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Abstract

This year, the deep learning lecture on the Metz campus of CentraleSupélec was
evaluated by the participation to a custom challenge on plankton classification
hosted on Kaggle. This paper presents the competition and the results obtained
by the 13 "competing" teams. The challenge was hosted on kaggle https://www.
kaggle.com/c/3md4040-2022-challenge.

1 Context

1.1 Why a challenge

I used to evaluate the deep learning lecture by a standard paper and pen exam. But I always thought
that was not the best way to evaluate the students because deep learning is a know-how in addition to
a theoretical understanding of the concepts. You cannot obtain reasonnable performance with your
deep learning code if you do not understand what is going on. There are so many degrees of freedom
that a random exploration of the hyperparameters is hopeless.

The challenge lasted approximately 2 months, started in December 2021 and ended beginning of
February 2022.

1.2 Grading

Grading of the students’ contributions is on three topics :

• the performance on the leaderboard for 5 points
• the quality of the 20 minutes long video recorded presentation for 5 points
• the quality of the code and experimentations for 10 points

I once asked orally to provide a little article presenting the experimental track but forgot to mention it
on the grading page and therefore did not ask for it at the end of the challenge.

For the performance on the leaderboard, the points were allocated as :

• 1 point if the submitted predictor performs better than a benchmark linear network
• 2 points if the submitted predictor performas better than a benchmark basic CNN network
• 2 points if the submitted predictor ranks first

1.3 Rules

The students were asked to respect the following rules :

• the predictor must be a neural network

https://www.kaggle.com/c/3md4040-2022-challenge
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• the code must be in pytorch. Using higher level framework such as pytorch lightning was
allowed

• the students were not allowed to share codes between the teams

• the students were allowed and strongly encouraged to ask questions on a dedicated forum
and they would be provided hints under the condition that the previous rules were not
violated

In practice, video sessions were organized with the groups that had the most difficulties to come into
the challenge.

2 The challenge on plankton classification

The data for the challenge come from the ZooScanNet dataset (https://www.seanoe.org/data/
00446/55741/). It contains 1,433,278 images sorted in 93 taxa. We only used the images and not
the native nor skimage features that were provided. It does not mean that these handcrafted features
could not be useful for plankton classification, it is just the the challenge focused exclusively on
image classifcation (but definitely, a later issue should include them).

2.1 Data preparation

Three folds were prepared from the original data :

• a training set of 855.394 images

• a public test set of 47.473 images

• a private test set of 47.472 images

We did not kept all the classes from the original 93 taxa. Five classes were ignored : badfocus_artefact,
badfocus_Copepoda, bubble, multiple__Copepoda and multiple__other. Three classes were fused :
detritus, fiber__detritus and seaweed. Therefore, at the end, we get a total of 86 classes. We also kept
a maximum of 200.000 per classes (before merging classes which explains why the detritus has more
than 200000 samples).

One concern in preparing the data challenge is to prevent cheating such as overfitting the original
dataset (which then comprise the test data). To prevent the challengers from cheating, a random
rotation was applied to the image.

2.2 Data statistics

All the sets were identically balanced, i.e. the classes are imbalanced but imbalanced in the same
proportions irrespectively of the fold. After the challenge, rereading the different classes, it might
have been worth fusing artefact with detritus, and also maybe some egg classes. There are also two
classes for tail and head which might gather tails and heads of different species which in no way can
be considered as a single class. These two classes should have probably been discarded.

The distribution of the samples over the different folds is shown on figure 1. The dataset is imbalanced
and that was one interest of the challenge. The class with the most samples is the detritus followed by
the Calanoida. The class with the lowest number of samples is the Ctenophora which has only 36
samples in the training set and 1 sample in both the public and private test sets.

The images vary in size. During the prepation of the dataset, the images were resized so that their
height and width do not exceed 300, keeping their aspect ratio. Athough the original images vary
in sizes, this choice was made to keep the weight of the whole dataset reasonnable. Note however
that this choice may have introduced difficulties in the recognition process (which could have been
mitigated by providing the handcrafted features). Indeed, this resize erases class specific shape
distributions. The distribution of heights and widhts of the datasets are shown on figure 2, left for the
training set, 2, middle for the test set and 2, right for the original images. For practical simplicity,
only the size plot of the training set indicates the class belongings.
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Figure 1: The distribution of samples per classes. See the appendix for the details, especially the
class names

Figure 2: Distribution of the image sizes for the training set (left), test set(right) and the original
dataset (right). On the plot on the right, the original sizes have been limited to 4000 for both widths
and heights but there exists outliers up to 10000 in width or 12000 in height.

2.3 Evaluation metrics

The challenge is a classification challenge with strongly imbalanced classes. The competitors were
evaluated with the macro-average F1 score which is the average of the class F1 scores.

The class F1 score is defined as the harmonic mean of the precision and recall. Given a class k, the
number of true positives TPk, false positive FPk, and false negatives FNk, precision, recall and F1
are computed as :

precisionk =
TPk

TPk + FPk

recallk =
TPj

TPk + FNk

1

F1k
=

1

2
(

1

precisionk
+

1

recallk
)

The macro-average F1 is then defined as the average of all the classes :

macro-F1 =
1

86

85∑
k=0

F1k (1)

3 The submissions of the participants

In the next section, we give a quick overview of the different techniques involved by the participants
for the different topics of :

• data loading
• data augmentation
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Figure 3: Macro F1 on the public (left) and private (right) test sets as a function of time.

• classification model architectures
• optimization setup (optimizer, scheduler, ..)
• handling of the class imbalance

That overview is built from inspection of the submitted codes and may not reflect all the configurations
that have been tested by the participants. The collected information from the code are summarized in
tables 1,2,3.

Some of the participants also considered model averaging :

SpongeBox , GrandeRegazzoni (convenet, hrnet, efficientnet)

3.1 The scores of the participants through time

I find it interesting to see how the submissions of the participants improved through time. The teams
submitted from 5 to 79 entries and the scores they obtained on the public and private test sets are
shown on figure 3.

3.2 Analysis of the results

The best entries of all the teams ranged from 0.71 to 0.82 (except one outlier at 0.57) on the private
leaderboard in macro average F1 score. The class F1 scores, computed from the whole test data
(public and private) is displayed on figure 4, left. This graph displays the distribution of class F1
scores for each team, where the teams are ordered by decreasing macro average F1.
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Figure 4: Class F1 scores on the test data per team (left) and per class (right).

We can also plot the F1 scores from the class perspective rather than a team perspective. That view of
the class F1 scores is shown on figure 4, right. This graph plots the distribution of the teams’ F1 for
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Participant Data preprocessing Train augmentation Test augmentation Model architectures Optimizer and sched-
uler

Class imbalance

SpongeBob Resize(224),
Normalize(0.5,
0.5)

HFlip(0.5),
VFlip(0.5) ,
Rotate(−40, 40),
Translate(0.3, 0.5),
Scale(0.7, 1.3),
Shear(−30, 30)

None Custom Con-
vNet, Pretrained
torchvision
ResNet, AlexNet,
DenseNet121, timm
ViT, Efficient-
NetB2, ConvNeXt,
RegNetx_320, Ef-
ficientNetv2_rw_t,
BeIT, CoaT

Cross Entropy loss,
Adam(lr=5e − 4),
ReduceLROn-
Plateau(validation
loss), early stopping
on validation F1,
Batch size 64, Ran-
dom train/valid split
(0.95, 0.05)

Class weights in the
CE loss

DeepWhale Pad/Resize(224), Im-
ageNet normalization

HFlip(0.5),
VFlip(0.5),
Rotate(−150, 150)

None Custom CNN, pre-
trained ResNet50,
101, 152, VGG19,
SqueezeNet from
torchvision

Cross Entropy-
Loss, SGD(1e − 3),
ReduceLROn-
Plateau(validation
loss), early stopping
on the validation
loss, batch size
32, train/valid split
(0.8, 0.2) per class

batch sampler with
fk = 1/countk

GrandeRegazzoni SquarePad(300) or
ResizeCrop(128) or
Resize(150)

HFlip(0.5),
VFlip(0.5),
Rotate(−40, 40),
Translate(−0.2, 0.2)

None Custom ConvNet, Ef-
ficientNet1, HRNet,
ResNet, SwinTrans-
former

Cross Entropy loss,
Adam(1e − 3),
ReduceLROn-
Plateau(validation
F1), early stopping
on the validation
loss, Batch size
128, train/valid split
(0.8, 0.2) per class

batch sampler with
fk = 1/countk

Voleurs d’huile Resize(224), z-score
normalization by
training mean/std

HFlip(0.5),
VFlip(0.5), Gaussian
Blur

None Custom CNN,
pretrained torchvi-
sion ResNet and
DenseNet121

Cross Entropy loss,
Adam(4e − 4),
StepLR(γ =
0.1, step = 6),
early stopping on the
validation loss, Batch
size 32, train/valid
split (0.8, 0.2)

None

Table 1: Overview of the experiments of the participants. Part 1.



Participant Data preprocessing Train augmentation Test augmentation Model architectures Optimizer and sched-
uler

Class imbalance

Metz Dream Deep Resize(224),
Normalize(0.5,
0.5)

Rotate(0, 360),
HFlip(0.5),
Translate(0.2),
Normalization(0.5, 0.5)

None Custom CNNs,
resnet34, VGG16,
VGG19, reg-
net_y_32gf

Cross entropy loss,
Adam(1e−4), Weight
decay 1e−4, ..., batch
size 128, train/valid
split (0.95, 0.05)

batch sampler fk =
1/countk

The Backpropagated
StuBBorns

SquarePad(),
Resize(224),
Normalize(0.485,
0.229)

torchvision AutoAug-
ment

None pretrained timm
efficientnetv2_rw_s,
tf_efficientnet_b8_ap,
deit_tiny,
cait_s24_224,
coat_mini, swin
transformers,
tnt_s_patch16_224,
dm_nfnet, resnet50
followed by 2 lin-
ear/dropout/relu
layers

Cross Entropy Loss,
Adam(1e − 4), early
stopping on the vali-
dation loss, batch size
32, train/valid split
(0.8, 0.2)

batch sampler fk =
1/countk

JMBmc Resize(224), 3 chans
ImageNet Normalize

RandomRotate(30),
HFlip(0.5),
VFlip(0.5)

None pretrained timm
tf_efficient_b4, pre-
trained torchvision,
possibly frozen, fea-
ture extraction with
resnet50, wideRes-
net50, mobilenet_v2
followed by 5
linear/dropout layers2

Cross entropy loss,
SGD(0.03) with
momentum, StepLR
scheduler, batch size
64, train/valid split
(0.8, 0.2), early stop-
ping on the validation
loss

None

AG0D Resize(224), 3 chans
Imagenet Normalize

RandomRotate,
RandomAffine,
HFlip(0.5),
VFlip(0.5),

RandomRotate,
RandomAffine,
HFlip(0.5),
VFlip(0.5),

Custom CNNs, pre-
trained torchvision
Resnet18, Resnet50,
EfficientNetB7
... with a random
classification head3

weighted cross
entropy loss,
Adam(0.001), Re-
duce LR on plateau,
batch size 64, early
stopping on the vali-
dation F1, train/valid
split (0.88, 0.12), per
class

class weights in
the CE loss wk =
log(

∑
i counti/countk) >

0

Table 2: Overview of the experiments of the participants. Part 2.
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Participant Data preprocessing Train augmentation Test augmentation Model architectures Optimizer and sched-
uler

Class imbalance

ResMetz SquarePad,
Resize(224), 3
chans ImageNet
Normalize

HFlip(0.3),
VFlip(0.3), Ran-
domRotate

None torchvision pre-
trained Resnet18,
Resnet50, Efficient-
Net with a random
classification head

weighted cross
entropy loss,
Adam(3e − 4),
early stopping the val-
idation F1, train/valid
split (0.8, 0.2)

class weights in
the CE loss wk =√
(
∑

i counti/countk),
batch sampler with
the same weight as
the class weights

CelestineFeuillat Resize(224),
RandAug-
ment(num_ops=4,
magnitude=7,
fill=255), ImageNet
normalize

None None LinearNet, custom
CNN, torchvision
pretrained resnet18,
resnet50

Weighted cross
entropy() loss,
Adam(0.001),early
stopping on valida-
tion F1, train/valid
random split
(0.9, 0.1), batch
size 128

class weights
in the CE loss
wk =

∑
i counti

86countk
),

LesJongleurs Resize(224),
Normalize(0.5,
0.5)

None None LinearNet, torchvi-
sion pretrained
resnet18, resnet50

weighted cross en-
tropy, Adam(0.001),
early stopping
on validation F1,
train/valid random
split (0.8, 0.2)

class weights
in the CE loss
wk =

∑
i counti
countk

),

DeepBeru4s Resize(256),
CenterCrop(224),
Resize(256), Ima-
geNet Normalize

HFlip (0.5), Random-
Rotate (−15, 15)

HFlip (0.5), Random-
Rotate (−15, 15)

Linear, custom
CNN, torchvision
pretrained resnet34,
resnet50, resnet152
with a possibly frozen
backbone

weighted cross
entropy loss or F1
loss4, Adam(0.001),
early stopping on
validation weighted
cross entropy,
train/valid random
split (0.8, 0.2), batch
size 128

class weights
in the CE loss
wk = 86

countk
),batch

sampler with
fk = 1/countk

The Whale Sharks Invert,
CenterCrop(300)
or Resize(300),
Normalize(0.013,0.0546)

HFlip(0.5), Random-
Rotate, Blur,

None custom CNN, torchvi-
sion pretrained
resnet101, resnet152,
vgg16, vgg19

cross entropy loss
or micro average F1
loss, Adam(0.001),
early stopping on
the batch averaged
micro average F1,
train/valid random
split (0.8, 0.2), batch
size 256

batch sampler with
fk = 1/countk

Table 3: Overview of the experiments of the participants. Part 3.
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Class names Minimal F1 over all the teams
1 detritus 0.88
9 Oikopleuridae 0.85
20 Brachyura 0.82
29 Evadne 0.90
36 Calanoida 0.86
39 Noctiluca 0.81
41 Chaetognatha 0.90
54 Penilia 0.85
57 Coscinodiscus 0.86
58 Acartiidae 0.86
59 Corycaeidae 0.86
63 Limacinidae 0.80
64 cyphonaute 0.95
69 Phaeodaria 0.90
70 Ostracoda 0.89
73 nauplii Cirripedia 0.81
74 Salpida 0.80
75 Oithonidae 0.92
78 Oncaeidae 0.84
81 Cavoliniidae 0.83

Table 4: The classes for which the minimal F1 score obtained by all the teams is above 0.8.

every class. From this graph, we see that some classes are consistently well predicted (e.g. the classes
0, 1, 2, 3, 4 and 6) and some classes seem much harder to classify (80, 76, 75, 70, 66). In order to get
an idea of the classes that appear to be the easiest to predict, we selected from the distribution of F1
scores, the classes for which the minimal F1 over all the teams is higher than 0.8 This choice leads to
the easiest classes given in table 4.

In order to get an idea of the classes that appear to be the most difficult to predict, we selected from
the distribution of F1 scores, the classes for which the maximal F1 over all the teams is smaller than
0.6. This choice leads to the hardest classes given in table 5.

The last analysis we provide is the construction of the confusion matrices for all the participants.
These are given in figures 5. Note the confusion matrices have been row normalized and the figures
should be understood as the fraction of a given class that has been classified as such or such class.

The confusion matrices allow to understand, when samples are misclassified, which are the most
likely predicted classes. Interestingly, the top ranking entries all share similar error patterns.

First, there is a tendency to misclassify as class 1 which is the detritus class, the majority class.
Second, for the top ranking entries, when there is misclassification the misclassification is note
widespread over all the classes but peaky on only few classes. Indeed, although this is hard to see
from the plot, the confusion matrix is very sparse.

Looking at the misclassification, it reveals that some of them would have been hard to prevent
and it reveals an issue in the challenge preparation. For example, looking at the samples provided
in appendix, the class 33 "Nectophore Abylopsitetragona" seems pretty similar to the class 52
"Nectophore Diphyidae".

Class names Maximal F1 over all the teams
11 zoea Galatheidae 0.44
33 nectophore Abylopsistetragona 0.53
47 Euchirella 0.44
61 cirrus 0.58
65 part Copepoda 0.55

Table 5: The classes for which the maximal F1 score obtained by all the teams is below 0.6.
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Figure 5: Confusion matrices of the best submissions of all the participants.

4 Sample submission

We provide a sample submission on the repository https://github.com/jeremyfix/
planktonChallenge. This sample submission provides single models with reasonnable perfor-
mances. Model averaging is not performed at the time of writting.

Preprocessing : Every image is square padded (with white color) and resized to 300× 300, values
are divided by 255 and then normalized with mean µ = 0.92 and variance 0.16.

The training data are split in a training fold and a validation fold of 0.9/0.1. The split is stratified
meaning every class has 90% of its samples in the training set and the remaining 10% in the validation
set. The sample code preprocesses and splits the data once for all making later simulations faster.

Train augmentation : the samples can be horizontally or vertically flipped, rotated (missing pixels
are filled with white). Coarse dropout, where little square regions are filled in white, is also used to
mask randomly parts of the image. Examples of augmented images are shown on figure 6.

There is no test time augmentation.

Model architectures : several models can be trained: from basic and custom linear and convolu-
tional architectures to architectures provided by the Timm package (resnet18, resnet50, resnet152,
efficientnet_b3, efficientnet_b3a, regnety_016). All the models from Timm are initialized with
weights pretrained on ImageNet. The first convolution and the last fully connected layers are
randomly initialized to match the dimensions of the problem (one input channel, 86 output classes).

Optimizer and scheduler : The training loss is a cross entropy loss. The optimizer is Adam, with
an initial learning rate of 0.0003, a minibatch size of 128 or 64 (depending on the model size). The
models are trained for 100 epochs (although actually training time was limited to 48 hours and large
models do not perform more than 43 epochs and smaller models such as resnet18 perform 100 epochs
in 35 hours).
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Figure 6: Examples of augmented images from the sample submission. The transforms are Horizontal
flip, vertical flip, random rotation and coarse dropout. The first column represents the original images
and the five following columns examples of augmented images. The little white squares on the images
show the coarse dropout.
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Figure 7: Averaged train cross entropy.Each were allowed to run for 48 hours. Light blue is resnet18,
dark blue is resnet152, orange is regnety_16 and red is efficientnet b3.

Mixup regularization was also introduced. In mixup, every sample (x, y) is built from two samples
(x1, y1) and (x2, y2) where x = λx1 + (1− λ)x2 and y = λy1 + (1− λy2 with y1, y2 the one-hot
encoding of the classes and λ sampled from a β(0.2, 0.2) distribution.

Class imbalance : every minibatch is built by sampling the samples of the training folds with a
weight equals to the inverse of the number of samples of the same class.

The cross entropy loss for the training and validation sets and the F1 score for the validation split are
shown on figure 7-9. The confusion matrices of the best parameters for the four trained networks
are shown on figure 11. For every run, the best parameters are the one with the largest validation F1
score.

The macro F1 scores on the public and private test sets of the four trained models are given in table 6.
We also provide the score for the entry which predicts the class as the one maximizing the average
probability of the four models. The class F1 scores for each sample submission per model and per
class are displayed on the figure 10.
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Figure 8: Averaged cross entropy on the validation fold.Each were allowed to run for 48 hours. Light
blue is resnet18, dark blue is resnet152, orange is regnety_16 and red is efficientnet b3.
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Figure 9: Macro F1 scores on the validation fold for the four trained sample submissions. Each were
allowed to run for 48 hours. Light blue is resnet18, dark blue is resnet152, orange is regnety_16 and
red is efficientnet b3.
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Figure 10: Class F1 scores on the test data per model (left) and per class (right).

Resnet18 Resnet152 EfficientNet B3 Regnety 16 Average model

Figure 11: Confusion matrices on the validation fold of the best parameters for the four trained
models.
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Model Public macro F1 Private macro F1
Resnet18 0.79723 0.79344
Resnet152 0.80178 0.79714

EfficientNet b3 0.80041 0.80489
Regnety 16 0.80178 0.79714

Average model 0.82687 0.82997

Table 6: Macro F1 scores on the public and private test sets of the challenge.
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The distribution of samples per class

The table below indicates the number of samples per class for each fold. The list is ordered from the
most frequent to the least frequent classes.

Index Name Train Public Private
1 detritus 243570 13530 13530

36 Calanoida 180000 10000 10000
75 Oithonidae 53387 2965 2965
58 Acartiidae 42096 2338 2338
41 Chaetognatha 33147 1841 1841
6 Calanidae 23797 1322 1322

29 Evadne 19225 1067 1066
9 Oikopleuridae 18457 1025 1025

69 Phaeodaria 15431 857 857
45 egg other 14799 822 822
70 Ostracoda 12954 719 719
57 Coscinodiscus 12636 702 702
78 Oncaeidae 11490 638 638
63 Limacinidae 10038 557 557
59 Corycaeidae 10008 555 555
16 nauplii Crustacea 8402 466 466
64 cyphonaute 8213 456 456
27 Temoridae 8200 455 455
74 Salpida 6996 388 388
54 Penilia 6368 353 353
39 Noctiluca 6056 336 336
7 zoea Decapoda 5781 321 321

73 nauplii Cirripedia 5604 311 311
15 Foraminifera 5570 309 309
52 nectophore Diphyidae 5079 282 282
20 Brachyura 4764 264 264
46 tail Appendicularia 4609 255 255
71 Centropagidae 4391 243 243
31 Eucalanidae 4213 233 233
49 Haloptilus 3983 221 221
25 Bivalvia Mollusca 3916 217 217
48 calyptopsis 3900 216 216
37 Decapoda 3538 196 196
60 artefact 3465 192 192
22 Doliolida 3242 180 180
50 eudoxie Diphyidae 3111 172 172
17 gonophore Diphyidae 3060 169 169
21 tail Chaetognatha 2825 156 156
80 Harpacticoida 2589 143 143
81 Cavoliniidae 2517 139 139
66 Fritillariidae 2314 128 128
42 Annelida 2085 115 115
83 Euchaetidae 2086 115 115
51 egg Actinopterygii 1988 110 110
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Index Name Train Public Private
0 Candaciidae 1983 110 110

35 Creseidae 1869 103 103
34 Actinopterygii 1459 81 81
5 Sapphirinidae 1328 73 73
4 Podon 1326 73 73

72 Ophiuroidea 1285 71 71
56 Pontellidae 1289 71 71
13 Rhincalanidae 1210 67 67
38 Obelia 1091 60 60
12 nectophore Physonectae 1045 57 57
19 megalopa 953 52 52
55 egg Cavolinia inflexa 757 42 42
85 Limacidae 727 40 40
14 Acantharea 686 38 38
30 Copilia 686 38 38
3 larvae Crustacea 638 35 35

77 cypris 632 35 35
68 Neoceratium 590 32 32
28 scale 576 32 32
10 Hyperiidea 536 29 29
62 Luciferidae 457 25 25
82 Aglaura 388 21 21
65 part Copepoda 372 20 20
32 Pyrosomatida 336 18 18
44 Rhopalonema 308 17 17
8 Gammaridea 289 16 16

61 cirrus 269 14 14
53 head 244 13 13
76 eudoxie Abylopsis tetragona 235 12 12
67 Echinoidea 234 12 12
2 Calocalanus pavo 214 11 11

33 nectophore Abylopsis tetragona 188 10 10
11 zoea Galatheidae 185 10 10
18 metanauplii 168 9 9
43 larvae Annelida 170 9 9
84 Tomopteridae 172 9 9
47 Euchirella 156 8 8
40 Spumellaria 142 7 7
26 ephyra 98 5 5
79 gonophore Abylopsis tetragona 88 4 4
23 Scyphozoa 78 4 4
24 Ctenophora 37 1 1
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Some examples for each class

Figure 12: Samples from the class Candaciidae

Figure 13: Samples from the class detritus

Figure 14: Samples from the class Calocalanus pavo
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Figure 15: Samples from the class larvae Crustacea

Figure 16: Samples from the class Podon

Figure 17: Samples from the class Sapphirinidae

Figure 18: Samples from the class Calanidae

Figure 19: Samples from the class zoea Decapoda

Figure 20: Samples from the class Gammaridea
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Figure 21: Samples from the class Oikopleuridae

Figure 22: Samples from the class Hyperiidea

Figure 23: Samples from the class zoea Galatheidae

Figure 24: Samples from the class nectophore Physonectae

Figure 25: Samples from the class Rhincalanidae

Figure 26: Samples from the class Acantharea
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Figure 27: Samples from the class Foraminifera

Figure 28: Samples from the class nauplii Crustacea

Figure 29: Samples from the class gonophore Diphyidae

Figure 30: Samples from the class metanauplii

Figure 31: Samples from the class megalopa

Figure 32: Samples from the class Brachyura
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Figure 33: Samples from the class tail Chaetognatha

Figure 34: Samples from the class Doliolida

Figure 35: Samples from the class Scyphozoa

Figure 36: Samples from the class Ctenophora

Figure 37: Samples from the class Bivalvia Mollusca

Figure 38: Samples from the class ephyra

Figure 39: Samples from the class Temoridae
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Figure 40: Samples from the class scale

Figure 41: Samples from the class Evadne

Figure 42: Samples from the class Copilia

Figure 43: Samples from the class Eucalanidae

Figure 44: Samples from the class Pyrosomatida

Figure 45: Samples from the class nectophore Abylopsis tetragona
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Figure 46: Samples from the class Actinopterygii

Figure 47: Samples from the class Creseidae

Figure 48: Samples from the class Calanoida

Figure 49: Samples from the class Decapoda

Figure 50: Samples from the class Obelia

21



Figure 51: Samples from the class Noctiluca

Figure 52: Samples from the class Spumellaria

Figure 53: Samples from the class Chaetognatha

Figure 54: Samples from the class Annelida

Figure 55: Samples from the class larvae Annelida
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Figure 56: Samples from the class Rhopalonema

Figure 57: Samples from the class egg other

Figure 58: Samples from the class tail Appendicularia

Figure 59: Samples from the class Euchirella

Figure 60: Samples from the class calyptopsis

Figure 61: Samples from the class Haloptilus

Figure 62: Samples from the class eudoxie Diphyidae
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Figure 63: Samples from the class egg Actinopterygii

Figure 64: Samples from the class nectophore Diphyidae

Figure 65: Samples from the class head

Figure 66: Samples from the class Penilia

Figure 67: Samples from the class egg Cavolinia inflexa

Figure 68: Samples from the class Pontellidae
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Figure 69: Samples from the class Coscinodiscus

Figure 70: Samples from the class Acartiidae

Figure 71: Samples from the class Corycaeidae

Figure 72: Samples from the class artefact

Figure 73: Samples from the class cirrus

Figure 74: Samples from the class Luciferidae

25



Figure 75: Samples from the class Limacinidae

Figure 76: Samples from the class cyphonaute

Figure 77: Samples from the class part Copepoda

Figure 78: Samples from the class Fritillariidae

Figure 79: Samples from the class Echinoidea

Figure 80: Samples from the class Neoceratium
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Figure 81: Samples from the class Phaeodaria

Figure 82: Samples from the class Ostracoda

Figure 83: Samples from the class Centropagidae

Figure 84: Samples from the class Ophiuroidea

Figure 85: Samples from the class nauplii Cirripedia

Figure 86: Samples from the class Salpida
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Figure 87: Samples from the class Oithonidae

Figure 88: Samples from the class eudoxie Abylopsis tetragona

Figure 89: Samples from the class cypris

Figure 90: Samples from the class Oncaeidae

Figure 91: Samples from the class gonophore Abylopsis tetragona

Figure 92: Samples from the class Harpacticoida
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Figure 93: Samples from the class Cavoliniidae

Figure 94: Samples from the class Aglaura

Figure 95: Samples from the class Euchaetidae

Figure 96: Samples from the class Tomopteridae

Figure 97: Samples from the class Limacidae
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