and for θ = α−m ≥ 0. For instance, one can take m = α
and θ = 0 when m ≥ 1, while one may take α = 1 and θ = 1 −m > 0 when m < 1. In both cases,
the convergence (1.4) holds for any q ∈ [1, 2) and any p ∈

[

1, 2m+1
k+2

]

with p < 2.
Finally, by (1.2), we have that

(φγ)(s) = sm
(

a+
b

(s+ s0)k

)

≥ b

2k
sm−k, s ≥ s0,

so that, if m+ 1 > k, then

Ψ(s) ≥ Ψ(s0) +
b

2k
sm+1−k − sm+1−k

0

m+ 1− k
, s ≥ s0.

We then infer from (3.22a) and the above lower bound on Ψ that V = {v(t) : t ≥ 0} is bounded
in Lmax{2,m+1−k}(Ω). Consequently, if m > k + 1, then the convergence (1.4) can be extended to all
q ∈ [2, m+ 1− k). �
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We conclude with a short discussion of our results in light of the analysis performed in [2]. For φ
and γ satisfying (1.2), Choi & Kim show by a linear stability analysis [2, Theorem 3.2], supplemented
with numerical tests, that the emergence of pattern formation is connected with the condition that
the initial (averaged) mass M of cells, see (1.5), belongs to the set E defined in (1.3). As a first
consequence, no pattern formation is expected when the set E is empty, a condition that can be
rewritten as

(φγ)′(s) ≥ 0, s > 0. (5.1)

On the one hand, assuming positive values for the initial concentration vin, Theorem 1.1 gives the
asymptotic spatial homogeneity exactly under the condition (5.1). In this sense, our result appears
to be optimal in this case. On the other hand, when we allow the initial concentration vin to
vanish, Theorem 1.1 requires the supplementary constraints that s0 > 0 and m ≥ k

2
. The constraint

s0 > 0 is crucial to avoid a singularity of γ at s = 0 and also appears in the linear stability
analysis [2, Theorem 3.2]. As for the other constraint m ≥ k

2
, let us first point out that, when a = 0,

the condition (5.1) exactly rewrites as m ≥ k, which is a stronger condition than m ≥ k
2
. However,

when a > 0 and s0 > 0, the condition (5.1) becomes more intricate and actually involves m, k, a
b
,

and s0. This condition is compatible with m < k
2
, as the following computation shows: since

(φγ)′(s) =
sm−1

(s+ s0)k+1

[

am(s + s0)
k+1 + b(m− k)s + bms0

]

, s > 0,

it satisfies

(φγ)′(s) ≥ 0 for s > 0 if and only if
a

b
sk0 ≥ 1

m

(

(k −m)+
(k + 1)

)k+1

.

While the latter is obviously true when m ≥ k, it also holds true for m ∈ (0, k) provided a
b
sk0 is

large enough. For such a choice, we expect no pattern formation according to the analysis of [2] but
Theorem 1.1 proves it only for vin > 0 when m ∈

(

0, k
2

)

. We may nevertheless apply Theorem 2.2
in this range of m and obtain the asymptotic spatial homogeneity in a very weak sense, see (2.7),
even without the initial positivity of vin. This refinement holds whenever (φγ)′ is positive on (0,∞).
As a conclusion, the class of functions φ and γ given by (1.2) for which we expect the asymptotic
homogeneity but cannot prove it, even in a very weak sense, is the quite specific class of functions (1.2)
for which φγ is non-decreasing with m ∈

(

0, k
2

)

and has at least one critical point. This includes the

case when (a, b, s0, k) ∈ (0,∞)4 and m ∈
(

0, k
2

)

satisfies

am(k + 1)k+1sk0 = b(k −m)k+1. (5.2)

Indeed, introducing s1 :=
m+1
k−m

s0, we infer from (5.2) that

am(k + 1)(s1 + s0)
k = b(k −m)

am(s1 + s0)
k+1 + b(m− k)s1 + bms0 = 0,
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which implies, together with the convexity of s 7→ sk+1, that, for s > 0,

(φγ)′(s) =
sm−1

(s+ s0)k+1

[

am(s + s0)
k+1 + b(m− k)s+ bms0

]

=
sm−1

(s+ s0)k+1

[

am(s + s0)
k+1 − am(s1 + s0)

k+1 + b(m− k)(s− s1)
]

+
sm−1

(s+ s0)k+1

[

am(s1 + s0)
k+1 + b(m− k)s1 + bms0

]

=
sm−1

(s+ s0)k+1

[

am(s + s0)
k+1 − am(s1 + s0)

k+1 − am(k + 1)(s1 + s0)
k(s− s1)

]

≥ 0

and (φγ)′(s1) = 0.
Finally, a question raised by the analysis in [2] that we leave open is to understand the long-

time behaviour when E is not empty, and, in particular, to show the expected asymptotic spatial
homogeneity whenM /∈ E. Since the strategy of proof presented in this paper relies on estimates that
are global in time and space, and makes full use of the monotonicity of φγ everywhere, answering
this last question would require a completely new strategy, and might require more refined local
estimates.
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73000 Chambéry, France

Email address : philippe.laurencot@univ-smb.fr
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