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Abstract: Despite low tuberculosis (TB) mortality rates in China, Europe, and the United States, many
countries are still struggling to control the epidemic, including India, South Africa, and Algeria. This
study aims to contribute to the body of knowledge on this topic and provide a valuable tool and
evidence-based guidance for the Algerian healthcare managers in understanding the spread of TB
and implementing control strategies. For this purpose, a compartmental mathematical model is
proposed to analyze TB dynamics in Algeria and investigate the vaccination and treatment effects on
disease breaks. A qualitative study is conducted to discuss the stability property of both disease-free
equilibrium and endemic equilibrium. In order to adopt the proposed model for the Algerian case,
we estimate the model parameters using Algerian TB-reported data from 1990 to 2020. The obtained
results using the proposed mathematical compartmental model show that the reproduction number
(R0) of TB in Algeria is less than one, suggesting that the disease can be eradicated or effectively
controlled through a combination of interventions, including vaccination, high-quality treatment,
and isolation measures.

Keywords: tuberculosis model; epidemic; vaccination; parameter estimation

1. Introduction

The recent outbreak of the coronavirus disease, known as COVID-19 has indeed
highlighted the critical role of epidemic research, particularly mathematical modeling, in
understanding and combating infectious diseases, since it provides a powerful tool to
analyze the dynamic transmission of diseases and assess the potential impact of various
interventions and control measures.

Tuberculosis is a contagious infection caused by bacteria called Mycobacterium tuber-
culosis that primarily affects the lungs. It can also spread to other body parts, including
the brain and spine. Importantly, it can be contracted not only through direct contact
with an infected individual but also through the inhalation of airborne droplets containing
the bacteria.

TB is one of the top 10 killers worldwide and causes 1.8 million deaths each year. Of
all new TB cases recorded in 2020, 86% occurred in the 30 countries with the highest disease
burden. Two-thirds of the cases are concentrated in eight countries, with India leading,
followed by China, Indonesia, Philippines, Pakistan, Nigeria, Bangladesh and South Africa
(According to the World Health Organization (WHO)) [1]. This demonstrates that TB poses
a threat to human health and has a detrimental impact on social and economic life.

Although Algeria may not be among the top eight countries with the highest concen-
tration of TB cases globally, it is still a significant concern in Algeria. Thus, it is imperative
that government agencies and scientists work together to manage and combat the spread
of TB epidemics.
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Mathematical modeling plays a critical role in the planning and implementation of TB
control programs. Although Bernoulli used mathematical models for smallpox in 1760 [2],
the research on infectious diseases using deterministic mathematical models actually started
in the 20th century. Other major works in mathematical epidemiology are due to P.D En’ko
between 1873 and 1894. However, it can be said that the foundations of mathematical
epidemiology based on compartmental models are due to Sir Ronald Ross, who gave the
first mathematical model of malaria transmission in 1911 [3]. The early research in this field
are available in [4–6].

The main difference between compartmental models and other models of diseases is
that compartmental models explicitly consider the different stages of disease progression
and the transitions between them. This allows for a more detailed understanding of how
diseases spread and how interventions can be implemented to control their spread [7].
Other models, such as statistical models or network models, may not explicitly include this
level of detail.

Susceptible-Infected-Recovered (SIR) is a deterministic model that Kermack and McK-
endrick proposed in 1927 to characterize the behavior of epidemic spread [8]. Despite the
fact that this model has been used successfully to represent the behavior of disease, it is
unrealistic by ignoring other compartments and control techniques, such as vaccination,
treatment, isolation, and the impact of age and sex.

Epidemiological compartmental models can be broadly classified into two categories:
differential equation-based models that describe the dynamics of infectious diseases using
continuous functions which can capture the continuous changes in the state variables over
time, typically represented by systems of ordinary differential equations and difference
equation-based models, often used when data are collected at discrete time points or when
the population dynamics are better captured in a discrete manner.

The first mathematical model of TB was developed in 1962 by Waaler and Ander-
son, who divided the entire population into different groups [9]. Since then, numerous
academics have created various mathematical models to investigate and control TB in
countries heavily impacted by the disease; see for instance [10,11]. These models have been
instrumental in guiding public health policies and interventions aimed at reducing the
burden of TB.

Vaccination is one of the most vital factors in stopping and controlling the spread
of TB. The tuberculosis vaccination against Bacillus Calmette–Guérin (BCG) was first
given to a human in 1921. The World Health Organization (WHO) currently advises
immunizing newborns with a single intradermal injection of BCG as soon as possible after
the birth [12]. To address the prevailing epidemiological situation, the Algerian Health Care
Administration implemented a dedicated vaccination schedule and mandatory vaccination
campaigns for children. As a result, the BCG vaccination coverage reached a remarkable
rate of over 98% across newborns. However, BCG vaccination is not typically recommended
for adults, as its effectiveness in this age group is limited. Therefore, this paper neglects it.

The mathematical modeling of tuberculosis relies on vaccination for its importance
in giving predictions to eradicate the disease. There are many previous studies concerned
with this topic; for example, in [13] the goal was to determine the dynamics of tuberculosis
in Turkey, and the impact of vaccine therapy on the disease. Yang et al. [7] formulated
a mathematical model to investigate the effects of immunization and treatment on the
dynamics of tuberculosis transmission. Egonmwan et al. [14] developed a mathematical
model that includes immunization of newborn children and older susceptible people in
the dynamics of TB transmission in a population, with the goal of providing protection to
older susceptible people. Revelle et al. [15] formulated models for the economic allocation
of activities to control tuberculosis in developing countries.

To the best of our knowledge, the proposed model is not considered elsewhere in its
present form and there is no research on modeling the dynamic transmission of tuberculosis
in Algeria using a compartmental model while simultaneously estimating the relevant
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biological parameters specific to the country. Therefore, conducting research in this domain
would make a valuable contribution to the field of TB modeling and control in Algeria.

In this study, we propose a VSEIT epidemiological model to investigate the dynamics
of TB disease in Algeria. To confirm its performance we estimated the biological model’s pa-
rameters using specific TB data, including disease incidence, prevalence, and other relevant
epidemiological information from 1990 to 2020 from the WHO Global TB Report [1].

This paper is organized as follows: Section 2 presents the formulation of the VSEIT
TB model and analyzes its dynamic properties. In Section 3, the estimation of model
parameters is conducted, along with their sensitivity analysis. Section 4 is focused on the
discussion of the obtained results. Finally, the paper is concluded in Section 5.

2. Mathematical Model and Dynamic Analysis

In this section, we present the proposed mathematical model for TB infection, and we
examine its dynamic.

2.1. Model Formulation

The population is divided into five distinct subgroups: vaccinated individuals (V),
susceptible individuals (S), exposed or exposed individuals (E), infected individuals
with active TB (I), and individuals currently receiving treatment (T). Hence, the total
population is

N(t) = V(t) + S(t) + E(t) + I(t) + T(t).

This model aims to provide a comprehensive understanding of the spread and pro-
gression of TB within a population, allowing for more effective prevention and treatment
strategies to be developed.

The number of people that have received vaccination (V) is increased through a
small proportion of immunized newborns, pΛ. The vaccinated population decreases as
vaccinated individuals become susceptible at a rate k (the vaccine’s efficacy wanes over
time), during the protection period, they will not become infected even if they contact
infected individuals as long as the vaccination provides immunity to all of them. The
natural death rate in the class V is µ. Hence, the population of vaccinated individuals is
given by the first equation in system (1).

The population of susceptible individuals (S) is increased by the small proportion of
newborns who are not immunized from TB, (1− p)Λ, and also increases as vaccinated
individuals become susceptible, at a rate k. This population decreases when there is contact
with infected people, at a rate β. As older people die naturally at a rate µ, the population
of susceptible individuals decreases. Hence, the population of susceptible individuals is
given by the second equation in system (1).

We assume that the population of exposed individuals E increases when the suscepti-
ble population makes effective contact with infected individuals and decreases as latently
infected peoples progress from exposed to active TB, at a rate ε, and die naturally, at a rate
µ. The population of exposed individuals E is also increased by an inflow of a fraction,
δ(1− α) of individuals under treatment, where the parameter α represents the treatment
failure rate. Particularly, α = 0 means that all treated individuals will move to a exposed
state, whereas α = 1, means that the treatment has failed, and all treated individuals will
remain infectious. Hence, the population of exposed individuals is given by the third
equation in system (1).

The population of infected individuals (I) increases as latently infected individuals
progress from exposed to active TB, and the effectively treated patients return to active
TB at a rate αδ, which significantly increases the population I. As infected people receive
treatment, the population I decreases at a rate γ. Both natural death and TB disease kill
people at rates σ and µ, respectively. Hence, the population of infected individuals is given
by the fourth equation in system (1).

Finally, as infected people are treated, the population of treated individuals (T) grows
at a rate γ. As individuals who have been successfully treated become reinfected, the
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population T decreases at a rate δ. The population continues to decline due to natural
mortality (µ) and deaths from TB (η). Hence, the population of treated individuals is given
by the fifth equation in system (1).

The dynamic of TB infection is described by the following system of differential
equations: 

dV(t)
dt

= pΛ− (k + µ)V(t),

dS(t)
dt

= (1− p)Λ + kV(t)− βS(t)I(t)− µS(t),

dE(t)
dt

= βS(t)I(t)− (ε + µ)E(t) + (1− α)δT(t),

dI(t)
dt

= εE(t) + αδT(t)− (γ + µ + σ)I(t),

dT(t)
dt

= γI(t)− (µ + δ + η)T(t).

(1)

With: V(0) ≥ 0, S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0 and T(0) ≥ 0 with N(0) > 0.
The flowchart of the model is shown in Figure 1. The model variables are presented in

Table 1 and the model parameters are presented in Table 2.

V

S

T

I

(μ+η)T

μS

pΛ
kV

(1-α)δT

αδTE
βSI

γI

εE

μE

(1-p)Λ

μV

(μ+σ)I

Figure 1. Flowchart of VSEIT model.

Table 1. Description of variables of the model (1).

Variable Description

V(t) The vaccinated population at time t.
S(t) The susceptible population which is able to be infected at any time t.
E(t) The exposed population which is not yet infectious.
I(t) The infected population at time t.
T(t) The treated population at time t.

The values of parameters in Table 2 will be given in Section 3.1.
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Table 2. Parameters of model (1).

Model Parameter Description Unit

Λ Recruitment rate year−1

µ Natural death rate year−1

k Rate of moving from V to S year−1

β Transmission rate year−1

γ Treatment rate year−1

ε Progression rate year−1

α Treatment failure rate year−1

δ Rate at which the treated population leave the class T year−1

σ Disease death rate in I year−1

η Disease death rate in T year−1

p Vaccination rate year−1

2.2. Model Analysis

In this subsection the proposed model (1), will be qualitatively analyzed.

2.2.1. Invariance of the Feasible Region

The TB model (1) will be studied in a biologically feasible region Ω ⊂ R5
+ given by

Ω =

{
(V(t), S(t), E(t), I(t), T(t)) ∈ R5

+ : N(t) ≤ Λ
µ

}
. (2)

Lemma 1. For all t > 0 and non-negative initial conditions, the solution of TB model (1) is positive

whenever it exists. Furthermore, if 0 ≤ N(0) ≤ Λ
µ

, then

0 ≤ N(t) ≤ Λ
µ

, for all t > 0.

Proof. For positive values of V(t), S(t), E(t), I(t) and T(t) we have

V′|V=0 = pΛ ≥ 0,

S′|S=0 = (1− p)Λ + kV ≥ 0,

E′|E=0 = βSI + (1− α)δT ≥ 0,

I′|I=0 = εE + αδT ≥ 0,

T′|T=0 = γI ≥ 0.

(3)

Hence, for non-negative initial conditions, the solution remains positive ∀ t ≥ 0.

It follows from the addition of the VSEIT model Equations (1) that

dN(t)
dt

= Λ− µ(V(t) + S(t) + E(t) + I(t) + T(t))− (σI(t) + ηT(t)), (4)

= Λ− µN(t)− (σI(t) + ηT(t)) ≤ Λ− µN(t). (5)

For N(t) ≤ Λ
µ

, we have
dN(t)

dt
≤ 0.

Thus, for 0 ≤ N(0) ≤ Λ
µ

, we obtain 0 ≤ N(t) ≤ Λ
µ

for all t ≥ 0.

It follows that the feasible region Ω is positively invariant.
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2.2.2. Equilibrium Points and Their Stability

To find equilibrium points of the model (1), one solves the equations:

dV
dt

=
dS
dt

=
dE
dt

=
dI
dt

=
dT
dt

= 0.

One gets two equilibrium points:
The disease-free equilibrium point “DFE”

E1 = (V∗1 , S∗1 , E∗1 , I∗1 , T∗1 ) =
(

pΛ
k + µ

,
(k + µ− µp)Λ

µ(k + µ)
, 0, 0, 0

)
, at which N = V∗1 + S∗1 =

Λ
µ

.

and the endemic equilibrium point “EE”

E2 = (V∗2 , S∗2 , E∗2 , I∗2 , T∗2 )

=

(
pΛ

k + µ
,
(k + µ− µp)Λ
(k + µ)(βI∗2 + µ)

,
(γ + µ + σ)(µ + δ + η)− αδγ

ε(µ + δ + η)
I∗2 , I∗2 ,

γ

µ + δ + η
I∗2

)
,

where:

I∗2 =
(k + µ− µp)εΛ(µ + δ + η)

(k + µ)((ε + µ)(γ + µ + σ)(µ + δ + η)− (ε + µ)αδγ− (1− α)γδε)
− µ

β
.

=
µ

β
(R0 − 1).

.

Then, the endemic equilibrium point E2, exists forR0 > 1, and at this equilibrium, one has

N =
Λ− (σI∗2 + ηT∗2 )

µ
<

Λ
µ

.

2.2.3. The Basic Reproduction NumberR0

The basic reproduction number, denoted R0, is the expected number of secondary
cases produced in a completely susceptible population, by a typical infectious individual
during its infective period [16].

If R0 < 1, the disease will not be able to spread among the population, whereas, if
R0 > 1, the disease has the potential to spread among the population and become endemic.

Using the next generation matrix one gets the basic reproduction numberR0 for the
proposed model (1) as

R0 =
ε(k + µ− µp)Λβk3

µ(k + µ)(k1k2k3 − αγδk1 − (1− α)δγε)
.

The details of the calculation ofR0 are presented in the Appendix A and B.

2.2.4. Local Stability Analysis of DFE

Theorem 1. The disease-free equilibrium point E1 (DFE) of model (1) is locally asymptotically
stable ifR0 < 1 and unstable ifR0 > 1.

Proof. The Jacobian matrix JE1 of system (1) at the DFE E1 is given by

JE1 =


−(k + µ) 0 0 0 0

k −µ 0 −βS∗1 0
0 0 −k1 βS∗1 (1− α)δ
0 0 ε −k2 αδ
0 0 0 γ −k3


The characteristic equation of JE1 is

(−(k + µ)− λ)(−µ− λ)[λ3 + a1λ2 + a2λ + a3] = 0, (6)
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where
a1 =[k1 + k2 + k3],

a2 =[k1k2 + k1k3 + k2k3 + αδγ + εβS∗1 ],

a3 =[−εβS∗1k3 + k1k2k3 − k1αδγ− ε(1− α)δγ]

=[−εβS∗1k3 +
εβS∗1k3

R0
]

=εβS∗1k3(
1
R0
− 1).

Then, all the eigenvalues of the characteristic Equation (6) have a negative real part if
the coefficients ai, i = 1, 2, 3 fulfill the Routh–Hurwitz conditions, which are a1 > 0, a3 > 0
and a1a2 − a3 > 0.
Hence, the disease-free equilibrium of model (1) is locally asymptotically stable, providing
thatR0 < 1.

2.2.5. Global Stability Analysis of DFE

Theorem 2. The disease-free equilibrium point E1 (DFE) of model (1) is globally asymptotically
stable ifR0 < 1 and unstable ifR0 > 1.

Proof. To prove the theorem, we consider the following Lyapunov function:

W(V, S, E, I, T) = b1E + b2 I + b3T,

where bi , for i = 1, 2, 3, are positive constants to be chosen later. Calculating the derivative
of W with respect to time along the solutions of system (1), we obtain:

dW
dt

=b1
dE
dt

+ b2
dI
dt

+ b3
dT
dt

=b1[βSI − k1E + (1− α)δT] + b2[εE + αδT − k2 I] + b3[γI − k3T]

≤ b1

[
Λβ

µ
I − k1E + (1− α)δT

]
+ b2[εE + αδT − k2 I] + b3[γI − k3T], because S ≤ Λ

µ

=

[
b1

Λβ

µ
+ b3γ− b2k2

]
I + [b2ε− b1k1]E + [b1(1− α)δ + b2αδ− b3k3]T

≤ (b2k2 − b3γ)(k + µ− µp)
(k + µ)

[
b1Λβ

µ(b2k2 − b3γ)
− 1
]

I + [b2ε− b1k1]E

+ [b1(1− α)δ + b2αδ− b3k3]T.

Choosing b1 = εk3
(k+µ−µp) (k + µ), b2 = k1k3

(k+µ−µp) (k + µ), and b3 = (1−α)ε+αδk1
(k+µ−µp) (k + µ),

one obtains
dW
dt
≤ b1Λβ

µR0
(R0 − 1)I.

Hence, ifR0 < 1, then
dW
dt

is negative. By LaSalle’s invariant principle (A1), this implies
that E1 is globally asymptotically stable.
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2.2.6. Local Stability Analysis of EE

The Jacobian matrix JE2 of system (1) at the EE E2 is given by

JE2 =


−(k + µ) 0 0 0 0

k −βI∗2 − µ 0 −βS∗2 0
0 βI∗2 −k1 βS∗2 (1− α)δ
0 0 ε −k2 αδ
0 0 0 γ −k3

.

The characteristic equation of JE2 is

(−(k + µ)− λ)[λ4 + a1λ3 + a2λ2 + a3λ + a4] = 0, (7)

where

a1 =(µ + k1 + k2 + k3 + βI∗),

a2 =[k1(µ + βI∗) + k3(µ + k1 + k2 + βI∗) + k2(µ + k1 + βI∗)− γαδ− εβS∗],

a3 =[ε(β2 I∗S∗ + k1βS∗) + k3(k2(µ + k1 + βI∗) + k1(µ + βI∗)− βεS∗) + k1k2(µ + βI∗)

+γ(αδk2 + εδ(α− 1))− γαδ(µ + k1 + k2 + βI∗)− βεS∗(µ + k1 + βI∗)],

a4 =[−γαδ(k2(µ + k1 + βI∗) + k1(µ + βI∗)− βεS∗) + k3(k1k2(µ + βI∗) + ε(β2 I∗S∗ + k1βS∗)

+βεS∗(µ + k1 + βI∗))− γ(αδk2 − δε(α− 1))(µ + k1 + k2 + βI∗)− γ(ε(δk1(α− 1) + βαδS∗))

+k2(αδk2 + δε(α− 1))].

Then, all the eigenvalues of the characteristic Equation (7) have negative real parts if
the coefficients ai, i = 1, 2, 3, 4 fulfill the Routh–Hurwitz conditions, which are ai > 0 for
i = 1, 2, 3, 4 and a1a2a3 > a2

3 + a2
1a4. Hence, the endemic equilibrium of model (1) is locally

asymptotically stable ifR0 > 1.

2.2.7. Global Stability Analysis of EE

In this section, we prove the global asymptotic stability of the EE of model (1). Using
the method described in [17], at the EE, from system (1) we obtain

pΛ = (k + µ)V∗2 ,
kV∗2 = −(1− p)Λ + βS∗2 I∗2 + µS∗2 ,
k1E∗2 = βS∗2 I∗2 + (1− α)δT∗2 ,
k2 I∗2 = εE∗2 + αδT∗2 ,
γI∗2 = k3T∗2 .

Theorem 3. The endemic equilibrium point E2 (EE) of model (1) is globally asymptotically stable
ifR0 > 1.

Proof. To prove the theorem, we consider the following Lyapunov function:

W(V, S, E, I, T) =k
[

V(t)−V∗ −V∗ ln
V(t)
V∗

]
+ ε

[
S(t)− S∗ − S∗ ln

S(t)
S∗

]
+ ε

[
E(t)− E∗ − E∗ ln

E(t)
E∗

]
+ k1

[
I(t)− I∗ − I∗ ln

I(t)
I∗

]
+

δT∗(k1α + ε(1− α))

γI∗

[
T(t)− T∗ − T∗ ln

T(t)
T∗

]
.

Calculating the derivative of W with respect to time along the solutions of system (1), we
obtain:
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dW
dt

=k
[(

1− V∗

V

)
V′
]
+ ε

[(
1− S∗

S

)
S′ +

(
1− E∗

E

)
E′
]
+ k1

[(
1− I∗

I

)
I′
]

+
δT∗(k1α + ε(1− α))

γI∗

[(
1− T∗

T

)
T′
]

.

A straightforward simple calculation gives

k
(

1− V∗

V

)
V
′
= k

(
1− V∗

V

)
[pΛ− (k + µ)V]

= k
(

1− V∗

V

)
[(k + µ)V∗ − (k + µ)V]

= k(k + µ)V∗
(

1− V∗

V

)(
1− V

V∗

)
= k(k + µ)V∗

(
2− V∗

V
− V

V∗

)
.

(8)

ε

(
1− S∗

S

)
S
′
= ε

(
1− S∗

S

)
[(1− p)Λ + kV − βSI − µS]

= εµS∗
(

2− S∗

S
− S

S∗

)
+ εβS∗ I∗

(
1− S∗

S
+

I
I∗

)
− εβSI.

(9)

ε

(
1− E∗

E

)
E′ = ε

(
1− E∗

E

)
[βSI − k1E + (1− α)δT]

= εβSI − εβSI
E∗

E
− k1εE + k1εE∗ + (1− α)εδT − (1− α)δε

TE∗

E

= εβSI − εβSI
E∗

E
− k1εE + εβS∗ I∗ + (1− α)δεT∗ + (1− α)εδT

− (1− α)δε
TE∗

E
.

(10)

k1

(
1− I∗

I

)
I′ = k1

(
1− I∗

I

)
[εE + αδT − k2 I]

= k1εE− k1εE
I∗

I
+ k1αδT − k1αδT

I∗

I
− k1k2 I + k1k2 I∗

= k1εE− k1εE∗
I∗E
IE∗

+ k1αδT − k1αδT
I∗

I
+ εβS∗ I∗ + k1αδT∗ + ε(1− α)δT∗

− εβS∗ I∗
I
I∗
− (1− α)εδT∗

I
I∗
− k1αδT∗

I
I∗

= k1εE− εβS∗ I∗
EI∗

E∗ I
− (1− α)εδT∗

EI∗

E∗ I
+ k1αδT − k1αδT

I∗

I
+ εβS∗ I∗ + k1αδT∗

+ ε(1− α)δT∗ − εβS∗ I∗
I
I∗
− (1− α)εδT∗

I
I∗
− k1αδT∗

I
I∗

.

(11)

δT∗(k1α + ε(1− α))

γI∗

(
1− T∗

T

)
[γI − k3T] =

δT∗(k1α + ε(1− α))

I∗

(
1− T∗

T

)[
I − I∗

T∗
T
]

= δαk1T∗
I
I∗

+ δ(1− α)εT∗
I
I∗
− δαk1T∗

IT∗

I∗T

− δ(1− α)εT∗
IT∗

I∗T
− δαk1T − δ(1− α)εT

+ δαk1T∗ + δ(1− α)εT∗.

(12)
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Using Equations (8)–(12), one gets

dW
dt

=k(k + µ)V∗
(

2− V∗

V
− V

V∗

)
+ εµS∗

(
2− S∗

S
− S

S∗

)
+ εβS∗ I∗

(
3− S∗

S
− I

I∗
− EI∗

E∗ I
− SIE∗

S∗ I∗E

(
1− ES∗

E∗S

))
+ (1− α)εδT∗

(
3− I∗E

IE∗
− E∗T

ET∗
− T∗ I

TI∗

)
+ δαk1T∗

(
2− I∗T

IT∗
− IT∗

I∗T

)
.

(13)

Using the properties of the geometric and arithmetic means in Equation (13), one obtains

2− V
V∗ −

V∗
V ≤ 0,

2− S
S∗ −

S∗
S ≤ 0,

3− S∗
S −

I
I∗ −

EI∗
E∗ I −

SIE∗
S∗ I∗E

(
1− ES∗

E∗S

)
≤ 0,

3− I∗E
IE∗ −

E∗T
ET∗ −

T∗ I
TI∗ ≤ 0,

2− I∗T
IT∗ −

IT∗
I∗T ≤ 0.

Since none of the parameters are negative, it follows that dW
dt ≤ 0 when R0 > 1. As a

result, according to LaSalle’s Invariance Principle (A1), (V, S, E, I, T)→ (V∗, S∗, E∗, I∗, T∗)
as t→ ∞.

2.2.8. Transcritical Bifurcation Analysis

Here, we discuss the existence of transcritical bifurcation of system (1). AtR0 = 1, if
we take β as a bifurcation parameter, we obtain

β∗ = β =
µ(k + µ)(k1k2k3 − αγδk1 − (1− α)δγε)

ε(k + µ− µp)Λk3
.

The following modification are made in the variables ofsystem (1) so that V = x1, S = x2,
L = x3, I = x4, and T = x5. Further using vector notation x = (x1, x2, x3, x4, x5)

T , model (1)

can then be written in the form
dx
dt

= F, with F = ( f1, f2, f3, f4, f5)
T as shown below

ẋ1 = pΛ− (k + µ)x1,

ẋ2 = (1− p)Λ + kx1 − βx2x4 − µx2,

ẋ3 = βx2x4 − (ε + µ)x3 + (1− α)δx5,

ẋ4 = εx3 + αδx5 − (γ + µ + σ)x4,

ẋ5 = γx4 − (µ + δ + η)x5.

(14)

with N = ∑5
i=1 xi.

The Jacobian matrix evaluated at the disease-free equilibrium E1 (DFE) for β = β∗ is

JE1 =


−(k + µ) 0 0 0 0

k −µ 0 −β∗S∗ 0
0 0 −k1 β∗S∗ (1− α)δ
0 0 ε −k2 αδ
0 0 0 γ −k3


The Jacobian matrix JE1 has a simple zero eigenvalue calculated at β∗.
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The right and left eigenvectors denoted by: Y = (y1, y2, y3, y4, y5) and Z =
(z1, z2, z3, z4, z5), respectively, are obtained as follows

y1 = 0, y2 =
(k1k2k3 − αγδk1 − (1− α)δγε)

µεk3
y4, y3 =

k1k2k3 − αγδk1

εk3
y4, y4 > 0, y5 =

γ

k3
y4.

and

z1 = 0, z2 = 0, z3 > 0, z4 =
k1

ε
z3, z5 =

(1− α)δε + αδk1

εk3
z3.

We have 
YtDβF(E1, β∗) = 0,
YtDxDβF(E1, β∗)Z = −S∗y2z4 + S∗y3z4,
YtD2

xF(E1, β∗)(Z, Z) = (−β∗y2z4,−β∗y2z4).
(15)

The following conditions are satisfied:
YtDβF(E1, β∗) = 0,
YtDxDβF(E1, β∗)Z 6= 0,
YtD2

xF(E1, β∗)(Z, Z) 6= 0.
(16)

Hence, there is a transcritical bifurcation at β = β∗ as illustrated in Figure 2
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Figure 2. Transcritical bifurcation of the model (1).

3. Parameters Estimation and Numerical Simulation

In this section, six model parameters will be estimated based on TB incidence data
from the WHO Global TB Report [1] between 1990 and 2020 (see Table 3) and the other
parameters will be inspired by the statistical data in the literature.

3.1. Parameters Estimation

Using the data of Algeria’s population from [18], one takes the death rate µ as the
average death rate per year from 1990 to 2020, µ = 0.00498, and the recruitment rate Λ, as
the average birth per year from 1990 to 2020, Λ = 811, 085.
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The child immunization rate, BCG, is the ratio of children aged 12–23 months who
have received BCG vaccination. Figure 3 displays the percentage of one-year-old children
who have received the BCG immunization in Algeria between 1990 and 2020, according
to data from officially recognized sources compiled by the World Bank [19]. Hence, one
gets the average vaccination rate p = 0.977. The BCG has shown an overall efficacy of
70% to 80% against childhood TB, namely meningitis and miliary TB [20]. Hence, in this
paper one takes the average rate of moving from V to S as the BCG immunization failure
k = 1− 0.75 = 0.25. The treatment success from 2000 to 2020 [21] is used to calculate the
treatment failure rate α = 1− 0.8905 = 0.1095.

Figure 3. Percentage of one-year-old children in Algeria receiving BCG vaccination during the time
period 1990–2020.

The initial conditions were carefully selected as follows: The total initial population,
N(0), was set to 25,518,074, which corresponds to the population of Algeria in 1990, as
reported in [18]. The initial infected population, I(0) = 11,607, was obtained from the
WHO Global TB Report [1]. The initial exposed population, E(0), was assumed to be 8852.
Additionally, the initial treated population, T(0), was set to 20,000, whereas the number of
vaccinated individuals, V(0), was determined to be 8,109,389. As a result of these values, the
initial susceptible population can be calculated as S(0) = N(0)− E(0)− I(0)− T(0)−V(0)
= 17,368,226. These initial conditions were carefully chosen to ensure accurate and reliable
numerical simulations of the system under study.

One estimates the parameters β, γ, ε, σ, α, δ, k, and η by minimizing the error between
actual TB incidence data and the solution of the proposed model (1). The objective function
used in this parameter estimation is given by

ψ =
n

∑
i=1

(Iti − I∗ti
)2, (17)

where I∗ti
denotes the actual TB-infected case, Iti is the corresponding model solution at

time ti, and n is the number of available actual data. The MATLAB function ’fitnlm’, which
solves nonlinear regression problems based on the Levenberg–Marquardt algorithm in
MATLAB R2020b, was employed to minimize the function (17).

In Figure 4 and Table 4, the incidence data are shown along with the model-fitted
values, obtained using the values in Table 3.
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Table 3. Parameters and initial data of the model (1).

Parameters Description Algeria’s Parameters References

V(0) Initial number of vaccinated 8,109,389 Assumed
S(0) Initial number of susceptible 17,368,226 Calculated
E(0) Initial number of exposed 8852 Assumed
I(0) Initial number of infected 11,607 [1]
T(0) Initial number of treated 20,000 Assumed
Λ Recruitment rate 811,085 [18]
µ Natural death rate 0.00498 [18]
k Rate of moving from V to S 0.25 [19]
β Transmission rate 6.6752× 10−11 Fitted
γ Treatment rate 0.0043 Fitted
ε Progression rate 0.0656 Fitted
α Treatment failure rate 0.1095 [21]
δ Rate at which the treated 0.1325 Fitted

population leaves the class T
σ Disease death rate in I 0.0136 Fitted
η Disease death rate in T 4.2327× 10−6 Fitted
p Vaccination rate 0.977 [19]

Table 4. The reported data and the model fitted values of TB cases in Algeria.

Year Reported Data Numerical Value Year Reported Data Numerical Value

1990 11,607 11,607 2006 21,143 20,613
1991 11,332 12,162 2007 21,369 20,884
1992 11,428 12,793 2008 20,588 21,116
1993 13,345 13,471 2009 21,701 21,313
1994 13,345 14,137 2010 22,336 21,474
1995 13,507 14,880 2011 21,429 21,604
1996 15,329 15,578 2012 21,880 21,705
1997 16,522 16,255 2013 20,701 21,778
1998 15,324 16,255 2014 22,517 21,825
1999 16,647 17,517 2015 23,705 21,850
2000 18,572 18,090 2016 22,801 21,854
2001 18,250 18,621 2017 23,077 21,838
2002 18,934 19,108 2018 23,465 21,805
2003 19,730 19,550 2019 20,879 21,757
2004 19,929 19,947 2020 17,212 21,694
2005 21,336 20,301 2021 - 21,619
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Figure 4. Data fitting of the number of TB cases in Algeria.
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3.2. Sensitivity Analysis

By using sensitivity, the spread and prevalence of diseases can be analyzed for each
parameter. As a result of errors in data collection and assumed parameters, it is commonly
used to measure the robustness of model predictions. To determine the relative significance
of these parameters on disease transmission, we examined the impact of various model
parameters. It has been determined how the model parameters β, γ, k, and ε affect the

partial derivatives of the basic reproduction number R0. Since
∂R0

∂β
> 0, it follows that

the transmission rate can be lowered to lessen the infection. However, given the partial

derivatives
∂R0

∂γ
< 0, it is implied that TB infection can be controlled by raising the

parameter γ. Increasing k results in an increase inR0 because
∂R0

∂k
> 0. It demonstrates

that the diseased population will grow more quickly. Parameter α is the failure rate of

treatment and
∂R0

∂α
> 0. Therefore, by lowering the treatment failure rate α, the cumulative

number of infected people can be minimized.
Sensitivity indices should be computed to estimate the relative change in a variable

when parameters change. These indications were calculated using the following definition.

Definition 1. For a certain value σ, the normalized forward sensitivity index ofR0 is determined
by

SR0
σ =

σ

R0

∂R0

∂σ
(18)

For the baseline model parameters are determined by Formula (18), the derived
sensitivity indices of the basic reproduction numberR0 are shown in Table 5.

Table 5. Parameters and sensitivity index.

Parameter Sensitivity Index

Λ +1
µ −1.6502
k +0.0012
β +1
γ −0.1671
ε +0.0005
α +2.1364× 10−10

δ +1.4003× 10−09

σ −0.4043
η −2.5311× 10−11

p −0.0194

We observe from Table 5 that the values of SR0
β and SR0

Λ are exactly +1. This indicates
that a rise in β, and Λ will result in an increase inR0 that is proportionate to both parameters.
Additionally, we demonstrate that the parameters k, ε, α, and δ are exactly proportional
to R0 because SR0

k > 0, SR0
ε > 0, SR0

α > 0, and SR0
δ > 0. Moreover, the terms SR0

µ < 0,

SR0
γ < 0, SR0

σ < 0, SR0
p < 0, and SR0

η < 0 denote that the parameters µ, γ, σ,p, and η are
inversely proportional toR0.

4. Results and Discussion

The results of parameters estimation are reported in Table 3, and Figure 4 illustrates
the incidence data along with the model-fitted curve, obtained using the values in Table 3.
The goodness fit of our model is supported by a height value coefficient of determination,
namelyR2 = 0.9016; this indicates that the model fits the reported real data well.
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Using the estimate parameters value, one obtains R0 = 0.5228, which is less than
1. This suggests that there is a possibility of decreasing or eliminating the disease by
maintaining effective treatment and isolation measures in the future as illustrated by the
model fitted curve for the period times 2020–2050 in Figure 4.

On the contrary, assuming that the government stops enforcing strict health measures
against tuberculosis for children, such as vaccination, effective treatment strategies, and
isolation of infected individuals after the year 2020, let us consider a hypothetical scenario.
For instance, let us assume that p = 10−2, γ = 10−3, and β = 4 × 10−10. The other
parameters are taken from Table 3. With this parameter set, the basic reproduction number
is found to be greater than oneR0 = 3.248 > 1, indicating that the non-endemic equilibrium
E1 is unstable, whereas the endemic equilibrium E2 is asymptotically stable. Obviously, the
solutions of model (1) converge to E2 as shown in Figure 5.
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Figure 5. The expected situation if the government decides to abandon strict health measuresafter
2020, where the used parameters are β = 4 × 10−10, γ = 10−3, σ = 0.136, η = 4.2326 × 10−6,
δ = 0.1325, α = 0.1095, ε = 0.0656, k = 0.25, and p = 10−2.

In order to gain a deeper understanding of how certain parameters affect the spread
of the disease, one plots R0 versus six parameters as shown in Figure 6. Obviously, there
is a proportional relationship between the basic reproduction number R0 and the three
parameters β, ε, and α. This suggests that an increase in any of these parameters will result
in an increase in the basic reproduction number, which in turn will lead to a greater spread
of the disease.

On the other hand, this study found that there is an inverse relationship between the
basic reproduction numberR0 and the other three parameters γ, p and µ. This implies that
an increase in any of these parameters will result in a decrease in the basic reproduction
number, which will lead to a slower spread of the disease. It is important to note that these
results are in good agreement with reality.

The findings indicate that any plan aimed to prevent the spread of TB must consider
four factors:

• Enhancing the precision and quality of TB diagnosis to facilitate appropriate actions
towards affected individuals.

• Imposing isolation measures on infected individuals and monitoring their families
medically to minimize contact with contagious patients.

• Sustaining a high rate of vaccination for children to provide immunity.
• Increasing the treatment rate by training specialized doctors, acquiring the most potent

medicines, and establishing dedicated facilities to combat this disease.
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Figure 6. Influence of the parameters β, γ, p, ε, α, and µ, respectively, on the basic reproduction
numberR0.

5. Conclusions

In this study, we have developed a mathematical VSEIT model, which takes into
account the biological factors of TB and certain realistic assumptions to analyze the trans-
mission dynamics of this disease in Algeria. By using the reported infection data, we have
estimated the model parameters using the least squares method. Our research has revealed
that controlling the spread of TB is heavily dependent on some key factors, especially the
contact parameter, β, the treatment parameter γ, and the vaccination parameter p. By
identifying these crucial elements, we can better understand how to prevent and treat TB in
Algeria. Using the estimated model parameters for Algeria we found that the reproduction
number of the disease is less than one, meaning that TB can be eradicated by maintaining
effective vaccination, high-quality treatment, and isolation measures. This research will
have important implications for public health policymakers and healthcare professionals
who are working to combat the spread of TB in Algeria and other regions where the disease
is prevalent. The insights gained from this study can be used to develop more effective
prevention and treatment strategies, which can ultimately help to reduce the burden of TB
on affected communities.
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Appendix A. The Basic Reproduction NumberR0

The basic reproduction numberR0 can be obtained using the next generation method [22],
asR0 = ρ(FV−1) .

The associated matrices F for new infection in the infected compartments and V for
the remaining transfer terms are given respectively by
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F =

βSI
0
0

, V =

 (ε + µ)E− (1− α)δT
−εE− αδT + (γ + µ + σ)I
−γI + (µ + δ + η)T

.

Let k1 = (ε + µ), k2 = (γ + µ + σ), k3 = (µ + δ + η), then

V =

 k1E− (1− α)δT
−εE− αδT + k2 I
−γI + k3T

.

Next, we evaluate F and V which are the Jacobian of F and V respectively at E1 such that F
is non-negative and V is a non-singular matrix.

We denote the Jacobian of F and V by J(F ) and J(V) respectively. Thus,

J(F ) =

0 βS 0
0 0 0
0 0 0

, J(V) =

 k1 0 −(1− α)δ
−ε k2 −αδ
0 −γ k3


F = J(F ) and V = J(V) at E1 , Thus,

F =

0
(k + µ− µp)Λβ

µ(k + µ)
0

0 0 0
0 0 0

, and V =

 k1 0 −(1− α)δ
−ε k2 −αδ
0 −γ k3


It follows that

V−1 =
1

(k1k2k3 − αγδk1 − (1− α)δγε)

k2k3 − αδγ γ(1− α) −k2(1− α)
εk3 k1k2 k1αδ− (1− α)ε
εγ γk1 k1k2

,

then

FV−1 =
1

(k1k2k3 − αγδk1 − (1− α)δγε)


ε(k+µ−µp)Λβ

µ(k+µ)
k3

ε(k+µ−µp)Λβ
µ(k+µ)

k1k2
ε(k+µ−µp)Λβ(k1αδ−ε(1−α))

µ(k+µ)

0 0 0
0 0 0


Thus,

R0 = ρ(FV−1) =
ε(k + µ− µp)Λβk3

µ(k + µ)(k1k2k3 − αγδk1 − (1− α)δγε)
,

Appendix B. (LaSalle’s Invariance Principle)

Instead of solely focusing on the stability of a specific equilibrium point, this principle
offers insights into the overall behavior and trajectories of the system’s solutions.
Consider the autonomous system

ẋ = f (x), x ∈ Rn, (A1)

where f is of class C1. The LaSalle’s invariance principle [23] is stated in the following
theorem.

Theorem A1. Let Ω ⊂ Rn be a bounded closed (compact) set with the property that every solution
of (A1) which begins in Ω remains for all future time in Ω.

Suppose there is a scalar function V(x) which has continuous first partials in Ω and is such
that V̇(x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇(x) = 0.

Let M be the largest invariant set in E. Then, every solution starting in Ω approaches M as
t→ +∞.
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