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Abstract

A seventh order ordinary differential equation (ODE) arising by
reduction of the Drinfeld-Sokolov hierarchy is shown to be identical
to a similarity reduction of an equation in the hierarchy of Sawada-
Kotera. We also exhibit its link with a particular F-VI, a fourth order
ODE isolated by Cosgrove which is likely to define a higher order
Painlevé function.

1 Introduction

In a recent article [6], the authors consider the tau cover of the Drinfeld-
Sokolov hierarchy and, in order to obtain explicit solutions, perform a sim-
ilarity reduction [6, Eq. (5.1)] which defines a system of nonlinear ODEs in
the independent variable x. By construction, this system possesses a Lax
pair (L,M) [6, Eq. (5.5)] whose zero-curvature condition is

[z∂z −M,∂x − L] ≡ zLz −Mx + [L,M ] = 0, (1)

in which z is the spectral parameter.
For all their choices but one of the underlying affine Kac-Moody algebra

g, the authors did succeed to explicitly integrate the nonlinear ODE system
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in terms of various elliptic or Painlevé or higher Painlevé functions. The only
system which could not be integrated results from the choice g = A

(2)
2 , this

is the seventh order nonautonomous system for u(x), ω(x) [6, Example 5.5
page 1487] ω′ − u

3
= 0,

u(6) + 14uu(4) + 14u′u(3) + 14u′′2 + 56u2u′′ + 28uu′2 +
56

3
u4 + 36xu+ 108ω = 0.

(2)

which can be viewed as a birational transformation between u(x) and ω(x),
each variable obeying a seventh order ODE.

The purpose of this work is to explicitly integrate this system, i.e. to map
it either to Painlevé equations (second order), or to one of the five “higher
Painlevé equations” (fourth and fifth order) isolated by Cosgrove [2, 3], or to
higher order (six and above) equations in the hierarchy of the previous ones.

The method, developed in next sections, is classical and it relies on three
pieces of information: (i) the Lax pair, (ii) the singularity structure, (iii)
exhaustive lists of ODEs possessing the Painlevé property.

In Section 2, by considering the invariants of the matrix Lax pair, we
obtain a unique first integral, thus lowering the differential order only to
six. This is an indication (not a proof) that the equations of Painlevé and
Cosgrove should be insufficient to perform the integration.

In Section 3, we therefore investigate the singularity structure of the sys-
tem (2). The three families of movable simple poles are then compared with
sixth or senventh order members of various, already classified, hierarchies.
This allows one to integrate (2) in terms of a higher member of the Sawada-
Kotera hierarchy.

2 First integral

The system (2) admits a three-dimensional zero curvature representation,
this is [courtesy of Wu Chao-Zhong],

L =
√
2(−L0 + uL1 − zL2),M = 2

5∑
j=0

zjMj, zLz −Mx + [L,M ] = 0,

M5 = 2
√
2L2,M4 = 2

√
2L0 −

4

3

√
2uL1,M3 =

2

3

√
2uM3a +

2

3
u′M3b,
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M2 =

√
2

9

(
u′′ + 2u2

)
m2,

M1 =
u(3) + 4uu′

9
M1a +

√
2

81
(3u(4) + 9u′2 − 8u3 − 27x)L2

M0 = A1M0a + A2L1 + A3L0,

A1 = −u(5) + 12u′u′′ + 6uu(3) + 8u2 + 9

54
,

A2 =

√
2

486
(20u4 + 60u2u′′ + 84uu′2 + 24uu(4) + 33u′′2 + 60u′u(3) + 3u(6) + 108xu− 162ω),

A3 = −
√
2

81
(3u(4) + 18uu′′ + 9u′2 − 8u3). (3)

in which the eight constant operators can be represented by third order ma-
trices,

L0 =

 0 0 1
0 0 0
0 0 0

 , L1 =

 0 0 0
0 0 0
1 0 0

 , L2 =

 0 0 0
1 0 0
0 1 0

 ,

M3a =

 0 1 0
0 0 1
0 0 0

 ,M3b =

 0 0 0
1 0 0
0 −1 0

 ,m2 =

−1 0 0
0 2 0
0 0 −1

 ,

M1a =

 0 −1 0
0 0 1
0 0 0

 ,M0a =

 1 0 0
0 0 0
0 0 −1

 . (4)

The traces of odd powers of M are zero, but the traces of even powers
generate a single first integral K of the system (2),

K = v′
2
+ 4v

[
2uu(4) − 2u′u(3) + u′′2 + 12u2u′′ + 4u4 + 54ω

]
, (5)

v = u(4) + 6uu′′ + 3u′2 +
8

3
u3 + 9x.

The initial system (2) is then equivalent to a birational transformation
between u(x) and v(x), each variable obeying a sixth order ODE,{

u(4) + 6uu′′ + 3u′2 +
8

3
u3 + 9x− v = 0,

2vv′′ − v′
2
+ 8uv2 +K = 0.

(6)
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3 Singularity structure

For the technical vocabulory, we refer for instance to Ref. [1]. Near a movable
singularity x0, the system (2) has three families of movable poles, the first
one being already mentioned in [6, page 1487], and the seven Fuchs indices
of the linearized equation near this singularity are all relative integers,

ω ∼ aχ−1, u ∼ −3aχ−2, χ = x− x0,
a = 1, Fuchs indices= − 1, 2, 3, 4, 7, 8, 12,
a = 2, Fuchs indices= − 2,−1, 3, 4, 8, 9, 14,
a = 5, Fuchs indices= − 5,−4,−1, 7, 8, 12, 18.

(7)

This structure matches that of a seventh order equation in the Sawada-
Kotera hierarchy mentioned by Gordoa and Pickering [5, Eq. (5.94)] (see also
[4]),{

d

dX

[
U (6) + (7/2)(UU (4) + U ′U (3) + U ′′2 + U2U ′′) + 7/4UU ′2 + 7/24U4

]
− q1(2U +XU ′) = 0, q1 = arbitrary nonzero constant,

(8)

with the correspondence

u =
b2

4
U,X = bx, b7 = −36

q1
. (9)

As to the scalar Lax pair [5, Eqs. (5.6), (5.96), (5.84)], as the interested
reader can check, it is identical to that obeyed by the second component of
the wave vector of the matrices in (3).

4 A link to F-VI

As a final remark, let us mention a link between this seventh order equation
in the Sawada-Kotera hierarchy and the F-VI ODE isolated by Cosgrove [2],

(F-VI) U ′′′′ = 18UU ′′ + 9U ′2 − 24U3 + αU2 +
α2

9
U + κX + β. (10)

Indeed, when K = 0, v = 0, the system (6) admits a particular solution
u(x) equal to a particular affine transform of F-VI with the correspondence

u = −3b2U,X = b

(
x− β

3
b6
)
, κ = 3b−7, α = 0. (11)
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