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Abstract

With the increasingly pervasive use of advanced machine
learning models comes the need to explain their predic-
tions. The SHAP framework, based on Shapley values,
provides explanations to highlight which features could
be important for a given prediction. However, its use
is hampered by its computational cost, especially in its
model-agnostic formulation. Model-specific algorithms
offer a restricted solution to this problem, whereas alter-
native approximation strategies can maintain the model-
agnostic property. Here we propose TopShap as an ag-
nostic algorithm that searches the k most important fea-
tures by interleaving pruning of candidates and refine-
ment of the approximate SHAP values. TopShap is built
on three insights: (i) it performs an iterative approxima-
tion taking advantage of a previously developed sampling
strategy, (ii) it uses confidence interval bounds around
approximate SHAP values to determine on-the-fly which
features can no longer be part of the top-k, (iii) it stops
when these interval bounds are stable. Evaluating Top-
Shap on publicly available datasets shows it performs an
effective pruning of the feature search space and leads to
an important reduction of the execution cost when com-
pared to the other agnostic approaches. We also apply
TopShap to a use case in biology and show that top-k
search is meaningful in this context.

Keywords: Explainable artificial intelligence, lo-
cal feature attribution, model-agnostic method, Shapley
value, top-k selection.

1 Introduction

Machine learning models have become more and more so-
phisticated over the last decade and the need to explain

their predictions has been increasing similarly [1]. In-
deed, understanding how machine learning models make
their predictions can help to decipher and counter bias
in training data, and enables domain-experts to judge
model output, which in turn builds trust in model deci-
sions. One way to explain the predictions of a model, is
to provide importance values for the features used in the
input of the model. This can be done at the global level,
encompassing all predictions, or at the local level, where
feature importances are assessed for a single prediction
made for a given input instance.

Among local feature importance approaches, so-called
SHAP values [2] have been shown to give meaningful
insight into machine learning predictions (e.g., [3, 4]).
SHAP values are based on a game theory approach de-
veloped by Lloyd Shapley [5], addressing the distribution
of gain between players in cooperative multiplayer games.
In the context of explaining predictions made by machine
learning models, the goal is to quantify the influence of
each feature on the output of the model. SHAP values are
the resulting framework, using the desirable properties of
Shapley values [5] and the requirement of additive feature
attributions as found in a larger group of explainability
methods [6, 7].

One of the main difficulties of using SHAP values, is
their computational cost, because they require to take
into account the contribution of each subset of features
and they need to obtain the expectation of the model
output when only such a subset is known. An impor-
tant research direction is the reduction of these costs,
while being independent of the type of models, i.e., being
model-agnostic, in order to be of benefit to any current (or
emerging) types of models. In existing works (e.g., [8,9]),
these gains are made by using sampling strategies to com-
pute approximations of feature importance measures. It
should be noted, that for some types of models, other
improvements can be obtained by taking advantage of
the model structure itself, though this implies losing the
property of being model-agnostic [3].

Knowing the importance of all features can deliver
meaningful insight, yet an explanation of model behav-
ior that highlights which features contribute the most to
a prediction, could be sufficient for the user in order to de-
velop an understanding of that prediction. In this paper,
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we preserve the model-agnostic perspective, and we pro-
pose to further reduce the cost of the sampling strategies
by focusing on the k most important features according
to their prediction attribution.

The main contribution of our work, is to show that such
a top-k selection and corresponding SHAP value compu-
tation can benefit from an effective pruning of the search
space, avoiding the need to compute the precise impor-
tance of most features not in the top-k. As the computa-
tional cost of SHAP values is exponential in the number
of features, such a reduction of the search space is par-
ticularly interesting for datasets with a large number of
features.

To perform such a pruning, an algorithm is proposed
based on an iterative sampling strategy that interleaves
bound improvement of SHAP value estimates and prun-
ing of the set of features that are candidates to lie in
the top-k. Experiments on various datasets and repre-
sentative types of models exhibit a fast reduction of the
number of candidates, thus avoiding the correspondingly
large number of computationally expensive sampling op-
erations. When compared to current existing alternative
approaches, this leads to an important reduction of the
execution cost. In addition, we show in a use case from
biology, that such a top-k selection provides meaningful
insight in the context of gene expression data analysis.

The rest of this paper is organized as follows. The
next section recalls the necessary preliminaries. Section 3
presents related works. The algorithm to compute the
top-k features is described in Section 4. Section 5 reports
the experiments and we conclude with a summary in Sec-
tion 6. Complementary experiment results are reported
in the Supplementary Materials.

2 Preliminaries

In the following, the term SHAP value designates the
importance of a feature in a prediction as defined by both
Strumbelj et al. [7] and the unified framework of SHapley
Additive exPlanations [2].

Let f be an already trained regression model, that given
an instance x described by a set of features F , can be used
to compute f(x) ∈ R, the prediction associated to x. For
each feature i ∈ F , the SHAP value ϕi(f, x) assesses the
contribution of i in the prediction f(x).

Let fS(x), with S ⊆ F , denote the output of f when
only the values of the features in S are known for x. For
instance, f∅(x) is the default prediction of f when no
feature is known.

The main property of the SHAP values is the local
accuracy, which guarantees that their addition to f∅(x)
sums to the prediction for input x:

f(x) = f∅(x) +
∑
i∈F

ϕi(f, x). (1)

Note that in this additive explanation framework, the
contribution of a feature can be positive or negative, and

that features with high importance are the ones with large
absolute ϕi(f, x) values.
Following the formal framework of [5], it has been

shown that, under reasonable fairness axioms (e.g., sym-
metry, consistency), there exists only one function ϕi and
that it can be defined as [2, 7]:

ϕi(f, x) =
∑

S⊆F\{i}

w(S)
(
fS∪{i}(x)− fS(x)

)
, (2)

where w is a weight function depending on the size of
S and F :

w(S) =
|S|! (|F | − |S| − 1)!

|F |!
. (3)

This follows the cooperative game theory results of [5],
which proposes a solution to the problem of allocating
benefits to players under fairness axioms. The analogy is
that the set of features F is replaced by a set of players,
and the function fS(x) is replaced by a function ν(S) for
S ⊆ F that gives the value of the coalition of players S
in the game. In this original context, the allocation of a
player i ∈ F was defined as:

Ai(ν) =
∑

S⊆F\{i}

w(S)
(
ν(S ∪ {i})− ν(S)

)
. (4)

Having recalled the definitions necessary to introduce
the TopShap algorithm, we note that, for the sake of
clarity, the above preliminaries have been restricted to
regression tasks. However, SHAP values can be easily re-
formulated for classification tasks. For instance, in the
case of a binary classification with classes C0 and C1, if
f(x) outputs the probability to belong to class C1, with
1− f(x) being the probability that x lies in C0, then the
framework can be applied directly.

3 Related Work

Computing ϕi(f, x) or Ai(ν), according to (2) and (4),
suggests a summation over the subsets of F . The cost
can be reduced for particular classes of cooperative games
(e.g., [10]), but, in general, computing the Shapley values
as defined by (4) requires an exponential number of oper-
ations [11]. There exist two other equivalent closed-form
expressions of the Shapley values. The first relies on the
fact that these values can be shown to be the optimal so-
lutions of a Weighted Least Squares (WLS) problem [12],
where, however, the exact solutions still require the eval-
uation of an exponential number of terms. The second
one is based on rewriting (4) as an average over permuta-
tions of F instead of a weighted sum over subsets of F . It
gave rise to the method proposed by [13] to estimate the
Shapley values for real world problems (when |F | is large)
using a uniform random sampling of the permutations.

In the context of local feature attribution of a predic-
tion, the SHAP values suffer from the same exponential
computation cost as Shapley values. It is even worse,
because ϕi(f, x) in (2) requires also to determine fS(x),
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that is the expected output of the model when only a
subset S of the features of x are known. Reducing the
cost of computing SHAP values has received ample at-
tention in two main research directions. The first one
(e.g., [7], Kernel SHAP [2], [9]) aims to be broadly appli-
cable and therefore takes a model-agnostic perspective,
where SHAP computations are kept independent from
the kind of models. The second one, on the contrary,
proposes non-agnostic approaches (e.g., Tree SHAP [3],
Linear SHAP [2]), that are dedicated to one kind of model
and speed-up the computation by taking advantage of the
model structure itself.

Here, we pursue the general model-agnostic option and
propose a top-k approach that does not rely on model-
specific considerations. In the community, the search for
methods to approximate SHAP values while preserving
the model-agnostic property have led to two main fruitful
families of methods, similar to those used for Shapley
values: sampling the permutations of F or solving an
equivalent WLS problem.

In the first family, among the approaches based on sam-
pling permutations (e.g., [9]) the one of [14] is of particu-
lar interest because it incorporates the approximation of
fS(x) in the sampling process. Indeed, computing fS(x)
is a problem in itself, and most kinds of models cannot
output it directly. The algorithm presented in [14] solved
this problem by using a joint sampling of permutations
and of values in the domain of x to estimate fS(x).

In the second family, the WLS approach led to the
method of reference called Kernel SHAP [2], shown to
be more efficient than the sampling of [14] mentioned
above. As detailed in [15], the approximation made by
Kernel SHAP is also based on sampling, but it is a sam-
pling over the subsets of F , not over the permutations of
F . Sampling was used by this algorithm to reduce the
size of the set of equations involved in solving the WLS
problem to obtain SHAP values.

Beyond the reduction of computational cost, other
studies tried to put a strict limit on global resource con-
sumption. Such an algorithm was for instance proposed
by [14], aiming to obtain the best approximations for all
ϕi(f, x) using no more than a given total number of ob-
servations drawn to build all samples, i.e., satisfying a
sampling budget constraint. For cooperative games, such
a constraint has also been used by [16] to limit the re-
sources allocated to the computation of the Ai(ν) of the
different players. In addition, the authors proposed ex-
plicitly to output only the top-k players, as follows. Given
a maximum number of drawing operations allowed by the
total budget, the algorithm refines the approximations of
the Ai(ν) as much as possible. Then, in a post-processing
step, the top-k are selected. Computing the top-k Ai(ν)
has been used in [17] to identify influential nodes in social
networks, but the top-k selection was again simply made
as a post-processing step.

Our contribution is to show that, when computing the
top-k features and their corresponding ϕi(f, x), an effec-
tive pruning can be interleaved within the permutation
sampling process. The experiments reported in Section 5
show an important reduction of the search space during

the sampling of the permutations, in comparison to a se-
lection of the top-k based on post-processing. In addi-
tion, this pruning is compared to Kernel SHAP, the algo-
rithm of reference for model-agnostic SHAP value compu-
tation, that has been reported to have better performance
than classical sampling of permutations. Our experiments
show that this is no longer the case when pruning steps are
interleaved within the permutation sampling, and that
the gain is strong when k is small relatively to the total
number of features.

4 TopShap

In this section, we present TopShap, a model-agnostic
algorithm to compute the top-k features according to
their SHAP values. Since the contribution of a feature
to a prediction, as captured by its SHAP value, can be
positive or negative, features need to be considered by
their absolute SHAP values. In addition, defining the
top-k requires to handle ties, especially because the fair-
ness axioms of the original Shapley values impose ties for
equivalent contributors [5]. Thus, we define a top-k fea-
ture as having no more than k − 1 other features with a
strictly greater absolute SHAP value.

Definition 1 (top-k features). A feature i is a top-k fea-
ture of a set of features F , for a model f and an instance
x if and only if∣∣{j ∈ F

∣∣ |ϕj(f, x)| > |ϕi(f, x)|}
∣∣ < k. (5)

To reduce computational cost, searching for the top-k
is a viable strategy if it can be done without a naive de-
termination of all SHAP values. This means that, during
the computation, a bounding and pruning mechanism is
needed to avoid estimating SHAP values for features that
can no longer be in the top-k.

Deriving bounds for player allocations and SHAP value
using sampling has been studied by [13] and [7]. Not-
ing that the allocation Ai(ν) in (4) can be equivalently
obtained as an average over the permutations of the el-
ements of F (detailed later), the authors of [13] showed
that Ai(ν) can be estimated as the mean of a sequence of
i.i.d. random variables, providing an unbiased and consis-
tent estimator. Applying the central limit theorem, they
derived a confidence interval for Ai(ν). This approach
was extended by [7] to estimate ϕi(f, x) for a model f ,
while at the same time sampling over the domain of x to
estimate the terms fS(x) and fS∪{i} in (2).
The aforementioned bounding scheme is adopted in

TopShap to reduce incrementally the number of candi-
date features on the basis of improved confidence interval
bounds through additional sampling (i.e., increasing the
length of the sequence of random variables used). Start-
ing from an initial set of candidate features CF that is
equal to the whole feature set, the core algorithm repeats
the following three steps: (1) perform sampling for fea-
tures in CF ; (2) compute new bounds of their SHAP
values; (3) prune useless candidates from CF .
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At first glance, the stopping criterion could be the pres-
ence of at most k different ϕi(f, x) values among the fea-
tures in CF , with CF having possibly a size greater than
k because of ties. Unfortunately, in the presence of ties,
such a condition is unlikely to be reached in a reasonable
number of iterations. Indeed, the computed ϕi(f, x) val-
ues are approximations and two features with the same
true SHAP value can still have different intermediate es-
timates ϕi(f, x) until their numerical precision reaches
machine precision.
To avoid this problem, the stopping criterion in Top-

Shap is based on the stability of the confidence interval
bounds. This means that the algorithm terminates when
all remaining candidates have only minor bound varia-
tions in the recent past iterations.
The corresponding algorithm, TopShap, is presented in

Algorithm 1 and detailed hereafter.

4.1 Main loop

The following symbols are used as global constants. N is
the total number of features. F is the set of all feature
identifiers, each feature being represented by an integer
identifier in {1, . . . , N}. D is the set of instances used to
train the model. The symbols f and x denote the model
and instance for which the SHAP values are computed.
The explicit parameters are: k the requested number of
top features; warmUp the size of the sample used to ap-
proximate each SHAP value in the initialization stage;
and the confidence level γ used to determine the confi-
dence intervals.

Algorithm 1 starts by initializing V , up and low. V is
an array where element V [i] will contain the list of values
to be used to estimate ϕi(f, x). The variables up and low
have the same structure as V , with up[i] (resp. low[i])
containing the list of upper bounds (resp. lower bounds)
of the confidence interval for ϕi(f, x). These bounds are
computed and stored at each iteration and will be used
to assess the stability.

The initial set of candidate features CF is the whole
set of features F (line 3) and a stage of warmUp itera-
tions is performed to compute initial estimates. A first
pruning of the candidates is then applied (line 7). Next,
the algorithm iteratively computes new estimations for all
(remaining) candidates and attempts to prune them fur-
ther, until the confidence interval bounds of all remaining
candidates are stable. Algorithm 1 returns the estimates
of ϕi(f, x) for the features i in CF , together with their
corresponding confidence intervals.

4.2 Estimation and bounding

We adopt the estimation framework of [14], defined as fol-
lows. The population P of the sampling process is the set
of all pairs (O, w), where O is a permutation of the set of
features F , and w is an instance. Let Prei(O) be the set
of features preceding feature i in permutation O. For a
pair (O, w), and a feature i, we consider the characteristic
δi(O, w) that represents the marginal contribution of fea-
ture i to the value of f(x) when i completes the features

in Prei(O), and the values of the other features being set
to those of the random instance w.
This characteristic δi(O, w) is computed as follows. Let

z and z′ be two instances having feature values z1, . . . , zN
and z′1, . . . , z

′
N set by merging x and w in the following

way: zj is set to xj if j ∈ Prei(O), and to wj otherwise;
z′j is set to xj if j = i, and to zj otherwise. Then, δi(O, w)
is given by δi(O, w) = f(z′)− f(z).

Let M be a sample of size m of pairs (O, w) of the pop-
ulation P . Then, ϕ̂i(f, x), the estimate of ϕi(f, x), is de-
fined as the mean of δi(O, w) over M . This estimator was
shown to be unbiased and consistent [14]. Furthermore,
applying the central limit theorem, it was derived that
ϕ̂i(f, x) − ϕi(f, x) is approximately normally distributed

with mean 0 and variance σ2

m , where σ2 is the variance of
δi(O, w) [14]. This allows a straightforward computation
of bounds of a confidence interval for a confidence level γ.
For a set V [i] of the values of δi(O, w) over M , we note
BOUND(V [i], γ) the function that returns these bounds.

In TopShap, the estimation is performed iteratively
calling ESTIMATE (Algorithm 2), where, for each fea-
ture i remaining in CF , a new value δi(O, w) is com-
puted and appended to current V [i] (line 5). The upper
and lower bounds of the confidence interval are computed
by BOUND from V [i] using the unbiased sample variance
as estimator for the population variance. TopShap com-
putes these bounds for all the features in CF . So, to
ensure an overall confidence level γ, we apply the exten-
sion of the Bonferroni correction to confidence intervals,
as proposed by [18]. This correction is obtained by using
for each intervals the confidence level γ′ = 1− 1−γ

|CF | . This

is done when calling BOUND (line 7).
We note that this sampling process assumes feature

independence (as most other frameworks, e.g., [2]); in case
of dependencies, various extensions can handle them (see
[8]).

4.3 Pruning and stability

The pruning is performed in PRUNE (Algorithm 3) when
there are more than k candidate features. The top-k fea-
tures are defined using absolute SHAP values, whereas
the confidence interval bounds in up and low are the ones
corresponding to the SHAP values themselves, which can
be positive or negative. Thus, first, bounds are trans-
formed into new bounds absUp and absLow correspond-
ing to absolute SHAP values. For a given feature, absUp
is simply the maximum of the absolute values of the two
bounds (line 8). For absMin, if the signs of the two
bounds are the same, then absMin is the minimum of
the absolute values of the bounds (line 11). If they have
different signs, then it is zero. The pruning itself is done
as follows. First, the kth highest element among the new
lower bounds absLow, termed θ, is selected. Then, only
the features that have an absolute upper bound absUp
greater or equal to θ are kept as candidates (line 18), since
the others can no longer be in the set of top-k features.
Note that absUp is stored as an array to allow constant
time direct access. Algorithm 3 finishes by returning the
new set of candidate features, and its correctness is shown
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below.

Theorem 1. The selection made by Algorithm 3 is cor-
rect.

Proof. Let us suppose that CF contains at least the top-
k features. If they are no more than k candidate features
(i.e., |CF | ≤ k), all features are selected and correctness
is trivial. Thus, in the following, let us also suppose that
|CF | > k.

The completeness of the selection comes from the safety
of the pruning and can be shown by contradiction. Sup-
pose that i ∈ CF is in the top-k but is not returned in
newCF . By Definition 1, i being in the top-k implies
that there are strictly less than k other features having
an absolute SHAP value strictly greater than the abso-
lute SHAP value of i. So, there are strictly less than
k other features having an absolute SHAP value lower
bound strictly greater than the upper bound of the ab-
solute SHAP value of i. In Algorithm 3, θ is the kth

lower bound (in decreasing order). Thus, i is selected
as a member of newCF (line 18), which contradicts the
hypothesis.

The soundness of the selection is the property ensuring
that a feature i ∈ CF will not be output in newCF , if
it is not in the top-k according to the bounds of its ab-
solute SHAP value, absLow and absUp. This property is
straightforward, since if there are at least k other features
with a lower bound of their absolute SHAP value strictly
greater than the upper bound of the absolute SHAP value
of i, then i is not selected in the output (line 18).

In Algorithm 1, the pruning is interleaved with the
computation of new estimations up to reaching stable
bounds. This stability is checked by ALL -CF - STABLE
which returns true if and only if, for all remaining candi-
date features, the variation of the size of the confidence
interval was strictly less than 0.1% between two consecu-
tive estimations over the previous 100 iterations.

Algorithm 1 TopShap

1: Input k, γ, warmUp
2: Initialize V , up and low as arrays of size N , each

containing N empty lists.
3: CF ← F
4: for initialEstim ← 1 to warmUp do
5: V, up, low ← ESTIMATE(CF, V, up, low, γ)
6: end for
7: CF ← PRUNE(CF, up, low, k)
8: while not(ALL -CF - STABLE(CF, up, low)) do
9: V, up, low ← ESTIMATE(CF, V, up, low, γ)

10: CF ← PRUNE(CF, up, low, k)
11: end while
12: Output Set CF , estimates mean(V [i]) for the fea-

tures i in CF , and corresponding confidence intervals
[last(low[i]), last(up[i])].

Algorithm 2 ESTIMATE

1: Input CF , V , up, low, γ
2: O ← random permutation of F
3: w ← random instance drawn from D
4: for i in CF do
5: append δi(O, w) to V [i]
6: γ′ ← 1− 1−γ

|CF |
7: u, ℓ← BOUND(V [i], γ′)
8: append u to up[i]
9: append ℓ to low[i]

10: end for
11: Output V , up, low

Algorithm 3 PRUNE

1: Input CF , up, low, k
2: if |CF | ≤ k then
3: newCF ← CF
4: else
5: Initialize absUp as an array of size N.
6: absLow ← empty list
7: for i in CF do
8: absUp[i]← max(|last(up[i])|, |last(low[i])|)
9: if sign(last(up[i])) = sign(last(low[i])) then

10: append min(|last(up[i])|, |last(low[i])|)
11: to absLow
12: else
13: append 0 to absLow
14: end if
15: end for
16: sort absLow in decreasing order
17: θ ← absLow[k]
18: newCF ← {i ∈ CF | absUp[i] ≥ θ}
19: end if
20: Output newCF

4.4 Time complexity

An iteration (Algorithm 1, line 8) starts by a call to
ALL -CF - STABLE performed in O(|CF |). Then, in
ESTIMATE, a permutation of F is drawn in O(|F |), fol-
lowed by the computation of δi(O, w) needing to merge
x and w which can be done once before the for loop
(line 4) in O(|F |). It also requires to evaluate the model
f on two instances, with a cost modelEvalCost that de-
pends on the type of model. The evaluation of BOUND
can be performed in O(1) using an incremental update
of the mean and of the variance [19]. Thus, the cost of
ESTIMATE is in O(|F |+ |CF | ×modelEvalCost).

In PRUNE, setting/inserting elements in
absUp, absLow and newCF (loop line 7 and line 18) is in
O(|CF |). Finding the kth highest element (lines 16-17)
of absLow (of size |CF |) can be done in O(|CF | log k)
using a min-heap.

Thus, the overall cost of an iteration in TopShap is
in O(|F | + |CF |(modelEvalCost + log k)). This is to be
compared to the complexity of a top-k search based on
sampling but without pruning, where the top-k selection
would be performed in a post-processing step. In the lat-

5



Dataset # Features # Instances

Concrete 8 1031
Wine Quality 11 1600
Appliances Energy 25 19735
PBMC 127 2638
Mercedes 375 4209
CT location 384 53500
Synthetic 400 5000

Table I: Number of numerical features and instances of
the datasets.

ter case, the time complexity of an iteration would be
O(|F | ×modelEvalCost), requiring more model evalua-
tions.

5 Experiments

In this section, experiments are presented, reporting
the performance of TopShap when computing the top-k
features according to their SHAP values. The goal of the
experiments is to assess the pruning when compared to
classical sampling and to Kernel SHAP. A Python im-
plementation of TopShap, as well as code to reproduce
the experiments, are publicly available as a git repos-
itory at https://gitlab.inria.fr/topshap/topshap_

and_experiments.

5.1 Datasets

TopShap’s pruning capabilities have been assessed on six
real-world datasets and a synthetic one. These datasets
exhibited different number of instances and features,
among which only the numerical ones were selected. The
final corresponding sizes are reported in Table I. Most of
these datasets, namely Concrete [20], Wine Quality [21],
Appliances Energy [22] and CT location [23], came from
the UCI Machine Learning Repository [24]. The Mer-
cedes dataset was provided by Mercedes-Benz Greener
Manufacturing and was accessible via Kaggle [25]. We
used the make regression function from scikit-learn [26]
to generate the Synthetic dataset. This dataset contained
uncorrelated random features following a normal distribu-
tion with zero mean and unitary standard deviation. The
regression target variable was a random linear combina-
tion of all input features. Finally, we relied on the 10x
Genomics Peripheral Blood Mononuclear Cells (PBMC )
dataset [27] to explore the potential of the algorithm in a
bioinformatics-oriented use case.

5.2 Model types

Since TopShap is a model-agnostic approach, we decided
to test it with different machine-learning approaches for
regression. The experiments presented in this article in-
clude four models: Regression Forest (RF ), Multi-Layer

Perceptron (MLP), RBF-kernel Support Vector Regres-
sion (SVR) and Stacked Generalization (STK ).

For all models, scikit-learn (v1.2.2) [26] was used. For
the first three models (RF , MLP , SVR), the hyperpa-
rameters were optimized by a grid search over the usual
hyperparameter ranges for these models (details can be
found in the git repository). STK consisted of a stacking
of the other three optimized models, combined using a
gradient boosting regressor with hyperparameters set to
their default values.

5.3 Experimental setup

For each dataset, models were trained on a randomly
chosen 70% of the instances, and the remaining 30%
of the dataset was used as a test set. Then, TopShap
was executed on 100 randomly chosen test instances, to
search their top-k features and estimate their correspond-
ing SHAP values. The experiments presented in the main
text have been run with TopShap parameters set to k=5,
confidence γ=0.95 and warmUp=100. For datasets with
enough features for a meaningful selection, experiments
were run also with k=15. To demonstrate robustness
of our results, additional experiments with k=10 and
γ=0.99 are provided in Supplementary Materials.

5.4 Comparison with classical sampling

The pruning proposed in TopShap is interleaved with
the permutation sampling process. However, a classi-
cal sampling of permutations could be used to compute
all SHAP values and then, when stability is reached,
the selection of the top-k could be performed in a post-
processing step. The interest of using TopShap, in com-
parison to such a post-processing strategy, is studied in
this section.

In order to illustrate the global behavior of TopShap,
we represent in Fig. 1a the evolution of the SHAP val-
ues for a Regression Forest model and a single instance
picked from the Wine Quality dataset. For each of the 11
features, the absolute SHAP values, surrounded by their
confidence intervals, are given along the iterations. In
this example, the width of the confidence intervals shrank
quickly, which enabled 6 features to be pruned from the
candidates, and only 5 features were left before reach-
ing the first 1000 iterations. The stability criterion was
reached at iteration 4234 (Fig. 1a, vertical line), where
TopShap stopped.

Fig. 1b and 1c illustrate the pruning performance of
TopShap, for the same regression model, on 100 randomly
selected test instances from the Wine Quality dataset.
The median and average number of candidate features
along the iterations are depicted in Fig. 1b. The green
area demarcates the distribution of the number of candi-
dates between the maximal and minimal values, and the
left (resp. right) vertical line denotes the iteration when
the first (resp. last) instance reached the stability crite-
rion. This implies that TopShap stopped between these
two lines for the 100 instances.
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The behavior for one instance, as shown in Fig. 1a, is
also observed over the 100 instances. Both the average
and median number of candidate features decreased (from
11 to 6 features) quickly during the first 2,000 iterations
(Fig. 1b). The pruning was effective and the mean and
median number of candidates tended to plateau in the
subsequent iterations. The number of iterations neces-
sary to reach stability, i.e., the iteration at which TopShap
stopped, was different for each instance. The histogram
of the number of iterations needed for each of the 100 in-
stances is reported in Fig. 1c. In this histogram, each bin
is split according to the number of candidates remaining
when TopShap stopped. If more than 5 candidates were
still present, they corresponded to ties among the top-k.
These ties could be features having the same SHAP val-
ues, or having overlapping confidence intervals because of
the approximation framework. The precise count in this
example is 59 instances that reached stability with only 5
candidates remaining, 36 instances with 6 or 7 candidates,
and 5 instances with 8 candidates.

We observed correspondingly robust behavior of
TopShap for all combinations of models and datasets. A
subset of combinations are presented for k = 5 in Fig. 2,
and for datasets with more than 25 features, for k = 15
in Fig. 3 (see Supplementary Materials Fig. S1, S2, and
S4 for the other combinations). In all cases, TopShap ex-
hibited a pattern of feature pruning similar to what we
reported above (Fig. 1) and the distributions of the num-
ber iterations needed to reach stability were consistent.

Increasing k from 5 to 15 led to an increase of the num-
ber of iterations needed to reach the stopping criterion.
This can be observed when comparing Fig. 3 to the bot-
tom panels of Fig. 2. This behavior was anticipated, since
adding more features is likely to require more iterations
to reach stability. In agreement with this explanation, an
intermediate increase of iterations was observed for the
intermediate setting of k = 10 (see Supplementary Mate-
rials Fig. S3).

Performing the same experiments with a higher confi-
dence level, γ = 0.99, resulted in the presence of more
ties in the top-k. This happens because a higher confi-
dence level implies wider confidence intervals and hence
more opportunities for features to overlap. Having more
ties has a similar effect as choosing a larger k, and ac-
cordingly we observed a slight increase in the number of
iterations needed to reach stability (Supplementary Ma-
terials Fig. S5 and S6).

In summary, across a variety of data sets and for a
range of parameter settings our results demonstrated the
effectiveness of TopShap in pruning candidate features to
avoid ‘pointless’ computational effort. The gain is ob-
vious if we compare our pruning strategy to a (hypo-
thetical) post-processing strategy to discover the top-k
features, that is to say to a permutation sampling with-
out pruning. As we reported in Section 4.4, the compu-
tational cost of an iteration of the sampling process is
driven by |CF | × modelEvalCost, where CF is the set
of features that are still candidates to be in the top-k.
Obviously, the post-processing strategy would require at
least as many iterations to reach stability as the top-k
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Figure 1: TopShap convergence and pruning.
Dataset: Wine Quality (11 features); Model: Re-
gression Forest . Parameters: k = 5, confidence γ = 0.95,
warm-up iterations = 100. (a) Single instance. Pruning
of features and reduction of confidence intervals. Abso-
lute values of (approximated) SHAP values are shown.
(b) 100 instances. Reduction of the number of candidates
along the iterations. (c) 100 instances. Histogram of
iterations for which stability is reached and TopShap
stopped.
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Figure 2: Behavior of TopShap for different models and datasets over 100 instances. TopShap stopped between the
two vertical lines. Size of CF are log-scaled for Mercedes, CT location, and Synthetic. Parameters: k = 5, confidence
γ = 0.95, warm-up iterations = 100.
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Figure 3: Behavior of TopShap for different models and datasets over 100 instances. TopShap stopped between the
two vertical lines. Size of CF are log-scaled. Parameters: k = 15, confidence = 0.95, warm-up iterations = 100.
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Figure 4: SHAP value approximation of the top-5 fea-
tures computed by TopShap and Kernel SHAP on the
Wine Quality dataset for the instance used in Fig. 1a.
Values given by TopShap are shown with their confidence
intervals.

search with pruning. To be precise, without pruning the
size of CF would remain equal to the initial number of
features |F | for all iterations. As we have shown here,
TopShap started pruning almost immediately after the
warm-up, with |CF | quickly decreasing to be close to k.
This means that, roughly speaking, TopShap avoided a
cost of (|F |−k)×modelEvalCost per sampling iteration
after warm-up, which is an effective cost reduction of the
overall process, especially if k ≪ |F |.

5.5 Comparison with Kernel SHAP

The previous section has shown the gain of incorporating
the TopShap pruning within the general approximation
process as done by the permutation sampling family of
approaches. As presented in Section 3, the other pre-
dominant research direction to approximate SHAP val-
ues is solving an equivalent WLS problem. In the case of
model-agnostic methods, this led to a reference algorithm
named Kernel SHAP [2]. In this section, the execution
times and the output of TopShap are compared to top-k
searches based on Kernel SHAP.

As detailed in [15], the approximation made by
Kernel SHAP is also based on sampling, but it is a sam-
pling over the powerset of the features, not a sampling
of the permutation of the features. This sampling is
performed only once, to build the equations needed to
formulate the WLS problem, which is then solved by
Kernel SHAP to approximate the SHAP values of all
the features. Such an approach implies that reducing
the search space is not straightforward for Kernel SHAP
when we are only interested in the top-k features. Indeed,
for our comparison the only reasonable option was to se-
lect these features in a post-processing step after running
Kernel SHAP.

Kernel SHAP was called with its default parameters,
the number of sampled coalitions in this default set-
ting being equal to two times the number of features
plus 2048, and the top 5 features were retained. The
TopShap parameters were set to k=5, confidence γ=0.95
and warmUp=100. Both methods performed approxi-
mations of fS(x), that is the output of a model f when
only a subset S of the features of x are known. To allow
for a fair comparison of the global execution time and of

the SHAP values themselves, these approximations were
made in the same way for both methods using the train-
ing dataset as a reference to set values for the unknown
part of x.

All times are reported for single-threaded executions on
a desktop computer running Ubuntu Linux (2.1 GHz Intel
Xeon, 192 GB RAM). The implementation of TopShap
is the one provided in the git repository, and the one
of Kernel SHAP is KernelExplainer of the SHAP library
[28] (version 0.44.0). Both methods are implemented in
Python, using numpy vectorization. The models were
learnt using scikit-learn and the same models were given
to Kernel SHAP and TopShap as input. In both the
Kernel SHAP and TopShap implementations, the call to
the prediction functions of the models were not made one
instance at a time. Each call was made for a batch of
instances to amortize the possible overhead due to data
structure preparation in prediction functions of the scikit-
learn models.

5.5.1 Comparing execution time

For both Kernel SHAP and TopShap, the execution time
was measured for the same set of 100 randomly chosen
instances of the test dataset. Average execution times
per instance are reported in Table II. The time-ratio col-
umn corresponds to the average time per instance for
Kernel SHAP divided by the one needed by TopShap.
Note that executions that took more than one hour and
a half (5400 seconds) were stopped. Note also that for
CT location, one of the largest datasets, Kernel SHAP
approximations could not complete due to memory prob-
lems and corresponding comparisons could not be re-
ported (Table II).

For nearly all models and datasets, TopShap was much
faster than Kernel SHAP. Overall, the run time reduced
almost 10-fold (median ≈ 9.24), ranging from 2-fold to
more than 85-fold. For the smallest dataset, Concrete
Compressive Strength, TopShap reduced the execution
times only in half of the combinations. This dataset con-
tained only 8 features whilst we searched for the top-5.
As expected, TopShap could not benefit from a substan-
tial amount of pruning. However, for all other datasets
we observed a clear reduction of the execution time.

5.5.2 Comparing SHAP values

We now compare the top-k features and their approx-
imated SHAP values output by both TopShap and
Kernel SHAP. The corresponding scores are given in Ta-
ble II and, as for the execution time, were obtained as
average over a set of 100 randomly chosen instances of
the test dataset.

TopShap provides confidence intervals and the selection
of the top-k is based on these intervals. Thus, it can re-
port more than k features, because of ties due to overlap-
ping intervals. Kernel SHAP does not provide confidence
intervals, but, in principle it could report ties if the same
SHAP values were obtained for two features. However,
this never happened in the experiments discussed here.
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Kernel SHAP TopShap Comparative scores TopShap
dataset model time (s) time (s) time ratio recall-like matching # overlaps

concrete RF 25.63 17.07 1.5 100.0 100.0 0.62
concrete MLP 18.78 23.73 0.79 100.0 97.8 0.59
concrete SVR 13.49 12.00 1.12 100.0 99.2 0.54
concrete STK 51.62 92.37 0.56 100.0 99.8 0.61

wine quality RF 152.3 17.79 8.56 100.0 97.5 0.81
wine quality MLP 98.85 40.03 2.47 100.0 100.0 0.92
wine quality SVR 117.25 14.17 8.28 100.0 100.0 0.62
wine quality STK 348.62 147.43 2.36 100.0 98.3 1.27

appliance energy RF 3112.69 35.82 86.9 99.8 90.4 1.52
appliance energy MLP 479.94 38.17 12.57 99.8 94.0 0.92
appliance energy SVR ¿ 5400 552.15 ¿ 9.78 - - 8.22
appliance energy STK ¿ 5400 419.44 ¿ 12.87 - - 2.12

PBMC RF 201.92 23.23 8.69 99.6 84.8 0.68
PBMC MLP 645.27 117.77 5.48 100.0 91.5 1.53
PBMC SVR 242.62 24.47 9.91 100.0 100.0 0.74
PBMC STK 968.62 367.46 2.64 99.2 87.4 1.49

mercedes RF 904.45 39.24 23.05 99.4 99.3 1.09
mercedes MLP 727.6 45.90 15.85 100.0 93.6 1.48
mercedes SVR ¿ 5400 167.20 ¿ 32.30 - - 1.56
mercedes STK ¿ 5400 670.74 ¿ 8.05 - - 1.26

CT location RF - 86.18 - - - 1.75
CT location MLP - 353.37 - - - 2.90
CT location SVR - 2638.82 - - - 1.61
CT location STK - 5314.55 - - - 1.88

synthetic RF 1892.09 62.57 30.24 99.6 80.8 1.31
synthetic MLP 927.03 56.15 16.51 100.0 98.8 1.39
synthetic SVR 684.85 25.30 27.07 100.0 100.0 1.41
synthetic STK 3276.0 163.07 20.09 100.0 99.0 1.45

Table II: Comparison between Kernel SHAP and TopShap over execution times and SHAP values. Last column:
TopShap interval overlaps.
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We compared the output of the two methods on three
scores. First, we considered Kernel SHAP as a reference
and a recall-like score was computed as the percentage
of the top-k features obtained with Kernel SHAP that
also appeared in the ones reported by TopShap. Table II
shows a nearly perfect recall-like score, with only 6 com-
binations out of 20 for which the average score is not
100% but slightly below. Note that a similar compu-
tation of a precision-like score would not be meaningful
when Kernel SHAP is taken as a reference. This is be-
cause the top-k features of TopShap can include ties due
to overlapping confidence intervals, whereas such ties are
not taken into account by Kernel SHAP and would not
be present in its output.

Next, to assess to which extent the output of the
two algorithms agreed for the SHAP values themselves,
a matching score was computed. This score was the
percentage of the confidence intervals of the top-k fea-
tures of TopShap that included the SHAP value given by
Kernel SHAP for the corresponding feature. An exam-
ple of a matching score of 4/5 (i.e., 80%) is illustrated
in Fig. 4 for an instance taken from the Wine Quality
dataset. All TopShap intervals encompassed the approxi-
mation made by Kernel SHAP, except for the feature sul-
phates, whose value is nevertheless close to the interval’s
upper bound. The matching scores reported in Table II
reflected a strong agreement of both algorithms on the
SHAP values obtained.

5.5.3 Confidence interval overlaps

Of course, high matching scores are of interest, if the
intervals tend to isolate the SHAP values, i.e., if these in-
tervals have limited or no overlap. This was assessed by
counting for each interval the number of non-empty in-
tersections with other intervals. The mean overlap counts
are reported in Table II. Most combinations of datasets
and models showed a good separation of the SHAP values
by their intervals. A few combinations led to a greater
number of overlaps, corresponding to cases where several
ties were obtained in the output of TopShap. An extreme
average of 8.22 is reported in Table II for the Appliances
Energy dataset and SVR model. This was due to a large
number of ties, leading to an output containing on average
between 10 and 15 features, even if only the top 5 features
were requested (Supplementary Materials Fig. S1). Even
though ties may seem undesirable at first sight, we em-
phasize that ties simply mean that several features have a
similar importance in the prediction made by the model.

In summary, TopShap and Kernel SHAP agreed well on
their approximations of SHAP values. Moreover, the con-
fidence intervals computed by TopShap provided a quan-
tification of the remaining uncertainty. These intervals
tended to be rather narrow, implying that, in general, few
ties (overlap of intervals between features) were found.

5.6 Use case: the PBMC dataset

A big challenge in biology is to understand how genes in-
teract. We know that understanding gene regulation is

key: the question to answer is which transcription factors
(TFs, genes that can influence the expression of other
genes, including themselves) are responsible for the reg-
ulation of a given gene on the genome? Even though
we know for a few well-studied cases how TFs regulate
a particular gene, generally speaking, within a cell it
is unknown which TF is regulating which gene. This,
however, can be predicted from data, such as single-cell
gene expression data. From such data, regulatory links
can be extracted using machine learning and feature im-
portance techniques, in order to reveal which TFs are
likely associated to a given target gene. Indeed, if we
take for example one of the best currently available work-
flows, PySCENIC [29], its first computing step consists
of learning a tree-based predictor of the expression of the
target gene, from which one extracts an ordered list of
features (i.e., TFs) through impurity-based feature im-
portances [26]. In this manner, PySCENIC identifies the
putative interactions between TFs and genes, from which
one can build a single regulatory network for a population
of cells.

In a similar way, we applied TopShap to the PBMC
gene expression dataset, which is commonly used in the
single-cell biology domain to demonstrate new methods.
After quality control, it consists of 2638 high-quality cells
(instances), mainly comprising cell types of the human
immune system. One of these cell types is the B cell type.
In this use case, we asked a non-trivial biological question
regarding B cells: “Which TFs are potentially regulating
gene MS4A1, a well-known marker gene for B cells?”.

We trained four types of models applying the same ex-
perimental setup as for the above reported experiments
(see Section 5.3): Random Forest (RF), Multi-Layer
Perceptron (MLP), Support Vectors Regressor (SVR),
and stacked regressors (STK). Except for STK, all ap-
proaches have been previously used on single-cell RNA-
seq data [29–31]. After splitting the dataset in training
and test sets (respectively 70% and 30% of the 2638 cells)
and guaranteeing all cell types were present, we trained
the four models.

We then applied TopShap to each of the 105 B cells
in the test data and counted how often a TF was men-
tioned in the top-5 SHAP values (including ties) for the
B-cell instances (see Table III). We indicated the five
most-occurring top-5 TFs in black font color and we com-
pleted the counts for any TF not present in the top-5 of
all four models (green font color). We found that 6 out
of 8 TFs were either known for their capability to bind
in the regulatory genomic regions around MS4A1 or for
their involvement in B-cell functioning, as detailed by an
entry in the column Evidence of Table III.

The transcription factors SPIB and IRF8 were the most
frequent features in the top-5 for all models. For the other
6 genes, the four models did not fully agree, suggesting
that each regression method provides a different insight
into the data. The transcription factors POU2AF1, JUN,
and GTF3A were all detected by three methods and only
JUN did not show evidence of links with MS4A1 or B cells
in the literature. It may play a role, however, as JUN is
a pioneer transcription factor involved in general regu-
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latory processes of transcription. Alternatively, it might
be present due to its involvement in the cellular stress
response caused by the experimental procedure of single-
cell RNA sequencing. The genes CEBPB, NFATC1, and
PAX5 were picked up by only one method each and all
could be associated with literature evidence of their role
in the regulation of MS4A1 and B cells. One may consider
that the variation between the methods is an opportunity
to generate new hypotheses for biologists.
For all models, from the viewpoint of algorithm perfor-

mance, we observed that the width of confidence intervals
shrank quickly and that the pruning was (again) very ef-
fective (see Fig. 5).

6 Conclusion

We proposed TopShap, a model-agnostic algorithm for
searching the k most important features to a prediction.
TopShap operates within the SHAP framework to deter-
mine local feature importance, the so-called SHAP values.
It drastically reduces computational costs by iteratively
interleaving sampling steps to improve bounds of SHAP
values, and pruning steps to stop any computation for
features that can no longer be in the top-k. We demon-
strated effectiveness of TopShap by applying it to various
datasets, including a use case in the domain of single-
cell gene expression analysis. We verified the correctness
of its output by comparing our method to the state-of-
the-art technique of Kernel SHAP. Moreover, we showed
that TopShap can be an order of magnitude faster than
Kernel SHAP, if the total number of features in a dataset
was much larger than the top-k that one would like to use
to explain a model prediction.
The use of TopShap comes with two main limitations.

Firstly, it is based on approximations of the SHAP values,
as the other state-of-the-art model-agnostic approaches.
Secondly, its pruning will not be effective if most features
have the same (or very close) SHAP values.
Future work will be directed towards decreasing compu-

tational cost further through alternative sampling strate-
gies, e.g., antithetic variates, and investigating comple-
mentary pruning based on selection criteria additional to
top-k.
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Figure S1: Behavior of TopShap for datasets Concrete Compressive Strength, Wine Quality and Appliances Energy
over 100 instances and all models. TopShap stopped between the two vertical lines. Parameters: k = 5, confidence =
0.95, warm-up iterations = 100.
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Figure S2: Behavior of TopShap for datasets PBMC , Mercedes, CT location, and Synthetic over 100 instances and
all models. TopShap stopped between the two vertical lines. Parameters: k = 5, confidence = 0.95, warm-up
iterations = 100.
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Figure S3: Behavior of TopShap for datasets having more than 25 features (PBMC , Mercedes, CT location, and
Synthetic) over 100 instances and all models. TopShap stopped between the two vertical lines. Parameters: k = 10,
confidence = 0.95, warm-up iterations = 100.
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Figure S4: Behavior of TopShap for datasets having more than 25 features (PBMC , Mercedes, CT location, and
Synthetic) over 100 instances and all models. TopShap stopped between the two vertical lines. Parameters: k = 15,
confidence = 0.95, warm-up iterations = 100.
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Figure S5: Behavior of TopShap for datasets Concrete Compressive Strength, Wine Quality and Appliances Energy
over 100 instances and all models. TopShap stopped between the two vertical lines. Parameters: k = 5, confidence =
0.99, warm-up iterations = 100.
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Figure S6: Behavior of TopShap for datasets PBMC , Mercedes, CT location, and Synthetic over 100 instances and
all models. TopShap stopped between the two vertical lines. Parameters: k = 5, confidence = 0.99, warm-up
iterations = 100.
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