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Abstract:  
Microgrids are of increasing interest because they can facilitate the integration of renewable energy sources. To make the most of 
microgrids, optimization problems are formulated and solved to determine their optimal planning (i.e. sizing and energy 
management). However, these problems are complex and time-consuming to solve. In this article, we focus on a temporal 
decomposition based on Benders’ algorithm to reduce computing time while still obtaining the optimal solution. The temporal 
decomposition divides the initial problem into subproblems with a smaller time interval. The first originality of this work is the 
proposition of a methodology to apply this temporal decomposition to mixed-integer linear problems for the optimal planning of 
microgrids. The second originality is the investigation of the influence of the following relevant parameters on the computing time 
of the temporal decomposition based on Benders’ algorithm: decomposition period, nature of the problem, overall time horizon and 
number of CPUs. In addition, contrary to previous literature, our proposed method exhibits computing time reductions. They are of 
up to 5.6 times for the considered case studies. Our results also highlight the existence of a decomposition period that maximizes 
the performances. Besides, we find that the temporal decomposition is particularly efficient for mixed-integer linear problems with 
large time horizons and when more than 16 CPUs can be used. The proposed generic methodology and our results can notably be 
useful to researchers and to microgrids project holders who aim at finding the optimal sizing and operation of their microgrid within 
reduced computing time.   

Highlights: 
- A mixed-integer linear problem (MILP) is solved to optimize microgrid planning.  
- Benders’ algorithm performs the temporal decomposition of the optimization problem. 
- Method applied to a case study where computing times are reduced up to 5.6 times.  
- There is a decomposition period that minimizes computing times. 
- Distributing evenly subproblems across CPUs is key for achieving high performance. 

Keywords:  
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Nomenclature  
Abbreviations 

ADMM Alternating direction method of multipliers 

CPU Central processing unit 

LP Linear problem 

MILP Mixed integer linear problem 

MINLP Mixed integer nonlinear problem 

NLP Nonlinear problem 

PV Photovoltaic 

RES Renewable energy sources 

Indices 

 Index for temporal decomposition  ݏ

 Time  ݐ

Sets 
 

࣮  Time horizon 

Variables 

 ௕௔௧  Battery capacity (Wh)ܥ

݁  Energy stored in the battery (Wh) 

௖ܲ  Charging battery power (W) 

ௗܲ  Discharging battery power (W) 

௜ܲ௡  Input active power (W) 

௢ܲ௨௧  Output active power (W) 

௣ܲ  Peak power of the PV panels (W) 

௉ܲ௏  Power produced by the PV panels (W) 

 ௕௔௧  Battery binary variableݑ

 ௚  Grid binary variableݑ

Benders’ algorithm variables 

 Master problem additional variable   ߙ

௙݁௜௡
௦   Final energy in the battery for subproblem ݏ 

݁௜௡௜
௦   Initial energy in the battery for subproblem ݏ 

௝ߣ
௦  Dual variable 

Parameters 

ܾ௕௔௧  Battery replacement indicator 

ܾ௉௏  PV panels replacement indicator 

௕௔௧ܥ
௠௔௫  Maximum battery capacity (Wh) 

ܿ௜௡  Cost of the electricity bought from the grid (€/Wh) 

 (€) ௜௡௩  Investment costܥ

ܿ௜௡௩,௕௔௧  Investment cost for the battery (€/Wh) 

ܿ௜௡௩,௉௏  Investment cost for the PV panels (€/Wp) 

 (€) ௠௔௜௡௧   Discounted maintenance costܥ
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ܿ௠௔௜௡௧,௕௔௧  Maintenance cost for the battery (€/Wh.year) 

ܿ௠௔௜௡௧,௉௏  Maintenance cost for the PV panels (€/Wp.year) 

 (€) ௢௣  Discounted operation costܥ

ܿ௢௨௧  Cost of the electricity sold to the grid (€/Wh) 

ܿ௉௏.௟௢௦௦௦  Loss coefficient for the PV panels 

 (€) ௥௘௣௟  Discounted replacement costܥ

 Discount rate  ߜ

݁௠௔௫    Maximum energy in the battery (Wh) 

݁௠௜௡  Minimum energy in the battery (Wh) 

 Stopping criterion   ߝ

 ଴  Reference irradiance (W/mଶ)ܩ

 ௉௏  Irradiance on the plane of the PV panels (W/m²)ܩ

  ௖  Battery charging efficiencyߟ

 ௗ  Battery discharging efficiencyߟ

 Lifespan of the system (years)  ܮ

 Lower bound  ܤܮ

 ௕௔௧  Battery lifespan (years)ܮ

 (€) Life-cycle costs  ܥܥܮ

 ௉௏  PV panels lifespan (years)ܮ

 (€) Operation costs over a given time horizon  ܥܱ

௖ܲ
௙௜௫  Coefficient to compute the maximal charging power (ݕ-intercept value) (W) 

௖ܲ
௠௔௫  Battery maximum charging power (W) 

௖ܲ
௩௔௥  Coefficient to compute the maximal charging power (slope) (W/Wh) 

ௗܲ
௙௜௫  Coefficient to compute the maximal discharging power (ݕ-intercept value) (W) 

ௗܲ
௠௔௫  Battery maximum discharging power (W) 

ௗܲ
௩௔௥  Coefficient to compute the maximal discharging power (slope) (W/Wh) 

௜ܲ௡
௠௔௫  Maximum electricity bought from the grid (W) 

௢ܲ௨௧
௠௔௫    Maximum electricity sold to the grid (W) 

௟ܲ  Electricity load of the dwelling (W) 

௣ܲ
௠௔௫  Maximum peak power of the PV panels (Wp) 

 ௠௜௡  Minimum state of charge of the batteryܥܱܵ

 ௠௔௫  Maximum state of charge of the batteryܥܱܵ

T End of the time horizon (days) 

 ௖௢௠௣  Computing time for the compact resolution (s)ݐ

 ௗ௘௖௢௣௧  Computing time for the temporal decomposition (s)ݐ

 Upper bound  ܤܷ

ܼ௢௣௧௜௠௔௟௜௧௬
௦  Value of the objective function of the operation subproblem ݏ (€) 

 

1 Introduction 
Over the last decades, there has been a large deployment of renewable energy sources (RES). RES are expected to represent 45% 
of the European energy mix by 2040 [1]. Due to their intermittency, integrating these sources is a challenge since the supply-demand 
balance needs to be fulfilled at all times, and grid reinforcements might be needed [2][3]. Since RES can be distributed, the energy 
can be produced near consumption, and with this distributed energy production, the concept of microgrids has arisen [4]. A 
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microgrid is a system that includes distributed energy sources [5] such as photovoltaic panels, possibly distributed storage such as 
inter-seasonal thermal storage or battery, an energy management system and loads (curtailable or fixed) [5]. Storage systems are an 
essential component of microgrids as they absorb power production variations of RES [6]. They are also useful to improve the 
energy utilization efficiency and maximize profits [7]. There is a growing interest in microgrids since they are a great asset to ease 
the integration of RES [8], while ensuring grid stability [9], increasing resilience to outages [10], and improving flexibility [11]. 
Microgrids are also increasingly found in remote areas or where power system resilience is a crucial concern [12]. Thus, microgrids 
are related to the United Nations sustainable development goals 7 (Affordable and clean energy) and 13 (Climate action) [13]. A 
microgrid can operate in islanded or grid-connected mode [14], and has different geographic scales: from a dwelling [15] to a whole 
neighbourhood [16].  

To make the most of microgrids and ensure that the system is secure and reliable, it is crucial to determine microgrids’ optimal 
sizing and energy management [17]. Optimal microgrid sizing consists in finding the optimal capacity of each system component 
(e.g. battery, photovoltaic panels) that ensures adequate supply at minimum costs [18] and/or environmental impact [19]. Optimal 
energy management (also called optimal operation) consists in dispatching the different sources of power to achieve these objectives. 
To this end, mathematical models are used to establish optimization problems that are solved by microgrid energy management 
systems [20]. Finding both the optimal sizing and operation is challenging since the sizing result is impacted by the operation 
strategy: depending on how components are used, capacities may vary greatly [18][21]. Optimization problems applied to 
microgrids contain many variables (for sizing and operation) of different kinds (e.g. real, integer), numerous constraints, and 
integrate several temporal scales: short term to deal with the operation dynamic and long term to consider sizing [18].  

These complex optimization problems are time-consuming to solve, some of them cannot even be solved with traditional 
solvers [22]. A potential solution to reduce computing times is the use of decomposition methods [23]. The purpose of 
decomposition methods is to find the optimal solution by breaking the optimization problem into smaller subproblems, easier to 
solve [23]. Decomposition methods may reduce computing times since the subproblems can be solved in parallel [24] and are thus 
a promising field of research. This article focuses on a temporal decomposition based on Benders’ decomposition. For the sake of 
clarity, we will use “Benders’ algorithm” to refer to “Benders’ decomposition”, to avoid confusion with the term “temporal 
decomposition”. 

1.1 Literature review 
Decomposition methods have been used in several studies to reduce the complexity and computing times of optimization problems 
applied to microgrids. For instance, the Dantzig-Wolfe decomposition was used [22]. This decomposition is an iterative process 
with one master problem and several subproblems. Each iteration adds a new variable to the master problem [25]. Another method 
that was used is the Alternating Direction Method of Multipliers [26], which divides an optimization problem into several 
subproblems (without a master problem). At each iteration, each subproblem sends its solution to the other subproblems so they 
converge to find a solution to the global problem [27].  However, Benders’ algorithm, also called L-shaped method for stochastic 
problems [28][29], seems to have particularly caught the interest of scientists to solve a large variety of optimization problems [24], 
and has proven to perform better than the Alternating Direction Method of Multipliers  [30]. We will therefore focus on the literature 
that uses Benders’ algorithm to solve optimization problems applied to microgrids. Benders’ algorithm was introduced by J.F 
Benders in 1962 to solve mixed-variables (integers and continuous) programming problems [31]. Then Geoffrion generalized it to 
nonlinear convex problems [32]. The main idea behind Benders’ algorithm is to decompose the problem to be solved into two groups 
of simpler problems, namely the master problem and the subproblem (or several subproblems) [33]. The master problem is a relaxed 
version of the original problem, containing only a subset of the original variables and the associated constraints [34][32]. The 
subproblem is the original problem with the variables obtained from the master problem being fixed [34][32]. Currently, Benders’ 
algorithm is available in common solvers such as CPLEX.  

Benders’ algorithm has been used to tackle four challenges concerning optimization problems applied to microgrids. The first 
challenge is finding both the optimal sizing and operation. To this end, Yang et al. [35] used Benders’ algorithm to decouple 
investment and operation. Another challenge is the handling of binary variables. Nagarajan and Ayyanar [36] decomposed their 
optimization problem into a master problem with binary variables and a linear subproblem using Benders’ algorithm.  

The third challenge is the handling of uncertainties due to weather conditions and/or users’ behaviour. Stochastic scenarios of RES 
production and electrical loads can be constructed to account for these uncertainties. Wei et al. [37] used Benders’ algorithm to 
determine the optimal planning of a multi-energy microgrid considering long-term and short-term uncertainties. The master problem 
determines the investments variables, and a subproblem per scenario is solved to find the optimal scheduling. The authors found 
that the performance of their decomposition method is better than the one of the compact resolution (resolution without 
decomposition), especially when the number of scenarios is high. In a similar way, Khodaei [38] used Benders’ algorithm to have 
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one subproblem per scenario. An interesting result he obtained, is that the computing time of Benders’ algorithm increases linearly 
with the number of binary variables, whereas for the compact resolution, it increases exponentially. Abdulgalil et al. [39] also used 
Benders’ algorithm to have one subproblem per stochastic scenario. 

The last challenge is the long-term optimization, as highlighted by Pecenak et al. [40] and Mulkhopadhyay et al. [41]. In this article, 
we aim at accounting for the evolution of the electricity demand and of the irradiance over the years. Nevertheless, solving the entire 
optimization problem in a compact way leads to unreasonable computing times and might even be unfeasible on regular 
computers [18]. To face this challenge, a potential solution is using the temporal decomposition, which aims at reducing the time 
horizon of an optimization problem by dividing it into several problems with a smaller time horizon. 

Some applications of temporal decomposition based on Benders’ algorithm were found in the literature. In particular, 
Hemmati et al.  [42] and Montoya-Bueno et al. [43] used Benders’ algorithm to divide their original optimization problem into one 
master problem (for the investment decision) and several independent subproblems (one for each reduced time interval, such as one 
day).  

The temporal decomposition is more challenging to perform when there are intertemporal constraints, for instance, when a system 
is equipped with a battery. Indeed, it is not possible to easily decouple the constraints in order to have a single independent 
subproblem per time interval since the subproblems are linked by the state of the storage. To tackle this issue, Kim et al. [44] used 
the optimality condition decomposition to divide the subproblem that arose from Benders’ algorithm into several subproblems (one 
per time step) that were solved in parallel. Moreover, they decomposed their original mixed-integer nonlinear problem into a mixed-
integer linear problem (MILP) and several nonlinear problems (NLP). Xiong et al. [45] aimed at finding the optimal dispatch of 
integrated energy systems under uncertainty. To reduce computing times, they decomposed, using Benders’ algorithm, their problem 
into one day-ahead optimization problem and several intra-day dispatch problems (one problem per time step). Finally, Brisset and 
Ogier [46] performed a temporal decomposition based on Benders’ algorithm to find the optimal sizing and operation of a hybrid 
railway power substation over a year. They have one master problem and they divide the year into days so that one subproblem is 
solved per day. Nevertheless, their temporal decomposition reaches the optimal solution with a computing time five times higher 
compared to the compact resolution (resolution without decomposition).  

1.2 Research gaps, contributions to the research field and article structure 
Analysis of the above literature allows drawing attention to several aspects that are insufficiently addressed in articles that investigate 
the temporal decomposition using Benders’ algorithm. To our best knowledge, only two articles [45][46] performed a temporal 
decomposition based on Benders’ algorithm to solve an optimization problem with intertemporal constraints. However, Xiong et 
al. [45] did not size the elements of their microgrid, and the subproblems that arose from the decomposition were linear problems 
(LP). Additionally, their decomposition is not suitable for long-term optimization (≥ 1 year) since they had one subproblem per 
timestep. Moreover, the authors of [46] only focused on LP and the railway sector. Furthermore, our methodology allows computing 
time reductions. Contrary to references [45][46], our proposed methodology allows to decompose the original problem into a master 
problem and multiple MILP subproblems, and therefore to integrate binary variables into the decomposition. Moreover, articles [45] 
and [46] did not study the parameters that may influence the performance of the temporal decomposition in terms of computing 
times. As detailed in the following paragraphs, through our literature review, we have identified four parameters that can be of 
interest with regard to the temporal decomposition: the decomposition period [46], the nature of the optimization problem (MILP 
or LP) [38], the time horizon [37] and the number of central processing units (CPUs), when subproblems are solved in parallel [24].  

Influence of the decomposition period. We explained in the literature review that the temporal decomposition divides an optimization 
problem with a given time horizon into subproblems with a smaller time horizon (the decomposition period being the length of this 
smaller time horizon). The decomposition period is thus directly linked to the number of subproblems. Rahmaniani et al. [24] 
highlighted that the number of subproblems should not be larger than the number of variables of the master problem. It means that 
there is a compromise to find between the number of subproblems and the complexity of the master problem. This has not been 
studied in the literature whereas it might have a significant impact on the performance of the temporal decomposition.  

Influence of nature of the problem. As explained in Section 1.1, Khodaei [38] found that when the number of adjustable loads (i.e. 
loads that can be curtailed or deferred) increases, the decomposition, using Benders’ algorithm, into scenarios is more efficient. 
Increasing the number of adjustable loads is equivalent to increasing the number of binary variables. Therefore, we intuit that the 
nature of the problem (MILP or LP) may impact the performance of the temporal decomposition based on Benders’ algorithm, but 
such influence has not been studied in the literature. 

Influence of the time horizon. We have seen in the literature review that a large number of scenarios improves the performance of 
Benders’ algorithm, in terms of computing time, compared to the resolution without decomposition [43][37][38]. A large time 
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horizon is similar to a large number of scenarios since we can envision a large time horizon as several scenarios with a smaller time 
horizon. Therefore, we might expect that a large time horizon will lead to better performance of the temporal decomposition, but 
this was not investigated in previous literature. 

Parallel computation and influence of the number of CPUs. Rahmaniani et al. [24] highlighted that one of the main advantages of 
temporal decomposition is that it is suitable for parallel computation, which could drastically reduce computing times. This parallel 
computation was only performed by Kim et al. [44], but their temporal decomposition was not based on Benders’ algorithm. 
Moreover, the computing time of the parallel computation is directly linked to the number of CPUs since a higher number of CPUs 
leads to a higher number of subproblems that can be solved simultaneously. However, the influence of the number of CPUs on the 
performance of the temporal decomposition based on Benders’ algorithm was not investigated.  

In this article, we use the temporal decomposition based on Benders’ algorithm to solve long-term optimization problems applied 
to microgrids. The subproblems that arise from the decomposition are solved in parallel. Additionally, we investigate the impact of 
the decomposition period, the nature of the problem, the time horizon and the number of CPUs on the performance of the temporal 
decomposition in terms of computing times. The remainder of this article includes a detailed description of the method in Section 2. 
This Section presents Benders’ algorithm, the models, and the optimization problem. In Section 3, we apply the methodology to a 
case study and investigate the impact of the four parameters described above on computing time. In Section 4, we present the 
limitations and implications of our work as well as ideas for future work. 

2 Method 
In Section 2.1, we describe Benders’ algorithm. In Section 2.2, we present the considered application of Benders’ algorithm: an 
optimization problem for the sizing and operation of microgrids, on which we perform temporal decomposition.  

2.1 Benders’ algorithm 

2.1.1 Initial problem 
 We consider two vectors of variables ܺ and ܻ. The objective of the optimization is to minimize a function ݂ that depends on ܺ and 
ܻ [32]:  

min
௑,௒

݂(ܺ, ܻ)  (1) 

.ݏ .ݐ ଵ݃(ܻ) ≤ 0  (2) 

݃ଶ(ܺ) ≤ 0  (3) 

݃ଷ(ܺ, ܻ) ≤  0  (4) 

We express ݂ as: ݂(ܺ, ܻ) = ଵ݂(ܻ) + ଶ݂(ܺ) + ଷ݂(ܺ, ܻ), ∀(ܺ, ܻ), with ଵ݂, ଶ݂ and ଷ݂ convex functions.  

Benders’ algorithm aims at finding an optimal solution by dividing the original problem into a master problem and a subproblem. 
The master problem is solved under ܻ: the set of complicating variables. Once the solution of the master problem is found, the 
subproblem is solved considering a fixed set of variables ܻ. ܻ is called a set of “complicating variables” because the optimization 
problem is easier to solve when ܻ is fixed. Benders’ algorithm is an iterative process, each iteration solves both the master problem 
(see Section 2.1.2) and the subproblem (see Sections 2.1.3 and 2.1.4). Each iteration adds a new constraint (referred as cut) to the 
master problem. The resolution of the master problem gives a lower bound (ܤܮ) to the optimal solution, whereas the resolution of 
the subproblem gives an upper bound (ܷܤ). The iterative process stops when a stopping criterion is reached. If ݂ and ଵ݃, ݃ଶ and 
݃ଷ are convex, the generalized Benders’ algorithm method ensures the convergence to the global optimal solution [32]. 

2.1.2 Master problem 
The master problem is a relaxation of (1) where the set of variables ܺ does not appear. 

min
ఈ,௒ ଵ݂(ܻ) +   ߙ

.ݏ .ݐ ݕݐ݈ܾ݅݅݅ݏ݂ܽ݁} +  {ݏݐݑܿ ݕݐ݈݅ܽ݉݅ݐ݌݋

(5) 

ଵ݃(ܻ) ≤ 0 (6) 

where ߙ is a variable that is an approximation of the contribution of ܺ to the objective function. At the first step of the iterative 
process, {݂݁ܽݕݐ݈ܾ݅݅݅ݏ +  .is empty. The optimality and feasibility cuts are constraints added to the master problem {ݏݐݑܿ ݕݐ݈݅ܽ݉݅ݐ݌݋
These constraints add new bounds to the variable ߙ so that it reaches the optimal value of ଶ݂(ܺ) + ଷ݂(ܺ, ܻ). They are constructed 



7 
 

after solving the optimality and feasibility subproblems detailed in Sections 2.1.3 and 2.1.4 respectively. Since the master problem 
is a relaxation of the global problem, solving the master problem provides a lower bound (ܤܮ) of the optimal value. We denote by 
ܻ and ߙത the solutions of the master problem. After each iteration, ܤܮ is updated:  

ܤܮ =  ଵ݂൫ܻ൯  (7) ߙ +

2.1.3 Optimality subproblem 
The optimality subproblem aims at finding the optimal set of variables ܺ, while fixing ܻ to its value found by the master problem. 
It has the following form [34]:  

min
௑ ଶ݂(ܺ) + ଷ݂(ܺ, ܻ)  (8) 

.ݏ .ݐ ݃ଶ(ܺ) ≤ 0  (9) 

݃ଷ(ܺ, ܻ) ≤ 0  (10) 

ܻ =  ܻ (11) 

with ܻ the fixed value of ܻ determined by the master problem. Let us note ܼ௢௣௧௜௠௔௟௜௧௬ the value of the objective function of the 

optimality subproblem and ܺ the solution of the optimality subproblem. We have: 

ܼ௢௣௧௜௠௔௟௜௬ = ଶ݂൫ܺ൯ + ଷ݂൫ܺ, ܻ൯ (12) 

The following optimality cut is added to the master problem [32][25]:  

ߙ ≥  ܼ௢௣௧௜௠௔௟௜௧௬ + ᇱߣ ⋅ (ܻ − ܻ) (13) 

where ߣ is a vector of dual variables associated with constraint (11) and ߣᇱ its transpose. Dual variables are also called “shadow 
price” or “marginalized cost”. They represent the utility gained (or lost) on the objective function if the constraint is relaxed by one 
unit. These variables are also used in nonlinear programming to compute the Karush-Kuhn-Tucker conditions. 

Solving the optimality subproblem gives a feasible solution of the global problem. Therefore, it provides an upper bound (ܷܤ) for 
the optimal solution. After each iteration and if the subproblem is feasible, the upper-bound is updated:  

ܤܷ = ܼ௢௣௧௜௠௔௟௜௧௬ + ଵ݂൫ܻ൯ (14) 

2.1.4 Feasibility subproblem 
If the optimality subproblem is infeasible, the following feasibility subproblem is solved [32]:  

min
ఉభ,ఉమ

ଵߚ  ଶ  (15)ߚ +

.ݏ .ݐ ݃ଶ(ܺ ) ≤  ଵ  (16)ߚ 

݃ଷ(ܺ, ܻ) ≤  ଶ  (17)ߚ

ܻ =  ܻ (18) 

where ߚଵ and ߚଶ are positive extra variables added to relax constraints (9) and (10). Let us note ௙ܼ௘௔௦௜௕௜௟௜௧௬ the value of the objective 
function of the feasibility subproblem. The following feasibility cut is added to the master problem [32]: 

௙ܼ௘௔௦௜௕௜௟௜௧௬ ᇱߤ + ⋅ ൫ܻ − ܻ൯ ≤ 0 (19) 

with ߤ a vector of dual variables associated with constraint (18) and ߤ′ its transpose. Note that, at every iteration, the size of the 
master problem increases since a new constraint is added. The iterative process described above continues until ܷܤ and ܤܮ converge 
within a predefined tolerance ߝ. The algorithm stops when we have ௎஻ି௅஻

௅஻
≤  .The iterative process is summarized in Figure 1 .ߝ 
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Figure 1: Flowchart for Benders’ algorithm 

2.2 Application of Benders’ algorithm to microgrids optimization 
In Section 2.2.1, we introduce the system considered, and in Section 2.2.2, the models used to formulate the optimization problem 
that is presented in Section 2.2.3. Finally, in Section 2.2.4, we formulate the temporal decomposition based on Benders’ algorithm 
applied to our optimization problem.  

2.2.1 System 
In this article, we consider a dwelling as microgrid. It has its own electricity demand (appliances, lighting, heating, etc.), possesses 
a battery bank and photovoltaic (PV) panels and an energy management system. It exchanges power with the low-voltage 
distribution grid by buying or selling electricity.  

2.2.2 Model 
Battery bank. We consider the following bilinear model for the battery bank [47]:     

(ݐ)݁݀
ݐ݀

= ௖ܲ(ݐ) ⋅ ௖ߟ − ௗܲ(ݐ)
ௗߟ

 (20) 

where ߟ௖ and ߟௗ are the charging and discharging efficiencies respectively, ௖ܲ(ݐ) and ௗܲ(ݐ) are the charging and discharging 
powers respectively, and ݁(ݐ) the energy stored in the battery at time ݐ.   

Photovoltaic panels. We consider that the maximum power point tracking of the PV panels is correctly performed and we compute 
the power produced by the PV panels ௉ܲ௏(ݐ) using equation (21). This first-order equation introduces a fixed coefficient ܿ௉௏,௟௢௦௦ for 
all the PV system losses (e.g. temperature, soiling, wiring), which is considered sufficient for the purpose of this article. Note that 
there are more detailed models for computing the power produced by PV panels as the ones presented in [48]. 

 ௉ܲ௏(ݐ) =
(ݐ)௉௏ܩ

଴ܩ
⋅ ௣ܲ ⋅ ൫1 − ܿ௉௏,௟௢௦௦൯ (21) 

In Equation (21), ܩ௉௏(ݐ) is the irradiance on the plane of the PV panels, ܩ଴ is the reference irradiance (1000 W/m2) and ௣ܲ is the 
peak power of the PV panels in standard test condition.   
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Grid exchanges. The instantaneous cost related to the grid exchange ܿ௚௥௜ௗ(ݐ), is given by [47]:  

ܿ௚௥௜ௗ(ݐ) = ௜ܲ௡(ݐ) ⋅ ܿ௜௡(ݐ) − ௢ܲ௨௧(ݐ) ⋅ ܿ௢௨௧(ݐ) (22) 

with ௜ܲ௡(ݐ) and ௢ܲ௨௧(ݐ) the power that the microgrid buys or sells from the grid respectively, and ܿ௜௡(ݐ), ܿ௢௨௧(ݐ) ≥ 0 are the 
instantaneous prices for buying and selling electricity respectively.  

2.2.3 Optimization problem 
In this Section, we present the objective, constraints and degrees of freedom of the optimization problem. 

Objective. 
In this work, we aim at minimizing the life-cycle cost [49][3] ܥܥܮ: 

min{ܥܥܮ} = min ൛ܥ௜௡௩ + ௠௔௜௡௧ܥ + ௥௘௣௟ܥ +  ௢௣ൟ (23)ܥ

where ܥ௜௡௩  is the investment cost, ܥ௠௔௜௡௧  the discounted maintenance cost, ܥ௥௘௣௟  the discounted replacement cost and ܥ௢௣  the 
discounted operation cost.  

The investment cost ܥ௜௡௩ is given by: 

௜௡௩ܥ =  ܿ௜௡௩,௕௔௧  ⋅ ௕௔௧ܥ + ܿ௜௡௩,௉௏ ⋅ ௣ܲ (24) 

where ܿ௜௡௩,௕௔௧ and ܿ௜௡௩,௣௩ are the unit investment costs for the battery bank and photovoltaic panels respectively, ܥ௕௔௧ the battery 
capacity and ௣ܲ the peak power of the photovoltaic panels.  

The discounted maintenance cost ܥ௠௔௜௡௧ is given by [49]: 

௠௔௜௡௧ܥ =  ෍
ܿ௠௔௜௡௧,௕௔௧  ⋅ ௕௔௧ܥ + ܿ௠௔௜௡௧,௉௏ ⋅ ௣ܲ

(1 + ௬(ߜ

௅

௬ୀଵ

 (25) 

with ߜ the discount rate, ܮ the considered lifetime of the system and ܿ௠௔௜௡௧,௕௔௧ and ܿ௠௔௜௡௧,௣௩ are the yearly unit maintenance costs 
for the battery bank and photovoltaic panels respectively. 

The discounted replacement cost ܥ௥௘௣௟ is given by [49]: 

௥௘௣௟ܥ =  ෍
ܾ௕௔௧(ݕ) ⋅ ܿ௜௡௩,௕௔௧ ⋅ ௕௔௧ܥ + ܾ௉௏(ݕ) ⋅ ܿ௜௡௩,௉௏ ⋅ ௣ܲ

(1 + ௬(ߜ

௅

௬ୀଵ

 (26) 

where ܾ௕௔௧(ݕ) and ܾ௉௏(ݕ) are indicators to assess whether the component (battery or PV) should be replaced at a given year ݕ, 
depending on its lifetime. They are given by: 

ܾ௕௔௧(ݕ) =  ቄ1 if ݕ = ܭ ⋅ ௕௔௧ܮ
0 otherwise

 (27) 

ܾ௉௏(ݕ) =  ቄ1 if ݕ = ܯ ⋅ ௉௏ܮ
0 otherwise

 (28) 

where ܭ and ܯ are integers and ܮ௕௔௧ and ܮ௉௏ are the lifetime of the battery and the PV panels respectively. 

We compute the operation cost averaged over a year ܱܥ(࣮) as follows [47]: 

(࣮)ܥܱ =  
365

ܶ
⋅ ෍( ௜ܲ௡(ݐ) ⋅ ܿ௜௡(ݐ)

௧∈࣮

− ௢ܲ௨௧(ݐ) ⋅ ܿ௢௨௧(ݐ))ߜ௧ (29) 

where ܶ is the end of the time horizon ࣮ (࣮ = [0, ܶ]) and the coefficient ଷ଺ହ
்

 is used to average the costs over a year. This cost 

  :௢௣ is given byܥ is related to buying and selling electricity to the low-voltage grid. Then, the discounted operation cost (࣮)ܥܱ

௢௣ܥ =  ෍
(࣮)ܥܱ

(1 + ௬(ߜ

௅

௬ୀଵ

 (30) 

Investment constraints. 
We first introduce the investment constraints related to the capacity of the components. Regarding the battery, we limit its capacity 
ܿ௕௔௧ as well as the energy stored in the battery ݁(ݐ): 
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௕௔௧ܥ ≤ ௕௔௧ܥ
௠௔௫  (31) 

݁௠௜௡ = ௠௜௡ܥܱܵ ⋅ ௕௔௧ܥ ≤ (ݐ)݁ ≤ ݁௠௔௫ = ௠௔௫ܥܱܵ ⋅  ௕௔௧ (32)ܥ

where ܱܵܥ௠௜௡ and ܱܵܥ௠௔௫  are the minimum and maximum state of charge of the battery and ݁௠௜௡ and ݁௠௔௫  the minimal and 
maximal energy stored in the battery. Equation (32) states that we cannot fully charge or discharge the battery. The maximum 
charging ௖ܲ

௠௔௫ and discharging ௗܲ
௠௔௫ powers of the battery are expressed as a linear function of the installed capacity ܥ௕௔௧ [22]:  

௖ܲ
௠௔௫ = ௖ܲ

௙௜௫ + ௕௔௧ܥ ⋅ ௖ܲ
௩௔௥   (33) 

ௗܲ
௠௔௫ = ௗܲ

௙௜௫ + ௕௔௧ܥ ⋅ ௗܲ
௩௔௥ (34) 

with ௖ܲ
௙௜௫, ௖ܲ

௩௔௥, ௗܲ
௙௜௫ and ௗܲ

௩௔௥ coefficients to compute the maximum charging and discharging power using a linear form.  

When it comes to the PV panels, we limit the peak power of the PV array by a maximum peak power ௣ܲ
௠௔௫: 

௣ܲ ≤ ௣ܲ
௠௔௫ (35) 

Operation constraints. 
When charging and discharging efficiencies are considered (i.e. ߟ௖ ≠ 1 and/or ߟௗ ≠ 1), it is necessary to introduce abinary variable 
  :to make sure that the battery is not charging and discharging at the same time [47] (ݐ)௕௔௧ݑ

௖ܲ(ݐ) − (ݐ)௕௔௧ݑ ⋅  ௖ܲ
௠௔௫ ≤ 0 (36) 

ௗܲ(ݐ) − ൫1 − ൯(ݐ)௕௔௧ݑ ⋅ ௗܲ
௠௔௫ ≤ 0  (37) 

where ௖ܲ
௠௔௫ and ௗܲ

௠௔௫ are the maximum charging and discharging powers respectively.  

The second operation constraint concerns the demand/supply balance. Indeed, the power balance of the dwelling (left side of 
Equation (38)) must be equal to the power that the dwelling buys or sells to the main grid (right side of Equation (38)): 

௟ܲ(ݐ) + ௖ܲ(ݐ) − ௗܲ(ݐ) − ௉ܲ௏(ݐ) = ௜ܲ௡(ݐ) − ௢ܲ௨௧(ݐ) (38) 

with ௟ܲ(ݐ) the electricity load of the dwelling.  

The third operation constraint is related to the electricity exchanged with the low-voltage grid. To prevent the system from buying 
and selling electricity at the same time, we introduce ݑ௚(ݐ) ∈ {0,1} such that:  

௜ܲ௡(ݐ) − (ݐ)௚ݑ ⋅  ௜ܲ௡
௠௔௫ ≤ 0 (39) 

௢ܲ௨௧(ݐ) − ቀ1 − ቁ(ݐ)௚ݑ ⋅ ௢ܲ௨௧
௠௔௫ ≤ 0  (40) 

There are 2 constraints regarding the sizing degrees of freedom. Moreover, per time step, there are 4 constraints related to the battery, 
1 constraint related to the power balance and 2 constraints related to the grid. If we consider a time horizon of 20 years with a time 
step of 15 minutes, there are (4 + 1 + 2) × 96 × 365 × 20 + 2 = 4,905,602 constraints. 

Degrees of freedom (decision variables). 
The degrees of freedom (also called “decision variables”) of the optimization problem are related to the sizing of the system with 
the battery capacity ܥ௕௔௧ ∈ [0, ௕௔௧ܥ

௠௔௫] and the peak power of the PV panels ௣ܲ ∈ ൣ0, ௣ܲ
௠௔௫൧ , and to its operation with the battery 

charging and discharging powers ( ௖ܲ(ݐ) ∈ [0, ௖ܲ
௠௔௫] and ௗܲ(ݐ) ∈ [0, ௗܲ

௠௔௫]). The use of operation related degrees of freedom can 
significantly increase the total number of degrees of freedom because, for each set of optimization degree of freedom (e.g. ௖ܲ(ݐ)), 
there is one optimization degree of freedom per time step. For instance, if we consider a time horizon of 20 years with a time step 
of 15 minutes, this leads to 1,401,600 operation degrees of freedom (2×96×365×20 = 1,401,600).  

2.2.4 Temporal decomposition 
Overall idea 
In Section 1, we explained that the goal of the temporal decomposition is to reduce the time horizon of an optimization problem by 
dividing it into several problems with a smaller time horizon. For instance, if we consider a time horizon ࣮ of one year, we can 
divide the original problem into ܵ (=52) weeks, which leads to ܵ subproblems that are solved independently. In this case, the 
decomposition period, which corresponds to the length of each reduced time interval, is equal to one week. For the considered 
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system, the link between two reduced time intervals is the energy stored in the battery: the energy stored at the end of a time interval 
must be equal to the energy stored at the beginning of the following time interval.  

Formulation 
We use Benders’ algorithm introduced in Section 2.1 to give a mathematical formulation for the temporal decomposition applied to 
the optimization problem described in Section 2.2.3. 

It is possible to divide the global time horizon ࣮ into ܵ smaller time intervals:  

࣮ =  ଵ࣮ ∪ … ∪ ௌ࣮ (41) 

This means that, using the temporal decomposition, we break the optimization problem into ܵ subproblems, and ݏ is the index 
referring to a specific subproblem.  

The goal of the master problem is to make sizing decisions but also to determine intermediate states of the battery (at the end and at 
the beginning of each reduced time horizon). Therefore, the master problem is: 

min{൫ܥ௜௡௩ + ௠௔௜௡௧ܥ + ௥௘௣௟൯ܥ + ෍ (ݏ)ߙ
௦

} (42) 

.ݏ .ݐ ݁௠௜௡ ≤ ݁௜௡௜
௦ ≤  ݁௠௔௫, ݏ∀ ∈ {1, … , ܵ − 1} (43) 

݁௠௜௡ ≤ ௙݁௜௡
௦ ≤ ݁௠௔௫, ݏ∀ ∈ {1, … , ܵ − 1} (44) 

௙݁௜௡
௦ = ݁௜௡௜

௦ାଵ, ݏ∀ ∈ {1, … , ܵ − 1} (45) 

݁௜௡௜
଴ = ݁௠௜௡ (46) 

௙݁௜௡
ௌ = ݁௠௜௡ (47) 

  {ݏݐݑܿ ݕݐ݈݅ܽ݉݅ݐ݌݋}

where ݁௜௡௜
௦  and ௙݁௜௡

௦  are the initial and final energy stored in the battery for the reduced time interval ௦࣮. The intermediate states link 
the subproblems, as indicated by Equation (45). Equations (46) and (47) specify that at the beginning and at the end of the time 
horizon, the state of charge of the battery is minimal. The master problem is also subject to the investment constraints (31) and (35) 
defined in Section 2.2.3. It should be noted that at the first iteration, {ݏݐݑܿ ݕݐ݈݅ܽ݉݅ݐ݌݋} is empty and therefore, the sizing variables 
are equal to their lower bound.  

Each subproblem aims at finding the optimal operation during the reduced time interval ௦࣮. The subproblem ݏ is: 

min ෍൫ܿ௜௡(ݐ) ⋅ ௜ܲ௡(ݐ) − ܿ௢௨௧(ݐ) ⋅ ௢ܲ௨௧(ݐ)൯ ⋅ ௧ߜ
௧∈ ೞ࣮

 (48) 

.ݏ  .ݐ ݁௜௡௜
௦ =  ݁௜௡௜

௦  (49) 

௙݁௜௡
௦ =  ௙݁௜௡

௦  (50) 

௕௔௧ܥ =  ௕௔௧ (51)ܥ

௣ܲ =  ௣ܲ (52) 

where ݁௜௡௜
௦  , ݁௙௜௡

௦  ௕௔௧ and ௣ܲ are fixed and determined by the master problem. The operation subproblems are also subject to theܥ ,
operation constraints (36)-(40) defined in Section 2.2.3. 

The following optimality cuts are added to the master problem for the next iteration:  

(ݏ)ߙ ≥  ܼ௢௣௧௜௠௔௟௜௧௬
௦ + ଵߣ ⋅ ቀ݁௜௡௜

௦ − ݁௜௡௜
௦ ቁ ଶߣ + ⋅ ቀ ௙݁௜௡

௦ − ௙݁௜௡
௦ ቁ + ଷߣ ⋅ ൫ܥ௕௔௧ − ௕௔௧൯ܥ ସߣ + ⋅ ൫ ௣ܲ − ௣ܲ൯ (53) 

with ߣଵ, ,ଶߣ ଷߣ  and ߣସ  the dual variables associated to the constraints (49), (50), (51) and (52) and ܼ௢௣௧௜௠௔௟௜௧௬
௦  the value of the 

objective function of the operation subproblem ݏ.  

We have seen in Section 2.1 that the iterative process of Benders’ algorithm includes the resolution of a feasibility subproblem. In 
this case, the energy stored in the battery determined by the master problem is always achievable by the operation subproblem since 
the dwelling can buy or sell electricity to the low-voltage grid, provided that the energy exchanged between the dwelling and the 
grid does not reach the grid capacity constraints. Therefore, in this case, we only solve optimality subproblems. Otherwise, if the 
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operation subproblem is infeasible due to the grid constraints, extra positive variables can be added to the constraint on the 
intermediate battery energy and the associated feasibility subproblem can be defined. 

The subproblems are MILP. It is not possible to retrieve dual variables of those mixed-integer subproblems with common solvers. 
It is therefore not possible to formulate the optimality cuts (53). To tackle this issue, we solve the operation subproblem a first time, 
store the binary variables and solve the operation subproblem a second time with fixed binary variables [43]. This operation provides 
the weak dual variables associated with constraints (49)-(52) [50]. The flowchart for the temporal decomposition is presented in 
Figure 2. 

 

 
Figure 2: Flowchart for the temporal decomposition 

If we consider a time horizon of 1 year and a temporal decomposition in weeks (i.e. we have 52 subproblems), the master problem 
has 2 sizing degrees of freedom (battery capacity and solar panel peak power) and 51 degrees of freedom for the intermediate states 
of the battery. Therefore, the master problem has 2+51 = 53 degrees of freedom. Moreover, assuming that we have a time step of 
15 minutes, each subproblem has 7×96×2  = 1,344 degrees of freedom (because there are 2 operation degrees of freedom per time 
step).  

2.2.5 Implementation 

The optimization problems are implemented with Pyomo, a Python-based package used to formulate optimization problems [51]. 
Pyomo is an algebraic modelling language. Therefore, the master problems and subproblems described in Section 2.2.4 are 
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implemented using the mathematical equations involving parameters, variables and their derivative. When the derivative of a 
variable is needed, we use DerivativeVar from the pyomo.DAE modelling extension which allows to use differential algebraic 
equations in a Pyomo model.  

The models of the components are implemented, within a pyomo.Block class, using the equations presented in Sections 2.2.2 
and 2.2.3. The equations are implemented in their continuous form using the pyomo.Constraint, pyomo.Expression or 
pyomo.Integral, when necessary. The components models are gathered in the library LMS2 [52]. The idea behind the LMS2 
library [52] is to structure general models that can be put together to easily create optimization problems of complex systems. The 
subproblems are instantiated by a pyomo.Block called “microgrid block”. This block holds the blocks of each component and links 
them through pyomo.Constraint (such as the power balance) and an objective function defined by the user. Once all the subproblems 
are instantiated, the discretization is automatically made using a Pyomo transformation. In our case, we use a simple finite difference 
method. Once the problem is constructed, we load the data. The iterative process of the temporal decomposition is illustrated in 
Figure 2 and implemented using a while loop.  

The problems are solved with Gurobi. To solve linear models, Gurobi uses the simplex algorithm and for MILP, it uses a branch-
and-cut algorithm. Moreover, Pyomo dual variables values are easily accessible: one just needs to signal that duals are desired before 
solving the optimization problem.  

The calculations are done in a high-performance computing center (the “Moulon Mésocentre” [53] in our case). When the main 
script is launched on a node of the computing center, the user specifies the number of CPUs to use (which is, in the “Moulon 
Mésocentre”, equivalent to the number of threads). A set of tasks specific to one subproblem is performed on one CPU. These sets 
of tasks are performed in parallel using the Python package mpi4py, as recommenced when solving in parallel problems modelled 
with Pyomo. In our case, we have access to a node with a maximum of 40 CPUs of 2.1 GHz each. 

3 Case study 
In this Section, we investigate the parameters that influence the performance of the temporal decomposition on a case study. The 
study parameters are presented in Section 3.1 and the results in Section 3.2. 

3.1 Study parameters 
We consider a dwelling located in Hamelin, Germany (Latitude: 52.1°, Longitude: 9.37°). The value considered for the study 
parameters are provided in Table 1. For illustration purposes, in Figure 3, we plot the irradiance and electricity demand for the three 
first days of the input data. 
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Table 1: Parameters for the case study 
Parameter Symbol Value 

Battery bank 
Maximum capacity  ܥ௕௔௧

௠௔௫ 48,000 Wh [54] 

Investment cost  ܿ௜௡௩,௕௔௧ 0.47 €/Wh [18][54] 

Maintenance cost ܿ௠௔௜௡௧,௕௔௧ 10-3 €/Wh.year [18][54] 

Minimum state of charge ܱܵܥ௠௜௡ 0.2 [55] 

Maximum state of charge ܱܵܥ௠௔௫ 0.9 [18] 

Fixed charging power  ௖ܲ
௙௜௫ 2190 W [22] 

Variable charging power ௖ܲ
௩௔௥ 0.443 W/Wh [22] 

Fixed discharging power   ௗܲ
௙௜௫ 2433 W [22] 

Variable discharging power  ௗܲ
௩௔௥ 0.148 W/Wh [22] 

Charging efficiency  ߟ௖ 0.9776 [22] 

Discharging efficiency  ߟௗ 0.9776 [22] 

Lifetime ܮ௕௔௧ 10 years [56][57] 

Photovoltaic (PV) panels 

Maximum peak power of the PV panels  ௣ܲ
௠௔௫ 10000 Wp [58] 

Investment cost  ܿ௜௡௩,௉௏ 1.5 €/Wp [59] 

Maintenance cost ܿ௠௔௜௡௧,௉௏ 6×10-3 €/Wp.year [18] 

Loss coefficient  ܿ௉௏,௟௢௦௦ 0.19 [60] 

Lifetime ܮ௉௏ 20 years [61][62] * 

Grid 

Cost of the electricity bought from the grid ܿ௜௡ 0.56 €/kWh [63] 

Cost of the electricity sold to the grid ܿ௢௨௧ 0.082 €/kWh [58] 

General 

Considered lifetime of the system 20 ܮ years [18] 

Discount rate [2] 0.05 ߜ 

Optimization 
Time step  ߜ௧ 15 min 

Stopping criterion for Benders’ algorithm  10ି ߝଷ [44] 

Input data 
Irradiance  ܩ௉௏(ݐ) Time series from [64] 

- Mean irradiance: 135 W/m² 
- Maximal irradiance: 1072 W/m² 

Electricity demand  ௟ܲ(ݐ) Time series from [65] 
- Mean demand: 1354 W 
- Maximal demand: 6071 W 

Note: * There are more accurate PV panels models that consider the aging of panels along their lifetime depending on several factors (e.g. 
technology, location [66]). 
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 (a) 

 
 (b) 

Figure 3: Temporal evolution of (a) the irradiance and (b) the electricity demand for the three first days of the input data 

3.2 Results  
In this Section, we study the influence of the following parameters on the performance of the temporal decomposition in terms of 
computing time: the decomposition period (Section 3.2.1), the nature of the problem (MILP or LP) (Section 3.2.2), the time horizon 
(Section 3.2.3), and the number of CPUs (Section 3.2.4). 

3.2.1 Influence of the decomposition period  
In this Section, we solve the optimization problem introduced in Section 2.2.3, over one year and study the influence of the 
decomposition period on the computing times. We remind that the “compact resolution” refers to the resolution of the optimization 
problem without decomposition, and that the decomposition period corresponds to the length of a reduced time interval. In Table 2, 
we summarize the optimization results for the compact resolution and the temporal decomposition using 9 days as decomposition 
period, which corresponds to one subproblem per CPU (i.e. 40 subproblems). 

Table 2: Results comparison with the compact resolution and the temporal decomposition 
  Compact resolution Temporal decomposition  
Time horizon: 1 year Life-cycle cost 63,911 € 63,890 ܥܥܮ € 
 Battery capacity ܥ௕௔௧ 5,9 kWh 6,6 kWh 
Number of subproblems per 
CPU: 1 

PV peak power ௣ܲ 10 kW 10 kW 
Computing time  3 min 36 s 4 min 4 s 

First, we notice that the results in terms of life-cycle costs are extremely close (error of 0.03%) between the compact resolution and 
the temporal resolution. Regarding the variables values, there is a difference of 12% for the battery capacity and none for the peak 
power of the PV panels. In this case, the temporal decomposition converges 28 seconds slower than the compact resolution. 

In Figure 4, we plot the computing times ratio ݐௗ௘௖௢௣௧/ݐ௖௢௠௣ as a function of the ratio of the time horizon over the decomposition 
period: ܶ/ ௦ܶ. The black horizontal line corresponds to ݐௗ௘௖௢௣௧/ݐ௖௢௠௣ = 1. Below this line the performance of the decomposition is 
better than the compact resolution and above it is worse. Note that the ratio ܶ/ ௦ܶ is also equal to the number of subproblems. In 
Figure 4, we observe that the number of subproblems has a strong influence on the performance of the temporal decomposition: 
when the number of subproblems is equal to 20, the computing time is lower with the temporal decomposition. There is a ratio 
(ܶ/ ௦ܶ = 20) that maximizes the performance of the temporal decomposition: the temporal decomposition is 1.2 times faster than 
the compact resolution for this ratio. Above 20 subproblems, the temporal decomposition becomes inefficient (up to 17 times slower 
than the compact resolution). Indeed, there are too many subproblems (compared to the number of variables of the initial problem) 
to see the benefits of the decomposition. 
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Figure 4: Influence of the decomposition period on the computing time 

Note: the horizontal line corresponds to ݐௗ௘௖௢௣௧/ݐ௖௢௠௣ = 1 
 

3.2.2 Influence of the nature of the problem  
The optimization problem solved in Section 3.2.1 is a MILP. We found that the temporal decomposition leads to lower computing 
times, when the number of subproblems is equal to 20. In this Section, we investigate if the temporal decomposition is still efficient 
when the problem is linear. To this end, we transform the problem described above into a LP. To get rid of binary variables, we 
make the following changes: 

- Charging and discharging efficiencies are considered equal to 1. 
- Impossibility to export electricity: the surplus of production is lost. 

Similar to the results presented in Section 3.2.1, we solve the optimization problem for several decomposition periods. In Figure 5, 
we plot the variation of the computing times ratio for the LP (red line) and MILP (blue line) as a function of the ratio ܶ/ ௦ܶ. Both 
optimizations were performed for a time horizon of 1 year. First, we observe that both curves have a similar shape and that the ratio 
that maximizes the performance of the temporal decomposition is identical for both cases (ܶ/ ௦ܶ =  20). An important result is that 
for the LP, the temporal decomposition always reaches a solution with higher computing times than the compact resolution. The 
temporal decomposition has an interest only in the case of MILP for the considered case study. Indeed, the linear problem is 
relatively easy to solve and the additional operations for data saving and loading introduced by the temporal decomposition do not 
allow to reduce computing times.  

 
Figure 5: Influence of the nature of the problem on the computing time 

Note: the horizontal line corresponds to ݐௗ௘௖௢௣௧/ݐ௖௢௠௣ = 1 
 

3.2.3 Influence of the time horizon 
In this section, we investigate the influence of the time horizon on the performance of the temporal decomposition for large time 
horizons: 1 year, 10 years, and 20 years. The largest time horizon is 20 years because it corresponds to the considered lifespan of 
the overall system. 

In Table 3, we summarize the results of the optimization for the ratios that give the best performance for each time horizon: 20, 40 
and 80 for 1 year, 10 years and 20 years respectively. The absolute difference in computing time between both resolution methods 
is the highest for the largest time horizon (20 years): ~ 96 minutes. The performance of the temporal decomposition improves with 
the increase of the time horizon. 
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Table 3: Results comparison between the compact resolution and the temporal decomposition (using the optimal decomposition period) for 
several time horizons 

  Compact resolution Temporal 
decomposition  

Ratio of computing 
times 

Time horizon: 1 year 
Number of subproblems per CPU: 0.5 

  € 63,895 € 63,890 ܥܥܮ

Computing time 3 min 37 s 2 min 59 s 0.82 

Time horizon: 10 years 
Number of subproblems per CPU: 1 

  € 65,259 € 65,244 ܥܥܮ

Computing time  40 min 2 s 11 min 27 s 0.29 

Time horizon: 20 years 
Number of subproblems per CPU: 2 

  € 64,800 € 64,793 ܥܥܮ

Computing time  117 min 22 s 21 min 16 s 0.18 

In Figure 6, we plot the variation of the computing times ratio as a function of the number of subproblems (ܶ/ ௦ܶ) for several time 
horizons (1, 10 and 20 years). For each time horizon, there is a decomposition period (i.e. ratio ܶ/ ௦ܶ) that maximizes the performance 
of the temporal decomposition. We notice that the larger the time horizon, the larger the ratio ܶ/ ௦ܶ that gives the best performance. 
The best decomposition period is a compromise between the number of subproblems and their complexity: if ܶ/ ௦ܶ is too low, the 
subproblems are too complex to have the best performance of the decomposition (since their time horizon is close to the one of the 
initial problem) and if it is too high, the subproblems are easy to solve but the computing time necessary to solve this high number 
of subproblems exceeds the one to solve the initial problem. For a time horizon of 20 years, the temporal decomposition is up to 5.6 
times faster than the compact resolution. 

 
Figure 6: Influence of the time horizon on the computing time 
Note: the horizontal line corresponds to ݐௗ௘௖௢௣௧/ݐ௖௢௠௣ = 1 

 

3.2.4 Influence of the number of CPUs 
In this Section, we aim at quantifying the impact of the number of CPUs on the performance of the temporal decomposition. We 
study the influence of the number of CPUs for the intermediate time horizon (10 years). In Figure 7, we plot the computing times 
ratio as a function of the ratio ܶ/ ௦ܶ for several number of CPUs: 16, 24, 32 and 40. A first result is that with an adequate choice of 
decomposition period, the temporal decomposition is more efficient than the compact resolution for the four numbers of CPUs 
considered. Moreover, the decomposition period that maximizes the performance of the temporal decomposition depends on the 
number of CPUs, as the best decomposition period is the one that ensures the most equal repartition of the subproblems amongst 
the CPUs. For instance, for 32 CPUs, ܶ/ ௦ܶ = 60 is a good choice of decomposition period (as it corresponds to ~2 subproblems per 
CPU) whereas it worsens the performance for 40 CPUs. When the number of CPUs increases from 16 to 40, the temporal 
decomposition goes from being 1.4 times faster to being 3.5 times faster, i.e. the performance is improved by a factor 2.6 
(considering the best decomposition period for each number of CPUs).  
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Figure 7: Influence of the number of CPUs on the computing time for a time horizon of 10 years 

Note: the horizontal line corresponds to ݐௗ௘௖௢௣௧/ݐ௖௢௠௣ = 1 

4 Limitations, future work and implications 
Duality properties of MILP, contrary to those of convex problems, are usually not strong, which means that the value of the objective 
function of the primal problem is not equal to the one of the dual problem [67][68]. Therefore, the dual variables for MILP are not 
well defined. When the temporal decomposition, described in this work, is used to solve MILP, it needs to retrieve dual variables 
of MILP. Thus, in some cases, one might encounter convergence difficulties using Benders’ algorithm. Moreover, as highlighted in 
Section 3.2.2, the proposed methodology might not be efficient when the problem is not complex enough (e.g. linear problems). In 
future works, the proposed methodology could be applied to other case studies (e.g. microgrids connecting numerous dwellings 
and/or using more detailed models for the PV panels and the batteries). 

Despite its limitations, our proposed methodology has the potential to lower computing times. Thus, it could promote the deployment 
of microgrids, since it makes it possible to account for the whole life cycle to size components in a reduced computing time. 
Therefore, our work could be useful to microgrids project holders. Moreover, for a future implementation of the decomposition, we 
have highlighted influential parameters (e.g. the decomposition period).  

Conclusion  
In this article, we propose a methodology to apply a temporal decomposition based on Benders’ algorithm on mixed-integer linear 
problems to find the optimal planning of microgrids. First, the mathematical formulation for Benders’ algorithm, the models used 
to describe the different components of the microgrid and the optimization problem are introduced. Then, we detail the temporal 
decomposition which aims at dividing the initial optimization problem into several subproblems with a smaller time interval. 
Parallelization is used to decrease the computing times of the temporal decomposition. The methodology is applied to a case study 
and we investigate the influence of different parameters on the performance of the temporal decomposition in terms of computing 
time: the decomposition period, the nature of the problem, the time horizon and the number of CPUs. First, we highlight the existence 
of a decomposition period that maximizes the performance of the temporal decomposition: it is a compromise between the number 
of subproblems and their complexity. Then, we find that the temporal decomposition is more efficient when the problem is a mixed-
integer linear problem than when it is a linear problem. Regarding the time horizon, the best performance of the temporal 
decomposition compared to the compact resolution (resolution without decomposition) is obtained for a time horizon of 20 years 
using 40 CPUs. With the adequate decomposition period, the temporal decomposition is 5.6 times faster than the compact resolution. 
Increasing the number of CPUs from 16 to 40 improves the performance of the temporal decomposition by a factor 2.6. The optimal 
decomposition period depends on the number of CPUs since it guarantees the most even distribution of the subproblems amongst 
the CPUs. Even though the methodology has been applied to a specific case study, it is generic and transferable to other microgrid 
optimization problems. Our proposed methodology and results can be useful to researchers and microgrid project holders who aim 
at finding the optimal sizing and operation of their microgrid within reduced computing times.  

CRediT authorship contribution statement 
Célia Masternak: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Writing – 
Original Draft, Writing – Review & Editing, Visualization, Project administration  

Simon Meunier: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing – Review & 
Editing, Supervision, Project administration 



19 
 

Stéphane Brisset: Conceptualization, Methodology, Resources, Writing – Review & Editing, Supervision, Funding acquisition  

Vincent Reinbold: Conceptualization, Methodology, Software, Validation, Formal analysis, Resources, Writing – Review & 
Editing, Supervision, Project administration, Funding acquisition  

Declaration of Competing Interest 
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 
The authors thank Olivier Hubert for his valuable help. 

This work was performed using high performance computing resources from the “Mésocentre” computing center of CentraleSupélec 
and École Normale Supérieure Paris-Saclay supported by CNRS and Région Île-de-France (http://mesocentre.centralesupelec.fr/). 

This project has received funding from the GDR SEEDS, a research consortium from the French National Centre for Scientific 
Research (CNRS).   



20 
 

References 
[1] European Commission, “REPOwerEU Plan, EU external energy management in a changing world”, May 2022, URL: https://eur-

lex.europa.eu/legal-content/EN/TXT/?uri=JOIN%3A2022%3A23%3AFIN&qid=1653033264976 [Accessed: 05-Jan-23]. 
[2] S. Meunier, C. Protopapadaki, R. Baetens, and D. Saelens, “Impact of residential low-carbon technologies on low-voltage grid 

reinforcements”, Appl. Energy, vol. 297: 117057, Sep. 2021, doi: 10.1016/j.apenergy.2021.117057. 
[3] F. Gonzalez, S. Meunier, C. Protopapadaki, Y. Perez, D. Saelens, and M. Petit, “Impact of distributed energy resources and electric 

vehicle smart charging on low voltage grid stability”, presented at the 26th International Conference and Exhibition on Electricity 
Distribution (CIRED 2021), p. 1-6, Sept. 2021, doi: 10.1049/icp.2021.2076. 

[4] N. Zaree, V. Vahidinasab, and A. Estebsari, “Energy Management Strategy of Microgrids Based on Benders Decomposition Method”, 
presented at the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and 
Commercial Power Systems Europe (EEEIC / I&CPS Europe), Palermo, Jun. 2018, pp. 1–6. doi: 10.1109/EEEIC.2018.8494507. 

[5] Y. E. García Vera, R. Dufo-López, and J. L. Bernal-Agustín, “Energy Management in Microgrids with Renewable Energy Sources: A 
Literature Review”, Appl. Sci., vol. 9, no. 18: 3854, Sep. 2019, doi: 10.3390/app9183854. 

[6] C. Wang, Y. Liu, X. Li, L. Guo, L. Qiao, and H. Lu, “Energy management system for stand-alone diesel-wind-biomass microgrid with 
energy storage system”, Energy, vol. 97, pp. 90–104, Feb. 2016, doi: 10.1016/j.energy.2015.12.099. 

[7] H. Karimi and S. Jadid, “Two-stage economic, reliability, and environmental scheduling of multi-microgrid systems and fair cost 
allocation,” Sustain. Energy Grids Netw., vol. 28: 100546, Dec. 2021, doi: 10.1016/j.segan.2021.100546. 

[8] X. Liu and B. Su, “Microgrids - an integration of renewable energy technologies,” presented at the 2008 China International Conference 
on Electricity Distribution (CICED 2008), Guangzhou, China, Dec. 2008, pp. 1–7. doi: 10.1109/CICED.2008.5211651. 

[9] A. Maulik, “Probabilistic power management of a grid-connected microgrid considering electric vehicles, demand response, smart 
transformers, and soft open points,” Sustain. Energy Grids Netw., vol. 30, p. 100636, Jun. 2022, doi: 10.1016/j.segan.2022.100636. 

[10] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed Optimal Power Flow for Smart Microgrids”, IEEE Trans. Smart Grid, vol. 
4, no. 3, pp. 1464–1475, Sep. 2013, doi: 10.1109/TSG.2013.2248175. 

[11] R. Jamalzadeh and M. Hong, “Microgrid Optimal Power Flow Using the Generalized Benders Decomposition Approach”, IEEE Trans. 
Sustain. Energy, vol. 10, no. 4, pp. 2050–2064, Oct. 2019, doi: 10.1109/TSTE.2018.2877907. 

[12] Y. Wang, C. Chen, J. Wang, and R. Baldick, “Research on Resilience of Power Systems Under Natural Disasters—A Review”; IEEE 
Trans. Power Syst., vol. 31, no. 2, pp. 1604–1613, Mar. 2016, doi: 10.1109/TPWRS.2015.2429656. 

[13] United Nations, Sustainable Development Goals, URL: https://sdgs.un.org/goals, [Accessed: 27-Jan-23]. 
[14] D. P. e Silva, J. L. Félix Salles, J. F. Fardin, and M. M. Rocha Pereira, “Management of an island and grid-connected microgrid using 

hybrid economic model predictive control with weather data”, Appl. Energy, vol. 278: 115581, Nov. 2020, doi: 
10.1016/j.apenergy.2020.115581. 

[15] M. B. Sanjareh, M. H. Nazari, G. B. Gharehpetian, R. Ahmadiahangar, and A. Rosin, “Optimal scheduling of HVACs in islanded 
residential microgrids to reduce BESS size considering effect of discharge duration on voltage and capacity of battery cells,” Sustain. 
Energy Grids Netw., vol. 25: 100424, Mar. 2021, doi: 10.1016/j.segan.2020.100424. 

[16] M. A. Beyazıt, A. Taşcıkaraoğlu, and J. P. S. Catalão, “Cost optimization of a microgrid considering vehicle-to-grid technology and 
demand response,” Sustain. Energy Grids Netw., vol. 32: 100924, Dec. 2022, doi: 10.1016/j.segan.2022.100924. 

[17] B. Li, R. Roche, D. Paire, and A. Miraoui, “Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen 
loads and hydrogen storage degradation”, Appl. Energy, vol. 205, pp. 1244–1259, Nov. 2017, doi: 10.1016/j.apenergy.2017.08.142. 

[18] B. Li, R. Roche, and A. Miraoui, “Microgrid sizing with combined evolutionary algorithm and MILP unit commitment”, Appl. Energy, 
vol. 188, pp. 547–562, Feb. 2017, doi: 10.1016/j.apenergy.2016.12.038. 

[19] N. Dougier, P. Garambois, J. Gomand, and L. Roucoules, “Multi-objective non-weighted optimization to explore new efficient design 
of electrical microgrids”, Appl. Energy, vol. 304: 117758, Dec. 2021, doi: 10.1016/j.apenergy.2021.117758. 

[20] M. F. Zia, E. Elbouchikhi, and M. Benbouzid, “Microgrids energy management systems: A critical review on methods, solutions, and 
prospects”, Appl. Energy, vol. 222, pp. 1033–1055, Jul. 2018, doi: 10.1016/j.apenergy.2018.04.103. 

[21] D. R. Prathapaneni and K. P. Detroja, “An integrated framework for optimal planning and operation schedule of microgrid under 
uncertainty,” Sustain. Energy Grids Netw., vol. 19: 100232, Sep. 2019, doi: 10.1016/j.segan.2019.100232. 

[22] T. Schütz, X. Hu, M. Fuchs, and D. Müller, “Optimal design of decentralized energy conversion systems for smart microgrids using 
decomposition methods”, Energy, vol. 156, pp. 250–263, Aug. 2018, doi: 10.1016/j.energy.2018.05.050 

[23] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on Decomposition Methods,” May 2015, URL: 
https://web.stanford.edu/class/ee364b/lectures/decomposition_notes.pdf, [Accessed: 10-Feb-23]. 

[24] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei, “The Benders decomposition algorithm: A literature review”, Eur. J. Oper. 
Res., vol. 259, no. 3, pp. 801–817, Jun. 2017, doi: 10.1016/j.ejor.2016.12.005. 

[25] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear programming and network flows, 4th ed, Wiley, 2010. 
[26] Y. Liu, H. Beng Gooi, and H. Xin, “Distributed energy management for the multi-microgrid system based on ADMM”, presented at 

the 2017 IEEE Power & Energy Society General Meeting, Chicago, USA, Jul. 2017, pp. 1–5. doi: 10.1109/PESGM.2017.8274099. 
[27] S. Boyd, “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers,” Found. Trends Mach. 

Learn., vol. 3, no. 1, pp. 1–122, 2010, doi: 10.1561/2200000016. 
[28] F. Louveaux and J. R. Birge, L-Shaped Method for Two-Stage Stochastic Programs with Recourse. In: C.A. Floudas, P.M. Pardalos 

(eds) Encyclopedia of Optimization, Boston, MA: Springer US, 2009. doi: 10.1007/978-0-387-74759-0_351. 
[29] R. Kizito, Z. Liu, X. Li, and K. Sun, “Stochastic optimization of distributed generator location and sizing in an islanded utility microgrid 

during a large-scale grid disturbance,” Sustain. Energy Grids Netw., vol. 27, p. 100516, Sep. 2021, doi: 10.1016/j.segan.2021.100516. 



21 
 

[30] S. Candas, K. Zhang, and T. Hamacher, “A Comparative Study of Benders Decomposition and ADMM for Decentralized Optimal 
Power Flow”, presented at the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 
Washington, DC, USA, Feb. 2020, pp. 1–5. doi: 10.1109/ISGT45199.2020.9087777. 

[31] J.F. Benders, “Partitioning procedures for solving mixed-variables programming problems”, Numer. Math., vol 4, pp. 238–252, Dec. 
1962, doi: 10.1007/BF01386316 

[32] A.M. Geoffrion, “Generalized Benders decomposition”, J Optim Theory Appl, vol 10, pp. 237–260, Oct. 1972, doi: 
10.1007/BF00934810. 

[33] A. Ibrahim, O. A. Dobre, T. M. N. Ngatched, and A. G. Armada, “Bender’s Decomposition for Optimization Design Problems in 
Communication Networks”, IEEE Netw., vol. 34, no. 3, pp. 232–239, May 2020, doi: 10.1109/MNET.001.1900414. 

[34] R. Rahmaniani, S. Ahmed, T. G. Crainic, M. Gendreau, and W. Rei, “The Benders Dual Decomposition Method”, Oper. Res., vol. 68, 
no. 3, pp. 878–895, May 2020, doi: 10.1287/opre.2019.1892. 

[35] Y. Yang, W. Pei, Q. Huo, J. Sun, and F. Xu, “Coordinated planning method of multiple micro-grids and distribution network with 
flexible interconnection”, Appl. Energy, vol. 228, pp. 2361–2374, Oct. 2018, doi: 10.1016/j.apenergy.2018.07.047. 

[36] A. Nagarajan and R. Ayyanar, “Design and scheduling of microgrids using benders decomposition,” presented at IEEE 43rd 
Photovoltaic Specialists Conference (PVSC), Portland, USA, Jun. 2016, pp. 1843–1847. doi: 10.1109/PVSC.2016.7749940. 

[37] J. Wei, Y. Zhang, J. Wang, X. Cao, and M. A. Khan, “Multi-period planning of multi-energy microgrid with multi-type uncertainties 
using chance constrained information gap decision method”, Appl. Energy, vol. 260: 114188, Feb. 2020, doi: 
10.1016/j.apenergy.2019.114188. 

[38] A. Khodaei, “Microgrid Optimal Scheduling With Multi-Period Islanding Constraints,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 
1383–1392, May 2014, doi: 10.1109/TPWRS.2013.2290006. 

[39] M. A. Abdulgalil, M. Khalid, and F. Alismail, “Optimizing a Distributed Wind-Storage System Under Critical Uncertainties Using 
Benders Decomposition,” IEEE Access, vol. 7, pp 77951–77963, 2019, doi: 10.1109/ACCESS.2019.2922619. 

[40] Z. K. Pecenak, M. Stadler, and K. Fahy, “Efficient multi-year economic energy planning in microgrids”, Appl. Energy, vol. 255: 113771, 
Dec. 2019, doi: 10.1016/j.apenergy.2019.113771. 

[41] B. Mukhopadhyay and D. Das, “Optimal multi-objective long-term sizing of distributed energy resources and hourly power scheduling 
in a grid-tied microgrid,” Sustain. Energy Grids Netw., vol. 30: 100632, Jun. 2022, doi: 10.1016/j.segan.2022.100632. 

[42] S. Hemmati, S. F. Ghaderi, and M. S. Ghazizadeh, “Sustainable energy hub design under uncertainty using Benders decomposition 
method”, Energy, vol. 143, pp. 1029–1047, Jan. 2018, doi: 10.1016/j.energy.2017.11.052. 

[43] S. Montoya-Bueno, J. Muñoz-Hernandez, J. Contreras, and L. Baringo, “A Benders’ Decomposition Approach for Renewable 
Generation Investment in Distribution Systems”, Energies, vol. 13, no. 5: 1225, Mar. 2020, doi: 10.3390/en13051225. 

[44] T. H. Kim, H. Shin, K. Kwag, and W. Kim, “A parallel multi-period optimal scheduling algorithm in microgrids with energy storage 
systems using decomposed inter-temporal constraints”, Energy, vol. 202: 117669, Jul. 2020, doi: 10.1016/j.energy.2020.117669. 

[45] H. Xiong, Z. Chen, Y. Zhang, C. Wang, and C. Guo, “Robust Dispatch with Temporal Decomposition of Integrated Electrical-Heating 
System Considering Dynamic Reserve Domain”, presented at the 2021 IEEE 2nd China International Youth Conference on Electrical 
Engineering (CIYCEE), Chengdu, China, pp. 1–7, Dec. 2021, doi: 10.1109/CIYCEE53554.2021.9676746. 

[46] S. Brisset and M. Ogier, “Collaborative and multilevel optimizations of a hybrid railway power substation”, Int. J. Numer. Model. 
Electron. Netw. Devices Fields, vol. 32, no. 4, Jul. 2019, doi: 10.1002/jnm.2289. 

[47] V. Reinbold, V.-B. Dinh, D. Tenfen, B. Delinchant and D. Saelens, "Optimal operation of building microgrids – comparison with 
mixed-integer linear and continuous non-linear programming approaches", COMPEL, Vol. 37 No. 2, pp. 603-616, Mar. 2018, doi: 
10.1108/COMPEL-11-2016-0489 

[48] A. McEvoy, T. Markvart, and L. Castañer, Practical Handbook of Photovoltaics - Fundamental and Applications, 2nd ed, Academic 
Press, 2011. 

[49] C. Soenen, V. Reinbold, S. Meunier, J.A. Cherni; A. Darga, P. Dessante, L. Quéval, “Comparison of Tank and Battery Storages for 
Photovoltaic Water Pumping”, Energies, vol. 14, no. 9:  2483, Apr. 2021, doi: 10.3390/en14092483. 

[50] L. A. Wolsey, “Integer programming duality: Price functions and sensitivity analysis,” Math. Program., vol. 20, no. 1, pp. 173–195, 
Dec. 1981, doi: 10.1007/BF01589344. 

[51] M. L. Bynum, G.A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nicholson, J. D. Siirola, J-P. Watson, D. L. Woodruff, “Pyomo — 
Optimization Modeling in Python”, vol. 67. Cham: Springer International Publishing, 2021. doi: 10.1007/978-3-030-68928-5. 

[52] V. Reinbold, “LMS2 Library”, URL: https://reinboldv.github.io/lms2/docs/_build/html/index.html, [Accessed: 13-Feb-23]. 
[53] Mésocentre du Moulon, URL: http://mesocentre.centralesupelec.fr/, [Accessed: 09-Jan-23]. 

[54] R. Dufo-López, J. L. Bernal-Agustín, and J. Contreras, “Optimization of control strategies for stand-alone renewable energy systems 
with hydrogen storage”, Renew. Energy, vol. 32, no. 7, pp. 1102–1126, Jun. 2007, doi: 10.1016/j.renene.2006.04.013. 

[55] D. Tenfen and E. C. Finardi, “A mixed integer linear programming model for the energy management problem of microgrids”, Electr. 
Power Syst. Res., vol. 122, pp. 19–28, May 2015, doi: 10.1016/j.epsr.2014.12.019. 

[56] Sunrun Team, “What Is the Life Expectancy of a Solar Battery?”, Mar. 2019, URL: https://www.sunrun.com/go-solar-center/solar-
articles/what-is-the-life-expectancy-of-a-solar-
battery#:~:text=How%20Long%20Does%20a%20Solar,of%20your%20solar%20power%20system, [Accessed: 16-Dec-22]. 

[57] Meritsun, “Power House Lithium ion Battery”, URL: https://www.meritsunpower.com/10-years-warranty-6000-cycle-life-5kwh-
power-house-lithium-ion-battery-48v-100ah-solar-battery-with-lcd-display,  [Accessed: 16-Dec-22]. 

[58] “EEG 2023: Das ändert sich für Photovoltaik-Anlagen“, Oct. 2022 
URL:https://www.verbraucherzentrale.de/wissen/energie/erneuerbare-energien/eeg-2023-das-aendert-sich-fuer-photovoltaikanlagen-
75401 , [Accessed: 15-10-22]. 



22 
 

[59] L. De Boeck, S. Van Asch, P. De Bruecker, and A. Audenaert, “Comparison of support policies for residential photovoltaic systems in 
the major EU markets through investment profitability”, Renew. Energy, vol. 87, pp. 42–53, Mar. 2016, doi: 
10.1016/j.renene.2015.09.063. 

[60] A. Gong, “Understanding PV system losses”, Aurora Sol, 2018, URL: https://www.aurorasolar.com/blog/understanding-pv-system-
losses-part-1/, [Accessed: 25-Jan-23]. 

[61] A. Yaldız, T. Gökçek, İ. Şengör, and O. Erdinç, “Optimal sizing and economic analysis of Photovoltaic distributed generation with 
Battery Energy Storage System considering peer-to-peer energy trading”; Sustain. Energy Grids Netw., vol. 28: 100540, Dec. 2021, 
doi: 10.1016/j.segan.2021.100540. 

[62] S. Meunier, L. Quéval, A. Darga, P. Dessante, C. Marchand, M. Heinrich, J. A. Cherni, E. A. de la Fresnaye, L. Vido, B. Multon, 
“Sensitivity Analysis of Photovoltaic Pumping Systems for Domestic Water Supply”, IEEE Trans. Ind. Appl., vol. 56, no. 6, pp. 6734–
6743, Nov. 2020, doi: 10.1109/TIA.2020.3013513. 

[63] J. Heidjann, “Aktuelle Strompreise für Haushalte“, 2022, URL: https://www.stromauskunft.de/strompreise/, [Accessed: 21-Nov-22]. 
[64] European Commission, “Copernicus Atmosphere Monitoring Service (CAMS)”, Nov. 2014, URL: http://www.soda-pro.com/web-

services/radiation/cams-radiation-service, [Accessed: 03-Feb-23]. 
[65] M. Schlemminger, T. Ohrdes, E. Schneider, and M. Knoop, “Dataset on electrical single-family house and heat pump load profiles in 

Germany,” Sci. Data, vol. 9, no. 1, p. 56, Dec. 2022, doi: 10.1038/s41597-022-01156-1. 
[66] S. A. Alves dos Santos, J. P. N. Torres, C. A. F. Fernandes, and R. A. Marques Lameirinhas, “The impact of aging of solar cells on the 

performance of photovoltaic panels,” Energy Convers. Manag. X, vol. 10:  100082, Jun. 2021, doi: 10.1016/j.ecmx.2021.100082. 
[67] H. P. Williams, “Duality in mathematics and linear and integer programming”, Journal of Optimization Theory and Applications, vol. 

90, pp. 257-278, Aug. 1996, doi: 10.1007/BF02189998. 
[68] M. Guzlsoy, and T.K. Ralphs, “Duality for mixed-integer linear programs”, Internat. J. Oper. Res., vol. 4, no. 3, pp. 118-137, 2007. 

 

 
  
 
 

 


