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Abstract—Large-scale deep neural networks (DNNs) have
achieved remarkable success in many application scenarios. How-
ever, high computational complexity and energy costs of modern
DNNs make their deployment on edge devices challenging. Model
quantization is a common approach to deal with deployment con-
straints, but searching for optimized bit-widths can be challenging.
In this work, we present Adaptive Bit-Width Quantization Aware
Training (AdaQAT), a learning-based method that automatically
optimizes weight and activation signal bit-widths during training
for more efficient DNN inference. We use relaxed real-valued bit-
widths that are updated using a gradient descent rule, but are
otherwise discretized for all quantization operations. The result is
a simple and flexible QAT approach for mixed-precision uniform
quantization problems. Compared to other methods that are
generally designed to be run on a pretrained network, AdaQAT
works well in both training from scratch and fine-tuning scenarios.
Initial results on the CIFAR-10 and ImageNet datasets using
ResNet20 and ResNet18 models, respectively, indicate that our
method is competitive with other state-of-the-art mixed-precision
quantization approaches.

Index Terms—Neural Network Compression, Quantization
Aware Training, Adaptive Bit-Width Optimization

I. INTRODUCTION

Deep Neural Networks (DNN) have achieved remarkable
results in recent years in a wide range of domains. While many
inference computations are done in the cloud, it is increasingly
desirable to deploy trained DNNs to edge devices, such as mo-
bile phones and wearable devices, due to privacy, security, and
latency concerns or limitations in communication bandwidth.
However, modern DNNs contain at least millions of parameters
and require billions of arithmetic operations. Memory and
computational costs make deployment on embedded devices
difficult, if not infeasible in many cases. To mitigate these is-
sues, various compression techniques have been proposed, such
as pruning [1], weight sharing [2], knowledge distillation [3],
and quantization [4]. With the emergence of hardware platforms
offering better support for low (e.g. recent Nvidia GPUs and
Google TPUs) and custom precision (e.g. FPGA and ASIC
solutions) compute, quantization is at the forefront of methods
used to increase the efficiency of DNN model inference.

Many models can be uniformly quantized to 8 bits [5] and
in some cases to even binary [6] or ternary [7] representations.
Various methods [8]–[11] push the compression limit even fur-
ther, using different bit-widths at the (sub)layer level. However,
it is challenging to find efficient mixed-precision configurations
that compress a model with minimal impact on accuracy. There
are three main families of methods that attempt to optimize
bit-width allocation for model compression: search, metric and
optimization-based. Search-based methods iteratively explore
the bit-width assignment space and are generally costly to use.
Metric-based approaches are much faster, but tend to give sub-
optimal results. Optimization methods offer good performance
at a reasonable cost, but most results of this type tend to suffer
from instabilities during the optimization process (cf. [9]),
especially if starting far (e.g. training from scratch) from an
optimized configuration.

In the following, we introduce Adaptive Bit-Width Quanti-
zation Aware Training (AdaQAT), an optimization-based
method for mixed-precision uniform quantization of both
weights and activations. Its defining characteristic is the use of
relaxed fractional bit-widths that are updated using a gradient
descent rule, but are otherwise discretized for all operations
(in forward and backward passes). Compared to previous ap-
proaches, our initial tests show that AdaQAT is able to produce
efficient quantized DNNs that are comparable to the state of the
art, in both training from scratch and fine-tuning settings.

II. RELATED WORK

Depending on when quantization is performed (after or
during training), there are two main families of methods used
in practice. The first, Post-Training Quantization (PTQ), is
fast, but can lead to non-negligible loss in accuracy for very
small formats [12]. Quantization Aware Training (QAT), while
slower, generally leads to better results and should be preferred
for extreme quantization problems.

A. Quantization-Aware Training

QAT methods stem from pioneering work on binary neural
networks [6], [13]. At its core, a QAT method consists of



using a quantized version of the network during training in
both forward and backward passes, while performing updates
on full-precision copies of the network parameters. These full
precision parameters are then quantized to be used in the next
iteration. A crucial aspect is how to perform backpropagation
through quantized variables (parameters and activations). In the
binary case, this was done using a so-called Straight-Through
Estimator (STE) [14] and this approach was later [5] extended
to cover larger bit-widths, while also applying quantization to
gradient signals.

To further improve the accuracy of quantized DNNs, the
STE idea can also be used to learn the parameters of uniform
quantizers, such as scaling factors and bias terms for weight
quantization [15], [16], and in the case of ReLU-based activa-
tions, clipping parameters [17].

B. Bit-Width Search Strategies

Finding bit-width allocations that improve inference effi-
ciency has been addressed using various approaches.

Search-based methods like HAQ [8] rely on reinforcement
learning with hardware (latency & energy) feedback in the
agent, whereas neural architecture search work like DNAS [18]
uses gradient-based information. The major downside in using
them is that they require significant time and computational
resources.

Much faster results can be obtained using metric-based
methods. For example, HAWQ [11] uses Hessian spectrum in-
formation at each layer to assign precisions. Methods like [19],
[20] rely on linear programming models, while [21] encourages
quantization that leads to reduced sharpness in the task loss
function. A potential downside of these methods might be the
fact that they can lead to sub-optimal results compared to other
approaches (cf. [9]).

Optimization-based approaches formulate the bit-width as-
signment as an optimization problem, with the main challenge
being how to handle the fact that the loss is non-differentiable
w.r.t. the bit-widths. Methods like FracBits [10] and BitPrun-
ing [22] use fractional bit-widths and linear interpolation during
the forward path, whereas SDQ [9] is based on stochastic
quantization, but seems limited to weight quantization. These
methods work well in fine-tuning scenarios, but are unstable or
do not work when training from scratch.

AdaQAT falls into this third category. It is an optimization-
based mixed-precision QAT method that shows good flexibility
when compared to other approaches in the same vein.

III. METHOD

We start by presenting the necessary background on DNN
quantization before to describe in detail the proposed method.

A. Quantization background

We adopt the DoReFa [5] scheme for weight quantization
and PACT [17] for activation quantization with the improve-
ments suggested in SAT [23]. The same quantization function
is applied to both weight and activation:

q(x) =
1

s
⌊xs⌉ , (1)

where x ∈ [0, 1], ⌊·⌉ indicates rounding to the nearest integer,
s = 2k − 1 is the scaling factor and k is the quantization bit-
width.

The weight tensors are first brought into [0, 1] using the

transformation f(w) =
tanh(w)

2max(| tanh(w)|) and then rescaled

and shifted to [−1, 1]. Backpropagation through (1) is done
using STE, leading to the following rule for w:

Forward: wq = 2 q

(
f(w) +

1

2

)
− 1

Backward:
∂L
∂w

=
∂L
∂wq

∂wq

∂w

where w is an unquantized weight tensor, L is the loss function,
and wq is the quantized version of w.

PACT [17] proposes to learn the upper bound of a ReLU
activation function in order to compute an appropriate scaling
factor s. The vanilla ReLU is thus replaced with:

PACT(x) =

 0 if x < 0
α if x > α
x otherwise

The scaling factor in (1) is now s = (2k−1)/α. The complete
activation quantization procedure is:

Forward: yq = q (y)

Backward:
∂L
∂y

=
∂L
∂yq

Ix⩽α and
∂yq

∂α
=

∂y

∂α
Ix⩽α

where y is an unquantized activation, L is the loss function, yq

is the quantized activation, and IC(x) is an indicator function
that returns 1 if x satisfies condition C and 0 otherwise.

B. Objective Function

In order to learn the bit-widths of the uniform quantizers for
both weights and activations, we use two real-valued variables
Nw and Na, respectively. The actual integer bit-widths of the
quantized network are ⌈Nw⌉ and ⌈Na⌉.

We model the loss function to minimize that takes into
account the cost of a particular bit-width configuration as:

LTotal = LTask (⌈Nw⌉ , ⌈Na⌉) + λLHard (⌈Nw⌉ , ⌈Na⌉) (2)

where λ > 0 is a balancing hyper-parameter between the task
and hardware losses.

FracBits [10] has reviewed various methods used to model
the hardware cost of arithmetic precision choices for weights
and activations. They argue in favor of memory size if only
targeting weight quantization, and BitOPs (see [10, eqs. (4)
and (5)]) for joint weight and activation quantization. For a
convolutional filter f , the BitOPs metric corresponds to

BitOPs(f) = ⌈Nw⌉ ⌈Na⌉ |f |wfhf/s
2
f ,

where |f | denotes the cardinality of the filter, wf , hf , sf are
the spatial width, height, and stride of the filter, respectively.



In our particular case, since we are using one bit-width per
weights and one per activations, the overall BitOPs hardware
cost will be linear in ⌈Nw⌉⌈Na⌉, namely

LHard (⌈Nw⌉ , ⌈Na⌉) = ⌈Nw⌉ ⌈Na⌉ .

C. Bit-Width Gradients & Parameter Updates

Since the task loss is not directly differentiable with respect
to the bit-width parameters, we use finite difference approxi-
mations as follows:

∂LTask

∂Nw
≈ LTask(⌈Nw⌉ , ⌈Na⌉)− LTask(⌊Nw⌋ , ⌈Na⌉)

∂LTask

∂Na
≈ LTask(⌈Nw⌉ , ⌈Na⌉)− LTask(⌈Nw⌉ , ⌊Na⌋)

The gradient of the total loss w.r.t. the bit-widths is then
approximated as:

∂LTotal

∂Nx
≈ ∂LTask

∂Nx
+ λ

∂LHard

∂ ⌈Nx⌉
(3)

which are then used to update the fractional bit-width param-
eters. The gradient descent rule that does this takes the form

N+
x = Nx − ηx

∂LTotal

∂Nx
, (4)

with x ∈ {w,a}, N+
x the new bit-width values at the next

iteration, and ηx > 0 corresponding learning rates.
The rest of the network and quantizer parameters are updated

using the SGD-like or accelerated algorithms that train the
network normally, with their own hyperparameters.

We have noticed that too rapid changes in the values of
the learned bit-widths tend to degrade accuracy considerably,
slowing down the optimization process. To avoid this, the
learning rates need to be reasonably small. Unless otherwise
stated, default values of ηw = 0.001 and ηa = 0.0005 are
considered in our testing. A smaller learning rate ηa is picked
since it appears that the progressive quantization of activations
is more sensitive to changes in Na than weight quantization is
to changes in Nw.

When Nw and Na reach their optimized values, continuing
to decrease them will lead to a (steep) increase of the task loss
LTask and consequently of LTotal. This means that their gradient
estimates (3) will become negative and (4) will start increasing
Nw and Na. An oscillatory pattern forms. For an example,
see Figure 1. When this happens, we monitor the number of
oscillations and as soon as it passes a certain threshold (which
we empirically set to 10) we fix the bit-widths to ⌈Nw⌉ and
⌈Na⌉, respectively, and continue the rest of the quantization
process in standard QAT fashion.

IV. EXPERIMENTS

To evaluate the effectiveness of AdaQAT, we conduct sev-
eral mixed-precision quantization experiments on the CIFAR-
10 [24] and the ImageNet [25] datasets and compare the results
with those obtained with other mixed-precision quantization
methods from the state-of-the-art.

A. Experimental Setup

Datasets We use the CIFAR-10 and ImageNet datasets for
our experiments. We only perform basic data augmentation
on the training dataset [26], which includes (in PyTorch par-
lance) RandomResizedCrop and RandomHorizontalFlip during
training, and a single-crop operation during evaluation for
ImageNet.
Networks We use a ResNet20 [27] model on CIFAR-10
and a ResNet18 [27] one on ImageNet. Following the practice
adopted by prior work regarding greater sensitivity to quantiza-
tion at the input and output of a network (see for instance [10]),
we fix the bit-width to 8 bits in the first and last layers.
Training Settings We use an SGD optimizer with a batch
size of 256, weight decay set to 10−4, and momentum to 0.9.
In the training from scratch scenario weights are initialized
using the Kaiming method [28]. We use a cosine annealing
learning rate scheduler with initial learning rate set to 0.1 for
the from scratch scenario and 0.01 for the fine-tuning scenario.
Training is run for 150 epochs in the fine-tuning scenario and
300 epochs when starting from scratch. We use PyTorch 1.13
for all experiments. The ImageNet tests are run on a cluster
of 8 NVIDIA V100 GPUs, whereas the CIFAR-10 ones use a
single GPU configuration.

B. Comparison with State-of-the-Art Methods

Table I shows the results of applying AdaQAT on CIFAR-10
compared to other methods from the literature. The first line
shows the floating-point baseline result, whereas the second
group of lines showcases static methods, where activations
are not quantized and weights are quantized uniformly to 2
bits. The third group of lines corresponds to mixed-precision
methods where the weight bit-width is learned and the activa-
tions are not quantized. AdaQAT with learned weight bit-width
(2 bits) and unquantized activations is on par with the best
of these, both when starting from a pretrained full-precision
model as well as from scratch. We should nevertheless note
that the FracBits results were obtained without fine-tuning its
hyperparameters as much as possible.

The last two groups of lines in Table I illustrate the behaviour
of our method when the activations are also quantized. The ac-
curacy results are still competitive, either when starting from a
pretrained model or from scratch. Even though the WCR metric
is not as good as that of SDQ, it is more than compensated by
the reduction in activation bit-width. It directly impacts how
much memory (the BitOps column) gets transferred from one
layer of the network to the next, going from 2.61 down to 0.51,
more than a 5× improvement.

Table II shows similar results on ImageNet compression.
The quality of the obtained quantization is comparable to
other methods from the state of the art. SDQ uses knowledge
distillation with a ResNet-101 model as teacher, coupled with
color jitter data augmentation, leading to better accuracy.

C. Balancing Parameter Impact

The hyperparameter λ dictates how the task loss LTask and
the hardware complexity LHard are balanced out in the total
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Fig. 1. Example of applying our approach with a ResNet20 network on the CIFAR-10 dataset. It showcases the evolution of the train accuracy with respect to
updating the bit-width parameters ⌈Nw⌉ and ⌈Na⌉ and how an oscillatory pattern can form (here, for the weight bit-width ⌈Nw⌉). When oscillations appear,
we fix the value of the corresponding bit-width to the largest of the two oscillation points for the rest of the QAT process, considering that it has converged.

TABLE I
Comparison with state-of-the-art quantization methods (ResNet20 on

CIFAR-10). Bit-width (W/A) denotes the average bit-width for weights and
activation signals, whereas WCR represents the weight compression rate w.r.t.
baseline. BitOPs denotes the bit operations metric (see Sec. III-B). The 4-bit

activation result is learned using our method (λ = 0.15), whereas the
activation bit-widths are fixed in the 8-bit and 32-bit settings, with only the

weight bit-widths being learned.

Method Bit-width top-1 ∆acc WCR BitOPs
(W/A) (%) (%) (Gb)

baseline 32/32 92.4 - - 41.7
DoReFa [5] 2/32 88.2 -4.2 16× 2.7
PACT [17] 2/32 89.7 -2.7 16× 2.7

LQ-Net [29] 3/3 91.6 -0.5 10.7× 0.39
FracBits [10] 2.00/32 89.6 -2.8 16× -

TTQ [30] 2.00/32 91.1 -1.2 16× -
SDQ [9] 1.93/32 92.1 -0.3 16.6× -

HAWQ-V1 [11] 3.89/4 92.2 -0.2 8.2× 0.67

Ours
(fine-tuning)

2/32 92.0 -0.4 16× 2.7
3/8 92.1 -0.3 10.7× 0.99
3/4 92.2 -0.2 10.7× 0.51

Ours
(from scratch)

2/32 91.8 -0.6 16× 2.7
3/8 91.8 -0.6 10.7× 0.99
3/4 92.1 -0.3 10.7× 0.51

loss LTotal (see eq. (2)). It controls how much accuracy loss
is allowed in the final DNN model compared to the W/A
quantization levels. As can be seen in Table III, a larger λ
leads to more compression, but less accurate test results as
well. Its value should be chosen carefully on a model-by-model
basis, taking into account the application constraints (i.e., how
much accuracy degradation is allowed versus a certain level of
attainable compression).

V. CONCLUSION & FUTURE WORK

We have introduced AdaQAT, an optimization-based method
for mixed-precision quantization. Compared to previous ap-
proaches that are generally intended to be used in a fine-tuning
setting, in early tests AdaQAT seems to be more flexible,
being capable of operating in both fine-tuning and training
from scratch scenarios, producing results that are on par

TABLE II
Comparison with state-of-the-art quantization methods on the ImageNet

dataset with ResNet18 in a fine-tuning setting. We set λ in our approach to
0.15.

Method Bit-width Accuracy(%) WCR BitOPs
(W/A) top-1 FP top-1 (Gb)

DoReFa [5] 4/4 68.1 70.5 8× 35.2
PACT [17] 4/4 69.2 70.5 8× 35.2

LQ-Net [29] 4/4 69.3 70.3 8× 35.2
FracBits [10] 4.00/4.00 70.6 70.2 8× 34.7

SDQ [9] 3.85/4 71.7 70.5 8.9× 33.4
HAWQ-V3 [19] 4.8/7.5 70.4 71.5 6.7× 72.0

Ours 4/4 70.3 70.5 8× 35.2

TABLE III
Evolution of AdaQAT mixed-precision quantization results on CIFAR-10

with respect to λ.

λ W A top-1
0.2 2 4 91.7

0.15 3 4 92.1
0.1 4 5 92.3

with state-of-the-art mixed-precision quantization approaches
on CIFAR10 with a ResNet20 network. It also performs well
in mixed-precision fine-tuning of ResNet18 on ImageNet.

As future work, we will evaluate AdaQAT on other network
types that are more sensitive to quantization (e.g. the MobileNet
family of models). Currently, bit-width assignment is done on
a per-network basis. Our goal is to generalize the approach to
cover a much larger design space. One direction is to look at
finer levels of mixed-precision quantization granularity, such
as per-layer and per-channel. We also intend to explore finer
hardware complexity and energy consumption metrics, tailored
for a specific target architecture (e.g. FPGAs), in the LHard term.
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