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Privately Learning Smooth Distributions on the Hypercube

by Projections

Clément Lalanne 1 Sébastien Gadat 1

Abstract

Fueled by the ever-increasing need for statistics

that guarantee the privacy of their training sets,

this article studies the centrally-private estima-

tion of Sobolev-smooth densities of probability

over the hypercube in dimension d. The con-

tributions of this article are two-fold : Firstly,

it generalizes the one-dimensional results of

(Lalanne et al., 2023b) to non-integer levels of

smoothness and to a high-dimensional setting,

which is important for two reasons : it is more

suited for modern learning tasks, and it allows un-

derstanding the relations between privacy, dimen-

sionality and smoothness, which is a central ques-

tion with differential privacy. Secondly, this arti-

cle presents a private strategy of estimation that

is data-driven (usually referred to as adaptive in

Statistics) in order to privately choose an estima-

tor that achieves a good bias-variance trade-off

among a finite family of private projection esti-

mators without prior knowledge of the ground-

truth smoothness β. This is achieved by adapt-

ing the Lepskii method for private selection, by

adding a new penalization term that makes the

estimation privacy-aware.

1. Introduction

Multiple experimental pieces of work have demonstrated

that the unrestricted use of data for various learning tasks

may cause privacy concerns (Narayanan & Shmatikov,

2006; Backstrom et al., 2007; Fredrikson et al., 2015;

Dinur & Nissim, 2003; Homer et al., 2008; Loukides et al.,

2010; Narayanan & Shmatikov, 2008; Sweeney, 2000;

Gonon et al., 2023; Wagner & Eckhoff, 2018; Sweeney,

2002; Carlini et al., 2022). As a result, formal guar-

antees have been developed through differential privacy

(Dwork et al., 2006) in order to guarantee that a quantity
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built on users’ data does not leak more information than

a given threshold. It is now considered as the gold stan-

dard in terms of privacy protection, and it is notably used

by Apple (Thakurta et al., 2017), Google (Erlingsson et al.,

2014; Bittau et al., 2017), Microsoft (Ding et al., 2017)

and the US Census Bureau (Machanavajjhala et al., 2008;

Haney et al., 2017; Abowd, 2018) among many others.

Let f be a density of probability on [0, 1]d w.r.t. Lebesgue’s

measure, and let X1, . . . , Xn be n i.i.d. random vari-

ables with a distribution of probability that admits f as

density on [0, 1]d. In this article, we will study the es-

timation of f with a quantity f̂ that privately builds on

X1, . . . , Xn. The notion of privacy that is adopted in this ar-

ticle is the notion of central zero-concentrated differential

privacy (Dwork & Rothblum, 2016; Bun & Steinke, 2016)

(see Section 2).

This problem is statistically difficult (in the sense that it

requires a lot of data) and suffers from the curse of dimen-

sionality, which means that even without privacy consid-

erations, one must expect an exponential number (in the

dimensionality) of data points in order to solve it. Yet, its

interest lies in its generality, and in its expressivity. Explor-

ing the effects of privacy on this statistical problem is inter-

esting on a theoretical standpoint, in order to better under-

stand differential privacy, and for the practitioner in order

to better decide between this general approach and a differ-

ent one that incorporates more prior information about the

distribution to estimate.

The motivations for this problem are multiple. For instance,

learning a density allows learning distributions that are very

general, and distributions for which we do not have simple

parametric representations. On top of that, learning den-

sities allows learning in a tractable way multimodal distri-

butions and mixture distributions whereas the tractability

of alternative methods (e.g. EM) is not always obtainable,

even without considering privacy. With a private density

estimate, a data analyst may estimate various other inter-

esting statistics without having to see the data again (and

hence without having to spend more privacy budget) such

as the mean, the median, the different modes, . . . A final ap-

plication that we can mention is private data generation : If

one has access to a private estimate of the density, then one
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may sample new data by rejection sampling.

The privacy constraint naturally has a cost on the utility of

estimators for this task, as with other forms of communica-

tion constraints (Barnes et al., 2019; 2020; Acharya et al.,

2021a;c;d;b). An important question with differential pri-

vacy is to precisely characterize this cost, and to compare

it to the incompressible error due to the estimation from

samples. In this article, we quantify this trade-off when

the density f has a certain level of smoothness β. Further-

more, we also explain how to privately estimate f when

this smoothness level is not accessible to the practitioner, a

property of the estimator referred-to as adaptivity.

1.1. Related work

Statistics and differential privacy. Estimating vari-

ous quantities under differential privacy has received

an increasing amount of attention during the last

decade. A non-exhaustive list of references include

(Wasserman & Zhou, 2010; Barber & Duchi, 2014;

Diakonikolas et al., 2015; Karwa & Vadhan, 2018;

Bun et al., 2019; 2021; Kamath et al., 2019; Biswas et al.,

2020; Kamath et al., 2020; Acharya et al., 2021e; Lalanne,

2023; Aden-Ali et al., 2021; Cai et al., 2019; Brown et al.,

2021; Cai et al., 2019; Kamath et al., 2022a; Lalanne et al.,

2023c;d; Singhal, 2023; Kamath et al., 2023; 2022b). Most

of those references study parametric estimation problems

(i.e. estimating a quantity living in a finite-dimensional

space), and observe (at a meta level) that the error of

estimation can usually be expressed as a function of the

sample size (n), the dimensionality (d), the level of privacy

(ρ), and various quantities that characterize the regularity

of the distribution class (sub-Gaussian, moments, smooth-

ness, ...). Besides, the interesting effects of the privacy can

be observed when the level of privacy (ρ) is considered

as a free variable of the problem. Conversely, fixing the

level of privacy usually results in rates of estimation that

are the same as in the non-private case. In this article, we

will consider the privacy budget as free, thus allowing to

investigate some interesting trade-offs between the sample

size n and the level of privacy ρ.

Unconstrained density estimation. The problem of es-

timating the density f is known as a nonparametric statis-

tical problem. It differs from some more usual problems

in the sense that the quantity to estimate (f ) lives in an

infinite-dimensional vector space. Specific techniques thus

have to be used to estimate it. One of those techniques

consists in approximating f by learning its projections on

subspaces of growing dimension, and it is being used in

this article. Without privacy concerns, this problem has

been extensively studied for multiple decades. Without

trying to be exhaustive, some important monographs in-

clude (Conover, 1999; Györfi et al., 2002; Tsybakov, 2009;

Wasserman, 2006).

Density estimation with differential privacy. With dif-

ferential privacy, the problem of nonparametric density

estimation has been studied in a few articles. Before

continuing, it is important to note that there are two

main privacy attack models in the literature (depending

on whether an aggregator can be trusted or not), leading

to two distinct definitions of privacy : central differen-

tial privacy or local differential privacy (Evfimievski et al.,

2003; Kasiviswanathan et al., 2008). This article studies

the central model, and local differential privacy is out-

side its scope. This paragraph only covers the literature

in the central model. An important early piece of work

(Wasserman & Zhou, 2010) has paved the way for private

non-parametric density estimation, presenting general pri-

vate projection and histogram estimators. However, it only

studied the case where the level of privacy ρ is kept con-

stant, leading to the rather anticlimactic conclusion that pri-

vacy had no effect on the optimal rate of estimation for

the problem at hand. In (Barber & Duchi, 2014), the au-

thors were the first to consider ρ as a variable, and to study

rates of convergence that are not privacy-agnostic. A short-

coming of their study is that they only study the estimation

of Lipschitz-continuous densities, which imposes a fixed

level of smoothness. More recently, (Lalanne et al., 2023b)

studied the estimation of one-dimensional densities of gen-

eral integer-valued Sobolev-smoothness β in a non privacy-

agnostic way. This is the piece of work that is the clos-

est to our article. However, three problems are that the

authors only tackle the case of one-dimensional data, that

the smoothness parameter only takes discrete values, and

that their optimal estimation procedure needs to know the

ground-truth smoothness β beforehand. This article solves

all of these issues. A comparison between our article and

this body of literature is summarized in Table 1.

Adaptive estimation. Classical frameworks for

adaptive estimators build estimators of the bias of

each model and select the model with the lowest

estimated squared bias penalized by the variance

(Akaike, 1998; Mallows, 1973; Birgé & Massart, 1993;

Barron et al., 1999; Laurent & Massart, 2000; Massart,

2007). The Lepskii method (Lepskii, 1991; 1992; 1993;

Goldenhsluger & Lepski, 2007; Goldenshluger & Lepski,

2008; 2011; 2013) is similar, except that the bias is

replaced by a comparative bias (within the model class),

which is in itself defined as the extremum of a penalized

expression. For instance, it has been studied in the context

of non-private projection estimators in (Comte & Johannes,

2012; Chagny, 2013; Bertin et al., 2016). However, to

the best of our knowledge, it has never been used as

a privacy-aware selection mechanism in the context of

central differential privacy before. A nice overview of
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Table 1. Comparison with concurrent work.

WORK PRIVACY DIMENSIONALITY SMOOTHNESS ADAPTIVITY ESTIMATION RATE

(WASSERMAN & ZHOU , 2010) FIXED d = 1 β ∈
(

1

2
,+∞

)

× Θ
(

n
−

2β
2β+1

)

(BARBER & DUCHI, 2014) VARIABLE d ∈ N \ {0} β = 1 × Θ
(

n
−

2
2+d + (n

√
ρ)−

2
1+d )

)

(LALANNE ET AL., 2023B) VARIABLE d = 1 β ∈ N \ {0} × Θ
(

n
−

2β
2β+1 + (n

√
ρ)

−

2β
β+1 )

)

THIS WORK VARIABLE d ∈ N \ {0} β ∈ (0,+∞)
√

Θ
(

n
−

2β
2β+d + (n

√
ρ)

−

2β
β+d )

)

In (Wasserman & Zhou, 2010), the smoothness is defined in terms of Sobolev ellipsoids. The results are presented under

pure differential privacy, which implies concentrated differential privacy. In (Barber & Duchi, 2014), the smoothness is

expressed in therms of Lipschitz continuity, which is usually assimilated heuristically to β = 1 in terms of Sobolev spaces.

Again, the authors worked under ǫ pure differential privacy, but we took the liberty to express the results with ρ = ǫ2 in

order to simplify comparisons.

non-private adaptive methods is presented in (Chagny,

2016).

In the literature of differential privacy, there are clever

ways to perform model selection (which is here used as

a synonym of adaptivity) without having to split the pri-

vacy budget (with composition theorems like Lemma 2.3)

between all the models to choose from (e.g. the Ex-

ponential Mechanism (McSherry & Talwar, 2007), Report

Noisy Max (Dwork & Roth, 2014) or the Permute-And-

Flip mechanism (McKenna & Sheldon, 2020; Ding et al.,

2021)). Such methods have found their way in multiple

applications (Hardt et al., 2012; Blocki et al., 2016; Smith,

2011; Bhaskar et al., 2010; Liu & Talwar, 2019). Unfor-

tunately, the adaptive estimation procedure that we adopt

here does not adequately fit in any of those frameworks,

and we will thus resort to using composition theorems for

the model selection. A blessing of the procedure that is pre-

sented here, however, is that it only needs to select between

very few models (typically of the order of a polynomial of

log(n)), and the degradation of utility will hence be small.

Under local privacy. For completeness, we include ref-

erences for related problems in the local model of privacy

(that we recall is different to the model of this article). In

this setup, nonparametric density estimation was studied in

(Duchi et al., 2013; 2016; Butucea et al., 2019; Kroll, 2021;

Schluttenhofer & Johannes, 2022; Györfi & Kroll, 2023).

In (Butucea et al., 2019), adaptivity is obtained by lever-

aging the properties of the wavelet basis that is used for

the estimation. (Kroll, 2021) uses a variant of the Lepskii

method for adaptivity, with the twist that the level of pri-

vacy is fixed beforehand. In (Schluttenhofer & Johannes,

2022), the authors modify the latter to be adaptive to the

level of privacy as well. Our results differ from theirs

by the model of privacy, and by the fact that they look

at the estimation of the density at a single point whereas

we look at the estimation of the density on the whole

support. In particular, the rates of estimation are dif-

ferent. Finally, nonparametric regression was studied in

(Berrett et al., 2021; Györfi & Kroll, 2022), nonparametric

tests were studied in (Lam-Weil et al., 2022), and recently,

nonparametric locally-private Bayesian modeling was pro-

posed in (Beraha et al., 2023).

1.2. Contributions

The main contributions of this article could be summarized

as follows :

Adaptivity. The main contribution of this article is to pro-

pose an adaptive estimator based on the Lepskii method

that almost matches the performance of the optimal esti-

mator, without prior knowledge of the smoothness of the

density of interest.

In practice, it means that the practitioner does not have to

have strong prior information about the density to estimate

in order to estimate it near-optimaly.

Adaptivity is an important property in statistics and in par-

ticular with density estimation, and to the best of our knowl-

edge, no concurrent work for density estimation in the con-

text of central differential privacy has presented such adap-

tive procedure before.

Non-integer levels of smoothness. While the results of

(Lalanne et al., 2023b) coincide with the ones presented in

this article in the case of integer-valued β’s (in dimension

1), the authors did not mention the eventuality of more fine-

grained levels of smoothness.

This choice seems to be entirely motivated by technical rea-

sons, and is unsatisfactory in practice. Indeed, it forces one

to model the density of interest by a conservative smooth-

ness level, which in turn leads to suboptimal convergence

speeds. Real-values levels of smoothness allow for a much

finer-grained modeling of the densities of interest.

A usual trick for generalizing consists in defining the class
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of densities of interest in terms of their Fourier coeffi-

cient instead of their derivatives (which was the reason

for the integer-valued smoothness in the first place). How-

ever, such definition does not lead to provably good lower-

bounds under differential privacy with the techniques pre-

sented in (Lalanne et al., 2023b).

Instead, in this article, we circumvent that difficulty by

considering an extended definition of Sobolev spaces via

Hölder remainders (see Appendix E). This definition is a

bit harder to work with, yet it has the advantage of leading

to tight lower and upper-bounds for any non-negative β. In

particular, we believe that certain technical results devel-

oped here such as Proposition E.1 may be of independent

interest

Arbitrary dimension. Finally, the last contribution of

this article is to generalize previous results to an arbitrary

dimension d. In particular, the effects of dimensionality on

the estimation and on the privacy-utility tradeoff are dis-

cussed in Section 5.2. While the techniques for this gen-

eralization are rather straightforward, we believe that pre-

senting results in this general form allow understanding the

links between dimensionality and privacy, which is impor-

tant in practice.

As a final note, we would like to highlight that all the pro-

posed methods are of polynomial complexities.

1.3. Notations

N, Z, R and C are respectively used to refer to the sets of

natural numbers (including 0), relative numbers, real num-

bers, and complex numbers. In order to avoid confusion

with indexes, we note iC the canonical complex square root

of −1. If x ∈ C, x̄ is used to refer to its conjugate complex

number, |z| to its modulus,R(z) to its real part and I(z) to

its imaginary part. We equip Cd with its standard Hermi-

tian product 〈·, ·〉, and its associated norm is noted ‖ ·‖. We

noteB(x, r) the open ball or radius r centered in x for ‖ · ‖.

For p ∈ N \ {0}∪ {+∞}, ‖ · ‖p refers to the usual lp norm

for complex-valued vectors (in particular ‖·‖ = ‖·‖2), and

to the usual Lp norm for complex-valued measurable func-

tions. For any k ∈ N, Ck(S) is used to refer to the set of

functions from a space S to C that are k times continuously

differentiable. C∞(S) is used to refer to ∩k∈NCk(S). For a

multi-index a = (a1, . . . , ad) ∈ Nd, |a| is used to refer to

the length of a, which is
∑d

i=1 a
i.

For a multi-index a = (a1, . . . , ad) ∈ Nd and b ∈ C,

we define ba := (ba1, . . . , bad), ba := b|a|, and ab :=
((a1)b, . . . , (ad)b). Furthermore, if b = (b1, . . . , bd) ∈ Cd,

b×a := (b1)a
1 ×· · ·×(bd)a

d

. In context, this conflict small

conflict of notations shouldn’t be an issue. Given a k ∈ N,

f ∈ Ck(Rd), and a multi-index a = (a1, . . . , ad) ∈ Nd

such that |a| ≤ k, we use the notation

∂af :=
∂|a|f

∂a
1

1 ∂a
2

2 . . . ∂a
d

d

,

where ∂/∂i is used to refer to the derivation w.r.t. the ith

component in the canonical basis of Rd. Alternatively, we

may also note f (a) as a short for ∂af . N (µ,Σ) refers to

the multivariate normal distribution of mean vector µ and

of covariance matrix Σ. When a distribution is used in vec-

tor calculus (e.g. a + N (µ,Σ)), the distribution has to be

understood as a random variable with the desired distribu-

tion. Without further specification, it is taken independent

of the rest of the stochastic quantities of the article. For

a density of probability f , we may simply refer by f the

probability distribution associated with it. The rest of the

notations are introduced within the article directly.

2. Differential privacy

This section presents some basic background on differen-

tial privacy that will be needed for the rest of the article.

Given two datasets X = (X1, . . . , Xn) ∈ Xn and Y =
(Y1, . . . , Yn) ∈ Xn where X is the feature space ([0, 1]d

in this article), the Hamming distance between X and Y is

defined as

dham (X,Y) :=

n∑

i=1

1Xi 6=Yi .

Definition 2.1 (ρ-zCDP (Dwork & Rothblum, 2016;

Bun & Steinke, 2016)). Given an output space O and

ρ ∈ (0,+∞), a randomized mechanism (i.e. a conditional

kernel of probabilities) M : Xn → O is ρ-zero concen-

trated differentially private (ρ-zCDP) if ∀X,Y ∈ Xn,

dham (X,Y) ≤ 1 =⇒

∀1 < α < +∞ : Dα (M(X)‖M(Y)) ≤ ρα,

where Dα ( ·‖ ·) denotes the Renyi divergence of level α,

defined when α > 1 as:

Dα (P‖Q) :=
1

α− 1
log

∫ (
dP

dQ

)α−1
dQ .

For more details on this measure of divergence, please refer

to (van Erven & Harremoës, 2014).

Lemma 2.2 (Privacy of the Gaussian mechanism (Proposi-

tion 6 with Lemma 7 in (Bun & Steinke, 2016))). Given a

deterministic function h mapping a dataset to a quantity in

Rd′ , one can define the l2-sensitivity of h as

∆2h := sup
X,Y∈Xn:dham(X,Y)≤1

∥
∥h(X)− h(Y)

∥
∥
2
.
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When this quantity is finite, for any ρ > 0, the Gaussian

mechanism defined as

X 7→ h(X) +
∆2h√
2ρ

N (0, Id′) ,

is ρ-zCDP.

Lemma 2.3 (Adaptive composition of private mechanisms

(Lemma 7 in (Bun & Steinke, 2016))). If the private mech-

anisms M1(·),M2(·, z) are respectively ρ1-zCDP and ρ2-

zCDP for any context z, then the private mechanism

M2(·,M1(·)) is (ρ1 + ρ2)-zCDP.

The last result can easily be generalized to a finite family

of mechanisms by induction.

Finally, the last property of private mechanisms that we will

use implicitly throughout this article is the data-processing

inequality (or post-processing lemma in the language of

differential privacy (Lemma 8 in (Bun & Steinke, 2016))),

which states that if M satisfies ρ-zCDP, then for any condi-

tional kernel of probabilities g, g ◦M also satisfies ρ-zCDP.

3. (Private) projection estimators

In Statistics, when the quantity to estimate f belongs to

some Hilbert space that admits a countable Hilbert basis

(φk)k, projection estimators (Tsybakov, 2009) usually refer

to estimators of the form

f̂ =
∑

k

θ̂kφk ,

where the sum is usually truncated with a spectral cut-off of

frequencies, and where (θ̂k)k is a sequence of estimators of

the true coefficients of the decomposition in the Hilbert ba-

sis. The name comes from the fact that such estimator mim-

ics the orthogonal projection of f onto the space spanned

by the first vectors of this Hilbert basis. To the best of our

knowledge, their first appearance in the context of differen-

tial privacy is in (Wasserman & Zhou, 2010).

3.1. Explicit construction

We detail in Section 4 the exact functional spaces in which

we assume the unknown density f to be. For now, we

only need to know that f is in L2([0, 1]d) equipped with

Lebesgue’s measure and its standard Hermitian product

〈f, g〉 :=
∫

[0,1]d
f ḡ ,

and its standard inherited norm ‖ · ‖. We further fix the

Hilbert basis (φk)k of L2([0, 1]d) as the one associated to

the following Fourier basis :

∀k ∈ Zd, φk(x) := eiC2π〈k,x〉

= eiC2π(k1x
1+···+kdx

d) .
(1)

We also define Sk := Span (φk)k∈{−M,...,M}d the finite-

dimensional vector space spanned by the φk’s with every

index in k lower than M , and we define fM as the orthogo-

nal projection of f onto SM .

From this, we define the natural (by the law of large num-

bers) estimators of the coefficients in the Fourier basis

θ̃k :=
1

n

n∑

j=1

φ̄k(Xj) =
1

n

n∑

j=1

e−iC2π(k1X
d
j +···+kdX

d
j ) ,

(2)

and their noisy estimates

θ̂k := θ̃k + σMξk , (3)

where σM will be a variance factor that will be tuned later

on to obtain the desired level of privacy, and (ξk)k∈Zd is an

i.i.d. complex Gaussian noise

ξk ∼ (N (0, 1) + iCN (0, 1)) . (4)

Finally, we define the projection estimator at rank M as

f̃M :=
∑

k∈{−M,...,M}d
θ̃kφk , (5)

and its private counterpart as

f̂M :=
∑

k∈{−M,...,M}d
θ̂kφk . (6)

3.2. General utility

The general utility of the previous estimator is given by the

following result :

Lemma 3.1 (General bias-variance decomposition of f̂M ).

For any M , the estimator f̂M satisfies

E

(

‖f − f̂M‖2
)

≤‖f − fM‖2
︸ ︷︷ ︸

Squared Bias

+
(2M + 1)d

n
︸ ︷︷ ︸

Sampling Variance UB

+ 2(2M + 1)dσ2
M

︸ ︷︷ ︸

Privacy Noise Variance

.

Proof. See Appendix A.1.

The bias term ‖f − fM‖ simply characterizes how well

f is approximated in SM . Controlling this term requires

regularity assumptions on f , which is done in Section 4.

3.3. Privacy guarantees

The privacy of this estimation procedure is given by the

following theorem :
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Theorem 3.2 (Privacy of f̂M ). For any M , the mechanism

(X1, . . . , Xn) 7→ f̂M (or equivalently the mechanism that

releases the computed θ̂k’s for k ∈ {−M, . . . ,M}d) is ρ-

zCDP if σM =
2
√

(2M+1)d

n
√
ρ .

Proof. See Appendix A.2.

If follows from the application of the classical privacy guar-

antees of the Gaussian mechanism.

4. Upper-Bounds for different smoothness

levels

As explained in the last section, controlling the bias term

‖f − fM‖ requires regularity assumptions on f . This sec-

tion solves this issue by imposing Sobolev-smoothness.

4.1. Sobolev spaces in high dimension

In order to simplify the reading flow of the article, its main

body only presents spaces of integer smoothness β ∈ N \
{0}. All the results can be generalized to spaces of real

smoothness β > 0. With every result that we present for an

integer β in the main body of the article, we will talk about

its counterpart in the case of real β, and we will link to the

technical details in the appendix.

For β ∈ N \ {0} and L > 0, the isotropic Sobolev space

SL(β) is defined as the subset of Ck([0, 1]d) of functions

of which the energy of the βth derivative is bounded by L2.

Namely, f ∈ SL(β) if f ∈ Ck([0, 1]d) and if

∑

α∈Nd:|α|=β

∫

[0,1]d
|∂αf |2 ≤ L2 .

β is referred to as the smoothness parameter of the func-

tional space SL(β). For real β’s, Sobolev spaces are de-

fined similarly, except that non-integer derivatives are han-

dled via Hölder remainders (see Appendix E).

As it is often the case when dealing with Fourier coef-

ficients, it is convenient to define the periodic Sobolev

space Sp
L(β) by making sure that the functions and their

derivatives are compatible with the typical periodicity of

the Fourier basis. A function f ∈ SL(β) is in Sp
L(β) if for

any multi-index α ∈ Nd of length at most β (strict) and any

x = (x1, . . . , xd) ∈ [0, 1]d, xi ∈ {0, 1} =⇒
∂αf(x) = ∂αf(x1, xi−1, 1− xi, xi+1, . . . , xd) . (7)

The definition of periodic spaces is identical in the case of

real-valued β’s.

4.2. Implications on the bias

The Sobolev-smoothness of f imposes that its Fourier coef-

ficient have a polynomial decrease (see Lemma B.1). This

property may in turn be used to control the bias of with the

following lemma :

Lemma 4.1 (Bias of f̂M with Sobolev assumption). For

any M , if f ∈ Sp
L(β), then the bias of fM satisfies

‖f − fM‖2 ≤ L2

(2π)2β
1

(M + 1)2β
.

Proof. See Appendix B.1.

In the case of real-valued β’s, a similar control on the bias

is given in Proposition E.1. Its main conceptual difference

with Lemma 4.1 is that it adds a linear dependence in the

dimension.

4.3. Estimation upper-bound in Sobolev spaces

Combining Lemma 4.1 and Lemma 3.1, and then optimiz-

ing over M yields the following upper-bound for the pri-

vate statistical estimation in Sp
L(β) :

Theorem 4.2 (Upper-bound in Sp
L(β)). There exists a pos-

itive C that depends on β and L only such that, if f ∈
Sp
L(β), and if the values M and σM are tuned as

M + 1 = min
{⌊(

n/2d
) 1

2β+d

⌋

,
⌊(
n
√
ρ/2d

) 1
β+d

⌋}

,

and σM =
2
√

(2M+1)d

n
√
ρ , then the mechanism that returns

f̂M is ρ-zCDP and its error is bounded as

E

(

‖f − f̂M‖2
)

≤ C(M + 1)−2β .

Proof. See Appendix B.2.

Lemma 4.1 and Proposition E.1 are similar enough that the

only adaptation to Theorem 4.2 needed to make it work for

integer-valued β’s is to add that C also depends linearly on

d. In particular, the scaling in n and ρ remains the same.

5. Lower-bounds and minimax optimality

This section presents lower-bounds on the private estima-

tion in Sp
L(β), and discusses on the role of the different

parameters on the difficulty of estimation.

5.1. Quantitative lower-bound

We have the following lower-bound, which generalizes the

results of (Lalanne et al., 2023b) in general dimension d :

Theorem 5.1 (Lower-bound in Sp
L(β)). There exist two

positive constantsC1 andC2 depending onL, β and d only

such that, for any n and ρ, if f̂ satisfies ρ-zCDP, then there

exists f ∈ Sp
L(β) such that

Ef

(

‖f − f̂‖2
)

≥ C1 max
{

n−
2β

2β+d , (n
√
ρ)−

2β
β+d )

}

6
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as soon as min
{
n, n

√
ρ
}
≥ C2.

Proof. See Appendix C.1.

For real-valued β’s, this result also holds. Appendix E.3

discusses the adaptation of the proof of Theorem 5.1 to this

more general case.

Theorem 5.1, when compared to the upper-bound given in

Theorem 4.2 allows concluding that private projection esti-

mators converge at the minimax-optimal rate

rn,ρ(β) := max
{

n−
2β

2β+d , (n
√
ρ)−

2β
β+d )

}

, ∀β > 0 ,

(8)

up to a multiplicative constant depending on L, β and d
only. While the dependence in those quantities is easily ex-

plained in the upper-bounds, a caveat of the proof of The-

orem 5.1 is that the dependence is implicit by construction,

and that no closed-form formula may easily be obtained.

5.2. Qualitative implications

From this optimal rate of estimation, we may describe the

effects of the different parameters of the privacy-utility

tradeoff.

• The privacy parameter ρ : The two important regimes

of estimation are ρ & n−
2β

2β+d where & should be un-

derstood as ”greater up to a multiplicative constant”

and its complement ρ ≪ n−
2β

2β+d . In the first regime,

when the level of privacy is not too high compared to

the amount of data, privacy comes at a negligible cost

on the estimation. On the other hand, in the comple-

mentary regime, the utility can be arbitrarily degraded

by making ρ arbitrarily small.

• The smoothness β : The higher β, the smaller the cut-

off rate n−
2β

2β+d . In other words, the smoother the den-

sity to estimate, the more private the estimation can be

with no significant degradation of utility.

• The dimensionality d : Dimensionality has the con-

verse effect on the cut-off rate. The higher the dimen-

sion, the more data will be needed to make the effects

of privacy negligible. Furthermore, the cut-off itself is

affected by the curse of dimensionality.

6. Adaptivity

As seen previously, it is possible to design a private mecha-

nism via projection estimators that is minimax optimal for

the class of densities in Sp
L(β) in dimension d.

However, to do so, the optimal cut-off frequency:

Mn,ρ(β) := min
{⌊

n
1

2β+d

⌋

,
⌊

(n
√
ρ)

1
β+d

⌋}

is chosen based on the knowledge on n, ρ, d and β (see The-

orem 4.2). For the practitioner, the knowledge of n, ρ and

d is not difficult. The knowledge of β on the other hand is

a much stronger hypothesis, and it already implies a strong

prior knowledge on f . This section presents a private esti-

mation strategy that is adaptive in the sense that it does not

require the prior knowledge of β, while almost achieving

the utility of Theorem 4.2 (up to polylogarithmic factors

and negligible terms).

6.1. A first candidate for private selection

At first, an idea for private adaptive estimation could be to

:

(i) Compute a non-private adaptive estimator of the den-

sity with classical methods (like for instance the non-

private Lepskii method (Lepskii, 1991)).

(ii) Then add noise to its Fourier coefficients in order to

make it private.

However, there is a trap with this method that one must not

fall into : the adaptive truncation rank M̂ that is selected by

the non-private adaptive method is a quantity that is built

from the data, and it may leak user’s information. It is thus

not possible to simply add noise to the Fourier coefficients

of the non-private Fourier coefficients up to truncation rank

M̂ with magnitude σM̂ calibrated as is Theorem 3.2 and

to call the result differentially private. Instead, one must

add noise to the Fourier coefficients up to a truncation rank

that is either fixed in advance, or that builds on the data,

in which case the privacy budget of such will have to be

accounted for. The problem with such method is that clas-

sical adaptive methods will only try to balance the bias and

the sampling variance, but won’t account for the privacy

variance. In particular, when ρ is small, it is unclear if this

method may have the optimal rate of convergence. In the

next subsection, we detail the alternative method that we

chose, that balances the bias, the sampling variance and the

privacy variance at the same time, leading to private and

adaptive near-optimal estimation.

6.2. Private and privacy-aware Lepskii method

Multiple flavors of the Lepskii method exist in the literature.

Here, we present our adaptations of the main two ones to

the context of private model selection. We discuss the ad-

vantages and the drawbacks of each method.

6.2.1. RISK PENALIZATION

We introduce the penalized risk (up to a useful log term):

rn,ρ(β)
∗ := C(log n)arn,ρ(β), (9)

7



Privately Learning Smooth Distributions on the Hypercube by Projections

where C > 1 and a > 0 are some constants independent

from n and ρ that will be specified later on. We introduce

a grid B on the possible values of β that ranges between 0
and logn, defined by:

Bn :=

{

β0 =
knǫ

log(n)
, β1 = β0 −

ε

log(n)
,

β2 = β1 −
ε

log(n)
, . . . , βkn−1 ≥ 0

}

.

(10)

The number of possible values for β in Bn is then denoted

by kn and kn = ⌊ε−1 log2 n⌋.

Our Lepskii decision rule is built upon the estimation of

the smoothness parameter with the computation of a collec-

tion of estimators for several values of β ∈ Bn and then

with a clever selection among theses values with the help

of a trade-off criterion. Thanks to Lemma 2.3, to ensure a

desired level of privacy of our final estimator, we introduce

ρ′n = ρε log−2 n. (11)

We are ready to define our adaptive selection rule as:

m̂n := inf

{

m ≥ 0 : ∀ℓ ≥ m,

‖f̂Mn,ρ′n(βm) − f̂Mn,ρ′n(βℓ)‖22 ≤ rn,ρ′n(βℓ)
∗
}

(12)

For the sake of clarity, we will use the following shortcut

of notations to improve the readability of our paper:

f̂M̂ := f̂Mn,ρ′n (βm̂n) and M̂ :=Mn,ρ′n(βm̂n) .

We establish the following result.

Theorem 6.1. Assume that a ≥ 1, C ≥ 8L2 ∨ 22d+9 and

n ≥ 3, ρ ≤ 1, if f̂M̂ is the adaptive estimator selected with

the Lepskii rule, then f̂M̂ is ρ-zCDP and it satisfies the risk

upper bound

E

(

‖f̂M̂ − f‖2
)

≤ 2
√

rn,ρ′n(β)
∗ exp

(
ε

β + d

)

+
√

8(2 + d)ε−3/2
(

1 + ρ′n
− 1

2(1+d)

)

log2 nn−2

Proof. See Appendix D.1

Comments. This result shows that out of the box (i.e.

without additional assumptions on f ), f̂M̂ nearly matches

the optimal speed of estimation up to negligible terms, and

by excluding the fact that we did not take the error squared,

but simply the error in L2 distance.

6.2.2. PENALIZATION OF THE ESTIMATED BIAS

Let M be the collection of spectral cut-offs. The following

method describes how to choose M̂ , and the associated f̂M̂ .

We start by estimating f̃M and f̂M for any M ∈ M with

σM =

√
2(2M+1)d

n
√
ρ′

where ρ′ is tuned to obtain ρ-zCDP in

the end as ρ′ = ρ
|M| .

Then for any M , we define the following estimator of the

squared bias of f̂M :

B2(M) := max
M ′∈K

{

‖ProjSM′
(f̂M )− f̂M ′‖2 − Λ(1)(M ′)

}

(13)

where Λ(1)(·) is a penalization term that is fixed later. Then,

M̂ is chosen as the minimizer of the penalized estimated

squared bias.

M̂ := argminM∈M

{

B2(M) + Λ(2)(M)
}

. (14)

Again, Λ(2)(·) is a penalization term that is fixed later on.

f̂M̂ satisfies the following oracle inequality :

Theorem 6.2. When computed with σM =
2
√

(2M+1)d

n
√

ρ/|M|

for any M ∈ M, the mechanism that releases f̂M̂ satisfies

ρ-zCDP. Furthermore, there exist two absolute constants

C1 > 0 andC3 > 0 and a quantityC2 > 0 depending only

on ‖f‖∞1 such that, if for any M ,

Λ(1)(M) =
96(2M + 1)d

n
+

96(2M + 1)2d

n2ρ/|M|

and

Λ(2)(M) = Λ(1)(M) +
16(2M + 1)2d

n2ρ/|M| ,

and if (2maxM+ 1)d ≤ n, then f̂M̂ satisfies

E

(

‖f − f̂M̂‖2
)

≤

C1 min
M∈M

{

‖f − fM‖2 + (2M + 1)d

n

+2(2M + 1)dσ2
M

}

︸ ︷︷ ︸

Best bias-variance tradeoff inM with privacy budget
ρ
|M|

+
C2

n
︸︷︷︸

Sampling residual

+
C3|M|
n2ρ

︸ ︷︷ ︸

Privacy residual

.

(15)

1This dependence arises because of a technical argument in
the proof.
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Proof. See Appendix D.2.

Since the bias is left uncontrolled in this result, it remains

true in the case of real-valued β’s.

When the collection of spectral cut-offs M is adequately

chosen, this oracle inequality may be used to prove near-

optimal convergence speed.

Theorem 6.3. There exist a C1 > 0 depending on β and

L, and a C2 > 0 depending on β, d and ‖f‖∞ such that, if

min{n, n
√

ρ/ log2 (n)} ≥ C2, then f̂M̂ computed with

M =

{

1, 2, 4, . . . , 2

⌊

log2

(

n1/d−1
2

)⌋}

and all the other hyperparameters set as in Theorem 6.2 is

ρ-zCDP and its utility satisfies

E

(

‖f−f̂M̂‖2
)

≤

C1 max

{

n−
2β

2β+d ,

(

n
√
ρ

√

log2 (n)

)− 2β
β+d

}

.

(16)

Proof. See Appendix D.3.

Because of the extra dimensionality term in the control of

the bias in the case of real-valued β’s, this result remains

true in this case if one adds that C1 also depends on d.

Comments. Contrary tho the last procedure, this new one

is near-optimal in terms of squared error, at the cost of the

control of ‖f‖∞. As explained before, this requirement

comes from a technical detail in the proof, and it might

be an artifact of a suboptimal analysis from us. Also, the

polylogarithmic degradation only affects the privacy term.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be

specifically highlighted here.
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A. Proofs of Section 3

A.1. Proof of Lemma 3.1

Our starting point is the Parseval equality, that leads to:

E

(

‖f − f̂M‖2
)

Parseval
= E




∑

k∈Zd\{−M,...,M}d
|θk|2 +

∑

k∈{−M,...,M}d
|θk − θ̂k|2



 , (17)

where the family (θk)k refers to the Fourier coefficients of f in the basis defined in (1), and where the noisy Fourier

coefficient estimators
(

θ̂k

)

k∈{−M,...,M}d
are defined in (3). First, we may notice that :

∑

k∈Zd\{−M,...,M}d
|θk|2 = ‖f − fM‖2 (18)

deterministically. This leads to the bias term in the error decomposition.

Then, for any k ∈ {−M, . . . ,M}d,

E

(

|θk − θ̂k|2
)

≤
∣
∣
∣E

(

θ̂k

)

− θk

∣
∣
∣

2

+ V

(

θ̂k

)

. (19)

Furthermore,

E

(

θ̂k

)
(3)
= E

(

θ̃k + σK (N (0, 1) + iCN (0, 1))
)

= E

(

θ̃k

)
(2)
= E

(

1

n

n∑

i=1

φ̄k(Xi)

)

=
1

n

n∑

i=1

E
(
φ̄k(Xi)

)
=

1

n

n∑

i=1

θk = θk .

(20)

Finally,

V

(

θ̂k

)
(3)
= V

(

θ̃k + σK (N (0, 1) + iCN (0, 1))
)

Indep.
= V

(

θ̃k

)

+ V (σK (N (0, 1) + iCN (0, 1)))

(2)
= V

(

1

n

n∑

i=1

φ̄k(Xi)

)

+ V (σM (N (0, 1) + iCN (0, 1)))
Indep.
=

1

n2

n∑

i=1

V
(
φ̄k(Xi)

)
+ 2σ2

M

|φk(·)|≤1 & Lemma F.1

≤ 1

n2

n∑

i=1

1 + 2σ2
M =

1

n
+ 2σ2

M

(21)

A.2. Proof of Theorem 3.2

The mechanism (X1, . . . , Xn) 7→ f̂M may equivalently be seen as the mechanism that releases the vector in C(2M+1)d

of the privatized Fourier coefficient estimates, or as the mechanism that releases the vector in R2(2M+1)d of the real and

imaginary parts (respectively noted R(·) and I(·)) of the privatized Fourier coefficient estimates.

We aim to apply Lemma 2.2: for this purpose, consider any multi-index k, and any (X1, . . . , Xn), (X
′
1, . . . , X

′
n) ∈ [0, 1]d,

∣
∣
∣θ̃k(X1, . . . , Xn)− θ̃k(X

′
1, . . . , X

′
n)
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

φ̄k(Xj)−
1

n

n∑

j=1

φ̄k(X
′
j)

∣
∣
∣
∣
∣
∣

≤ 1

n

n∑

j=1

∣
∣φ̄k(Xj)− φ̄k(X

′
j)
∣
∣

|φk(·)|≤1
≤ 2dham ((X1, . . . , Xn), (X

′
1, . . . , X

′
n))

n
. ,

(22)

Hence, for any k, θ̃k is of l2 sensitivity 2
n . Hence, for any k, R(θ̃k) and I(θ̃k) are both of sensitivity at most 2

n (because

R(·) and I(·) are orthogonal projections and are hence contraction linear mappings).
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The l2 sensitivity of computing the 2(2M + 1)d approximate real and imaginary parts of the Fourier coefficients is thus
2
n

√

2(2M + 1)d. Then, the application of Lemma 2.2 guarantees that the mechanism that releases f̂M , when computed

with σM =
2
√

(2M+1)d

n
√
ρ satisfies ρ-zCDP.

B. Proofs of Section 4

B.1. Proof of Lemma 4.1

We will need the following lemma :

Lemma B.1 (Fourier tail in Sobolev spaces). If f ∈ Sp
L(β), then

∑

k∈Zd




∑

α∈Nd:|α|=β

(2πk)×2α



 |θk|2 ≤ L2 , (23)

where (θk)k∈Zd are the Fourier coefficients of f w.r.t. the basis (φk)k∈Zd .

Proof. Let α ∈ Nd such that |α| = β and let k ∈ Zd. Let us look θ
(α)
k at the kth Fourier coefficient of ∂αf . Since β ≥ 1,

there exists i0 ∈ N such that αi ≥ 1. We note α−i0 the multi-index with the same values as α except for its ith0 coordinate

which has been decremented by 1. Furthermore, for any x ∈ [0, 1]d, any i ∈ {1, . . . , d}, and any y ∈ [0, 1] we note x(i=y)

the vector with the same components as x but with y as its ith component.

We have that

θ
(α)
k =

∫

[0,1]d
∂αf(x1, . . . , xd)φ̄k(x1, . . . , xd)dx1 . . . dxd

Fubini
=

∫

[0,1]d−1

(
∫

[0,1]

∂αf(x1, . . . , xd)φ̄k(x1, . . . , xd)dxi0

)

dx1 . . . dxi0−1dxi0+1 . . . dxd

=

∫

[0,1]d−1

(
∫

[0,1]

∂αf(x1, . . . , xd)e
−iC2π(k1x1+···+kdxd)dxi0

)

dx1 . . . dxi0−1dxi0+1 . . . dxd

I.B.P.
=

∫

[0,1]d−1

(

∂α−i0 f(x(i0=1))e−iC2π〈k,x
(i0=1)〉 − ∂α−i0 f(x(i0=0))e−iC2π〈k,x

(i0=0)〉

+ iC2πki0

∫

[0,1]

∂α−i0f(x1, . . . , xd)e
−iC2π(k1x1+···+kdxd)dxi0

)

dx1 . . . dxi0−1dxi0+1 . . . dxd

= iC2πki0θ
(α−i0 )

k .

(24)

Thus, by induction, we get that

θ
(α)
k = (iC2πk)

×αθk . (25)

Next, since it holds for any k, we may write

∫

[0,1]d
|∂αf |2 Parseval

=
∑

k∈Zd

〈θ(α)k , θ
(α)
k 〉

(25)
=
∑

k∈Zd

(2πk)×2α〈θk, θk〉 .
(26)
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Finally, since this holds for any α, we may sum over α and use (4.1) to get that

L2 ≥
∑

α∈Nd:|α|=β

∫

[0,1]d
|∂αf |2

(26)
=

∑

α∈Nd:|α|=β

∑

k∈Zd

(2πk)×2α〈θk, θk〉

=
∑

k∈Zd




∑

α∈Nd:|α|=β

(2πk)×2α



 |θk|2 .

(27)

If k = (k1, . . . , kd) ∈ Zd \ {−M, . . . ,M}d, then there exists i0 such that

|ki0 | ≥M + 1 . (28)

By considering the multi-index α0 composed with only 0’s except at the index i0 to which we assign the value β, we thus

get

(2π(M + 1))2β ≤ (2πk)×2α0 , (29)

which allows writing

(2π(M + 1))2β ≤
∑

α∈Nd:|α|=β

(2πk)×2α (30)

since α0 is part of the summation indexes of the right-hand side.

Combining the last inequality with Lemma B.1 yields

∑

k∈Zd\{−M,...,M}
(2π(M + 1))2β |θk|2

(30)

≤
∑

k∈Zd\{−M,...,M}




∑

α∈Nd:|α|=β

(2πk)×2α



 |θk|2

≤
∑

k∈Zd




∑

α∈Nd:|α|=β

(2πk)×2α



 |θk|2

Lemma B.1
≤ L2 .

(31)

Hence,

L2

(2π)2β
1

(M + 1)2β
≥

∑

k∈Zd\{−M,...,M}
|θk|2

Parseval
= ‖f − fM‖2 .

(32)

B.2. Proof of Theorem 4.2

The privacy of this mechanism is a direct consequence of Theorem 3.2. Below, � will refer to a constant that depends on

β and L, whose value may change from line to line, and that is independent from n and ρ.
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By combining Lemma 3.1 and Lemma 4.1 with the value of the variance factor σM =
2
√

(2M+1)d

n
√
ρ , we get that:

E

(

‖f − f̂M‖2
) Lemma 3.1

≤ ‖f − fM‖2 + (2M + 1)d

n
+ 2(2M + 1)d

(

2
√

(2M + 1)d

n
√
ρ

)2

Lemma 4.1
≤ L2

(2π)2β
1

(M + 1)2β
+

(2M + 1)d

n
+ 2(2M + 1)d

(

2
√

(2M + 1)d

n
√
ρ

)2

2K+1≤2(K+1)

≤ L2

(2π)2β
1

(M + 1)2β
+

2d(M + 1)d

n
+ 2d+1(M + 1)d

(

2
√

2d(M + 1)d

n
√
ρ

)2

≤ �

(
1

(M + 1)2β
+

2d(M + 1)d

n
+

22d(M + 1)2d

n2ρ

)

,

(33)

We then find the optimal trade-off for M by separating the regimes where the variance is dominated by the sampling noise

or by the privacy noise.

• Bias - Sampling variance equilibrium : We may first observe that

1

(M + 1)2β
≥ 2d(M + 1)d

n
⇐⇒M + 1 ≤

(
n/2d

) 1
2β+d . (34)

• Bias - Privacy variance equilibrium : In the meantime, we get:

1

(M + 1)2β
≥ 22d(M + 1)2d

n2ρ
⇐⇒M + 1 ≤

(
n
√
ρ/2d

) 1
β+d . (35)

Hence, by taking

M + 1 = min
{⌊(

n/2d
) 1

2β+d

⌋

,
⌊(
n
√
ρ/2d

) 1
β+d

⌋}

, (36)

we have that

max

{
2d(M + 1)d

n
,
22d(M + 1)2d

n2ρ

}

≤ 1

(M + 1)2β
, (37)

and Equation (33) yields

E

(

‖f − f̂M‖2
)

≤ C
1

(M + 1)2β
. (38)

C. Proofs of Section 5

C.1. Proof of Theorem 5.1

Let m be an integer that will be specified later on in the proof. We consider the grid
{

1

m+ 1
,

2

m+ 1
, . . . ,

m

m+ 1

}

× · · · ×
{

1

m+ 1
,

2

m+ 1
, . . . ,

m

m+ 1

}

︸ ︷︷ ︸

d times

. (39)

It has md points, and is hence in bijection with {1, . . . ,md}. For any i ∈ {1, . . . ,md}, we identify pi with a unique point

on this grid. By construction, we have that

∀i, j ∈ {1, . . . ,md}, i 6= j =⇒ ‖pi − pj‖ ≥ 1

m+ 1
. (40)

Now, let us consider the function Ψ given by Lemma F.2 in dimension d. We note ψ(·) = aΨ
( ·
2

)
where a > 0 is fixed to

a small enough value such that
∑

α∈Nd:|α|=β

∫

[0,1]d
|∂αψ|2 ≤ L2 . (41)
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We also define γ =
∫
ψ and δ =

∫
ψ2.

Let 1 ≥ h > 0. For any θ ∈ {0, 1}md

, we define

fθ(·) := 1 + hβ
md
∑

i=1

θiψ

( · − pi
h

)

− ‖θ‖1γhβ+d . (42)

Let us investigate the conditions under which fθ is a density of probability w.r.t. Lebesgue’s measure on [0, 1]d.

• For any θ, fθ is continuous and hence measurable.

• fθ has to be positive for any θ. This is for instance the case when for any θ, ‖θ‖1γhβ+d ≤ 1. Since ‖θ‖1 ≤ md

for any θ, fixing h = min
{

1
γ(m+1) ,

1
4(m+1)

}

is enough to ensure that condition. The reason why we added the term

1
4(m+1) in the minimum and why we took m + 1 instead of m is that we also have that for any i, ψ

( ·−pi

h

)
has its

support in (0, 1)d and that i 6= j =⇒ ψ
( ·−pi

h

)
and ψ

(
·−pj

h

)

have disjoint supports.

• For any θ, we need
∫
fθ = 1, which is immediate by construction with a simple variable swap of inverse Jacobian hd

:
∫

[0,1]d
fθ =

∫

[0,1]d



1 + hβ
md
∑

i=1

θiψ

(
x− pi
h

)

− ‖θ‖1γhβ+d



 dx

= 1 + hβ
md
∑

i=1

θi

∫

[0,1]d
ψ

(
x− pi
h

)

dx− ‖θ‖1γhβ+d

ui=
x−pi

h= 1 + ‖θ‖1γhβ+d − ‖θ‖1γhβ+d

= 1

(43)

Furthermore, we may also check that for any θ, fθ ∈ Sp
L(β).

• For any θ, by construction, the support of ∂αfθ is included in (0, 1)d for any multi-index α such that |α| ≥ 1. Hence,

the periodicity argument holds trivially since ∂αfθ = 0 on the boundary of [0, 1]d. Furthermore, since fθ is constant

on the boundary of [0, 1]d, the periodicity argument also holds for fθ.

• Furthermore, let us fix θ and let α be a multi-index such that |α| = β. We have

∫

[0,1]d

(

f
(α)
θ

)2

=

∫

[0,1]d



hβ
md
∑

i=1

θi

(

x 7→ ψ

(
x− pi
h

))(α)




2

=

∫

[0,1]d





md
∑

i=1

θiψ
(α)

( · − pi
h

)




2

disjoint supports
=

md
∑

i=1

θi

∫

[0,1]d

(

ψ(α)

( · − pi
h

))2

‖θ‖1≤md& variable swap

≤ mdhd
∫

[0,1]d

(

ψ(α)
)2

mdhd≤1
≤

∫

[0,1]d

(

ψ(α)
)2

,

(44)

Consequently, summing over α yields

∑

α∈Nd:|α|=β

∫

[0,1]d

(

f
(α)
θ

)2

≤
∑

α∈Nd:|α|=β

∫

[0,1]d

(

ψ(α)
)2 (41)

≤ L2 . (45)
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Now we will used what is usually referred to as Assouad’s lemma, and that has been successfully used to prove lower-

bounds under differential privacy in (Duchi et al., 2013; 2014; 2016; Acharya et al., 2021e). The following result is a

minor reformulation to match the notations of the article of the version that can be found in (Acharya et al., 2021e).

Fact C.1 (Assouad’s Lemma). If (fθ) is a family of densities of probability that is parametrized by θ ∈ {0, 1}N , and if

there exists a τ > 0 such that

∀(θ1, θ2) : ‖fθ1 − fθ2‖2 ≥ Cτdham (θ1, θ2) , (46)

then there exists an absolute constant C > 0 such that for any estimator f̂ , by noting θ̂ the parameter of the closest fθ in

the family (fθ)θ∈{0,1}N for the norm ‖ · ‖, then

sup
θ∈{0,1}N

Efθ⊗n

(

‖fθ − f̂‖2
)

≥ Cτ

N∑

i=1

(

Pθ−i(θ̂
i 6= 0) + Pθ+i(θ̂

i 6= 1)
)

(47)

where Pθ+i and Pθ−i are the mixture distributions

Pθ+i
:=

1

2N−1

∑

θ:θi=1

f⊗nθ Pθ−i
:=

1

2N−1

∑

θ:θi=0

f⊗nθ . (48)

Notice that in (47) there is a second layer or randomness that is implicit, and that is w.r.t. the estimator itself (for privacy

for instance).

Proof. The proof can be found in (Acharya et al., 2021e).

We will apply this result with N = md. First, we will check that (46) holds.

Let θ1, θ2 be two parametrizations. We have that

∫

[0,1]d
(fθ1 − fθ2)

2

≥
md
∑

i=1

1θi
1 6=θi

2

∫

B(pi,h/2)

(

hβ+d (‖θ2‖1 − ‖θ1‖1) γ + (θi1 − θi2)h
βψ

(
t− pi
h

))2

dt

≥
md
∑

i=1

1θi
1 6=θi

2

∫

B(pi,h/2)

{(

hβψ

(
t− pi
h

))2

−2γh2β+d |‖θ1‖1 − ‖θ2‖1|ψ
(
t− pi
h

)}

dt

variable swap

≥ dham (θ1, θ2)h
2β+d

(
δ − 2mdhdγ2

)

h=min{h, 1
m+1 (δ/(4γ

2)1/d)}
≥ dham (θ1, θ2)h

2β+dδ/2 ,

(49)

where we took the liberty to take a smaller h if needed, with still a scaling proportional to 1
m+1 .

Then, we need to control the term Pθ−i(θ̂
i 6= 0) + Pθ+i(θ̂

i 6= 1).

Privacy cost. First, we do so by exploiting the constraint of ρ-zCDP. Let us give the following lemma, which is borrowed

from (Lalanne et al., 2023b).

Lemma C.2. If f̂ satisfies ρ-zCDP, then for any i,

Pθ−i(θ̂
i 6= 0) + Pθ+i(θ̂

i 6= 1) ≥

1

2



1− n
√

ρ/2
1

2N−1

∑

θ1,...,θi−1,θi+1...,θN∈{0,1}
TV

(
f(θ1,...,θi−1,0,θi+1...,θN), f(θ1,...,θi−1,1,θi+1...,θN )

)



 ,
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where TV (·, ·) denotes the total variation distance between probability measures defined as

TV (P1,P2) := sup
S measurable

P1(S)− P2(S) .

Proof. Let us consider the coupling C that selects θ1, . . . , θi−1, θi+1 . . . , θN ∈ {0, 1} uniformly at random, and then

returns a random variable that follows a conditional distribution Q⊗n
θ1,...,θi−1,θi+1...,θN where Qθ1,...,θi−1,θi+1...,θN is a maxi-

mal coupling between f(θ1,...,θi−1,0,θi+1...,θN) and f(θ1,...,θi−1,1,θi+1...,θN ), in the sense that ifX,Y ∼ Qθ1,...,θi−1,θi+1...,θN ,

then P(X = Y ) = 1−TV
(
f(θ1,...,θi−1,0,θi+1...,θN ), f(θ1,...,θi−1,1,θi+1...,θN )

)
. The existence of such coupling is well known

(see, e.g. (Kallenberg, 1993)).

Then, the similarity function given by Lemma 8 in (Lalanne et al., 2023a) leads to:

Pθ−i(θ̂
i 6= 0) + Pθ+i(θ̂

i 6= 1) ≥ 1

2

(

1−
√

ρ/2EX,Y∼C (dham (X,Y))
)

,

which reduces to the advertised result.

Let us fix θ1, . . . , θi−1, θi+1 . . . , θm
d ∈ {0, 1}, we have that, by the classical rewriting of the total variation distance

TV (f, g) = 1
2

∫
|f − g|,

TV
(

f(θ1,...,θi−1,0,θi+1...,θmd), f(θ1,...,θi−1,1,θi+1...,θmd)

)

=
1

2

∫

[0,1]d

∣
∣
∣f(θ1,...,θi−1,0,θi+1...,θmd) − f(θ1,...,θi−1,1,θi+1...,θmd)

∣
∣
∣

≤ 1

2

∫

[0,1]d

(

γhβ+d + hβψ

( · − pi
h

))

variable swap
= γhβ+d

(50)

All in all, by combining (50), Lemma C.2, (49) and Fact C.1, there exist two absolute constants C1 > 0 and C2 > 0 such

that, if f̂ satisfies ρ-zCDP, then:

sup
θ∈{0,1}N

Efθ⊗n

(

‖fθ − f̂‖2
)

≥ C1h
2β+dmdδ

(
1− C2γn

√
ρhβ+d

)
. (51)

Finally, choosing h of the order of
(
γn

√
ρ
)− 1

β+d , and m + 1 of the order of
min{1/γ,1/4,(δ/(4γ2)1/d)}

h complies with all

the requirements on h for the calculus to be valid, and allows writing that there are two quantities C1 > 0 and C2 > 0
depending on L, β and d such that, if n

√
ρ > C2, then

sup
θ∈{0,1}N

Efθ⊗n

(

‖fθ − f̂‖2
)

≥ C1 (n
√
ρ)
− 2β

β+d . (52)

Usual sampling cost. Without trying to exploit the private nature of the estimation, we may adopt more usual lower-

bounding inequalities.

Let us fix f̂ and i. Neyman-Pearson-Le Cam’s inequality (Of which the proof can be found in (Rigollet & Hütter, 2015))

allows writing

Pθ−i(θ̂
i 6= 0) + Pθ+i(θ̂

i 6= 1) ≥ 1− TV
(
Pθ+i ,Pθ−i

)
. (53)

Then, Pinsker’s inequality (see for instance (Tsybakov, 2009)) gives

Pθ−i(θ̂
i 6= 0) + Pθ+i(θ̂

i 6= 1) ≥ 1−
√

KL
(
Pθ+i

∥
∥Pθ−i

)
, (54)

where KL ( ·‖ ·) is the Kullback-Leibler (KL) divergence which is defined for any two probability distributions P and Q

such that P ≪ Q (absolute continuity) as

KL(P‖Q) =

∫

log

(
dP

dQ

)

dP .
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Then, Theorem 11 in (van Erven & Harremoës, 2014) gives that

KL

(

1

2N−1

∑

θ:θi=1

f⊗nθ

∥
∥
∥
∥
∥

1

2N−1

∑

θ:θi=0

f⊗nθ

)

≤ 1

2N−1

∑

θ:θi=0

KL
(
f⊗n
θ(i←1)

∥
∥ f⊗n

θ(i←0)

)
,

where θ(i←j) means that we assign j as the value of the ith component in θ.

Finally, by the tensorization property of the KL divergence (van Erven & Harremoës, 2014)

Pθ−i(θ̂
i 6= 0) + Pθ+i(θ̂

i 6= 1) ≥ 1−
√

1

2N−1

∑

θ:θi=0

nKL(fθ(i←1)‖ fθ(i←0)) . (55)

Let us fix a θ. We will upper-bound KL (fθ(i←1)‖ fθ(i←0)) uniformly in θ. By definition,

KL (fθ(i←1)‖ fθ(i←0)) =

∫

[0,1]d
log

(
fθ(i←1)

fθ(i←0)

)

fθ(i←1) , (56)

and a classical upper bound of the KL divergence by the χ2-divergence which follows from log(·) ≤ · − 1 gives

KL(fθ(i←1)‖ fθ(i←0)) =

∫

[0,1]d

(fθ(i←1) − fθ(i←0))2

fθ(i←0)

. (57)

Notice that we took the liberty to divide by various densities of probability without justifying why they were different from

0. We will solve this issue right now, and also control the denominator fθ(i←0) at the same time.

When we made sure that for any θ, fθ was always positive, we imposed that mdγhβ+d ≤ 1. We can be more aggressive

and impose that mdγhβ+d ≤ 1/2, for instance by taking h ≤ 1
2γ(m+1) . This way, we have that for any θ, fθ ≥ 1/2.

As a consequence,

KL(fθ(i←1)‖ fθ(i←0)) ≤ 2

∫

[0,1]d
(fθ(i←1) − fθ(i←0))2

≤ 2

∫

[0,1]d

(

γhβ+d + hβψ

(
x− pi
h

))2

= 2
(
γ2h2β+2d + 2γ2h2β+2d + δh2β+d

)
.

(58)

So, there exist C1 > 0 and C2 > 0 that depend on L, β and d such that when h < C2, then

KL(fθ(i←1)‖ fθ(i←0)) ≤ C1h
2β+d . (59)

Furthermore, we can note that C1 and C2 are uniform in θ.

Combining this last result with (55), Fact C.1 and (49), we obtain that there exists an absolute C3 > 0 such that, for any

estimator f̂ ,

sup
θ∈{0,1}N

Efθ⊗n

(

‖fθ − f̂‖2
)

≥ C3h
2β+dmdδ

(

1−
√

C1nh2β+d
)

, (60)

as soon as h < C2.

In the end, choosing h of the order of (n)
− 1

2β+d , and m+ 1 of the order of
min{1/(2γ),1/4,(δ/(4γ2)1/d)}

h complies with all

the requirements on h for the calculus to be valid, and allows writing that there are two quantities C1 > 0 and C2 > 0
depending on L, β and d such that, if n > C2, then

sup
θ∈{0,1}N

Efθ⊗n

(

‖fθ − f̂‖2
)

≥ C1n
− 2β

2β+d . (61)

The two lower-bounds being valid for ρ-zCDP estimators, their maximum is also a lower-bound, yielding the result.
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D. Proofs of Section 6

D.1. Proof of Theorem 6.1

We also definem∗ the integer that is associated to the closest point (from below) of the grid Bn to the unknown smoothness

parameter β:

m∗ = min{m ≤ kn : βm ≤ β} and β∗ = βm∗ . (62)

We emphasize that m∗ is a theoretical object, which is purely deterministic and not used in our adaptative procedure. We

nevertheless needm∗ for our mathematical analysis of the Lepskii method. For the sake of clarity, we will use the following

shortcut of notations to improve the readability of our paper:

f̂Mn,ρ′n
(βm̂n) = f̂M̂ and f̂Mn,ρ′n

(βm∗) = f̂M∗ and f̂Mn,ρ′n
(βℓ) = f̂M(ℓ),

and the associated shortcut indices as well:

M̂ =Mn,ρ′n(βm̂n) and M∗ =Mn,ρ′n(βm∗) and M(ℓ) =Mn,ρ′n(βℓ).

To establish our adaptive result stated in Theorem 6.1, we need the next cornerstone result.

Proposition D.1. Assume that f ∈ Sp
L(β) with n ≥ eβ , then f̂Mn,ρ′n

(βm̂n) = f̂M̂ satisfies:

E[‖f̂M̂ − f‖2] ≤ 2
√

rn,ρ′n(β)
∗ exp

(
ε

β + d

)

(63)

+

√
√
√
√

kn∑

ℓ=0

rn,ρ′n(βℓ)

√
∑

ℓ>m∗

P

[

‖f̂M(ℓ) − f‖22 >
1

4
rn,ρ′n(βℓ)

∗
]

(64)

Proof. We observe that the elementary decomposition holds:

E[‖f̂M̂ − f‖2] = E[‖f̂M̂ − f‖21m̂n≤m∗ ] + E[‖f̂M̂ − f‖21m̂n>m∗ ]. (65)

We then consider the two terms separately.

On the event m̂n ≤ m∗: We apply the triangle inequality and obtain:

E[‖f̂M̂ − f‖21m̂n≤m∗ ] ≤ E

[(

‖f̂M̂ − f̂M∗‖2 + ‖f̂M∗ − f‖2
)

1m̂n≤m∗
]

Using the definition of m̂n and f̂M̂ , we observe that almost surely:

‖f̂M̂ − f̂M∗‖21m̂n≤m∗ ≤
√

rn,ρ′n(β
∗)∗

≤
√

C(log n)arn,ρ′n(β
∗)

≤
√

C(log n)arn,ρ′n(β)

(

exp

((
β

2β + d
− β∗

2β∗ + d

)

logn

)

∨ exp

((
β

β + d
− β∗

β∗ + d

)
log(n

√
ρ′n)

2

))

≤
√

C(log n)arn,ρ′n(β)

(

exp

(
(β − β∗)d

(2β + d)(2β∗ + d)
logn

)

∨ exp

(

(β − β∗)d

(β + d)(β∗ + d)

log(n
√
ρ′n)

2

))

≤
√

C(log n)arn,ρ′n(β)

(

exp

(
ε

2(2β + d)

)

∨ exp

(
ε

β + d

))

=
√

C(log n)arn,ρ′n(β) exp

(
ε

β + d

)

,
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where we used above

(β − β∗)d

(β + d)(β∗ + d)

log(n
√
ρ′n)

2
≤ ε log−1 n

d

(β + d)(β∗ + d)

(

logn+
1

2
log ρ− 1

2
log logn

)

≤ ε

β + d
.

Obviously, the same upper bound applies when considering the expectation and we deduce that

E

[

‖f̂M̂ − f̂M∗‖21m̂n≤m∗
]

≤
√

C(logn)arn,ρ′n(β) exp

(
ε

β + d

)

=
√

rn,ρ′n(β)
∗ exp

(
ε

β + d

)

. (66)

The second term is dealt easily using the non-adaptive rate of convergence of f̂M∗ , regardless the value of m∗ with respect

to m̂n, and the Cauchy-Schwarz inequality:

E

[

‖f̂M∗ − f‖21m̂n≤m∗
]

≤
√

E

[

‖f̂M∗ − f‖22
]

≤
√

rn,ρ′n(β
∗)

Using the same arguments as above, we obtain similarly:

E

[

‖f̂M∗ − f‖21m̂n≤m∗
]

≤
√

rn,ρ′n(β) exp

(
ε

β + d

)

. (67)

We now gather Equations (66) and (67) and obtain that:

E

[

‖f̂M̂ − f‖21m̂n≤m∗
]

≤ 2
√

rn,ρ′n(β)
∗ exp

(
ε

β + d

)

. (68)

On the event m̂n > m∗: We still apply the triangle inequality and observe that for any pair (M,M ′):

‖f̂M − f̂M ′‖2 ≤ ‖f̂M − f‖2 + ‖f̂M ′ − f‖2.

Consequently, we have

{m̂n > m∗} =
{

∃ℓ > m∗ : ‖f̂M(ℓ) − f̂M∗‖2 >
√

rn,ρ′n(βℓ)
∗
}

⊂
{

∃ℓ > m∗ : ‖f̂M(ℓ) − f‖2 + ‖f̂M∗ − f‖2 >
√

rn,ρ′n(βℓ)
∗
}

⊂
{

∃ℓ > m∗ : ‖f̂M(ℓ) − f‖2 >
1

2

√

rn,ρ′n(βℓ)
∗
}

∪
{

∃ℓ > m∗ : ‖f̂M∗ − f‖2 >
1

2

√

rn,ρ′n(βℓ)
∗
}

⊂
{

∃ℓ > m∗ : ‖f̂M(ℓ) − f‖2 >
1

2

√

rn,ρ′n(βℓ)
∗
}

∪
{

‖f̂M∗ − f‖2 >
1

2

√

rn,ρ′n(βm∗)
∗
}

,

where the last inequality comes from the monotonicity (decreasing function) of β 7−→ rn,ρ′n(β). We then deduce with a

union bound that:

E
[
1{m̂n>m∗}

]
≤
∑

ℓ>m∗

P

[

‖f̂M(ℓ) − f‖22 >
1

4
rn,ρ′n(βℓ)

∗
]

(69)

We then use the Cauchy-Schwarz inequality and (69) to obtain:

E[‖f̂M̂ − f‖21m̂n>m∗ ] ≤
√

E[‖f̂M̂ − f‖22]
√

E[1m̂n>m∗ ]

≤

√
√
√
√E

[
kn∑

ℓ=0

‖f̂M(ℓ) − f‖22

]√
∑

ℓ>m∗

P

[

‖f̂M(ℓ) − f‖22 >
1

4
rn,ρ′n(βℓ)

∗
]

≤

√
√
√
√

kn∑

ℓ=0

rn,ρ′n(βℓ)

√
∑

ℓ>m∗

P

[

‖f̂M(ℓ) − f‖22 >
1

4
rn,ρ′n(βℓ)

∗
]
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From Proposition D.1, we observe that the upper bound of the risk of our adaptive procedure depends on two terms.

The first one involves the risk rn,ρ(β), up to some multiplicative log n term, while the second term will be shown to be

negligible with respect to the first one as soon as a and C are suitably chosen (see Definition (9)).

The next proposition is purely technical and does not involve any statistical insight.

Proposition D.2. Assume that ε ≤ 1/2, then for any ρ > 0, n ≥ 1 and d ≥ 1:

kn∑

ℓ=0

rn,ρ′n(βℓ) ≤ 4(2 + d)ε−1 logn2
(

ρ′n
− 1

1+d + 2
)

.

Proof. We observe from our definition of rn,ρ′n(β) that:

kn∑

ℓ=0

rn,ρ′n(βℓ) =

kn∑

ℓ=0

(

n
− 2βℓ

2βℓ+d + (n
√

ρ′n)
− 2βℓ

βℓ+d )

)

=

⌊ε−1 log2 n⌋
∑

ℓ=0

n−
ℓε/ log n

ℓε/ log n+d/2 + (n
√

ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2

=
∑

ℓε<logn

n−
ℓε/ log n

ℓε/ log n+d/2 + (n
√

ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2 +

⌊ε−1 log2 n⌋
∑

ℓ≥⌊ε−1 logn⌋
n−

ℓε/ log n
ℓε/ log n+d/2 + (n

√

ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2

We focus on the first sum and observe that when ℓε < logn:

n−
ℓε/ log n

ℓε/ log n+d/2 = e−
ℓε/ log n

ℓε/ log n+d/2
logn = e−

ℓε
ℓε/ log n+d/2 ≤ e−

ℓε
1+d/2 ,

and similarly:

(n
√

ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2 = e−
ℓε/ log n

ℓε/2 log n+d/2
lognρ′n

− ℓε/ log n
ℓε/ log n+d ≤ e−

2ℓε
1+d ρ′n

− 1
1+d .

Hence, using a geometric series, we get:

∑

ℓε<logn

n−
ℓε/ log n

ℓε/ log n+d/2 + (n
√

ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2 ≤
+∞∑

ℓ=0

e−
ℓε

1+d/2 + e−
2ℓε
1+d ρ′n

− 1
1+d

=
1

1− e−
ε

1+d/2

+
ρ′n
− 1

1+d

1− e−
2ε

1+d

≤ 4(2 + d)ε−1ρ′n
− 1

1+d . (70)

where the last line comes from the bound e−t ≤ 1− t/2 when t ∈ [0, 1/2).

Concerning now the second sum, when ℓ ≥ ε−1 logn, we verify that:

ℓ ≥ ε−1 logn =⇒ ℓε/ logn

ℓε/ logn+ d/2
>

2

2 + d
and

ℓε/ logn

ℓε/2 logn+ d/2
>

2

1 + d
,

which in turn implies that

kn∑

ℓ≥ε−1 logn

n−
ℓε/ log n

ℓε/ log n+d/2 + (n
√

ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2 < ε−1 log2 n
(

n−
2

2+d + (n
√

ρ′n)
− 2

1+d

)

(71)

Gathering Equations (70) and (71) yields the bound independent from n and d as soon as ε < 1/2:

kn∑

ℓ=0

rn,ρ′n(βℓ) ≤ 4(2 + d)ε−1 logn2
(

ρ′n
− 1

1+d + 2
)
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We finally upper bound the second term of (63) that involves P
[

‖f̂M(ℓ) − f‖22 > 1
4rn,ρ(βℓ)

∗
]

, to be studied when ℓ > m∗.

We obtain the next result.

Proposition D.3. Assume that C > 8L2 ∨ 22d+10, that a ≥ 1 and n ≥ 3, then

√
∑

l>m∗

P

[

‖f̂M(ℓ) − f‖22 >
1

4
rn,ρ′n(βℓ)

∗
]

≤
√
2ε−1 lognn−2.

Proof. We first consider any integer ℓ > m∗ and our starting point is the Parseval equality: we decompose the loss between

f̂M(ℓ) and f as follows:

‖f̂M(ℓ) − f‖22 = ‖f̂M(ℓ) − fM(ℓ)‖22 + ‖fM(ℓ) − f‖22

≤ 2




∑

k∈{−M(ℓ),...,M(ℓ)}d}
|θk − θ̃k|2 + σ2

M(ℓ)

∑

k∈{−M(ℓ),...,M(ℓ)}d}
|ξk|2



+
L2

(2π)2β
(M(ℓ) + 1)−2β,

where in the last line we used the tail upper bound of the Fourier series on Sobolev spaces stated in Lemma 4.1.

We observe with our alleviated notations, we obtain that:

1

4
rn,ρ′n(βℓ)

∗ =
C

4
(log n)aMn,ρ′n(βℓ)

−2βℓ =
C

4
(logn)aM(ℓ)−2βℓ >

C

4
(logn)a(M(ℓ) + 1)−2βℓ .

Hence, when ℓ > m∗, we get βℓ < βm∗ < β, which implies (M(ℓ) + 1)−2βℓ > (M(ℓ) + 1)−2β . Therefore, as soon as
C
4 > 2L2, we have:

L2

(2π)2β
(M(ℓ) + 1)−2β <

1

8
rn,ρ′n(βℓ)

∗.

For a such choice of C, we then obtain that for any a > 0 and any n ≥ 3:

{

‖f̂M(ℓ) − f‖22 >
1

4
rn,ρ′n(βℓ)

∗
}

⊂







∑

k∈{−M(ℓ),...,M(ℓ)}d}
|θk − θ̃k|2 + σ2

M(ℓ)

∑

k∈{−M(ℓ),...,M(ℓ)}d}
|ξk|2 >

1

16
rn,ρ′n(βℓ)

∗







⊂







∑

k∈{−M(ℓ),...,M(ℓ)}d}
|θk − θ̃k|2 >

1

32
rn,ρ′n(βℓ)

∗







︸ ︷︷ ︸

:=E1

∪






σ2
M(ℓ)

∑

k∈{−M(ℓ),...,M(ℓ)}d}
|ξk|2 >

1

32
rn,ρ′n(βℓ)

∗







︸ ︷︷ ︸

:=E2

.

We now consider E1 and E2 separately.

Study of E1: concentration of the sequence (θ̃k)k∈Zd . We use a simple union bound:

E1 ⊂
⋃

k∈{−M(ℓ),...,M(ℓ)}d

{

|θk − θ̃k|2 ≥ rn,ρ′n(βℓ)
∗

32(2M(ℓ) + 1)d

}

.

The Hoeffding inequality applied to the (complex) bounded sequence (θ̃k)k∈Zd yields

∀t > 0 P(|θk − θ̃k|2 ≥ t) ≤ 4e−nt
2/4.
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Applying this previous inequality in the union bound above leads to

P(E1) ≤ 4(2M(ℓ) + 1)de
−n

r
n,ρ′n

(βℓ)
∗

128(2M(ℓ)+1)d

= 4(2M(ℓ) + 1)de
−nC(log n)aM(ℓ)−2βℓ

128(2M(ℓ)+1)d

≤ 4(2M(ℓ) + 1)de−n
C(log n)aM(ℓ)−(2βℓ+d)

2d128 .

Using Equation (??), we observe that nM(ℓ)2βℓ+d ≥ 1, which entails:

P(E1) ≤ 4(2M(ℓ) + 1)de−
C(log n)a

2d128 .

Then, using that a > 1 and remarking from Equation (??) that M(ℓ)d ≤ n, we deduce thanks to our choice of C that:

P(E1) ≤ 2d+2n1− C

2d+6 ≤ 2d+2n−2
d−4 ≤ n−4. (72)

Study of E2: concentration of the χ2 noise of privacy. From the definition of (ξk)k∈Zd as a complex Gaussian random vari-

able, we now that ∑

k∈{−M(ℓ),...,M(ℓ)}d}
|ξk|2 ∼ χ2(2(2M(ℓ) + 1)d),

and centering the chi square distribution yields:

P(E2) = P

(

σ2
M(ℓ)χ

2(2(2M(ℓ) + 1)d) >
rn,ρ′n(βℓ)

∗

32

)

= P

(

χ2(2(2M(ℓ) + 1)d)− 2(2M(ℓ) + 1)d) >
rn,ρ′n(βℓ)

∗

32σ2
M(ℓ)

− 2(2M(ℓ) + 1)d)

)

.

Using that the variance factor needs to be tuned as σM(ℓ) =
2
√

(2M(ℓ)+1)d

n
√

ρ′n
to ensure a ρ − zCDP and the value of

rn,ρ′n(βℓ)
∗ stated in (9), we can expand the right hand side of the last inequality as:

rn,ρ′n(βℓ)
∗

32σ2
M(ℓ)

− 2(2M(ℓ) + 1)d) = 2(2M(ℓ) + 1)d)

(
C(logn)arn,ρ′n(βℓ)n

2ρ′n
256(2M(ℓ) + 1)2d)

− 1

)

= 2(2M(ℓ) + 1)d)

(
C

4d256
(log n)aM(ℓ)−2(β+d)n2ρ′n − 1

)

≥ 2(2M(ℓ) + 1)d)

(
C

4d256
(log n)a − 1

)

,

where the last line comes from the definition of M(ℓ) that guarantees

M(ℓ)2(βℓ+d) ≤ n2ρ′n.

We may choose C ≥ 4d512, define D = 2(2M(ℓ) + 1)d and we observe that the probability of E2 is upper bounded by:

P(E2) ≤ P

(

χ2(D)−D ≥ C

2
D(log n)a

)

.

We now use the χ2 concentration upper bound stated in Equation (F.4) with σ = 1 and δ = C
2 (log n)

a and obtain that:

P(E2) ≤ e−D
C2(log n)2a

16 ∨ e−DC(log n)a

4 ≤ e−
C(log n)a

2 ≤ n−C/2 ≤ n−5, (73)

according to a ≥ 1, D ≥ 2 and our choice of C in the statement of the proposition.
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D.2. Proof of Theorem 6.2

First, we can notice that the claim about the privacy of the whole estimation procedure is a direct consequence of Lemma 2.3.

The rest of this proof only focuses on the utility claim.

Let us note ρ′ = ρ/|M| We start by writing Λ(1)(·) as a sum of two terms: a sampling one and a privacy one:

Λ(1)(M) := Λ(1)
samp(M) + Λ

(1)
priv(M) ∀M ∈ M , (74)

and Λ(2)(·) as the sum of Λ(1)(·) and of a privacy term

Λ(2)(M) := Λ(1)(M) + ∆priv(M) ∀M ∈ M . (75)

The values of Λ
(1)
samp(·), Λ(1)

priv(·) and ∆priv(·) will be fixed later in the proof.

Then, for any M ,

‖f̂M̂ − f‖2 ≤ 3
(

‖f̂M̂ − ProjSM
(f̂M̂ )‖2 + ‖ProjSM

(f̂M̂ )− f̂M‖2 + ‖f̂M − f‖2
)

≤ 6

(

‖f̂M̂ − ProjSM̂
(f̂M )‖2 + ‖ProjSM

(f̂M̂ )− f̂M‖2 + ‖ProjSM
(f̂M̂ )− ProjSM̂

(f̂M )‖2

+ ‖f̂M − f‖2
)

.

(76)

Because of the definition of B2(·), we may write that

‖f̂M̂ − f‖2 ≤ 6

(

B2(M) + Λ(1)(M̂) +B2(M̂) + Λ(1)(M) + ‖ProjSM
(f̂M̂ )− ProjSM̂

(f̂M )‖2 + ‖f̂M − f‖2
)

,

(77)

which gives, because of the relation linking Λ(1)(·) and Λ(2)(·),

‖f̂M̂ − f‖2 ≤ 6

(

B2(M) + Λ(2)(M̂) +B2(M̂) + Λ(2)(M)

+
(

‖ProjSM
(f̂M̂ )− ProjSM̂

(f̂M )‖2 − (∆priv(M) + ∆priv(M̂))
)

+ ‖f̂M − f‖2
)

.

(78)

Finally, because of the selection rule of M̂ ,

‖f̂M̂ − f‖2 ≤ 6

(

2(B2(M) + Λ(2)(M))

+
(

‖ProjSM
(f̂M̂ )− ProjSM̂

(f̂M )‖2 − (∆priv(M) + ∆priv(M̂))
)

+
︸ ︷︷ ︸

Extra term 1

+‖f̂M − f‖2
)

.
(79)

We recall that this holds for anyM ∈ M. Furthermore, in order to have control onB2(·), we may write that for any model

M′ ∈ M,

‖ProjSM′
(f̂M )− f̂M ′‖2 − Λ(1)(M ′)

≤ 2
(

‖ProjSM′
(f̃M )− f̃M ′‖2 + ‖ProjSM′

((f̂M − f̃M ))− (f̂M ′ − f̃M ′))‖2
)

− Λ(1)(M ′)

≤ 6

(

‖f̃M ′ − fM ′‖2 + ‖ProjSM′
(f̃M )− fM∧M ′‖2 + ‖fM ′ − fM∧M ′‖2

+ ‖ProjSM′
((f̂M − f̃M ))− (f̂M ′ − f̃M ′))‖2

)

− Λ(1)(M ′) .

(80)

29



Privately Learning Smooth Distributions on the Hypercube by Projections

Then using that ProjSM′
(f̃M ) = f̃M∧M ′ and that ‖fM ′−fM∧M ′‖2 ≤ ‖f−fM‖2 (which is easily seen using the Parseval

formula),

‖ProjSM′
(f̂M )− f̂M ′‖2 − Λ(1)(M ′)

≤ 6

(

‖f̃M ′ − fM ′‖2 + ‖f̃M∧M ′ − fM∧M ′‖2 + ‖f − fM‖2

+ ‖ProjSM′
((f̂M − f̃M ))− (f̂M ′ − f̃M ′))‖2

)

− Λ(1)(M ′)

≤ 6

(

2‖f̃M ′ − fM ′‖2 + ‖f − fK‖2 + 2‖ProjSM′
((f̂M − f̃M ))‖2 + 2‖(f̂M ′ − f̃M ′))‖2

)

− Λ(1)(M ′) .

(81)

Finally, the decomposition of Λ(1)(·) yields

‖ProjSM′
(f̂M )− f̂M ′‖2 − Λ(1)(M ′)

= 6

(

2

(

‖f̃M ′ − fM ′‖2 −
Λ
(1)
samp(M ′)

12

)

+ ‖f − fM‖2 + 2‖ProjSM′
((f̂M − f̃M ))‖2

+ 2

(

‖f̂M ′ − f̃M ′)‖2 −
Λ
(1)
priv(M

′)

12

))

≤ 6

(

2

(

‖f̃M ′ − fM ′‖2 −
Λ
(1)
samp(M ′)

12

)

+
︸ ︷︷ ︸

Extra term 2

+‖f − fM‖2 + 2‖f̂M − f̃M‖2

+ 2

(

‖f̂M ′ − f̃M ′‖2 −
Λ
(1)
priv(M

′)

12

)

+
︸ ︷︷ ︸

Extra term 3

)

.

(82)

We thus have decomposed the problem in quantities that we can perfectly control, and with two extra terms that we have

to control. This is where the penalization terms are useful in order to force the exponential convergence.

Control of the extra term 2. This term is handled with the help of the Talagrand inequality (Talagrand, 1996; Ledoux,

1997; Klein & Rio, 2005), using a strategy close to the one presented in (Comte, 2017).

Let M′ ∈ M, we have that

‖f̃M ′ − fM ′‖2 = sup
g:‖g‖≤1

|〈f̃M ′ − fM ′ , g〉|2 .

Furthermore, by separability of L2 and the fact that g 7→ |〈f̃M ′ − fM ′ , g〉|2 is continuous, we may consider this supremum

over a countable family of functions only (for applying Lemma F.5).

For any g such that ‖g‖ ≤ 1,

〈f̃M ′ − fM ′ , g〉 =
〈

1

n

n∑

i=1




∑

k∈{−M,...,M}d
φ̄k(Xi)φk − fK′



 , g

〉

=
1

n

n∑

i=1











∑

k∈{−M,...,M}d
〈φk, g〉 φ̄k(Xi)

︸ ︷︷ ︸

=:T
(K′)
g (Xi)

− 〈fK′ , g〉
︸ ︷︷ ︸

=E

(

T
(M′)
g (Xi)

)











= νn(T
(M ′)
g ) ,

(83)
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where νn(T
(M ′)
g ) is defined in Lemma F.5.

We may thus rewrite

‖f̃M ′ − fM ′‖2 = sup
g:‖g‖≤1

|νn(T (M ′)
g )|2 ,

where the sup may be restricted to a countable family. However, νn(T
(M ′)
g ) is not a real-valued quantity, and we cannot

apply Lemma F.5 directly. We will have to resort to decompose the quantities of interest and to add an extra factor 2 at the

end since

|νn(T (M ′)
g )|2 = R(νn(T

(M ′)
g ))2 + I(νn(T

(M ′)
g ))2 = νn(R(T

(M ′)
g ))2 + νn(I(T

(M ′)
g ))2 ,

and since taking the real part or the imaginary part are contractive projections, and hence reduce the quantities such as the

modulus and the variance.

We may first see that

‖T (M ′)
g ‖2 =

∑

k∈{−M ′,...,M ′}d
| 〈φk, g〉 |2

≤ ‖g‖2
≤ 1

(84)

because ‖g‖ ≤ 1.

Hence, we may write

T (M ′)
g =

∑

k∈{−M ′,...,M ′}d
αkφk (85)

where ∑

k∈{−M ′,...,M ′}d
|αk|2 ≤ 1. (86)

Then,

|νn(T (M ′)
g )|2 ≤

∣
∣
∣
∣
∣
∣

∑

k∈{−M ′,...,M ′}d
αkνn(φk)

∣
∣
∣
∣
∣
∣

2

Cauchy-Schwarz

≤




∑

k∈{−M ′,...,M ′}d
|αk|2








∑

k∈{−M ′,...,M ′}d
|νn(φk)|2





=
∑

k∈{−M ′,...,M ′}d
|νn(φk)|2 ,

(87)

which in turn gives that

max
P (·)=R(·) or I(·)









E



 sup
T

(M′)
g :‖g‖≤1

|νn
(

P (T (M ′)
g )

)

|









2






≤



E



 sup
T

(M′)
g :‖g‖≤1

|νn
(

T (M ′)
g

)

|









2

Jensen

≤ E



 sup
T

(K′)
g :‖g‖≤1

(µn (t))
2





≤ E




∑

k∈{−M ′,...,M ′}d
|νn(φk)|2





=
1

n

∑

k∈{−M ′,...,M ′}d
V (φk(X1))

Lemma F.1
≤ (2M ′ + 1)d

n
.

(88)
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This last value may thus be used as H2 in the application of Lemma F.5.

Furthermore, for any g such that ‖g‖ ≤ 1,

max{‖R(T (M ′)
g )‖∞, ‖I(T (M ′)

g )‖∞} ≤ ‖T (M ′)
g ‖∞

= sup
t

∣
∣
∣
∣
∣
∣

∑

k∈{−M ′,...,M ′}d
〈φk, g〉 φ̄k(t)

∣
∣
∣
∣
∣
∣

Cauchy-Schwarz

≤ sup
t

√
∑

k∈{−M ′,...,M ′}d
| 〈φk, g〉 |2

√
∑

k∈{−M ′,...,M ′}d
|φ̄k(t)|2

‖g‖≤1&|φ̄k(·)|≤1
≤

√

(2M ′ + 1)d

≤ √
n

(89)

where the last inequality comes from the fact that (2maxM+ 1)d ≤ n. This gives the value of M1 for Lemma F.5.

Finally, for any g such that ‖g‖ ≤ 1,

max{V(R(T (M ′)
g (X1))),V(I(T

(M ′)
g (X1)))} ≤ V(T (M ′)

g (X1))

≤ E

(∣
∣
∣T (M ′)

g (X1)
∣
∣
∣

2
)

=

∫ ∣
∣
∣T (M ′)

g (x)
∣
∣
∣

2

f(x)dx

|f(·)|‖≤f‖∞ a.s.

≤ ‖f‖∞
∫ ∣
∣
∣T (M ′)

g

∣
∣
∣

2

dx

‖T (K′)
g ‖≤1
≤ ‖f‖∞

(90)

which gives the value of v for Lemma F.5.

So in the end, Lemma F.5 tells us that there exists absolute constants C1, C2, C3 > 0 such that, when tuned with

Λ
(1)
samp(K) ≥ 96 (2K+1)d

n ,

E

(
∑

K′∈K

(

‖f̃M ′ − fM ′‖2 −
Λ
(1)
samp(K ′)

12

)

+

)

≤
∑

M ′∈K

C1

n

(

‖f‖∞e−C2
(2M′+1)d

‖f‖∞ + e−C2

√
(2M ′+1)d

)

(91)

Hence, since the series
∑

n e
−n and

∑

n e
−√n converge, there exists a constant C depending only on ‖f‖∞ such that

E

(
∑

M ′∈M

(

‖f̃M ′ − fM ′‖2 −
Λ
(1)
samp(M ′)

12

)

+

)

≤ C

n
. (92)

Control of the extra term 3. For any M ∈ M,

E

(

max
M ′∈M

(

‖f̂M ′ − f̃M ′‖2 −
Λ
(1)
priv(M

′)

12

)

+

)

≤ E

(
∑

M ′∈M

(

‖f̂M ′ − f̃M ′‖2 −
Λ
(1)
priv(M

′)

12

)

+

)

=
∑

M ′∈M
E

((

‖f̂M ′ − f̃M ′‖2 −
Λ
(1)
priv(M

′)

12

)

+

) (93)

For any M ′, we may notice that ‖f̂M ′ − f̃M ′‖2 has a χ2 distribution scaled by σM ′ and with 2(2M ′ + 1)d degrees of

freedom. Lemma F.4 using δ = 1 thus yields:

E

((

‖f̂M ′ − f̃M ′‖2 − (1 + 1)σ2
M ′2(2M

′ + 1)d
)

+

)

≤ 2σ2
M ′

1
e−

2(2M′+1)d

4 + 2σ2
M ′e

− 2(2M′+1)d

2 (94)
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Furthermore, since σM ′ =
2
√

(2M ′+1)d

n
√
ρ′

, we have that

E

((

‖f̂M ′ − f̃M ′‖2 −
8(2M ′ + 1)2d

n2ρ′

)

+

)

≤ C
(2M ′ + 1)d

n2ρ′

(

e−
(2M′+1)d

2 + e−
(2M′+1)d

1

)

, (95)

where C is a non-negative absolute constant.

In the end, using that from our statement Λ
(1)
priv(M

′) ≥ 96(2M ′+1)2d

n2ρ′ , we may write that

E

(

max
M ′∈M

(

‖f̂M ′ − f̃M ′‖2 −
Λ
(1)
priv(M

′)

12

)

+

)

≤
∑

M ′∈M
E

((

‖f̂M ′ − f̃M ′‖2 −
8(2M ′ + 1)2d

n2ρ′

)

+

)

≤
∑

M ′∈M
C
(2M ′ + 1)d

n2ρ′

(

e−
(2M′+1)d

2 + e−
(2M′+1)d

1

)

≤ C

n2ρ′

∑

j∈N
j
(

e−
j
2 + e−

j
1

)

≤ C′

n2ρ′

(96)

where C′ is a non-negative absolute constant since
∑

j∈N j
(

e−
j
2 + e−

j
1

)

is finite.

Control of the extra term 1. For a fixed M ∈ M,

E

((

‖ProjSM
(f̂M̂ )− ProjSM̂

(f̂M )‖2 − (∆priv(M) + ∆priv(M̂))
)

+

)

≤ E

((

2‖ProjSM
(f̂M̂ )− f̃M̂∧M‖2 + 2‖ProjSM̂

(f̂M )− f̃M̂∧M‖2 − (∆priv(M) + ∆priv(M̂))
)

+

)

≤ E

((

2‖f̂M̂ − f̃M̂‖2 + 2‖f̂M − f̃M‖2 − (∆priv(M) + ∆priv(M̂))
)

+

)

≤ E

((

2‖f̂M̂ − f̃M̂‖2 −∆priv(M̂)
)

+
+ 2‖f̂M − f̃M‖2

)

≤ E

(
∑

K′∈M

(

2‖f̂M ′ − f̃M ′‖2 −∆priv(M
′)
)

+
+ 2‖f̂M − f̃M‖2

)

(97)

Furthermore, following a roadmap similar as the one used in the control of the extra term 3 (see (96)), we observe that if

∆priv(M
′) ≥ 16(2M ′+1)2d

n2ρ′ , there exists an absolute constant C > 0 such that

E

(
∑

M ′∈M

(

2‖f̂M ′ − f̃M ′‖2 −∆priv(M
′)
)

+
+ 2‖f̂M − f̃M‖2

)

≤ C

(
1

n2ρ′
+ ‖f̂M − f̃M‖2

)

(98)

Putting the pieces together. All in all, by taking the expectation, we have proved that for any M ∈ M,

E

(

‖f̂M̂ − f‖2
)

/C ≤ ‖f − fM‖2 + E

(

‖f̂M − f̃M‖2
)

+ E

(
∑

M ′∈M

(

‖f̂M ′ − f̃M ′‖2 −
Λ
(1)
priv(M

′)

12

)

+

)

+ E

(
∑

M ′∈M

(

‖f̂M ′ − f̃M ′‖2 −
∆priv(M

′)

2

)

+

)

+ E

(
∑

M ′∈M

(

‖f̃M ′ − fM ′‖2 −
Λ
(1)
samp(M ′)

12

)

+

)

+ Λ(2)(M)
(99)
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where C > 0 is an absolute constant

Furthermore, E
(

‖f̂M − f̃M‖2
)

= 2(2M + 1)dσ2
M , and with the values of Λ

(1)
samp(·), Λ(1)

priv(·) and ∆priv(·) that were taken

within the proof, the other expectations are controlled, yielding

E

(

‖f̂M̂ − f‖2
)

/C′ ≤ ‖f − fM‖2 + 2(2M + 1)dσ2
M + E

(
∑

M ′∈M

(

‖f̂M ′ − f̃M ′‖2 −
Λ
(1)
priv(M

′)

12

)

+

)

+ E

(
∑

M ′∈M

(

‖f̂M ′ − f̃M ′‖2 −
∆priv(M

′)

2

)

+

)

+ E

(
∑

M ′∈M

(

‖f̃M ′ − fM ′‖2 −
Λ
(1)
samp(M ′)

12

)

+

)

+ Λ(2)(M)
(100)

D.3. Proof of Theorem 6.3

We recall that for any M ∈ M, the bias-variance tradeoffBV (M) in Theorem 6.2 reads

BV (M) ≤‖f − fM‖2 + (2M + 1)d

n
+ 2(2M + 1)dσ2

M , (101)

where σM =
2
√

(2M+1)d

n
√

ρ/|M|
.

As in the proof of Theorem 4.2, the dichotomy of having the variance dominated by sampling or privacy leads to the the

introduction of the optimal cut-off

M∗ + 1 := min

{

(n/2d)
1

2β+d ,
(

n
√

ρ/M/2d
) 1

β+d

}

.

If one could guarantee that M∗ + 1 belongs to M, then Theorem 6.2 would guarantee the advertised result. However, this

is not the case.

Even if one cannot guarantee that M∗ + 1 ∈ M, with the construction rule for M, we can always guarantee that for n big

enough (the ”big enough” depends on β and d), there will exist M ′ +1 ∈ M such that (M∗ +1)/2 ≤M ′+ 1 ≤M∗+1.

Since the variance terms are non-increasing with M , using M ′ instead of M∗ only decreases the variance.

The bias term on the other hand is non-decreasing withM . However, by looking at the expressions of the bias in Lemma 4.1

or Proposition E.1 shows that in the worst case, being off by a factor at most 1/2 degrades the estimation bias by a factor

22β .

Using that the minM∈M BV (M) in Theorem 6.2 is upper-bounded by BV (M ′) and that the residual terms are negligible

yields the result.

E. On non-integer multi-dimensional Sobolev spaces

This section presents all the technical details on how to handle Sobolev spaces of non-integer smoothness.

E.1. Definition

Below, we shall discuss on the multi-dimensional Sobolev spaces with a non-integer parameter β ≥ 0.

Our starting point is the space of Hölder functions with a (fractional) order s ∈ (0, 1) and radius R:

HR(s) =

{

f : Rd −→ R | ‖f‖Hs := sup
(x,y)∈[0,1]d×[0,1]d

|f(x)− f(y)|
‖x− y‖s ≤ R

}

. (102)

Then, for any real value β, we shall use the decomposition β = ⌊β⌋+ν where ν = β−⌊β⌋ ∈ [0, 1). In this decomposition,

⌊β⌋ is then the integer part of the order derivatives and ν the fractional one: ⌊β⌋ encodes for a number of integer derivatives

whereas ν refers to an Hölder smoothness of these derivatives.
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For a given L > 0, we will say that f ∈ SL(β) if:

SL(β) :=






f : Rd −→ R |

∑

|α|=⌊β⌋
‖∂αf‖22 + 1ν>0

∑

|α|=⌊β⌋
‖∂αf‖2Hν

≤ L2






. (103)

We observe that when β is an integer, SL(β) synchronises with the standard definition.

E.2. Control of the bias

We establish below the important tail behaviour of the Fourier series in our generalized Hölder Sobolev spaces:

Proposition E.1. Assume that f ∈ Sp
L(β), then an explicit constant �(β) independent from d exists such that

∑

k/∈{−M,...,M}d
|θk(f)|2 ≤ �(β)d(M + 1)−2βL2

We first state an important proposition on the relation between the fractional Holder exponent s ∈ (0, 1) of any function f
and the Fourier series associated to f .

Proposition E.2. Assume that f ∈ HR(s) for s ∈ (0, 1) and that f satisfies the periodicity condition (7) for α = (0, . . . , 0),
then the Fourier series associated to (θk(f))k∈Zd of f satisfies

∑

k/∈{−M,...,M}d
|θk(f)|2 ≤ C(s)dR2(M + 1)−2s,

where C(s) = 22s3−s

1−2−2s .

Proof. Below, k refers to a d dimensional vector of integers, and max(|k|) is the maximal value of the vector that contains

the absolute values of the coordinates of k.

We consider f and a translation of f denoted by fh: fh(x) = f(x−h) where h is any vector of [0, 1]d. Using the periodicity

of f , we have:

∀k ∈ Zd θk(f) =

∫

[0,1]d
f(x)e−iC2π〈k,x〉dx and θk(fh) =

∫

[0,1]d
fh(x)e

−iC2π〈k,x〉dx = θk(f)e
−iC2π〈k,h〉,

which entails:

θk(f)
(

1− e−iC2π〈k,h〉
)

=

∫

[0,1]d
(f(x)− fh(x))e

−iC2π〈k,x〉dx

We get from the Parseval equality and the fractional Holder hypothesis on f , for any collection of vectors h(j) ∈ [0, 1]d:

∀j ∈ {1, . . . , d}
∑

k∈Zd

|θk(f)|2
∣
∣
∣1− e−iC2π〈k,h

(j)〉
∣
∣
∣

2

= ‖f − fh(j)‖22 ≤ R2|h(j)|2s (104)

We now consider k = (k1, . . . , kd) ∈ Zd and assume that for j ∈ {1, . . . , d} : |kj | = K ∈ [2m, 2m+1). For this coordinate

j ∈ {1, . . . , d}, we consider the vector h(j) = 2−m

3 δj and we verify that:

|2π〈k, h(j)〉| = 2π

3
ki2
−m ∈

[
2π

3
,
4π

3

)

.

It implies that:
∣
∣
∣1− e−iC2π〈k,h

(j)〉
∣
∣
∣

2

≥ 1,

which in turn leads to

∑

k∈Zd:|kj |∈[2m,2m+1)

|θk(f)|2 ≤
∑

k∈Zd:|kj |∈[2m,2m+1)

|θk(f)|2
∣
∣
∣1− e−iC2π〈k,h

(j)〉
∣
∣
∣

2

≤ R2|h(j)|2s
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where we applied Equation (104) in the last line. Using the value of h(j), we deduce that:

∀j ∈ {1, . . . , d}
∑

k∈Zd:|kj |∈[2m,2m+1)

|θk(f)|2 ≤ R23−2s2−2ms. (105)

We are now able to conclude the proof: we consider any integer M ≥ 1 and the dyadic scale, which associates m0 ≥ 0
such that 2m0 ≤M < 2m0+1, we observe that

∑

k∈Zd : k/∈{−M,...,M}d
|θk(f)|2 ≤

∑

k∈Zd : k/∈{−2m0 ,...,2m0}d
|θk(f)|2

≤
∑

k∈Zd ∃j :|kj |≥2m0

|θk(f)|2

≤
d∑

j=1

∑

k∈Zd :|kj |≥2m0

|θk(f)|2

≤
d∑

j=1

∑

m≥m0

∑

k∈Zd :2m≤|kj |<2m+1

|θk(f)|2

≤ R23−s
d∑

j=1

∑

m≥m0

2−2ms

≤ R23−s

1− 2−2s
d2−2m0s

≤ R222s3−s

1− 2−2s
d(M + 1)−2s.

We obtain the conclusion of the proof with C(s) = 22s3−s

1−2−2s .

Proof of Proposition E.1. We are now ready to extend our estimate stated in Lemma 4.1 from integer Sobolev spaces to

fractional ones. Assume that β > 0: we observe that

• If β ∈ N, then Lemma 4.1 yields

‖f − fM‖ ≤ L2

(2π)2β
(M + 1)−2β .

• Oppositely, if β = ⌊β⌋+ s with s ∈ (0, 1) and assume that f ∈ Sp
L(β), we know from Proposition E.2 that:

∑

|α|=⌊β⌋

∑

k/∈{−M,...,M}d
|θk(∂α(f))|2 ≤

∑

|α|=⌊β⌋
C(s)dM−2s‖∂αf‖2Hs

≤ C(s)d(M + 1)−2sL2.

We then conclude following the same guidelines as the ones of Lemma 4.1:

((2π)(M + 1))2⌊β⌋
∑

k/∈{−M,...,M}d
|θk(f)|2 ≤

∑

|α|=⌊β⌋

∑

k/∈{−M,...,M}d
(2πk)2α|θk(f)|2

≤ C(s)d(M + 1)−2sL2,

which implies with β = ⌊β⌋+ s the final bound:

∑

k/∈{−M,...,M}d
|θk(f)|2 ≤ C(s)L2

(2π)2⌊β⌋
d(M + 1)−2β.
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E.3. Lower-bounds : Adaptation of the proof of Theorem 5.1 in the case of real-valued β’s

The only adaptation needed to the proof is to handle the new Hölder part in the definition. In fact, the only adaptation needed

is to slightly modify the function ψ(·) in Appendix C.1, and to verify that the subsequent family of functions defined from

it is a family of densities of probability in Sp
L(β). We use the decomposition β = ⌊β⌋+ ν where ν = β − ⌊β⌋ ∈ [0, 1).

Let ǫ > 0 that will be fixed later. The old ψ of Appendix C.1 is replaced by a new ψ(·) = aΨ
( ·
2

)
where a > 0 is fixed to

a small enough value such that
∑

|α|=⌊β⌋
‖∂αψ‖22 + 1ν>0

∑

|α|=⌊β⌋
‖∂αψ‖2Hν

≤ ǫ . (106)

All the other quantities are defined from this new ψ as in Appendix C.1.

The entire proof of Theorem 5.1 remains unchanged except for one detail : we first to check that the new family of densities

(fθ) is in Sp
L(β) for non-integer β’s. We separate two cases :

• β ≥ 1 : Let θ ∈ {1, . . . ,md}, and let |α| = ⌊β⌋. With the same reasoning steps as in (44), we obtain that

‖∂αfθ‖22 =

∫

[0,1]d



hβ
md
∑

i=1

θi

(

x 7→ ψ

(
x− pi
h

))(α)




2

=

∫

[0,1]d
h2ν





md
∑

i=1

θiψ
(α)

( · − pi
h

)




2

disjoint supports
= h2ν

md
∑

i=1

θi

∫

[0,1]d

(

ψ(α)

( · − pi
h

))2

‖θ‖1≤md& variable swap

≤ h2νmdhd
∫

[0,1]d

(

ψ(α)
)2

mdhd≤1
≤ h2ν‖∂αψ‖22

h≤1
≤ ‖∂αψ‖22 .

(107)

In order to control ‖∂αfθ‖2Hν
, we will need the following lemma :

Lemma E.3. If g1 and g2 are continuous with compact supports and if their supports are disjoint, then

‖g1 + g2‖Hν ≤ max {‖g1‖Hν , ‖g2‖Hν} .

Proof. Let x 6= y ∈ [0, 1]d. We will upper-bound the Hölder ratio
|(g1+g2)(x)−(g1+g2)(y)|

|x−y|ν by a Hölder ratio depending

only on g1 or g2. If x and y both live in the support of either g1 or g2, then we may rewrite, in the case where it is in

the support of g1,
|(g1 + g2)(x)− (g1 + g2)(y)|

|x− y|ν ≤ |g1(x)− g1(y)|
|x− y|ν ≤ ‖g1‖Hν . (108)

Alternatively, the case when it is in the support of g2 gives the majoration by ‖g2‖Hν .

Now let us look at the case where x and y do not both live in the support of either g1 or g2. Let us suppose that

g1(x) ≥ g2(y), the other case being treated in the same fashion. Since g1 and g2 have disjoint supports, there exists

t ∈ (0, 1) such that g1(tx + (1 − t)y) = g2(tx + (1 − t)y) = 0 (connexity argument). Now, by the intermediate

values theorem (g1 is continuous), there exists t′ ∈ [0, t] such that g1(t
′x+ (1 − t′)y) = g2(y). We thus obtain that

|(g1 + g2)(x) − (g1 + g2)(y)|
|x− y|ν =

|g1(x)− g2(y)|
|x− y|ν

=
|g1(x)− g1(t

′x+ (1 − t′)y)|
|x− y|ν

≤ |g1(x)− g1(t
′x+ (1 − t′)y)|

|x− (t′x+ (1− t′)y)|ν
≤ ‖g1‖Hν .

(109)
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The other case leads to a majoration by ‖g2‖Hν . All in all, this proves that for any x 6= y,

|(g1 + g2)(x) − (g1 + g2)(y)|
|x− y|ν ≤ max {‖g1‖Hν , ‖g2‖Hν} ,

and taking the supremum on the left-hand side yields the desired result.

Back to our problem, we may write that

‖∂αfθ‖Hν =

∥
∥
∥
∥
∥
∥

hβ
md
∑

i=1

θi

(

x 7→ ψ

(
x− pi
h

))(α)
∥
∥
∥
∥
∥
∥
Hν

= hν

∥
∥
∥
∥
∥
∥

md
∑

i=1

θiψ
(α)

( · − pi
h

)
∥
∥
∥
∥
∥
∥
Hν

Lemma E.3
≤ hν max

i

{∥
∥
∥
∥
ψ(α)

( · − pi
h

)∥
∥
∥
∥
Hν

}

= hν max
i

{

sup
x 6=y

ψ(α)
(
x−pi

h

)
− ψ(α)

(
y−pi

h

)

|x− y|ν
}

= hν max
i

{

h−ν sup
x 6=y

ψ(α) (x)− ψ(α) (y)

|x− y|ν
}

= ‖∂αψ‖Hν .

(110)

So all in all, fixing ǫ = L2 ensures that for any θ,

∑

|α|=⌊β⌋
‖∂αfθ‖22 + 1ν>0

∑

|α|=⌊β⌋
‖∂αfθ‖2Hν

≤ L2 . (111)

• β ∈ (0, 1) : When β < 1, there is one extra technical detail to consider : Since no integer derivative is performed, the

constant parts in the densities (fθ) do not vanish. This is not a problem for the Hölder part since the seminorm ‖ · ‖Hν

is unchanged up to the addition or removal of a constant function. For the sobolev par on the other hand, we may use

that ‖g1 + g2‖2 ≤ (1 + η) ‖g1‖2 + (1 + 1/η) ‖g2‖2 for any g1, g2 ∈ L2 and any η > 0, which gives that

‖fθ‖22 + ‖fθ‖2Hν
≤ L2 . (112)

when applied with g1 the constant part of fθ, g2 the part with the kernels, η = L2−1
2 , and ǫ that satisfies (1 + 2/η) ǫ ≤

L2−1
2 . Obviously, this only holds if L > 1. However, since β ∈ (0, 1), Jensen’s inequality already implies that any

density of probability g satisfies ‖g‖22+‖g‖2Hν
≥ ‖g‖22 ≥ 1, with equality if and only if g is the density of the uniform

distribution. So L > 1 is not restrictive on non-trivial classes of distributions Sp
L(β).

Now that we have verified that the family of densities (fθ) is a subset of Sp
L(β), the rest of the proof follows line by

line the one of Theorem 5.1 in the case of integer-valued β.

F. Technical results

Lemma F.1 (Popoviciu’s inequality for multivariate random variables). Let X be a random variable in Rd′ . If there exist

µ and σ such that ‖X − µ‖ ≤ σ almost-surely, then one has

V(X) := E
(
‖X − E(X)‖2

)
≤ σ2 , (113)

thus allowing to gain a factor 4 compared to the natural majoration V(X) ≤ 4σ2. In particular, with the isometric

identification (C, | · |) ∼= (R2, ‖ · ‖), this allows bounding the variance of a complex random variable.
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Proof. V(X) minimizes the function t 7→ E
(
‖X − t‖2

)
. Thus, V(X) is upper-bounded by the value of the same function

in µ, yielding the result.

Lemma F.2 (Existence of C∞ function with support in unit ball of Rd). The function Ψ from Rd to [0,+∞) which is

defined by

Ψ(x) :=

{

e
− 1

1−‖x‖2 if ‖x‖ < 1

0 otherwise
(114)

is in C∞(Rd) and takes non-negative values.

Proof. By induction, we get that for any α ∈ Nd, ∂αφ(x) = Pα(x)
Qα(x)e

− 1
1−‖x‖2 when ‖x‖ < 1 where Pα and Qα are

polynomial expressions (in the coefficients of their input vector) with Qα(x) 6= 0, and immediately ∂αΨ(x) = 0 when

‖x‖ > 1. This proves that ∂αΨ is continuous on Rd with ∂αΨ(x) = 0 when ‖x‖ ≥ 1 because the exponential term is

dominant near the unit circle. Since this holds for any α ∈ Nd, the result follows.

Lemma F.3 (Hoeffding’s inequalities). If X1, . . . , Xn are independent real-valued random variables such that for any i,
ai ≤ Xi ≤ bi, then for any t > 0,

P

(∣
∣
∣
∣
∣

∑

i

(Xi − E(Xi))

∣
∣
∣
∣
∣
> t

)

≤ 2 exp

(

− 2t2
∑

i(bi − ai)2

)

.

As a consequence, if X1, . . . , Xn are independent complex-valued random variables such that for any i, Xi ∈ B(ci, ri),

P

(∣
∣
∣
∣
∣

∑

i

(Xi − E(Xi))

∣
∣
∣
∣
∣
> t

)

≤ 4 exp

(

− t2

4
∑

i r
2
i

)

.

Proof. The first inequality for real-valued random variables is folklore, and its proof may for instance be found in

(Tsybakov, 2009). For the claim about complex random variables, we have

P

(∣
∣
∣
∣
∣

∑

i

(Xi − E(Xi))

∣
∣
∣
∣
∣
> t

)

= P





∣
∣
∣
∣
∣

∑

i

(Xi − E(Xi))

∣
∣
∣
∣
∣

2

> t2





= P



R

(
∑

i

(Xi − E(Xi))

)2

+ I

(
∑

i

(Xi − E(Xi))

)2

> t2





≤ P



R

(
∑

i

(Xi − E(Xi))

)2

> t2/2



+ P



I

(
∑

i

(Xi − E(Xi))

)2

> t2/2





= P





(
∑

i

(R(Xi)− E(R(Xi)))

)2

> t2/2



+ P





(
∑

i

(I(Xi)− E(I(Xi)))

)2

> t2/2





≤ 2 exp

(

−2(t/
√
2)2

∑

i(2ri)
2

)

+ 2 exp

(

−2(t/
√
2)2

∑

i(2ri)
2

)

,

where the last inequality comes from Hoeffding’s inequality for real-valued random variables.

Lemma F.4 (χ2 concentration). Let X1, . . . , Xd be i.i.d. random variables with distribution N (0, σ2). Let us define

Z = X2
1 + · · ·+X2

d . Then, for any δ > 0,

P
(
Z ≥ (1 + δ)dσ2

)
≤ max

{

e−
dδ2

4 , e−
dδ
2

}

. (115)
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Furthermore, the integrated version gives, for any δ > 0,

E

((
Z − (1 + δ)dσ2

)

+

)

≤ 2σ2

δ
e−

dδ2

4 + 2σ2e−
dδ
2 . (116)

Proof. According to Lemma 1 in (Laurent & Massart, 2000), for any x > 0,

P

(

Z ≥ dσ2 + 2σ2
√
dx+ 2σ2x

)

≤ e−x . (117)

Furthermore, we have δσ2d = 2σ2
√
dx1 iff x1 = dδ2

4 and δσ2d = 2σ2x2 iff x2 = dδ
2 . By noting f(x) = 2σ2

√
dx+2σ2x,

we have
P
(
Z ≥ (1 + δ)dσ2

)
≤ P

(
Z ≥ dσ2 + f(min{x1, x2})

)

≤ e−min{x1,x2}

= max
{

e−
dδ2

4 , e−
dδ
2

}

.

(118)

Furthermore,

E

((
Z − (1 + δ)dσ2

)

+

)

≤
∫ +∞

(1+δ)dσ2

P(Z ≥ t)dt

=

∫ +∞

δ

dσ2P(Z ≥ (1 + u)dσ2)du

≤
∫ +∞

δ

dσ2
(

e−
du2

4 + e−
du
2

)

du

≤
∫ +∞

δ

dσ2
(u

δ
e−

du2

4 + e−
du
2

)

du

≤ 2σ2

δ
e−

dδ2

4 + 2σ2e−
dδ
2 .

(119)

Lemma F.5 (Talagrand’s inequality (one of many) (From Appendix A in (Comte, 2017))). Let n ∈ N \ {0}, F be a

countable family of real-valued measurable functions and (Xi)i=1...,n be n independent random variables taking values

in a common Polish space. By noting, for any f ∈ F ,

νn(f) :=
1

n

n∑

i=1

(f(Xi)− E(f(Xi))) , (120)

if there exist three positive constants M1, H and v such that

sup
f∈F

‖f‖∞ ≤M1 , (121)

E

(

sup
f∈F

|νn(f)|
)

≤ H , (122)

sup
f∈F

1

n

n∑

i=1

V(f(Xi)) ≤ v , (123)

then for any δ > 0,

E

((

sup
f∈F

|νn(f)|2 − 2(1 + 2δ)H2

)

+

)

≤ 4

K1

(
v

n
e−K1δ

nH2

v +
49M2

1

K1K(δ)2n2
e−
√

2K1K(δ)
√

δ
7

nH
M1

)

, (124)

where (y)+ := max{y, 0}, K1 := 1
6 and K(δ) := min{

√
1 + δ − 1, 1}.
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