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ABSTRACT With the ever-increasing influence of machine learning models, it has become necessary
to explain their predictions. The SHAP framework provides a solution to this problem by assigning a
score to each feature of a model such that it reflects the feature contribution to the prediction. Although
SHAP is widely used, it is hampered by its computational cost when preserving model-agnosticism. This
paper proposes a model-agnostic algorithm, TopShap, to efficiently approximate the SHAP values of
the top-k most important features. TopShap uses confidence interval bounds of the approximate SHAP
values to determine on the fly which features can no longer be part of the top-k and then removes
them from the computation, thus saving computational resources. This cost reduction makes TopShap
better suited than competing model-agnostic methods for top-k SHAP value computation. The evaluation
of TopShap shows that it performs efficient pruning of the feature search space, in turn leading to a
substantial reduction in the execution time when compared to the existing most efficient agnostic approach,
Kernel SHAP. The experiments presented in this work cover a wide range of numbers of features and
instances, using the following public datasets: Concrete, Wine quality, Appliances energy, PBMC gene
expression, Mercedes, CT locations, and a synthetic regression. Various models were used to demonstrate
model-agnosticism:Regression Forest,Multi-Layer Perceptron,RBF-kernel Support Vector Regression, and
Stacked Generalization.

INDEX TERMS Explainable artificial intelligence, local feature attribution, model-agnostic method,
Shapley value, top-k selection.

I. INTRODUCTION
Machine learning models have become more and more
sophisticated over the last decade, and the need to explain
their predictions has been increasing similarly [1]. Indeed,
understanding how machine learning models make their
predictions can help to decipher and counter bias in training
data, and enables domain-experts to judge model output,
which in turn builds trust in model decisions. One way to
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explain the predictions of a model is to provide importance
values for the features used in the model input. This can
be done at global level, encompassing all predictions, or at
the local level, where feature importances are assessed for a
single prediction made for a given input instance.

Among local feature importance approaches, so-called
SHAP values [2] have been shown to give meaningful insight
into machine learning predictions (e.g., [3], [4]). SHAP
values are based on a game theory approach developed by
Shapley [5], addressing the distribution of gain between
players in cooperative multiplayer games. In the context of

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 163079

https://orcid.org/0009-0002-0502-5357
https://orcid.org/0000-0002-2889-5120
https://orcid.org/0000-0002-9004-3033
https://orcid.org/0000-0003-1265-1479
https://orcid.org/0000-0002-5193-7990


L. Chabrier et al.: Effective Pruning for Top-k Feature Search on the Basis of SHAP Values

explaining predictions made by machine learning models, the
goal is to quantify the influence of each feature on the model
output. SHAP values are the resulting framework, using the
desirable properties of Shapley values [5] and the requirement
of additive feature attributions as found in a larger group of
explainability methods [6], [7].

One of the main difficulties of using SHAP values is their
computational cost, because they require to take into account
the contribution of each subset of features, as they need
to obtain the expectation of the model output when only
such a subset is known. An important research direction is
the reduction of these costs, while being independent of the
type of models, i.e., being model-agnostic, in order to be of
benefit to any current (or emerging) model types. In existing
works (e.g., [8], [9]), these gains are made by using sampling
strategies to compute approximations of feature importance
measures. It should be noted that, for some types of models,
other improvements can be obtained by taking advantage
of the model structure itself, though this implies losing the
property of being model-agnostic [3].

A. PROBLEM STATEMENT
While knowing the importance of all features can deliver
meaningful insight, an explanation of model behavior that
highlights which features contribute most to a prediction
could be sufficient for the user in order to develop an
understanding of that prediction. In this case, especially if
only a few top-k features are of interest, the problem we face
is that the SHAP values of all features need to be computed
to know which ones are the most important.

B. RESEARCH OBJECTIVE
Our goal is to reduce the time required in this context,
by avoiding computations related to features that are not in the
top-k. Current applications based on SHAP values that need
to select the most influential features (e.g., [10], [11], [12]),
use the following workflow. Firstly, they run an algorithm to
approximate SHAP values (e.g., [2], [8], [9], [13]) of each
feature, and secondly, they select the features having the
highest SHAP values in a post-processing step. The novelty
of the method proposed in this paper is that it starts by quickly
computing a rough approximation of the SHAP values of all
features, and then iteratively improves these approximations
while discarding on the fly the features whose SHAP
values converge towards too low values. The contribution
of this work is an important reduction in execution time
compared to the above-mentioned post-processing strategy.
When looking for the top-k features and their corresponding
SHAP values, this gain is obtained by effective pruning
of the search space which avoids the need to compute
the precise importance of most features not in the top-k.
As the computational cost of SHAP values is exponential in
the number of features, such a reduction of the search space
is particularly interesting for datasets with a large number of
features.

To perform such a pruning, the algorithm TopShap is
proposed, based on an iterative sampling strategy that
interleaves bound improvement of SHAP value estimates and
pruning of the set of features that are candidates to lie in
the top-k. Experiments on various datasets and representative
types of models show a rapid reduction in the number of
candidates, thus avoiding the correspondingly large number
of computationally expensive sampling operations. When
compared to current existing alternative approaches, this
leads to a large reduction in the execution cost. In addition,
a use case from biology shows that such a top-k selection
provides meaningful insight in the context of gene expression
data analysis.

The rest of this paper is organized as follows. The
next section recalls the necessary preliminaries. Section III
presents related works. The algorithm to compute the top-k
features is described in Section IV. Section V reports
the experiments, while a concluding summary is given in
Section VI. Complementary experiment results are reported
in the Supplementary Materials.

II. PRELIMINARIES
In the following, the term SHAP value designates the

importance of a feature in a prediction as defined by both
Strumbelj et al. [7] and the unified framework of SHapley
Additive exPlanations [2].

Let f be an already trained regression model that, given
an instance x described by a set of features F , can be used
to compute f (x) ∈ R, the prediction associated with x. For
each feature i ∈ F , the SHAP value φi(f , x) assesses the
contribution of i in the prediction f (x).
Let fS (x), where S ⊆ F , denote the output of f when only

the values of the features in S are known for x. For instance,
f∅(x) is the default prediction of f when no feature is known.
The main property of the SHAP values is the local

accuracy, which guarantees that their addition to f∅(x) sums
to the prediction for input x:

f (x) = f∅(x)+
∑
i∈F

φi(f , x). (1)

Note that in this additive explanation framework the
contribution of a feature can be positive or negative, and that
features with high importance are those with large absolute
φi(f , x) values. The common interpretation of Eq. 1 is that
the sum of the SHAP values over all features corresponds to
the difference between f (x), the output of the model for the
chosen instance x, and the default output of the model when
none of the feature values are known (i.e., f∅(x)). In general
the function φi is not bounded by a known maximum or
minimum, and the importance of a feature cannot be assessed
by computing its SHAP value alone. To determine if a feature
plays a major role in a prediction, it is necessary to compare
its SHAP value to those of the other features, to find out if this
value lies among the main positive or negative contributions
in the sum in Eq. 1.
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Following the formal framework of [5], it has been shown
that, under reasonable fairness axioms (e.g., symmetry,
consistency), there exists only one function φi and that it can
be defined as [2], [7]:

φi(f , x) =
∑

S⊆F\{i}

w(S)
(
fS∪{i}(x)− fS (x)

)
, (2)

where w is a weight function depending on the size of S and
F :

w(S) =
|S|! (|F | − |S| − 1)!

|F |!
. (3)

This follows the cooperative game theory results of [5],
which proposes a solution to the problem of allocating
benefits to players under fairness axioms. The analogy is that
the set of features F is replaced by a set of players, and the
function fS (x) is replaced by a function ν(S) for S ⊆ F that
gives the value of the coalition of players S in the game. In this
original context, the allocation of a player i ∈ F was defined
as:

Ai(ν) =
∑

S⊆F\{i}

w(S)
(
ν(S ∪ {i})− ν(S)

)
. (4)

Having recalled the definitions necessary to introduce the
TopShap algorithm, it is noted that, for the sake of clarity,
the above preliminaries have been restricted to regression
tasks. However, SHAP values can be easily reformulated
for classification tasks. For instance, in the case of a binary
classification with classes C0 and C1, if f (x) outputs the
probability to belong to class C1, with 1 − f (x) being the
probability that x lies in C0, then the framework can be applied
directly.

III. RELATED WORK
Recent studies have reported the successful application

of SHAP values in various domains to identify the most
important features used by a model. In the prediction of
diseases, SHAP values help detect unexpected influences of
meteorological conditions on cardiovascular diseases [14].
They also improve user transparency in the interpretation
of pneumonia predictions from X-ray images [11]. In the
cybersecurity domain, computing SHAP values to compare
the classification criteria of two models improves botnet
traffic detection [15]. To enhance the design of urban
networks, SHAP values are used to decipher the motivations
for choosing transportation modes [10]. In a more industrial
context, they are also used to contribute to the fine-grained
analysis of the important parameters driving steel quality
in steelworks [16] and impacting the efficiency of power
plants [17], thereby leading to improvements in the design
process.

SHAP values remain an active research topic. The
approach in [18] proposes taking advantage of SHAP
values to find positive and negative feature impacts on a
prediction, and then to use this contrast to improve model
performance through fine-grained parameter tuning. The

Powershap method [12] investigates the use of SHAP values
as a feature selection measure. In this approach, features
are selected if their SHAP values are statistically significant
compared to random features. The measure of local feature
importance based on SHAP values is also extended in [19]
to handle predictions made by a series of models. This is
performed by propagating SHAP values through the models.
An example is loan attribution, where a first model predicts
a probability of fraud in the declaration and then a second
model predicts the loan risk. The handling of dependencies
among features is investigated in [20]. In this work, the
authors propose to include a causal graph between features
in the input and to generalize the SHAP value framework
to consider this causal relationship when assessing feature
importance. Another aspect that is not related to the model
is the presence of noise in the data, which can lead to SHAP
values that over- or underestimate feature importance [21].
The authors solve this issue by proposing a framework called
WeightedSHAP, which extends SHAP values to identify
the most influential features in this context. The SHAP
framework can also be adapted to unsupervised learning. This
is proposed in [22] where SHAP values are used to assess the
feature importance of the distance between an instance and its
cluster centroid.

In the aforementioned approaches, SHAP values are
computed for all features, even when only the features with
the largest SHAP values are of interest in an application.
This means that all SHAP values are computed and then,
in a post-processing step, most of them are discarded. The
TopShap algorithm presented in this paper aims to reduce the
computation time by stopping early the computation of any
SHAP values that are not in the top-k.

Reducing this cost is important, because for each feature
i computing φi(f , x) or Ai(ν), according to (2) and (4),
suggests a summation over the subsets of F . The cost
can be reduced for particular classes of cooperative games
(e.g., [23]), however, in general, computing the Shapley
values as defined by (4) requires an exponential number of
operations [24]. There exist two other equivalent closed-form
expressions of the Shapley values. The first relies on the fact
that these values can be shown to be the optimal solutions of
a Weighted Least Squares (WLS) problem [25]; however, the
exact solutions still require the evaluation of an exponential
number of terms. The second one is based on rewriting (4)
as an average over permutations of F instead of a weighted
sum over subsets of F . This gave rise to the method proposed
by [26] to estimate the Shapley values for real world problems
(when |F | is large) using a uniform random sampling of the
permutations.

In the context of local feature attribution of a prediction, the
SHAP values suffer from the same exponential computational
cost as Shapley values. In fact, it is even worse, because
φi(f , x) in (2) requires also determination of fS (x), that is
the expected output of the model when only a subset S of
the features of x are known. Reducing the cost of computing
SHAP values has received ample attention in two main
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research directions. The first one (e.g., [7], Kernel SHAP [2],
[9]) aims to be broadly applicable and therefore takes a
model-agnostic perspective, where SHAP computations are
kept independent from the model type. The second one,
on the contrary, proposes non-agnostic approaches (e.g., Tree
SHAP [3], Linear SHAP [2]), that are dedicated to one kind
of model and speedup the computation by taking advantage
of the model structure itself.

Here, we pursue the general model-agnostic option and
propose a top-k approach that does not rely on model-
specific considerations. In the community, the search for
methods to approximate SHAP values while preserving
the model-agnostic property has led to two main fruitful
families of methods, similar to those used for Shapley values:
sampling the permutations ofF or solving an equivalentWLS
problem.

In the first family, among the approaches based on
sampling permutations (e.g., [9]) the one in [13] is of
particular interest because it incorporates the approximation
of fS (x) in the sampling process. Indeed, computing fS (x) is
a problem in itself, and most model types cannot output it
directly. The algorithm presented in [13] solved this problem
by using a joint sampling of permutations and values in the
domain of x to estimate fS (x).
In the second family, the WLS approach led to the

method of reference called Kernel SHAP [2], shown to be
more efficient than the sampling of [13] mentioned above.
As detailed in [27], the approximation made by Kernel SHAP
is also based on sampling, but it is a sampling over the subsets
of F , not over the permutations of F . Sampling was used
by this algorithm to reduce the size of the set of equations
involved in solving theWLS problem to obtain SHAP values.

Beyond the reduction of computational cost, other studies
tried to put a strict limit on global resource consumption.
Such an algorithm was for instance proposed by [13],
aiming to obtain the best approximations for all φi(f , x)
using no more than a given total number of observations
drawn to build all samples, i.e., satisfying a sampling budget
constraint. For cooperative games, such a constraint has also
been used by [28] to limit the resources allocated to the
computation of theAi(ν) of the different players. In addition,
the authors proposed explicitly to output only the top-k
players, as follows. Given a maximum number of drawing
operations allowed by the total budget, the algorithm refines
the approximations of the Ai(ν) as much as possible. Then,
in a post-processing step, the top-k are selected. Computing
the top-k Ai(ν) has been used in [29] to identify influential
nodes in social networks, but the top-k selection was again
simply made as a post-processing step.

Our contribution is to show that, when computing the
top-k features and their corresponding φi(f , x), an effective
pruning can be interleaved within the permutation sampling
process. The experiments reported in Section V show an
important reduction in the search space during sampling
of the permutations, in comparison to a selection of the
top-k based on post-processing. In addition, this pruning

is compared to Kernel SHAP, the algorithm of reference
for model-agnostic SHAP value computation, that has been
reported to have better performance than classical sampling
of permutations. Our experiments show that this is no longer
the case when pruning steps are interleaved within the
permutation sampling, and that the gain is strong when k is
small in comparison with the total number of features.

IV. PROPOSED METHOD
In this section, we present TopShap, a model-agnostic

algorithm to compute the top-k features according to their
SHAP values. Since the contribution of a feature to a
prediction, as captured by its SHAP value, can be positive
or negative, features need to be considered by their absolute
SHAP values. In addition, defining the top-k requires ties to
be handled, especially as the fairness axioms of the original
Shapley values impose ties for equivalent contributors [5].
Thus, we define a top-k feature as having no more than
k − 1 other features with a strictly greater absolute SHAP
value.
Definition 1 (Top-k Features): A feature i is a top-k

feature of a set of features F, for a model f and an instance x
if and only if∣∣{j ∈ F ∣∣ |φj(f , x)| > |φi(f , x)|}∣∣ < k. (5)

To reduce computational cost, searching for the top-k is a
viable strategy if it can be done without a naive determination
of all SHAP values. This means that, during computation,
a bounding and pruning mechanism is needed to avoid
estimating SHAP values for features that can no longer be
in the top-k.

Deriving bounds for player allocations and SHAP values
using sampling has been studied by [7] and [26]. Noting
that the allocation Ai(ν) in (4) can be equivalently obtained
as an average over the permutations of the elements of F
(detailed later), the authors of [26] showed that Ai(ν) can
be estimated as the mean of a sequence of i.i.d . random
variables, providing an unbiased and consistent estimator.
Applying the central limit theorem, they derived a confidence
interval for Ai(ν). This approach was extended by [7] to
estimate φi(f , x) for a model f , while at the same time
sampling over the domain of x to estimate the terms fS (x) and
fS∪{i} in (2).
The aforementioned bounding scheme is adopted in

TopShap to reduce incrementally the number of candidate
features on the basis of improved confidence interval bounds
through additional sampling (i.e., increasing the length of the
sequence of random variables used). Starting from an initial
set of candidate features CF that is equal to the whole feature
set, the core algorithm repeats the following three steps:
(1) perform sampling for features in CF ; (2) compute new
bounds of their SHAP values; (3) prune useless candidates
from CF .

At first glance, the stopping criterion could be the presence
of at most k different φi(f , x) values among the features in
CF , where CF has possibly a size greater than k because of
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ties. Unfortunately, in the presence of ties, such a condition is
unlikely to be reached in a reasonable number of iterations.
Indeed, the computed φi(f , x) values are approximations, and
two features with the same true SHAP value can still have
different intermediate estimates φi(f , x) until their numerical
precision reaches machine precision.

To avoid this problem, the stopping criterion in TopShap
is based on the stability of the confidence interval bounds.
This means that the algorithm terminates when all remaining
candidates have only minor bound variations in the recent
past iterations.

The corresponding algorithm, TopShap, is presented in
Algorithm 1 and detailed hereafter.

A. MAIN LOOP
The following symbols are used as global constants. N is the
total number of features. F is the set of all feature identifiers,
each feature being represented by an integer identifier in
{1, . . . ,N }. D is the set of instances used to train the model.
The symbols f and x denote the model and instance for which
the SHAP values are computed. The explicit parameters are:
k the requested number of top features; warmUp the size
of the sample used to approximate each SHAP value in
the initialization stage; and the confidence level γ used to
determine the confidence intervals.

Algorithm 1 starts by initializing V , up and low. V is an
array where element V [i] contains the list of values to be used
to estimate φi(f , x). The variables up and low have the same
structure as V , with up[i] (resp. low[i]) containing the list of
upper bounds (resp. lower bounds) of the confidence interval
for φi(f , x). These bounds are computed and stored at each
iteration and will be used to assess stability.

The initial set of candidate features CF is the whole set
of features F (line 3), and a stage of warmUp iterations is
performed to compute initial estimates. A first pruning of
the candidates is then applied (line 7). Next, the algorithm
iteratively computes new estimations for all (remaining)
candidates and attempts to prune them further, until the
confidence interval bounds of all remaining candidates are
stable. Algorithm 1 returns the estimates of φi(f , x) for the
features i inCF , together with their corresponding confidence
intervals.

B. ESTIMATION AND BOUNDING
We adopt the estimation framework of [13], defined as
follows. The population P of the sampling process is the
set of all pairs (O,w), where O is a permutation of the set
of features F , and w is an instance. Let Prei(O) be the set
of features preceding feature i in permutation O. For a pair
(O,w), and a feature i, we consider the characteristic δi(O,w)
that represents the marginal contribution of feature i to the
value of f (x) when i completes the features in Prei(O), and
the values of the other features are set to those of the random
instance w.
This characteristic δi(O,w) is computed as follows. Let z

and z′ be two instances with feature values z1, . . . , zN and

z′1, . . . , z
′
N set by merging x and w in the following way: zj

is set to xj if j ∈ Prei(O), and to wj otherwise; z′j is set to
xj if j = i, and to zj otherwise. Then, δi(O,w) is given by
δi(O,w) = f (z′)− f (z).

Let M be a sample of size m of pairs (O,w) of
the population P. Then, φ̂i(f , x), the estimate of φi(f , x),
is defined as the mean of δi(O,w) over M . This estimator
was shown to be unbiased and consistent [13]. Furthermore,
applying the central limit theorem, it was derived that
φ̂i(f , x)−φi(f , x) is approximately normally distributed with
mean 0 and variance σ 2

m , where σ 2 is the variance of δi(O,w)
[13]. This allows a straightforward computation of bounds of
a confidence interval for a confidence level γ . For a set V [i]
of the values of δi(O,w) over M , we note BOUND(V [i], γ )
the function that returns these bounds.

In TopShap, the estimation is performed iteratively call-
ing ESTIMATE (Algorithm 2), where, for each feature i
remaining in CF , a new value δi(O,w) is computed and
appended to currentV [i] (line 5). The upper and lower bounds
of the confidence interval are computed by BOUND from
V [i] using the unbiased sample variance as estimator for the
population variance. TopShap computes these bounds for all
the features in CF . So, to ensure an overall confidence level
γ , we apply the extension of the Bonferroni correction to
confidence intervals as proposed by [30]. This correction
is obtained by using for each interval the confidence level
γ ′ = 1− 1−γ

|CF | . This is done when calling BOUND (line 7).
We note that this sampling process assumes feature

independence (as most other frameworks, e.g., [2]); in case of
dependencies, various extensions can handle them (see [8]).

C. PRUNING AND STABILITY
Pruning is performed in PRUNE (Algorithm 3) when there
are more than k candidate features. The top-k features are
defined using absolute SHAP values, whereas the confidence
interval bounds in up and low are those corresponding to the
SHAP values themselves, which can be positive or negative.
Thus, first, bounds are transformed into new bounds absUp
and absLow corresponding to absolute SHAP values. To this
end, the most recent bounds are retrieved by last(up[i]) and
last(low[i]). Note that for a feature i, up[i] and low[i] contain
the lists of all upper and lower bounds computed for the
SHAP value of feature i. The last elements of these lists are
the most recent bounds. Next, for a given feature, absUp is
simply the maximum of the absolute values of the two bounds
(line 8). For absMin, if the signs of the two bounds are the
same, then absMin is the minimum of the absolute values of
the bounds (line 11). If they have different signs, then it is
zero. The pruning itself is performed as follows. First, the
k th highest element among the new lower bounds absLow,
termed θ , is selected. Then, only the features that have an
absolute upper bound absUp greater than or equal to θ are
kept as candidates (line 18), since the others can no longer
be in the set of top-k features. Note that absUp is stored as
an array to allow constant time direct access. Algorithm 3
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finishes by returning the new set of candidate features, and
its correctness is shown below.
Theorem 1: The selection made by Algorithm 3 is correct.
Proof: The input of Algorithm 3 contains the parameter

k , the set of candidate features CF , and two arrays up and
low. The indices of these two arrays are the feature numbers,
with last(up[i]) and last(low[i]) being the current upper and
lower bounds of the SHAP value of feature i. The algorithm
uses these bounds to prune the features that can no longer be
in the top-k highest absolute SHAP values. The output of the
algorithm is the new set of candidate features newCF . The
correctness of Algorithm 3 is shown by proving that a feature
is discarded and not output in newCF if and only if it cannot
be in the top-k according to the current bounding intervals
given by up and low.
Case |CF | ≤ k: This implies that no more than k candidate

features remain. In this case, all candidates are in the top-
k. The algorithm handles this in line 3 by placing all these
features in the resulting set newCF . Therefore, the algorithm
is correct in this case.
Case |CF | > k: There are more than k candidate features,

and thus some may be pruned depending on the bounds of
their SHAP values. Because the top-k are selected based on
absolute SHAP values (Definition 1), the algorithm computes
for each feature the upper (resp. lower) bounds of these
absolute values. This is performed from lines 5 to 15 as
detailed in the algorithm description (Section IV-C). This
part of the algorithm builds two data structures: absUp and
absLow. The former is an array, where absUp[i] is the upper
bound of the absolute SHAP value of feature i. The latter,
absLow, is a list containing the lower bound of the absolute
SHAP value of each feature in CF .
Now consider the algorithm’s lines 16 to 18. First, we show

that a feature belonging to the top-k is not suppressed and
is output in newCF . Let i be a feature in CF that is in the
top-k. Because i is in the top-k, there cannot be k features
with strictly greater absolute SHAP values than i. Thus, the
upper bound for feature i cannot be strictly less than the lower
bounds of k features. Let θ be the k th largest lower bound,
as computed in lines 16-17. Then, the upper bound for feature
i, absUp[i], is not strictly less than θ . Therefore, absUp[i] ≥ θ

and i is selected in line 18 to be in the return set of features
newCF .

The complementary property that needs to be shown to
ensure correctness is that if a feature cannot be in the top-k
due to its current bounds, then it is not placed in newCF . Let
i be a feature in CF that can no longer be in the top-k because
there are at least k other features having a lower bound strictly
greater than the upper bound of i. Then, the k th largest lower
bound is strictly greater than absUp[i] and thus absUp[i] < θ .
Therefore, i is not selected in line 18 and is not returned in
newCF .
Hence, a feature is not output by Algorithm 3 if and only

if it cannot be in the top-k according to the current bounds. □
In Algorithm 1, pruning is interleaved with the computa-

tion of new estimations until reaching stable bounds. This

stability is checked by ALL -CF - STABLE which returns
true if and only if, for all remaining candidate features, the
variation in size of the confidence interval was strictly less
than 0.1% between any two consecutive estimations over the
previous 100 iterations.

Algorithm 1 TopShap
1: Input k , γ , warmUp
2: Initialize V , up and low as arrays of size N , each

containing N empty lists.
3: CF ← F
4: for initialEstim← 1 to warmUp do
5: V , up, low← ESTIMATE(CF,V , up, low, γ )
6: end for
7: CF ← PRUNE(CF, up, low, k)
8: while not(ALL -CF - STABLE(CF, up, low)) do
9: V , up, low← ESTIMATE(CF,V , up, low, γ )
10: CF ← PRUNE(CF, up, low, k)
11: end while
12: Output Set CF , estimates mean(V [i]) for the features

i in CF , and corresponding confidence intervals
[last(low[i]), last(up[i])].

Algorithm 2 ESTIMATE
1: Input CF , V , up, low, γ
2: O← random permutation of F
3: w ← random instance drawn from D
4: for i in CF do
5: append δi(O,w) to V [i]
6: γ ′← 1− 1−γ

|CF |
7: u, ℓ← BOUND(V [i], γ ′)
8: append u to up[i]
9: append ℓ to low[i]
10: end for
11: Output V , up, low

D. TIME COMPLEXITY
An iteration (Algorithm 1, line 8) starts by a call
to ALL -CF - STABLE performed in O(|CF |). Then,
in ESTIMATE, a permutation of F is drawn in O(|F |),
followed by the computation of δi(O,w) needing to merge
x and w which can be done once before the for loop
(line 4) in O(|F |). It also requires the model f to be
evaluated on two instances, with a cost modelEvalCost that
depends on the type of model. BOUND can be evaluated in
O(1) using an incremental update of the mean and of the
variance [31]. Thus, the cost of ESTIMATE is in O(|F | +
|CF | × modelEvalCost).

In PRUNE, setting/inserting elements in absUp, absLow
and newCF (loop line 7 and line 18) is in O(|CF |). Finding
the k th highest element (lines 16-17) of absLow (of size |CF |)
can be done in O(|CF | log k) using a min-heap.
Thus, the overall cost of an iteration in TopShap is

in O(|F | + |CF |(modelEvalCost + log k)). This is to be
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Algorithm 3 PRUNE
1: Input CF , up, low, k
2: if |CF | ≤ k then
3: newCF ← CF
4: else
5: Initialize absUp as an array of size N.
6: absLow← empty list
7: for i in CF do
8: absUp[i]← max(|last(up[i])|, |last(low[i])|)
9: if sign(last(up[i])) = sign(last(low[i])) then
10: append min(|last(up[i])|, |last(low[i])|)
11: to absLow
12: else
13: append 0 to absLow
14: end if
15: end for
16: sort absLow in decreasing order
17: θ ← absLow[k]
18: newCF ← {i ∈ CF | absUp[i] ≥ θ}

19: end if
20: Output newCF

compared to the complexity of a top-k search based on
sampling but without pruning, where the top-k selection
would be performed in a post-processing step. In the latter
case, the time complexity of an iteration would be O(|F | ×
modelEvalCost), requiring more model evaluations.

V. EXPERIMENTS AND DISCUSSION
In this section, experiments are presented, reporting

the performance of TopShap when computing the top-k
features according to their SHAP values. The goal of
the experiments is to assess pruning when compared to
classical sampling and to Kernel SHAP. A Python imple-
mentation of TopShap, as well as code to reproduce the
experiments, are publicly available as a Git repository at
https://gitlab.inria.fr/topshap/topshap_and_experiments.

A. DATASETS
The pruning capabilities of TopShap were assessed on six
real-world datasets and a synthetic one. These datasets
exhibited different numbers of instances and features, among
which only the numerical ones were selected. The final
corresponding sizes are reported in Table 1. Most of
these datasets, namely Concrete [32], Wine Quality [33],
Appliances Energy [34] and CT location [35], came from
the UCI Machine Learning Repository [36]. The Mercedes
dataset was provided by Mercedes-Benz Greener Manufac-
turing and was accessible via Kaggle [37]. We used the
make_regression function from scikit-learn [38] to generate
the Synthetic dataset. This dataset contained uncorrelated
random features following a normal distribution with zero
mean and unitary standard deviation. The regression target
variable was a random linear combination of all input
features. Finally, we relied on the 10x Genomics Peripheral

TABLE 1. Number of numerical features and instances of the datasets.

BloodMononuclear Cells (PBMC) dataset [39] to explore the
potential of the algorithm in a bioinformatics-oriented use
case.

B. MODEL TYPES
Since TopShap is a model-agnostic approach, it was tested
with different machine-learning approaches for regression.
The experiments presented in this paper include four
models: Regression Forest (RF), Multi-Layer Perceptron
(MLP), RBF-kernel Support Vector Regression (SVR) and
Stacked Generalization (STK). For all models, scikit-learn
(v1.2.2) [38] was used.

TopShap, classical sampling without pruning, and
Kernel SHAP were applied to the same trained models. This
evaluation did not require the best possible models to be
learned, thus the following simple, standard hyperparameter
tuning was performed. For the first three models (RF, MLP,
SVR), the hyperparameters were optimized by a grid search
over the usual hyperparameter ranges for these models
(details can be found in the Git repository). STK consisted
of a stacking of the three other optimized models, combined
using a gradient boosting regressor with hyperparameters set
to their default values.

C. EXPERIMENTAL SETUP
For each dataset, models were trained on a randomly chosen
70% of the instances, and the remaining 30% of the dataset
were used as a test set. Then, TopShap was executed on
100 randomly chosen test instances, to search their top-k
features and estimate their corresponding SHAP values.
The experiments presented in the main text were run with
TopShap parameters set to k = 5, confidence γ = 0.95 and
warmUp = 100. For datasets with enough features for a
meaningful selection, experiments were run also with k =
15. To demonstrate robustness of our results, additional
experiments where k = 10 and γ = 0.99 are provided in
Supplementary Materials.

D. COMPARISON WITH CLASSICAL SAMPLING

The pruning proposed in TopShap is interleaved with the
permutation sampling process. However, a classical sampling
of permutations could be used to compute all SHAP values.
Then, when stability is reached, the top-k could be selected
in a post-processing step. The interest of using TopShap,
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in comparison to such a post-processing strategy, is studied in
this section.

In order to illustrate the global behavior of TopShap,
Fig. 1a shows the evolution of the SHAP values for a
Regression Forest model and a single instance picked from
the Wine Quality dataset. For each of the 11 features,
the absolute SHAP values, surrounded by their confidence
intervals, are given along the iterations. In this example,
the width of the confidence intervals shrank quickly, which
enabled 6 features to be pruned from the candidates, and only
5 features were left before reaching the first 1000 iterations.
The stability criterion was reached at iteration 4234 (Fig. 1a,
vertical line), where TopShap stopped.

Fig. 1b and 1c illustrate the pruning performance of
TopShap, for the same regression model, on 100 randomly
selected test instances from the Wine Quality dataset. The
median and average number of candidate features along
the iterations are depicted in Fig. 1b. The green area
demarcates the distribution of the number of candidates
between the maximal and minimal values, while the left
(resp. right) vertical line denotes the iteration when the
first (resp. last) instance reached the stability criterion. This
implies that TopShap stopped between these two lines for the
100 instances.

The behavior for one instance, as shown in Fig. 1a, is
also observed over the 100 instances. Both the average and
median number of candidate features decreased (from 11 to
6 features) quickly during the first 2,000 iterations (Fig. 1b).
The pruning was effective, and the mean and median number
of candidates tended to plateau in the subsequent iterations.
The number of iterations necessary to reach stability, i.e.,
the iteration at which TopShap stopped, was different for
each instance. The histogram of the number of iterations
needed for each of the 100 instances is reported in Fig. 1c.
In this histogram, each bin is split according to the number
of candidates remaining when TopShap stopped. If more
than 5 candidates were still present, they corresponded to
ties among the top-k. These ties could be features with the
same SHAP values, or with overlapping confidence intervals
due to the approximation framework. The precise count in
this example is 59 instances that reached stability with only
5 candidates remaining, 36 instances with 6 or 7 candidates,
and 5 instances with 8 candidates.

We observed a correspondingly robust behavior of
TopShap for all combinations of models and datasets.
A subset of combinations is presented for k = 5 in Fig. 2,
and for datasets with more than 25 features, for k = 15 in
Fig. 3 (see Supplementary Materials Fig. S1, S2, and S4 for
the other combinations). In all cases, TopShap exhibited a
pattern of feature pruning similar to what was reported above
(Fig. 1). Also, the distributions of the number of iterations
needed to reach stability were consistent.

Increasing k from 5 to 15 led to an increase in the
number of iterations needed to reach the stopping criterion.
This can be observed when comparing Fig. 3 to the bottom
panels of Fig. 2. This behavior was anticipated, since adding

FIGURE 1. TopShap convergence, pruning, and stability.

more features is likely to require more iterations to reach
stability. In agreement with this explanation, an intermediate
increase in the number of iterations was observed for the
intermediate setting of k = 10 (see Supplementary Materials
Fig. S3).

Performing the same experiments with a higher confidence
level, γ = 0.99, resulted in the presence of more ties in the
top-k. This occurs because a higher confidence level implies
wider confidence intervals and hence more opportunities for
features to overlap. Having more ties has a similar effect to
choosing a larger k, and accordingly a slight increase was
observed in the number of iterations needed to reach stability
(Supplementary Materials Fig. S5 and S6).

To summarize, across a variety of datasets and for a
range of parameter settings, our results demonstrated the
effectiveness of TopShap in pruning candidate features to
avoid ‘pointless’ computational effort. The gain is obvious if
our pruning strategy is compared to a post-processing strategy
to discover the top-k features, that is to say to a permutation
sampling without pruning. As was reported in Section IV-D,
the computational cost of an iteration of the sampling process
is driven by |CF | × modelEvalCost , where CF is the set of
features that are still candidates to be in the top-k. Obviously,
the post-processing strategy would require at least as many
iterations to reach stability as the top-k search with pruning.
To be precise, without pruning, the size of CF would remain

163086 VOLUME 12, 2024



L. Chabrier et al.: Effective Pruning for Top-k Feature Search on the Basis of SHAP Values

FIGURE 2. Behavior of TopShap when selecting the top k = 5 features of 100 instances.

FIGURE 3. Behavior of TopShap when selecting the top k = 15 features of 100 instances.

equal to the initial number of features |F | for all iterations.
As shown here, TopShap started pruning almost immediately
after the warm-up, with |CF | quickly decreasing to be close
to k . This means that, roughly speaking, TopShap avoided a
cost of (|F |−k)×modelEvalCost per sampling iteration after
warm-up, which is an effective cost reduction of the overall
process, especially if k ≪ |F |.

E. COMPARISON WITH KERNEL SHAP
The previous section showed the gain of incorporating
TopShap pruning within the general approximation process
as done by the permutation sampling family of approaches.
As presented in Section III, the other predominant research
direction to approximate SHAP values is solving an equiva-
lent WLS problem. In the case of model-agnostic methods,
this led to a reference algorithm named Kernel SHAP [2].
In this section, the execution times and the output of TopShap
are compared to top-k searches based on Kernel SHAP.

FIGURE 4. TopShap and Kernel SHAP approximations, with confidence
intervals for TopShap.

As detailed in [27], the approximation made by
Kernel SHAP is also based on sampling, but it is a sampling
over the powerset of the features, not a sampling of the
permutation of the features. This sampling is performed
only once, to build the equations needed to formulate
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TABLE 2. Comparison of Kernel SHAP and TopShap.

the WLS problem, which is then solved by Kernel SHAP
to approximate the SHAP values of all the features.
Such an approach implies that reducing the search space
is not straightforward for Kernel SHAP when we are
only concerned with the top-k features. Indeed, for our
comparison, the only reasonable option was to select these
features in a post-processing step after runningKernel SHAP.

Kernel SHAP was called with its default parameters, the
number of sampled coalitions in this default setting being
equal to twice the number of features plus 2048, and the
top 5 features were retained. The TopShap parameters were
set to k = 5, confidence γ = 0.95 and warmUp = 100.
Both methods performed approximations of fS (x), that is the
output of a model f when only a subset S of the features
of x is known. To allow for a fair comparison of global
execution time and of the SHAP values themselves, these
approximations were made in the same way for both methods
using the training dataset as a reference to set values for the
unknown part of x.

All times are reported for single-threaded executions on
a desktop computer running Ubuntu Linux (2.1 GHz Intel
Xeon, 192 GB RAM). The implementation of TopShap is
provided in the git repository, while the implementation of
Kernel SHAP is KernelExplainer from the SHAP library [40]

(version 0.44.0). Both methods are implemented in Python,
using numpy vectorization. The models were learned using
scikit-learn, and the samemodels were given to Kernel SHAP
and TopShap as input. In both the Kernel SHAP and TopShap
implementations, the calls to the prediction functions of the
models were not made one instance at a time. Each call
was made for a batch of instances to amortize the possible
overhead due to data structure preparation in prediction
functions of the scikit-learn models.

1) COMPARING EXECUTION TIME
For both Kernel SHAP and TopShap, execution time was
measured for the same set of 100 randomly chosen instances
of the test dataset. Average execution times per instance
are reported in Table 2. The time-ratio column corresponds
to the average time per instance for Kernel SHAP divided
by the average time per instance for TopShap. Note that
executions that took more than one hour and a half (5400
seconds) were stopped. Note also that for CT location, one of
the largest datasets, Kernel SHAP approximations could not
be completed due to memory problems, and corresponding
comparisons could not be reported (Table 2).

For nearly all models and datasets, TopShap was much
faster than Kernel SHAP. Overall, run time was reduced
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almost 10-fold (median≈ 9.24), ranging from 2-fold to more
than 85-fold. For the smallest dataset, Concrete Compressive
Strength, TopShap reduced execution times only in half of the
combinations. This dataset contained only 8 features whilst
we searched for the top-5. As expected, TopShap was unable
to benefit from a substantial amount of pruning. However,
for all other datasets, a clear reduction in execution time was
observed.

2) COMPARING SHAP VALUES
A comparison is now made of the top-k features and
their approximated SHAP values output by TopShap and
Kernel SHAP. The corresponding scores are given in Table 2
and, as for execution time, were obtained as an averages over
a set of 100 randomly chosen instances of the test dataset.

TopShap provides confidence intervals, and the selection
of the top-k is based on these intervals. Thus, it can report
more than k features, because of ties due to overlapping inter-
vals. Kernel SHAP does not provide confidence intervals,
but, in principle, it could report ties if the same SHAP values
were obtained for two features. However, this never occured
in the experiments discussed here.

We compared the output of the two methods on three
scores. First, we considered Kernel SHAP as a reference, and
a recall-like score was computed as the percentage of the
top-k features obtained with Kernel SHAP that also appeared
in those reported by TopShap. Table 2 shows a nearly perfect
recall-like score, with only 6 combinations out of 20 for
which the average score is not 100% but slightly below. Note
that a similar computation of a precision-like score would not
be meaningful when Kernel SHAP is taken as a reference.
This is because the top-k features of TopShap can include
ties due to overlapping confidence intervals, whereas such
ties are not taken into account by Kernel SHAP and would
not be present in its output.

Next, to assess the extent to which the outputs of the two
algorithms agreed for the SHAP values themselves, a match-
ing score was computed. This score was the percentage of
the confidence intervals of the top-k features of TopShap
that included the SHAP value given by Kernel SHAP for
the corresponding feature. An example of a matching
score of 80% (i.e., 4/5) is illustrated in Fig. 4 for the
same instance as in Fig. 1a from the Wine Quality dataset.
Fig. 4 presents the SHAP values approximation of the top-
5 features computed by TopShap and Kernel SHAP. All
TopShap intervals encompassed the approximation made
by Kernel SHAP, except for the feature sulphates, the
value of which is nevertheless close to the interval’s upper
bound. The matching scores reported in Table 2 reflected
a strong agreement of both algorithms on the SHAP values
obtained.

3) CONFIDENCE INTERVAL OVERLAPS
The above observed high matching scores are of interest,
if confidence intervals tend to isolate the SHAP values,
i.e., if these intervals have limited or no overlap. This

was assessed by counting for each interval the number
of overlaps, that is, non-empty intersections with other
intervals. The mean overlap counts are reported in Table 2
(column TopShap overlaps). Most combinations of datasets
and models showed a mean overlap count much less than
2.00, indicating a good separation of the SHAP values by
their intervals. A few combinations led to a greater number
of overlaps, corresponding to cases where several ties were
obtained in the output of TopShap. An extreme average of
8.22 is reported in Table 2 for the Appliances Energy dataset
and SVR model. This was due to a large number of ties,
leading to an output containing on average between 10 and
15 features, even if only the top 5 features were requested
(Supplementary Materials Fig. S1). Even though ties may
seem undesirable at first sight, it should be emphasized
that ties simply mean that several features have similar
importance in the prediction made by the model.

To summarize, TopShap and Kernel SHAP agreed well
on their approximations of SHAP values. Moreover, the
confidence intervals computed by TopShap provided a
quantification of the remaining uncertainty. These intervals
tended to be rather narrow, implying that, in general, few ties
(overlap of intervals between features) were found.

F. USE CASE: THE PBMC DATASET
A major challenge in biology is to understand how genes
interact. We know that understanding gene regulation is
key: the question to answer is which transcription factors
(TFs, genes that can influence the expression of other genes,
including themselves) are responsible for regulation of a
given gene on the genome? Even though we know for
a few well-studied cases how TFs regulate a particular
gene, generally speaking within a cell it is unknown which
TF regulates which gene. This, however, can be predicted
from data, such as single-cell gene expression data. From
such data, regulatory links can be extracted using machine
learning and feature importance techniques, in order to
reveal which TFs are likely to be associated with a given
target gene. Indeed, if we take for example one of the
best currently available workflows, PySCENIC [41], its first
computing step consists in learning a tree-based predictor of
the expression of the target gene, from which an ordered list
of features (i.e., TFs) is extracted through impurity-based fea-
ture importances [38]. In this manner, PySCENIC identifies
the putative interactions between TFs and genes, from which
a single regulatory network can be built for a population of
cells.

In a similar way, we applied TopShap to the PBMC gene
expression dataset, which is commonly used in the single-cell
biology domain to demonstrate new methods. After quality
control, it consists of 2638 high-quality cells (instances),
mainly comprising cell types of the human immune system.
One of these cell types is the B cell type. In this use case, a
non-trivial biological question was asked regarding B cells:
‘‘Which TFs are potentially regulating gene MS4A1, a well-
known marker gene for B cells?’’.
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FIGURE 5. Behavior of TopShap for different models and 100 instances of the PBMC dataset. Parameter k = 15.

Four model types were trained, applying the same exper-
imental setup as for the above reported experiments (see
Section V-C): Random Forest (RF), Multi-Layer Perceptron
(MLP), Support Vectors Regressor (SVR), and stacked
regressors (STK). Except for STK, all approaches were previ-
ously used on single-cell RNA-seq data [41], [42], [43]. After
splitting the dataset in training and test sets (respectively 70%
and 30% of the 2638 cells) and guaranteeing all cell types
were present, we trained the four models.

TopShap was then applied to each of the 105 B cells in the
test data. Results were summarized in Table 3, where the
column Counts indicates the number of times a TF is in
the top-5 of a cell, per model (RF, MLP, SVR, STK). The
five most-occurring top-5 TFs were indicated in black font
color, and the counts were completed for any TF not present
in the top-5 of all four models (green font color). Six out
of eight TFs were found to be either known from literature
for their capability to bind in the regulatory genomic regions
aroundMS4A1 or for their involvement in B-cell functioning,
as detailed by an entry in the column Literature evidence of
Table 3.

The transcription factors SPIB and IRF8 were the most
frequent features in the top-5 for all models. For the other
six genes, the models did not fully agree, suggesting that
each regression method provides a different insight into the
data. The transcription factors POU2AF1, JUN, and GTF3A
were all detected by three methods, and only JUN did
not show evidence of links with MS4A1 or B cells in the
literature. It may play a role, however, as JUN is a pioneer
transcription factor involved in general regulatory processes
of transcription. Alternatively, it might be present due to its

TABLE 3. Transcription factors predicted to regulate MS4A1 (marker gene
for B cells).

involvement in the cellular stress response caused by the
experimental procedure of single-cell RNA sequencing. The
genes CEBPB, NFATC1, and PAX5 were picked up by only
one method each, and two of them could be associated with
literature evidence of their role in the regulation of MS4A1
and B cells. It could be considered that the variation between
the methods is an opportunity to generate new hypotheses for
biologists.

For all models, from the viewpoint of algorithm perfor-
mance, it was observed that the width of confidence intervals
shrank quickly and that pruning was (again) very effective
(see Fig. 5).

VI. CONCLUSION
In this paper, TopShap was proposed, a model-agnostic
algorithm for searching the k most important features for a
prediction. TopShap operates within the SHAP framework
to determine local feature importance, the so-called SHAP
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values. It drastically reduces computational costs by iter-
atively interleaving sampling steps to improve bounds of
SHAP values, and pruning steps to stop any computation for
features that can no longer be in the top-k. Effectiveness of
TopShap was demonstrated by applying it to various datasets,
including a use case in the domain of single-cell gene
expression analysis. Correctness of its output was verified
by comparing our method to the state-of-the-art technique of
Kernel SHAP. Moreover, TopShap was shown to be an order
of magnitude faster than Kernel SHAP, if the total number of
features in a dataset were much larger than the top-k that one
would like to use to explain a model prediction.

Despite the advantages of TopShap, it has some limitations.
The first is that it computes approximations of SHAP values,
like the other model-agnostic approaches. A useful follow-
up would be to further improve this approximation scheme to
provide tighter bounds for SHAP values. A second limitation
is reported in the experiments. When computing the top-k
SHAP values, the reduction in execution time was most
clearly observed when k was small compared to the total
number of features in the dataset. Future work on the
sampling strategy, such as adopting an antithetic sampling
instead of a uniform one, could permit faster convergence and
thus could allow for a reduction of computational cost when k
is close to the total number of features. As a third limitation,
it should be noted that because TopShap outputs the top-k
features and their SHAP values, unnecessary computations
may be performed if only the top-k features and their ranks
are of interest. The algorithm stops when two conditions
are satisfied, namely only k features remain (including
possible ties) and their SHAP value approximations are
stable. However, this can be too strict, if precise SHAP values
are not required. In this case, a useful improvement would be
to design an alternative criterion, for instance to stop as soon
as the ranking of the top-k features is stable.
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