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We propose a general approach to the higher-order homogenization of discrete elastic networks made up
of linear elastic beams or springs in dimension 2 or 3. The network may be nearly (rather than exactly)
periodic: its elastic and geometric properties are allowed to vary slowly in space, in addition to being peri-
odic at the scale of the unit cell. The reference configuration may be prestressed. A homogenized strain
energy depending on both the macroscopic strain 𝜺 and its gradient ∇𝜺 is obtained by means of a two-
scale expansion. The homogenized energy is asymptotically exact two orders beyond that obtained by clas-
sical homogenization. The homogenization method is implemented in a symbolic calculation language and
applied to various types of networks, such as a 2D honeycomb, a 2D Kagome lattice, a 3D truss and a 1D
pantograph. It is validated by comparing the predictions of the microscopic displacement to that obtained
by full, discrete simulations. This second-order method remains highly accurate even when the strain
gradient effects are significant, such as near the lips of a crack tip or in regions where a gradient of pre-
strain is imposed.

Keywords Elastic lattices, Asymptotic homogenization, Second-order homogenization, Energy methods.

1. INTRODUCTION

Man-made materials have evolved over time, achieving a constant improvement in properties such as strength, stiff-
ness, lightweight or wave transmission. Some of the more recent breakthroughs were made possible by designing
the architecture at small scale. Progress in additive manufacturing enables the fabrication of cellular materials
whose microstructure can be precisely controlled and tailored: a wide range of new architectured materials can be
fabricated, using periodic arrangements of thin beams as fundamental structural elements and ceramics, metals,
polymers or composites as base materials [FDA10]. The ongoing revolution consists in integrating these materials
into structures having optimized properties.

The design of such systems calls for effective homogenized models capable of precisely capturing the mechanical
behavior of these complex periodic or quasi-periodic microstructures [AG97; CP12; VP12]. Recent work shows that
the accuracy of Cauchy-type continuum obtained by classical homogenization techniques is limited. In various cases,
the effective models need to include higher-order terms in order to accurately capture physical phenomena such
as localization in shear-bands or domain walls [GLTK19; DYF+20], mechanisms generating long-range modes of
deformation [NCH20; DLSS22; ZNTP22] or symmetries that are not present in the low-order models [RA16; RA19].
Besides, higher-order terms improve the accuracy of the effective models, especially when scale separation is poor,
for example when modeling a crack in a relatively coarse microstructure [RKD+15; RDK17; SCO+22].

Various strategies have been proposed to derive higher-order effective models: numerical identification proce-
dures [VDP14; GLTK19; RDVB19a; RDVB19b; RAPG19] or analytical approaches based on formal derivations that
slave local displacements to macroscopic fields through a Taylor expansion [TB93; BT94; KM04]. The two-scale
expansion method offers a rigorous methodology to derive effective models without introducing such ad-hoc kine-
matic assumptions. It has been applied to continuous periodic composites [Bou96; SC00; Bou19] and discrete micro-
structures [CMR06; DO11; DG12; Dav13; LR13], including for deriving higher-order contributions [AS18b; AS18a;
ASB19; AB21; DLSS22].

In a recent paper [AL23], we revisited higher-order asymptotic homogenization of linear elastic, discrete
microstructures. Building upon our previous work on asymptotic dimension reduction [LA20] and following [LM18],
we proposed to tackle asymptotic homogenization at the energy level. Starting from an abstract, generic energy
formulation of the discrete microstructure, we introduced a series of steps that can be applied in an automated
manner to derive a homogenized energy. All the steps are implemented in a symbolic calculation language and
distributed as the open-source library shoal (for Second-order HOmogenization Automated in a Library) [Aud23].
This approach can handle microstructures featuring both pre-stress and spatially varying (graded) properties, two
aspects that are rarely addressed in the context of high-order, asymptotic homogenization and are very useful for
designing and optimizing microstructures.
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The present paper addresses higher-order homogenization of periodic networks made up of slender 1D elements
(typically beams or springs), further referred to as lattice material or simply lattice. The homogenization is done
symbolically and in an automated way, and builds up on the general-purpose homogenization engine from our pre-
vious work [AL23]. It delivers closed-form analytical expressions of the effective elastic properties without any
adjustable internal kinematic variable or parameter. By contrast with earlier work focussing on particular lattice
architectures [DO11; Dav13; LR13] or 1D/2D networks of springs [MA02; MA06], our approach is designed to be
general and versatile. It works in 1D, 2D or 3D and can handle arbitrary lattice topologies, the presence of prestress,
slowly varying geometrical or elastic properties, a variety of member types (such as springs, beams or curved arches),
as well as a large elastic contrast.

We illustrate our homogenization method on a comprehensive set of examples: a uniform 2D honeycomb, spa-
tially varying 2D Kagome and honeycomb architectures, a 3D quasi-octet lattice and 1D pantograph. With a view
of assessing the accuracy of the resulting models, we propose a numerical verification procedure that compares the
microscopic fluctuations extracted from full numerical simulations to those predicted by the homogenization method.
We apply this procedure to a range of structural problems including macroscopic samples with cracks, holes, as well
as spatially varying pre-stress, elastic and geometric properties. Our numerical results show that the higher-order
effective model very accurately captures the fine features of the local displacements and rotations away from the
boundaries, where the presence of boundary layers is known to make homogenization break down.

Higher-order homogenization comes with several difficulties, and some remain beyond the scope of the present
work. Most notably, we do not address the presence of boundary layers, and accept that the gradient stiffness is
often negative (see Remark 5.3 below). These limitations prevent from using the homogenized energy to set up self-
contained simulations so far, as discussed in further detail in the conclusion.

2. GENERATING THE ELASTIC LATTICE

In this section, we describe the process of generating the elastic lattices. Given a small parameter 𝜂≪1, we produce
a lattice having cells of size 𝒪(𝜂) whose elastic and geometric properties vary over the characteristic length L=
𝒪(1). This sets the stage for homogenization which captures the effective properties of the lattice in the limit 𝜂→0
where the scales are well separated.

We introduce a general description of lattices based on the particular example of a curved honeycomb lattice.
Other lattice geometries are illustrated in the numerical examples in Section 7. Specifically, we consider networks of
elastic beams connected by rigid hinges. We refer to rigid hinges as nodes, and to the elastic beams as elements: the
degrees of freedom are attached to nodes and the strain energy is stored in elements, as in the finite-element method.

2.1. Underlying topological lattice
The lattice topology is defined by an underlying topological lattice which is periodic by assumption, see Figure 2.1a.
It is a mathematical abstraction: the real elastic lattice may be curved, hence non-periodic, as shown in Figure 2.1b.
The following notions are associated with the topological lattice:

• nodes The nodes are labelled by an index 𝛽. Their position is denoted as �̃�𝛽∈ℝd, where d is the dimension
of the space in which the lattice is embedded. All quantities relating to the topological lattice are denoted with
a tilde.

• Bravais sub-lattices The nodes can be grouped into Bravais sub-lattices indexed by an integer b with
1⩽b⩽nb, where nb is the number of sub-lattices. The sub-lattices are defined as the subsets of nodes that
are mapped to one another through the fundamental translations of the topological lattice. For instance, the
honeycomb lattice in Figure 2.1a has nb=2 Bravais sub-lattices, shown using the open vs. solid disks. The
index of the Bravais sub-lattice to which a particular node 𝛽 belongs is denoted as b(𝛽).

• elements Elements, which are elastic beams in the present illustration, are labelled using an index 𝛼. An
orientation is assigned to every element 𝛼, and we denote by (𝛽𝛼−, 𝛽𝛼+) its endpoints, with 𝛽𝛼− as the tail and
𝛽𝛼+ as the head, see Figure 2.1b'.

• element families Elements are grouped into n𝜑 families indexed by 𝜑, having similar elastic and geo-
metric properties. The honeycomb lattice in Figure 2.1a, for instance, has n𝜑=3 element families, 𝜑∈{I, II,
III}, corresponding to the three possible orientations of the beams. The family to which a particular element
𝛼 belongs is denoted as 𝜑𝛼. The density of elements of a particular family 𝜑 per unit surface (if the space
dimension is n=2) or volume (if n=3) is denoted as �̃�𝜑.

The topological lattice being periodic, the vector �̃�𝛽𝛼+− �̃�𝛽𝛼− joining the endpoints of a particular element 𝛼 is the same
for all elements 𝛼 in a particular family 𝜑 and can be written as

�̃�𝛽𝛼+− �̃�𝛽𝛼−=𝜹𝜑𝛼, (2.1)

where 𝜹𝜑 maps a family index 𝜑 to a vector in ℝd.
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By a similar argument, the Bravais sub-lattice b(𝛽𝛼±) of the endpoints ± of an element 𝛼 depends on the element
family 𝜑𝛼 and not on the element 𝛼 itself: there exists a function b𝜑± mapping a family 𝜑 and an endpoint index ±
(head or tail) to a Bravais index b, such that

b(𝛽𝛼±)=b𝜑𝛼
± . (2.2)

The maps 𝜹𝜑 and b𝜑± for the topological honeycomb lattice are given in Table 2.1.

𝜑= I

𝛽𝛼+

𝛽𝛼−

𝚫I
+

𝚫I−
𝑿𝛼c

(a) (b)

(b')
Bravais sub-lattices element families

b=1 b=2

𝜑= II

𝜑= III
𝛼

𝜂a

R

a

𝒆1

𝒆2

𝛽𝛼− 𝛽𝛼+ 𝑶

𝑶𝒆2
𝒆1

𝛽
𝑿𝛽

𝜹I

𝛼∈ I

�̃�𝛽

reference configurationtopological lattice

𝑿=𝒇 (𝜂 �̃�)

Figure 2.1. Generation of a lattice possessing slowly varying properties. (a) Periodic, underlying topological lattice; the
conventional element orientation is indicated by the arrows. (b) The reference configuration of the lattice is produced by
applying a contraction factor 𝜂 and a diffeomorphism 𝒇 , see (2.3). (b') Close-up view of a particular element (beam) 𝛼, belonging
to family 𝜑𝛼= I; note that the conventional element center 𝑿𝛼c is distinct from its midpoint. The figure was generated for a
honeycomb lattice with the diffeomorphism in (2.4) and with parameters a=1, 𝜂=0.4 and R=5.

d nb n𝜑 �̃�𝜑
2 2 3 2

3 3� a2

𝜑 I II III
b𝜑− 2 1 1
b𝜑+ 1 2 2

𝜹𝜑 a𝒆1 a�𝒆12 +
3�
2 𝒆2� a�𝒆12 − 3�

2 𝒆2�

Table 2.1. Properties of the topological honeycomb lattice in Figure 2.1a: space dimension d, number nb of Bravais sub-
lattices, number n𝜑 of element families, density �̃�𝜑 of elements in a given family per unit area, connectivity b𝜑±, edge vectors 𝜹𝜑.

Remark 2.1. By contrast with most of the existing work on periodic homogenization, our approach does not require
a unit cell to be defined: the information contained in a unit cell is entirely captured by the quantities shown in
Table 2.1.

2.2. Curved reference configuration
The reference configuration of the elastic lattice, shown in Figure 2.1b, is produced by applying a diffeomorphism
𝒇 :ℝd→ℝd combined with a contraction with ratio 𝜂, to the topological lattice: the position in the reference configu-
ration of the node 𝛽 is

𝑿𝛽=𝒇 (𝜂 �̃�𝛽). (2.3)

This generation procedure allows for a variety of lattice designs for a given underlying topological lattice.
By way of illustration, the curved honeycomb lattice shown in Figure 2.1b has been produced using the ‘complex-

exponential’ diffeomorphism

𝒇 (�̃�)=Rexp� x̃2
R�𝒆r�

π
2 − x̃1

R�− R𝒆2, (curved honeycomb lattice) (2.4)

where 𝒆r�𝜃�=cos𝜃 𝒆1+sin𝜃 𝒆2 denotes the unit radial vector and R is the curvature radius of the arc of circle that
is the image of the curve X̃2=0. The case of a periodic, non-curved honeycomb lattice corresponds to R→∞, which
yields 𝒇 = id2 (identity in ℝ2).

Each element 𝛼 is assigned a conventional center 𝑿𝛼c in reference configuration. Various definitions of the center
are possible. We choose to define it as the image by the diffeomorphism of the edge's midpoint of the underlying
topological lattice,

𝑿𝛼c=𝒇�
𝜂
2 (�̃�𝛽𝛼

−+�̃�𝛽𝛼+)�. (2.5)

A particular center 𝑿𝛼c is shown in Figure 2.1b'.
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For any particular element, we now consider the vector 𝑿𝛽𝛼±−𝑿𝛼c joining (in reference configuration) the conven-
tional center 𝑿𝛼c to either one of the endpoints 𝑿𝛽𝛼±. We claim that this vector can be written as

𝑿𝛽𝛼±−𝑿𝛼c=𝚫𝜑𝛼
± (𝜂,𝑿𝛼c), with 𝚫𝜑

±(𝜂,𝑿)=𝒪(𝜂). (2.6)

Here, the𝚫𝜑
±(𝜂,𝑿)'s are smooth functions of their continuous arguments (𝜂,𝑿) that further depend on the discrete

variables in subscript (element family 𝜑) and superscript (± labelling endpoints). The dependence on the element 𝛼
in the left-hand side of (2.6) has been turned in the right-hand side into a dependence on the element family 𝜑𝛼 and
on the center position 𝑿𝛼c : Equation (2.6) captures the fact that 𝑿𝛽𝛼±−𝑿𝛼c varies slowly across neighboring elements
belonging to the same family.

A constructive proof of (2.6) is as follows. Observe first that (2.1) and (2.5) can be combined into �̃�𝛽𝛼±=
1
2 (�̃�𝛽𝛼−+

�̃�𝛽𝛼+) ±
1
2(�̃�𝛽𝛼+ − �̃�𝛽𝛼−) =

1
𝜂 𝒇

−1(𝑿𝛼c) ±
1
2 𝜹𝜑𝛼, so that 𝑿𝛽𝛼± −𝑿𝛼c = 𝒇 (𝜂 �̃�𝛽𝛼±) −𝑿𝛼c = 𝒇 �𝒇 −1(𝑿𝛼c) ±

𝜂
2 𝜹𝜑𝛼� −𝑿𝛼c . Identifying

with (2.6), we find
𝚫𝜑
±(𝜂,𝑿)=𝒇�𝒇 −1(𝑿)± 𝜂2 𝜹𝜑�−𝑿. (2.7)

The right-hand side vanishes when 𝜂→0 and the smoothness of 𝒇 proves the estimate 𝚫𝜑
±(𝜂, 𝑿) =𝒪(𝜂) stated

in (2.6).
By way of illustration, consider elements of type 𝜑= I in a curved honeycomb, see Figure 2.1(b). Combining

𝒇 −1(𝑿)=R�tan−1� X1

R+X2
�𝒆1+ 1

R ln X12+(R+ X2)2� 𝒆2� from (2.4) and 𝜹I=a𝒆1, we have from (2.7)

𝚫I
±(𝜂, 𝑿) = X12+ (R+ X2)2� 𝒆r�

π
2 − tan−1 � X1

R+ X2
� ∓ 𝜂 a

2 R� − (X1 𝒆1 + (R + X2) 𝒆2) (curved honeycomb

lattice). (2.8)

The two other functions 𝚫II
± (𝜂,𝑿) and 𝚫III

± (𝜂,𝑿) are obtained in a similar way.

2.3. Assumed power-series dependence on η
Expanding Equation (2.7) in powers of 𝜂, we get

𝚫𝜑
±(𝜂,𝑿)=𝒇 (𝒇 −1(𝑿))−𝑿

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {𝟎

± 𝜂2 ∇𝒇 (𝒇
−1(𝑿)) ⋅𝜹𝜑+

𝜂2
4 ∇

2𝒇 (𝒇 −1(𝑿)) : �𝜹𝜑⊗𝜹𝜑�+ ⋅ ⋅ ⋅ (2.9)

where the cancellation at leading order leads to the estimate (2.6). The diffeomorphism 𝒇 being infinitely smooth by
assumption, this expansion could be pushed to any other.

More generally, we will assume that any function g(𝜂, 𝑿) depending on the expansion parameter 𝜂 can be
expanded as a power series in 𝜂: when we write g(𝜂,𝑿) with g=𝒪(𝜂p), we imply that g is of the form

g(𝜂,𝑿)=𝜂p(g(p)(𝑿)+𝜂g(p+1)(𝑿)+ ⋅ ⋅ ⋅), (2.10)

where the g(k)'s are smooth functions of 𝑿 that do not depend on 𝜂. Expansions of the form (2.10) are known as
regular. For any lattice property, regular expansions can be obtained in explicit form as we just did for g=𝚫𝜑

±

in (2.9). For all the elastic fields, the regular expansions will be assumed, see Equation (3.2) below, as we approach
homogenization based on formal expansions. At boundary layers, the regular expansions break down and the elastic
fields are given by singular expansions instead: their analysis is beyond the scope of this paper.

2.4. Kinematic analysis of the beam-elements
For the moment, we limit attention to naturally straight, 2D beam elements: this applies to the lattice shown in
Figure 2.1b'. The extension to elastic springs is discussed later in Section 7. The extension to 3D beams or arches in
both 2D and 3D (i.e., of beams possessing natural curvature) is straightforward and is left for future work.

The lattice is deformed by applying forces. The displacement and rotation of the node 𝑿𝛽 are denoted as 𝒗𝛽∈
ℝd, and 𝜽𝛽∈ℝnr, respectively (in 2D, the infinitesimal rotation 𝜽𝛽=�𝜃𝛽� is a scalar, nr=1; see Section A.2 in the
Appendix for the extension to an arbitrary dimension d). The assumption of rigid nodes implies that the infinites-
imal rotation 𝜽𝛽 is common to the adjacent elements at any particular node 𝑿𝛽. The nodal degrees of freedom are
therefore

�𝒗𝛽, 𝜽𝛽�∈ℝnn, where nn=d+nr={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{ 1 if d=1
3 if d=2
6 if d=3

. (2.11)

For the 2D elements discussed here, d=2, nr=1 and nn=3.
Each element family 𝜑 is characterized by a set of nE𝜑 element strain measures, which are collected into an

element strain vector 𝑬𝛼∈ℝnE𝜑. In 2D, beam elements uses nE𝜑=3 strain measures, namely the extensional strain
𝜀𝛼, the bending strain 𝜅𝛼 and the shear strain 𝜏𝛼, which are defined by

𝑬𝛼=((((((((((((((((((
(
(
((𝒗𝛽𝛼+−𝒗𝛽𝛼−) ⋅ 𝒕𝛼

ℓ𝛼

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {𝜀𝛼

, 𝜃𝛽𝛼+−𝜃𝛽𝛼−
�

𝜅𝛼

,
𝜃𝛽𝛼−+𝜃𝛽𝛼+

2 −
(𝒗𝛽𝛼+−𝒗𝛽𝛼−) ⋅𝒏𝛼

ℓ𝛼

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {𝜏𝛼

))))))))))))))))))
)
)
)
∈ℝ3, nE𝜑=3, (2D beam) (2.12)
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where ℓ𝛼=�𝑿𝛽𝛼+−𝑿𝛽𝛼−� is the undeformed length, 𝒕𝛼=(𝑿𝛽𝛼+−𝑿𝛽𝛼−)/ℓ𝛼 is the unit tangent, 𝒏𝛼=𝒆3×𝒕𝛼 is the undeformed
unit normal and 𝒆3=𝒆1×𝒆2 is the unit normal to the Euclidean plane, see Figure 2.2. The quantities (𝜀𝛼, 𝜅𝛼, 𝜏𝛼)
are effective measures characterizing the strain in a beam-element globally, which do not depend on the arc-length
parameter. As shown in Figure 2.2(b), for instance, the shearing mode 𝜏𝛼 defined at the element scale yields ‘locally’
non-uniform curvature as a function of arc-length—this local response will captured by the element stiffness derived
in the forthcoming Section 2.5.

𝒏𝛼a) b)
𝜀𝛼

𝜅𝛼

𝜏𝛼

𝜽𝛽𝛼−
𝒗𝛽𝛼−

𝑿𝛽𝛼− �̃�𝛼
− �̃�𝛼

+

ℓ𝛼

𝑿𝛼c
𝛼

𝒕𝛼
𝒗𝛽𝛼+

𝜽𝛽𝛼+𝑿𝛽𝛼+

Figure 2.2. A 2D beam element, having index 𝛼 and conventional center 𝑿𝛼c : (a) geometry in reference configuration and
(b) the nE𝜑=3 deformation modes : extension, bending and shearing.

We observe that the undeformed element's length ℓ𝛼, unit tangent 𝒕𝛼 and unit normal 𝒏𝛼 can each be expressed
as functions of the element family 𝜑𝛼, of the scale separation parameter 𝜂 and of the element center 𝑿𝛼c . Indeed, with
help of (2.6), we have 𝑿𝛽𝛼+−𝑿𝛽𝛼−=𝚫𝜑𝛼

+ (𝜂,𝑿𝛼c)−𝚫𝜑𝛼
− (𝜂,𝑿𝛼c), which yields

ℓ𝛼= ℓ
˘
𝜑𝛼(𝜂,𝑿𝛼c) where ℓ

˘
𝜑(𝜂,𝑿)= �𝚫𝜑

+(𝜂,𝑿)−𝚫𝜑
− (𝜂,𝑿)�=𝒪(𝜂1),

𝒕𝛼=𝒕
˘
𝜑𝛼(𝜂,𝑿𝛼c) where 𝒕

˘
𝜑(𝜂,𝑿)=

𝚫𝜑
+(𝜂,𝑿)−𝚫𝜑− (𝜂,𝑿)

ℓ
˘
𝜑(𝜂,𝑿)

=𝒪(𝜂0)

𝒏𝛼=𝒏
˘
𝜑𝛼(𝜂,𝑿𝛼c) where 𝒏

˘
𝜑(𝜂,𝑿)=𝒆3×𝒕

˘
𝜑(𝜂,𝑿)=𝒪(𝜂0).

(2.13)

The dependence of these function on 𝑿 applies to lattices having graded geometrical properties (see §7.3). The
functions ℓ

˘
𝜑𝛼, 𝒕

˘
𝜑𝛼 and 𝒏

˘
𝜑𝛼 have regular expansions in 𝜂 of the form (2.10) as can be checked using (2.9).

In view of this, the element strain 𝑬𝛼 in (2.12) can be rewritten in block-matrix notation as

𝑬𝛼=𝓓𝜑𝛼(𝜂,𝑿𝛼c) :(((((((((((( (((((((((((((( 𝒗𝛽𝛼−𝜽𝛽𝛼− )))))))))))))) ((((((((((((((((((
𝒗𝛽𝛼+
𝜽𝛽𝛼+ ))))))))))))))
)))) )))))))))))), (2.14)

where : denotes the double contraction, see Appendix A, � 𝒗𝛽 𝜽𝛽 �∈ℝnn are the nodal degrees of freedom, see (2.11),
and 𝓓𝜑∈𝕋(nE𝜑,2,nn) is the displacement-to-strain tensor,

𝓓𝜑(𝜂,𝑿)=(((((((((((((((( (((((((((((((((((((((((
−𝒕
˘
𝜑(𝜂,𝑿)/ℓ

˘
𝜑(𝜂,𝑿) 0

+𝒕
˘
𝜑(𝜂,𝑿)/ℓ

˘
𝜑(𝜂,𝑿) 0 )))))))))))))))))

))))
)
) ((((((( 𝟎2 −1

𝟎2 +1 ))))))) ((((((((((((((((((
(((
(
( +𝒏

˘
𝜑(𝜂,𝑿)/ℓ

˘
𝜑(𝜂,𝑿) 1/2

−𝒏
˘
𝜑(𝜂,𝑿)/ℓ

˘
𝜑(𝜂,𝑿) 1/2 ))))))))))))))))))

)))
)
) ))))))))))))))))∈𝕋(3,2,3) (2D beam). (2.15)

The function 𝓓𝜑(𝜂,𝑿) can be expressed as a regular expansion in 𝜂 of the form (2.10), as can be checked using (2.9)
and (2.13).

To keep the presentation general, we will refrain from using the specific expression (2.15) of 𝓓𝜑 applicable to 2D
beams, and use the generic form (2.14) of the displacement-strain relation instead.

2.5. Strain energy of the lattice
A beam 𝛼 made up of a Hookean material and having a circular cross-section is characterized by a stretching mod-
ulus (E A)𝛼 and a bending modulus (E I)𝛼. The linear beam theory yields the strain energy w𝛼 of the beam as
w𝛼= 1

2 �(E A)𝛼 ℓ𝛼 𝜀a
2+ (EI)𝛼

ℓ𝛼
(𝜅𝛼2+12𝜏𝛼2)�, which can be rewritten as

w𝛼=
(E A)𝛼 ℓ𝛼

2 �𝜀a
2+𝜒𝛼 (𝜅𝛼2+12𝜏𝛼2)� (2.16)

(no implicit sum over 𝛼) in terms of the beam's aspect-ratio parameter

𝜒𝛼=
(E I)𝛼

ℓ𝛼2(E A)𝛼
. (2.17)

For the slender beam theory to be applicable, the beam's radius r𝛼 must be much smaller than its length, r𝛼≪ ℓ𝛼,
implying that the aspect-ratio parameter 𝜒𝛼∼(r𝛼/ℓ𝛼)2≪1 is small.

To handle the case of lattices whose elastic properties vary slowly in space, we assume that the beam's elastic
constants (E A)𝛼 and 𝜒𝛼 are prescribed as smooth functions (E A� )𝜑(𝜂, 𝑿) and �̃�𝜑(𝜂, 𝑿) of the scale separation
parameter 𝜂 and of the element center 𝑿𝛼c, with an additional dependence on the discrete family index 𝜑, i.e.,

(E A)𝛼=E A(𝜑𝛼)(𝜂,𝑿𝛼c), 𝜒𝛼=𝜒
˘
(𝜑𝛼)(𝜂,𝑿𝛼c). (2.18)

In view of (2.16), we define the element stiffness matrix 𝓚𝜑∈𝕋(nE𝜑,nE𝜑) as

𝓚𝜑(𝜂,𝑿)=E A𝜑(𝜂,𝑿) ℓ
˘
𝜑(𝜂,𝑿)diag�1,𝜒

˘
𝜑(𝜂,𝑿), 12𝜒

˘
𝜑(𝜂,𝑿)�∈𝕋(3,3) (2D beam), (2.19)
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so that the strain energy of an element takes the form

w𝛼(𝑬𝛼)=
1
2 𝑬𝛼 ⋅𝓚𝜑𝛼(𝜂,𝑿𝛼c) ⋅𝑬𝛼 (2.20)

(no implicit sum over 𝛼). To keep the presentation general, we will use this expression (2.20) of the strain energy in
the following, as it is applies to linearly elastic element of various kinds such as springs, beams or arches in both 2D
and 3D. The element stiffness matrix 𝓚𝜑∈𝕋(nE𝜑,nE𝜑) is always symmetric but not necessarily diagonal.

The element stiffness is assumed to obey the scaling assumption

𝓚𝜑=𝒪(𝜂d), (2.21)

where d is the space dimension. This assumption is a matter of convention: applying a global factor to all elements'
stiffness scales the homogenized energy by the same factor. The convention (2.21) warrants that the energy is
Φ=𝒪(𝜂0), which is convenient, see Equation (3.42) below. Since ℓ

˘
𝜑=𝒪(𝜂) by (2.13), the stretching modulus E A𝜑

in (2.19) will be viewed as a quantity of order

E A=𝒪(𝜂d−1) (2.22)
in stretching-dominated lattices.

Remark 2.2. As noted below Equation (2.17), the function 𝜒
˘
𝜑(𝜂,𝑿) is small, 𝜒

˘
𝜑(𝜂,𝑿)≪1. Mathematically, 𝜒

˘
𝜑 will

be defined as a power of the aspect-ratio 𝜂. Different power laws are considered in the different examples, such as
𝜒
˘
𝜑=𝒪(𝜂) for the honeycomb, see (5.7), or 𝜒

˘
𝜑=𝒪(𝜂2) for the pantograph, see (7.28). The only assumption we make

at this stage is that 𝜒
˘
𝜑 is a function of 𝜂 with 𝜒

˘
𝜑=𝒪(𝜂0)—this includes 𝜒

˘
𝜑=𝒪(𝜂1) and 𝜒

˘
𝜑=𝒪(𝜂2) as particular

cases. In any case, the matrix 𝓚𝜑(𝜂, 𝑿) appearing in (2.19) may contain terms of different orders in 𝜂 and may
therefore depend on 𝜂 through more than just an overall scaling factor.

Anticipating that the homogenization will fail near the edges of the lattice due to the presence of boundary layers,
we limit attention to a sub-region Ω⊂ℝd of the physical lattice that exclude the edges, see Figure 2.3: the strain
energy of the lattice Φd in the region Ω is defined as the sum of the elastic energy w𝛼 over all beams 𝛼 whose center
𝑿𝛼c (shown as a red dot in Figure 2.3) lies inside the domain Ω,

Φd= �
𝛼 such that 𝑿𝛼c∈Ω

w𝛼(𝑬𝛼). (2.23)

Points where the loading is not smooth (such as points of application of point-like forces) are also excluded from
the domain Ω, along with a finite neighborhood around such points. The subscript ‘d’ in Φd stands for ‘discrete’: a
continuous variant Φ of the lattice strain energy, bearing no subscript, will be introduced later.

𝑿

Ω

∂Ω

𝒏
S

𝒆1

𝒆2

Figure 2.3. To avoid boundary layers, the homogenization is carried out in a sub-region Ω of the lattice (shaded blue region)
that excludes the physical boundaries of the lattice.

Remark 2.3. In Sections 7.1, we treat the case of an elastic truss whose bending modulus E I(𝑿) varies slowly in
space. In Section 7.3, we treat the case of circular arch, whose geometric properties vary slowly in space. In both
case, the element stiffness matrix 𝓚𝜑 depends explicitly on 𝑿 , see Equation (7.22) for the arch.

3. HOMOGENIZATION PROBLEM IN CANONICAL FORM

In this Section, we cast the energy formulation of the discrete lattice problem obtained in Section 2 into a standard
form, the canonical form, which we will be able to feed into the symbolic homogenization tool [Aud23] available from
our previous work [AL23]. The following steps are involved:

• describe the discrete solution in terms of continuous functions (continualization step, §3.1),

• introduce a vector 𝒍(𝑿) collecting the degrees of freedom which are fixed during homogenization (§3.3) and a
vector 𝒚(𝑿) collecting those that are relaxed during homogenization (§3.4),

• introduce an assembled strain vector 𝑬(𝑿) in terms of 𝒍(𝑿), 𝒚(𝑿) and their gradients (§3.5),

• express the strain energy of the lattice in terms of 𝑬(𝑿) (§3.6–3.7).

6 ASYMPTOTIC, SECOND-ORDER HOMOGENIZATION OF LINEAR ELASTIC BEAM NETWORKS



3.1. Parameterization of discrete solution using continuous functions
A key assumption in homogenization is that the equilibrium solution of the discrete lattice can be captured by the
following functions of the continuous variable 𝑿 :

• a macroscopic displacement 𝒖(𝑿)∈ℝd representing the local average of the nodal displacement over the
different Bravais sub-lattices,

• for each Bravais sub-lattice 1 ⩽ b⩽ nb, a microscopic displacement 𝝃b(𝑿) ∈ℝd and a microscopic rotation
𝝍b(𝑿)∈ℝnr.

Their orders of magnitude are taken as (see Remark 3.1 for a justification),

𝒖(𝑿)=𝒪(𝜂0), 𝝃b(𝑿)=𝒪(𝜂1), 𝝍b(𝑿)=𝒪(𝜂0). (3.1)

All these functions may depend on the expansion parameter 𝜂≪1, even though this dependence is implicit in our
notation. As earlier in (2.10), we assume that this dependence takes place through regular expansions, with a
leading term set by (3.1), i.e.,

𝒖(𝑿) = 𝒖(0)(𝑿) + 𝜂𝒖(1)(𝑿) + ⋅ ⋅ ⋅
𝝃b(𝑿) = 𝜂�𝝃b�(1)(𝑿) + ⋅ ⋅ ⋅
𝝍b(𝑿) = (𝝍b)(0)(𝑿) + 𝜂(𝝍b)(1)(𝑿) + ⋅ ⋅ ⋅

(3.2)

where all the ‘terms’ in the series 𝒖(k)(𝑿), �𝝃b�(k)(𝑿) and (𝝍b)(k)(𝑿) are smooth functions of 𝑿 . Throughout
this paper and in the interest of legibility, we will use the quantities 𝒖(𝑿), 𝝃b(𝑿) and 𝝍b(𝑿) as blocks, refraining
as much as possible from exposing the underlying expansions. The only concrete consequences of (3.2) are that
(i) we determine these fields perturbatively, see (4.3–4.4), at the successive orders of the homogenization procedure
and (ii) the gradients scale the same way as the undifferentiated quantities, i.e., ∇k𝒖=𝒪(𝜂0), ∇k𝝃b=𝒪(𝜂1) and
∇k𝝍b=𝒪(𝜂0), which we summarize by the formal rule

∇=𝒪(𝜂0). (3.3)

As usual in continuum mechanics, the macroscopic rotation 𝜸(𝑿)∈ℝnr is a vector extracted from the antisym-
metric part of ∇𝒖(𝑿): in our notation, this extraction is denoted as 𝜸(𝑿)=−12 ∇𝒖(𝑿) :𝓝=𝒪(𝜂0) where 𝓝 is a
constant tensor that is antisymmetric with respect to its first pair of indices, see Equation (3.8)2 below.

Following the Cauchy-Born ‘hypothesis’, the nodal degrees of freedom are postulated in terms of the continuous
fields as

𝒗𝛽=𝒖(𝑿𝛽)+𝝃b(𝛽)(𝑿𝛽), 𝜽𝛽=𝜸(𝑿𝛽)+𝝍b(𝛽)(𝑿𝛽). (3.4)

Here, both the nodal displacement 𝒗𝛽 and rotation 𝜽𝛽 are expressed as the sum of a macroscopic quantity (displace-
ment 𝒖(𝑿) and rotation 𝜸(𝑿)) and a microscopic one (displacement 𝝃b(𝑿) and rotation 𝝍b(𝑿)). The macroscopic
quantities 𝒖(𝑿) and 𝜸(𝑿) are functions on 𝑿 only, and therefore vary slowly, whereas the additional dependence of
𝝃b and 𝝍b on the Bravais index b=b(𝛽) of the node causes ‘fast’ variations at the scale of the cell. Equation (3.4) is
a variant of the double scale expansion used as a starting point for the homogenization of periodic continua, see for
instance [San80; Bou96], which has been modified to account for the fact that b is a discrete variable here.

The decomposition of the nodal displacement 𝒗𝛽 in (3.4)1 is not unique: shifting 𝒖(𝑿) by �̃�(𝑿), and all the 𝝃b(𝑿)'s
by −�̃�(𝑿) leaves 𝒗𝛽 unchanged. To ensure unicity, we impose the constraint

�
b=1

nb

𝝃b(𝑿)=𝟎, ∀𝑿. (3.5)

By averaging both sides of (3.4)1 with respect to the Bravais sub-lattices b, one can then confirm that 𝒖(𝑿) is the
average nodal displacement as announced earlier.

Remark 3.1. The scaling assumptions in (3.1) imply that the element strain 𝑬𝛼 in (2.12) has magnitude

𝑬𝛼=𝒪(𝜂0). (3.6)

Considering the stretching strain, for instance, |𝜀𝛼| = �
(𝒗𝛽𝛼+− 𝒗𝛽𝛼−) ⋅ 𝒕𝛼

ℓ𝛼
� = � �u(𝑿𝛽𝛼+)+𝝃b�𝛽𝛼+�(𝑿𝛽𝛼+) − u(𝑿𝛽𝛼−) −𝝃b(𝛽𝛼−)(𝑿𝛽𝛼−)�

ℓ𝛼
� ⩽

|∇𝒖 ⋅(𝚫𝜑𝛼
+ −𝚫𝜑𝛼

− )|
|𝚫𝜑𝛼

+ −𝚫𝜑𝛼
− | + �𝝃b(𝛽𝛼−)(𝑿𝛽𝛼−)�

|𝚫𝜑𝛼
+ −𝚫𝜑𝛼

− | +
�𝝃b(𝛽𝛼−)(𝑿𝛽𝛼−)�
|𝚫𝜑𝛼

+ −𝚫𝜑𝛼
− | which yields |𝜀𝛼| =𝒪(𝜂0) when combined with (3.1)1,2 and (2.6). A similar

reasoning holds for 𝜅𝛼=𝒪(𝜂0) and 𝜏𝛼=𝒪(𝜂0). In situations where the strain scales differently than in (3.6), one
can simply shift the orders in the scaling assumptions (3.1).

Remark 3.2. Given an equilibrium configuration of the lattice, the continuous fields can be explicitly constructed
as follows. First, the nodal displacements 𝒗𝛽 in each particular Bravais sub-lattice b∋𝛽 are interpolated by smooth
functions 𝒗b

s(𝑿𝛽) of their undeformed position 𝑿𝛽: a set of nb such interpolating functions 𝒗b
s with b=1, . . . ,nb are

obtained. Next, 𝒖(𝑿) is defined as the average 𝒖(𝑿)= 1
nb
∑b=1

nb 𝒗b
s(𝑿). Finally, the ‘continualized’ microscopic fields

𝝃b(𝑿) and 𝝍b(𝑿) are obtained by interpolating 𝒗𝛽 −𝒖(𝑿𝛽) and 𝜽𝛽 −𝜸(𝑿𝛽), respectively, over each Bravais sub-
lattice separately. The constraint (3.5) is then automatically satisfied.
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Remark 3.3. Consider the particular case of a rigid-body motion of the lattice made up of a translation 𝒖0 and
rotation 𝜸0, i.e., �𝒗𝛽, 𝜽𝛽�= (𝒖0+𝜸0×𝑿𝛽, 𝜸0) at every node 𝛽. The macroscopic fields are extracted as outlined in
Remark 3.2, which yields the macroscopic displacement as 𝒖(𝑿) = 𝒖0+𝜸0 ×𝑿 , a constant macroscopic rotation
𝜸(𝑿)=𝜸0 given by (3.8)2 and zero microscopic displacement 𝝃b(𝑿)=𝟎d and rotation 𝝍b(𝑿)=𝟎nr. By including the
term 𝜸(𝑿𝛽) in the right-hand side of (3.4)2, we have made the microscopic displacement insensitive to rigid-body
motions of the lattice.

3.2. Macroscopic strain ε̌ and rotation γ
In linear elasticity, the displacement gradient ∇𝒖(𝑿) is classically decomposed into:

• a symmetric strain tensor 𝜺(𝑿)= 1
2 (∇𝒖(𝑿)+∇𝒖

T(𝑿))∈𝕋(d,d) , whose components we arrange into a vector
�̌�(𝑿)∈ℝn𝜀, following Mandel's notation,

�̌�(𝑿)={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
�𝜀11(𝑿), 𝜀22(𝑿), 2� 𝜀12(𝑿)� (d=2)
�𝜀11(𝑿), 𝜀22(𝑿), 𝜀33(𝑿), 2� 𝜀12(𝑿), 2� 𝜀23(𝑿), 2� 𝜀13(𝑿)� (d=3),

(3.7)

where n𝜀= d (d+1)
2 is the number of independent strain components,

• and an antisymmetric part �̂�(𝑿)= 1
2 (∇𝒖(𝑿)−∇𝒖T(𝑿)) representing an infinitesimal rotation.

With the help of the geometric tensors 𝓜∈𝕋(d,d,n𝜀) and 𝓝∈𝕋(d,d,nr), which depend on the space dimension d
only and are defined in Equation (B.1) in the Appendix B and Equation (A.6) in the Appendix A.2, respectively, the
macroscopic strain �̌� and the pseudo-vector 𝜸 associated with the infinitesimal rotation �̂� are obtained from ∇𝒖 as

�̌�(𝑿)=∇𝒖(𝑿) :𝓜, 𝜸(𝑿)=−12 ∇𝒖(𝑿) :𝓝. (3.8)

The first equality follows from Equation (B.4) in Appendix B, and from the fact that𝓜 is symmetric with respect to
its first pair of indices. The second equality follows by setting 𝜸=𝜽 in (A.5)2 and from the fact that 𝓝 is antisym-
metric with respect to its first pair of indices.

By the scaling assumptions (3.1), ∇𝒖=𝒪(𝜂0), and we have the order-of-magnitude estimates

�̌�(𝑿)=𝒪(𝜂0), 𝜸(𝑿)=𝒪(𝜂0). (3.9)

3.3. Macroscopic state vector l
Next, we define the macroscopic degrees of freedom vector 𝒍(𝑿)∈ℝnl by concatenating the macroscopic displacement
𝒖(𝑿), rotation 𝜸(𝑿) and strain �̌�(𝑿): in block-vector notation,

𝒍(𝑿)=� 𝒖(𝑿) 𝜸(𝑿) �̌�(𝑿) �∈ℝnl, (3.10)
where

nl=d+nr+n𝜀. (3.11)

By design, the macroscopic state vector is a quantity of order 1, see (3.1) and (3.8),

𝒍(𝑿)=𝒪(𝜂0). (3.12)

The macroscopic state vector 𝒍(𝑿) collects the quantities that are fixed during homogenization.
As shown in Equation (A.8) in Appendix A.3, the Taylor expansion about a point 𝑿c of the macroscopic contribu-

tion (𝒖,𝜸) to the nodal degrees of freedom, see (3.4), can be written in terms of the macroscopic state vector 𝒍(𝑿) as

((((((((( 𝒖(𝑿)𝜸(𝑿) )))))))))=𝓣l(𝑿 −𝑿c) ⋅ 𝒍(𝑿c)+𝓣l′(𝑿 −𝑿c) :∇𝒍(𝑿c)+𝓣l′′(𝑿 −𝑿c)∴∇2𝒍(𝑿c)+ ⋅ ⋅ ⋅, (3.13)

where the tensors 𝓣l(i) are expressed in block-matrix notation as

𝓣l(𝚫) = (((((((((((((( 𝑰d −𝓝T132 ⋅𝚫 𝓤′T132 ⋅𝚫
𝟎nr×d 𝑰nr 𝟎nr×n𝜀 )))))))))))))) ∈𝕋(nn,nl),

𝓣l′(𝚫) = ((((((((((((((((((
((((((
(
( 𝟎d×d×d 𝟎d×nr×d 𝓤′′T14523 : 𝚫

⊗2

2

𝟎nr×d×d 𝟎nr×nr×d 𝓖′T1423 ⋅𝚫 ))))))))))))))))))
))))))
)
)

∈𝕋(nn,nl,d),

𝓣l′′(𝚫) = ((((((((((((((((((
((((((((
(
( 𝟎d×d×d×d 𝟎d×nr×d×d 𝓤′′′T1567234∴ 𝚫

⊗3

6

𝟎nr×d×d×d 𝟎nr×nr×d×d 𝓖′′T156234 : 𝚫
⊗2

2 ))))))))))))))))))
))))))))
)
)
∈𝕋(nn,nl,d,d),

. . .

(3.14)

Equations (3.13–3.14) follow from the geometric analysis in Sections A.3 and B.3 in the Appendix, and make use of
the geometric tensors 𝓝, 𝓤′,𝓤′′, 𝓤′′′, 𝓖′ and𝓖′′ defined in Equations (B.7–B.15): they are a compact rewriting
of the Taylor expansion (A.8) derived in the Appendix. In the right-hand sides of (3.14), the vertical blocks corre-
spond to the nodal displacement (𝒖) versus rotation (𝜸), and the horizontal blocks to the ∇i𝒖, ∇i𝜸 and ∇i�̌� parts of
∇i𝒍, see (3.10). The generalized-transpose notation is defined in Appendix A.
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3.4. Microscopic degrees of freedom y
Next, we define the microscopic degrees of freedom 𝒚(𝑿) as the concatenation into a single vector of those relevant
to the different Bravais lattice,

𝒚(𝑿)=� 𝝃1(𝑿)
𝜂 𝝍1(𝑿) . . .

𝝃b(𝑿)
𝜂 𝝍b(𝑿) . . .

𝝃nb(𝑿)
𝜂 𝝍nb(𝑿) �∈ℝ

ny, (3.15)

where ny is the dimension of 𝒚,

ny=nb×nn. (3.16)

By contrast with 𝒍, the vector 𝒚 lists all the degrees of freedom that will be relaxed during homogenization: the
discrete energy of the lattice depends on 𝒚 but the homogenized energy does not. The coefficients 1/𝜂 in (3.15)
warrant

𝒚(𝑿)=𝒪(𝜂0), (3.17)

see (3.1).
The microscopic displacement and rotation at a particular node can be extracted from 𝒚 using

(((((((((((((((((((
𝝃b(𝛽)(𝑿𝛽)
𝝍b(𝛽)(𝑿𝛽) )))))))))))))))))))=𝓑b(𝛽) ⋅ 𝒚(𝑿𝛽), (3.18)

where 𝓑b is defined as

𝓑b=� 𝟎nn×(b−1)nn ((((((((( 𝜂 𝑰d 𝟎
𝟎 𝑰nr ))))))))) 𝟎nn×(nb−b)nn �∈𝕋(nn,ny).

We have derived in (3.13) the Taylor expansion of the macroscopic contribution to the nodal degrees of freedom
about a generic point 𝑿c. The counterpart for the microscopic contributions is obtained by expanding (3.18) as

(((((((((((((( 𝝃b(𝑿)
𝝍b(𝑿) ))))))))))))))=𝓣y

b(𝑿 −𝑿c) ⋅ 𝒚(𝑿c)+𝓣y′
b(𝑿 −𝑿c) :∇𝒚(𝑿c)+𝓣y′′

b (𝑿 −𝑿c)∴∇2𝒚(𝑿c)+ ⋅ ⋅ ⋅ (3.19)

where
𝓣y

b(𝚫) = 𝓑b ∈𝕋(nn,ny),
𝓣y′

b(𝚫) = 𝓑b⊗𝚫 ∈𝕋(nn,ny,d),

𝓣y′′
b (𝚫) = 𝓑b⊗

𝚫⊗2
2 ∈𝕋(nn,ny,d,d),

. . .

(3.20)

3.5. Element strain expansion
Combining (2.14), (3.4), (3.13), (3.19), (2.6) and (2.2), one can rewrite the strain 𝑬𝛼 in an element 𝛼 as

𝑬𝛼=𝑬𝜑𝛼(𝜂,𝑿𝛼c) (3.21)

where 𝑬𝜑(𝜂,𝑿) is a smooth function of 𝑿=𝑿𝛼c depending on the element family 𝜑=𝜑𝛼,

𝑬𝜑(𝜂,𝑿)=𝓓𝜑(𝜂,𝑿) :((((((((((((((((((
((((((
(
(
[[[[[[[[[[[[[[[[[
[[[[
[
[∑i=0

∞ 𝓣l(i)(𝚫𝜑− (𝜂,𝑿)) ⋅(i+1)∇i𝒍(𝑿)⋅ ⋅ ⋅
+∑i=0

∞ 𝓣y(i)
b𝜑−(𝚫𝜑− (𝜂,𝑿)) ⋅(i+1)∇i𝒚(𝑿) ]]]]]]]]]]]]]]]]]

]]]]
]
]
[[[[[[[[[[[[[[[[[
[[[[
[
[∑i=0

∞ 𝓣l(i)�𝚫𝜑
+(𝜂,𝑿)� ⋅(i+1)∇i𝒍(𝑿)⋅ ⋅ ⋅

+∑i=0
∞ 𝓣y(i)

b𝜑+�𝚫𝜑
+(𝜂,𝑿)� ⋅(i+1)∇i𝒚(𝑿) ]]]]]]]]]]]]]]]]]

]]]]
]
]
))))))))))))))))))
))))))
)
)
,

and ⋅(i) is a shorthand for the contraction of order i defined in Section A.1 of the Appendix, that is ⋅(1)= ⋅ , ⋅(2)= : ,
⋅(3)=∴ , etc.

This can be rewritten in compact form as

𝑬𝜑(𝜂,𝑿)=�
i=0

∞

𝑬𝜑l
(i)(𝜂,𝑿) ⋅(i+1)∇i𝒍(𝑿)+�

i=0

∞

𝑬𝜑
y(i)(𝜂,𝑿) ⋅(i+1)∇i𝒚(𝑿), (3.22)

where
𝑬𝜑l

(i)(𝜂,𝑿) = 𝓓𝜑(𝜂,𝑿) :� 𝓣l(i)(𝚫𝜑
− (𝜂,𝑿)) 𝓣l(i)�𝚫𝜑

+(𝜂,𝑿)� �

𝑬𝜑
y(i)(𝜂,𝑿) = 𝓓𝜑(𝜂,𝑿) :� 𝓣y(i)

b𝜑−(𝚫𝜑− (𝜂,𝑿)) 𝓣y(i)
b𝜑+�𝚫𝜑

+(𝜂,𝑿)� �.
(3.23)

In (3.21–3.23), the element strain 𝑬𝛼 has been obtained as a series expansion about the element center 𝑿=𝑿𝛼c in
terms of the macroscopic state vector 𝒍, of the microscopic degrees of freedom 𝒚 and of their successive derivatives.
Using explicit formulas for the 𝓣's in (3.14) and (3.20), we can use (3.23) to calculate symbolically and in closed
form the coefficients 𝑬𝜑l (𝜂, 𝑿), 𝑬𝜑l′(𝜂, 𝑿), 𝑬𝜑l′′(𝜂, 𝑿), . . . , 𝑬𝜑

y(𝜂, 𝑿), 𝑬𝜑
y′(𝜂, 𝑿), 𝑬𝜑

y′′(𝜂, 𝑿), . . . entering in the series
expansion (3.22) of the element strain. These coefficients depend on both 𝜂 and 𝑿 when the lattice has non-uniform
geometrical properties in space, as happens for instance with the curved lattice shown in Figure 2.1b.
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Remark 3.4. By (3.10), the first slots in 𝒍 correspond to a macroscopic rigid-body displacement (translation 𝒖 and
rotation 𝜸). The corresponding subblocks in 𝑬𝜑l (𝜂,𝑿), 𝑬𝜑l′(𝜂,𝑿) and 𝑬𝜑l′′(𝜂,𝑿) are actually zero, reflecting the fact
that the lattice elements (such as beams in the present case) are unaffected by rigid-body displacement:

• because of the zero blocks in (3.14)2,3, the subblocks in 𝑬𝜑l′(𝜂,𝑿) and 𝑬𝜑l′′(𝜂,𝑿) corresponding to 𝒖 and 𝜸 are
zero, see (3.23);

• in view of (3.14) and (3.23), the 𝒖 subblock in 𝑬𝜑l (𝜂, 𝑿) is 𝓓𝜑(𝜂, 𝑿) : ((((((((( 𝑰d 𝑰d
𝟎nr×d 𝟎nr×d ))))))))), which is zero when the

expression of 𝒟𝜑 in (2.15) is used (invariance of the element strain 𝑬𝛼 by a rigid translation);

• the 𝜸 subblock in 𝑬𝜑l (𝜂,𝑿) is 𝓓𝜑(𝜂,𝑿) : (((((((((((((( −𝓝T132 ⋅𝚫𝜑
− −𝓝T132 ⋅𝚫𝜑

+

𝑰nr 𝑰nr )))))))))))))), which can be shown to be zero by a similar
argument (invariance of the element strain 𝑬𝛼 by a rigid rotation).

The only point of the macroscopic degrees of freedom 𝒍 being to compute the element strain by Equation (3.22), it is
therefore possible to discard entirely the 𝒖 and 𝜸 components in 𝒍, i.e., to amend (3.10) to

𝒍(𝑿)=� �̌�(𝑿) � (alternate, reduced form of 𝒍). (3.24)

In this case the length of nl in (3.11) must obviously be changed to nl=n𝜀. The library is flexible: the definition of 𝒍
can be selected using an option and we check that the expected subblocks are zero in any case.

Remark 3.5. In Equation (3.24), the macroscopic degrees of freedom 𝒍 coincides with the macroscopic strain 𝜺. We
prefer, however, to treat these notions as distinct, as we will occasionally include additional degrees of freedom
into 𝒍, such as the pre-strain magnitude in Equation (7.9). In any case, 𝒍 collects all the variables on which the
homogenized energy depends, so that the energy is always of the form (4.5).

3.6. Assembly
Next, we concatenate the elements' strain measures 𝑬𝜑 corresponding to the different element families 1⩽𝜑⩽n𝜑 ,
along with the left-hand side of the constraint (3.5) into a global strain vector 𝑬(𝑿),

𝑬(𝜂,𝑿)=� 𝑬I(𝜂,𝑿) . . . 𝑬𝜑(𝜂,𝑿) . . . 𝑬n𝜑(𝜂,𝑿)
1
𝜂∑b=1

nb 𝝃b(𝑿) �∈ℝnE, (3.25)

whose dimension is

nE=((((((((((((((((((
((((((
(
(
�
𝜑=I

n𝜑

nE𝜑))))))))))))))))))
))))))
)
)
+d. (3.26)

By (3.1) and (3.6), it scales as
𝑬(𝜂,𝑿)=O(𝜂0). (3.27)

The honeycomb lattice shown in Figure 2.1, for instance, has 𝑬=� 𝜀I 𝜅I 𝜏I 𝜀II 𝜅II 𝜏II 𝜀III 𝜅III 𝜏III
𝝃1+𝝃2
𝜂 ⋅ 𝒆1

𝝃1+𝝃2
𝜂 ⋅ 𝒆2 � and nE=

11.
The global strain vector 𝑬(𝑿) plays a central role in the formulation of the homogenized problem:

• the strain 𝑬𝛼 in a particular element can be found by evaluating 𝑬(𝜂,𝑿) at the element center 𝑿 =𝑿𝛼c, and
extracting the range of indices corresponding to element family 𝜑𝛼, see (3.25) and (3.21),

𝑬𝛼=� 𝟎nE(𝜑𝛼)×p𝜑 𝑰nE(𝜑𝛼)
𝟎nE(𝜑𝛼)×p𝜑′ � ⋅𝑬(𝜂,𝑿𝛼c) (3.28)

where p𝜑=∑𝜑′=I
𝜑−1 nE𝜑′ is the number of slots before the 𝑬𝜑 block in (3.25) and p𝜑′ =∑𝜑′=𝜑+1

n𝜑 nE𝜑′+d is the
number of slots after the 𝑬𝜑 block;

• in view of (3.28), the elastic energy in (2.20–2.23) can be rewritten as

Φd=�Ω
1
2 𝑬(𝜂,𝑿) ⋅𝓚d(𝜂,𝑿) ⋅𝑬(𝜂,𝑿)d𝑿 (3.29)

where 𝓚d(𝜂,𝑿) is the global stiffness matrix,

𝓚d(𝜂,𝑿)=�
𝜑=I

n𝜑

(((((((((((((((((
(((((((((((
(
( �
𝛼∈𝜑
𝑿𝛼c∈Ω

𝜹D(𝑿 −𝑿𝛼c)

)))))))))))))))))
)))))))))))
)
)𝓚𝜑

g(𝜂,𝑿)∈𝕋(nE,nE), (3.30)

which is symmetric, 𝜹D denotes the Dirac distribution, and 𝓚𝜑
g(𝜂,𝑿) represents the contribution from the

element family 𝜑 to the global stiffness matrix,

𝓚𝜑
g(𝜂,𝑿)=

(((((((((((((((((
(((((((((((((((((
(
(
( 𝟎p𝜑×p𝜑 𝟎p𝜑×nE𝜑 𝟎p𝜑×p𝜑′

𝟎nE𝜑×p𝜑 𝓚𝜑(𝜂,𝑿) 𝟎nE𝜑×p𝜑′

𝟎p𝜑′ ×p𝜑 𝟎p𝜑′ ×nE𝜑
𝟎p𝜑′ ×p𝜑′ )))))))))))))))))

)))))))))))))))))
)
)
)
∈𝕋(nE,nE); (3.31)

• the nc=d=2 kinematic constraints in (3.5) can be rewritten as

𝓠⋅𝑬(𝜂,𝑿)=𝟎 ∀𝑿∈Ω (3.32)
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where the constraint extraction matrix 𝓠 extracts the trailing nc in the expression (3.25) of 𝑬,

𝓠=� 𝟎(nE−nc)×nc 𝑰nc �∈𝕋(nc,nE); (3.33)

• by (3.22), (3.25) the assembled strain vector can be expressed in terms of 𝒍, 𝒚 and their gradients as

𝑬(𝜂,𝑿)=𝑬l(𝜂,𝑿) ⋅ 𝒍(𝑿)+𝑬l′(𝜂,𝑿) :∇𝒍(𝑿)+𝑬l′′(𝜂,𝑿)∴∇2𝒍(𝑿)+ ⋅ ⋅ ⋅
+𝑬y(𝜂,𝑿) ⋅ 𝒚(𝑿)+𝑬y′(𝜂,𝑿) :∇𝒚(𝑿)+𝑬y′′(𝜂,𝑿)∴∇2𝒚(𝑿)+ ⋅ ⋅ ⋅

(3.34)

where the coefficients𝑬l,𝑬l′,𝑬l′′,𝑬y,𝑬y′ and𝑬y′′ are obtained by a simple assembly process, see (3.25) and (3.15),
as

𝑬l
(i)(𝜂,𝑿)=

(((((((((((((((((
(((((((((((((((((
(((((((((((((((

(

( 𝑬I
l(i)(𝜂,𝑿)
⋅⋅⋅

𝑬n𝜑
l(i)(𝜂,𝑿)
𝟎nc×nl×di )))))))))))))))))

)))))))))))))))))
)))))))))))))))

)

)
, 𝑬y

(i)(𝜂,𝑿)=

(((((((((((((((((
((((((((((((((((((
((((((((((((((((((
(((((((((((((((

(

( 𝑬I
y(i)(𝜂,𝑿)
⋅⋅⋅

𝑬n𝜑
y(i)(𝜂,𝑿)

{{{{{{{{{{{{{{{{{{{{{{{{{{{{
� 𝑰d 𝟎d×nr . . . 𝑰d 𝟎d×nr � if i=0
𝟎nc×ny×di if i>0 )))))))))))))))))

))))))))))))))))))
))))))))))))))))))
)))))))))))))))

)

)
. (3.35)

Remark 3.6. Both 𝒍(𝑿) and 𝒚(𝑿) are of order 𝜂0 by (3.12) and (3.17), and so is 𝑬(𝜂,𝑿) as well by (3.27). As a result,
the leading-order coefficients in (3.34) are of order 𝑬l=𝒪(𝜂0) and 𝑬y=𝒪(𝜂0). A more detailed analysis shows that

𝑬l(𝜂,𝑿)=𝒪(𝜂0), 𝑬l′(𝜂,𝑿)=𝒪(𝜂1), 𝑬l′′(𝜂,𝑿)=𝒪(𝜂2),
𝑬y(𝜂,𝑿)=𝒪(𝜂0), 𝑬y′(𝜂,𝑿)=𝒪(𝜂1), 𝑬y′′(𝜂,𝑿)=𝒪(𝜂2).

(3.36)

The increasing powers of 𝜂 from left to right in this table can be traced back to the presence of increasing powers of
𝚫=𝒪(𝜂) in the successive 𝓣 operators appearing in (3.14) and (3.20), see (2.6).

3.7. Continualized strain energy
The energy Φd has been artificially rewritten as an integral in (3.29) but, because of the Dirac weights in (3.30), it is
in fact a discrete sum over the element centers. By the Euler–MacLaurin formula [LP16], this discrete sum can be
approximated to any desired order in 𝜂 by a ‘genuine’ integral plus boundary terms—we work with an error of order
𝜂3 in the present work,

Φd=Φ+Φbt+𝒪(𝜂3) (3.37)

where Φbt=∮∂Ω . . . da is the boundary term, and Φ is the continualized energy,

Φ=�
Ω
1
2 𝑬(𝜂,𝑿) ⋅𝓚(𝜂,𝑿) ⋅𝑬(𝜂,𝑿)d𝑿, (3.38)

obtained by taking formally the limit 𝜂→0 in (3.29–3.30),

𝓚(𝜂,𝑿)=�
𝜑=I

n𝜑

𝜌𝜑(𝜂,𝑿)𝓚𝜑
g(𝜂,𝑿). (3.39)

Here, 𝜌𝜑(𝜂,𝑿) is the density of element centers for family 𝜑 in the reference configuration space 𝑿 , see Figure 2.1b.
It is given in terms of the known density �̃�𝜑 of element centers in the topological lattice space �̃� (see Table 2.1) as

𝜌𝜑(𝜂,𝑿)=
�̃�𝜑

𝜂d |J𝒇(𝒇 −1(𝑿))|
, (3.40)

where J𝒇 =det∇𝒇 is the Jacobian of the diffeomorphism (2.3). Like �̃�𝜑, the density 𝜌𝜑 is expressed per unit area if
d=2, and per unit volume if d=3.

The proof of Equations (3.37–3.40) can be outlined as follows:

1. the energy in (3.29) is a sum by (3.30) of terms concerning a particular family 𝜑;

2. each of the terms writes as ∑𝛼∈𝜑,𝑿𝛼c∈Ω
1
2 𝑬(𝜂,𝑿𝛼

c) ⋅𝓚𝜑
g(𝜂,𝑿𝛼c) ⋅𝑬(𝜂,𝑿𝛼c) and is continualized separately;

3. with the help of the diffeomorphism, each term is rewritten as a sum over the (periodic) underlying topological
lattice, namely ∑

𝛼∈𝜑,�̃�𝛼c∈𝜂−1𝒇 −1(Ω)
1
2 𝑬(𝜂, 𝒇 (𝜂 �̃�𝛼

c)) ⋅𝓚𝜑
g(𝜂, 𝒇 (𝜂 �̃�𝛼c)) ⋅𝑬(𝜂, 𝒇 (𝜂 �̃�𝛼c));

4. this is now a sum over a large domain in a periodic lattice, whose term is given by a slowly-variable function:
by the Euler–MacLaurin formula, see Theorem 2.1(ii) by Le Floch and Pelayo [LP16], it can be rewritten as
an integral plus boundary terms—this proof is constructive and explicit expressions are available:

• the integral term thus obtained corresponds to taking the formal limit 𝜂→0 in (3.29–3.30) where the
Dirac weights are replaced by their density;

• the boundary terms are available as well but are not needed in the present paper;
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5. the proof of Equations (3.37–3.40) follows by summing up the integrals and boundary terms coming from the
different families.

This yields the integrand 1
2 𝑬(𝜂,𝑿) ⋅𝓚(𝜂,𝑿) ⋅𝑬(𝜂,𝑿) announced in (3.38). We do not need the exact expression

of the boundary term Φbt in the present paper, and therefore leave to future work both the details of the proof and
the expression of Φbt. In this future work, we will combine the boundary term Φbt with an analysis of the boundary
layer to account for the boundary in an effective way.

Combining (2.21), (3.31), (3.39) and (3.40), we obtain an order-of-magnitude estimate for the continuous stiffness,

𝓚(𝜂,𝑿)=𝒪(𝜂0). (3.41)

Since 𝑬(𝜂,𝑿)=𝒪(𝜂0) by (3.27), the continualized energy in (3.38) scales as

Φ=𝒪(𝜂0). (3.42)

The above scalings for 𝓚 and Φ are convenient. They motivate the scaling assumption (2.21).

3.8. Summary: canonical form
In our previous work, we carried out homogenization of a generic elasticity problem, formulated in a special form
called the canonical form, see Section 2.1 in [AL23]. In Section 3 above, we have rewritten the equilibrium of the
lattice in canonical form, which will allow us to apply the homogenization procedure readily. The canonical form is
nothing but

• the expansion (3.34) of the strain 𝑬 in terms of 𝒍, 𝒚 and their gradients, which we can rewrite as 𝑬=𝑬(𝜂,𝑿;
𝒍(𝑿),∇𝒍(𝑿), . . . ; 𝒚(𝑿),∇𝒚(𝑿), . . . ),

• the expression (3.32) of the kinematical constraint,

• the expression (3.38) of the energy.

We will homogenize the continualized energyΦ, ignoring the boundary termsΦbt appearing in (3.37) during homog-
enization: the latter can only be interpreted in combination with an analysis of the boundary layers that form at
edges of the lattice, which we leave for future work.

4. SECOND-ORDER HOMOGENIZATION

In this section, we summarize the homogenization procedure described in [AL23] which applies readily to the canon-
ical form of lattice energy Φ=Φ[𝜂, 𝒍, 𝒚] derived in Section 3. Here, the square brackets refer to a functional
dependence on the arguments 𝒍 and 𝒚.

4.1. Principle of the homogenization method
The macroscopic state vector 𝒍 is equal to the macroscopic strain �̌�, see (3.24) and (3.7). However, to make future
extensions easier, we treat 𝒍 and �̌� as distinct entities, viewing 𝒍 as the list of degrees of freedom that are fixed during
homogenization (which may be more than just the macroscopic strain �̌�).

The homogenization procedure described in our previous work [AL23] can be summarized as follows. With 𝒍 a
prescribed function of 𝑿 , we revisited homogenization by working at the energy level and showed that the micro-
scopic degrees of freedom 𝒚(𝑿) are the solution of a stationary-point problem,

𝒚⋆[𝜂, 𝒍]= stpt
𝒚 such that 𝓠⋅𝑬=𝟎∀𝑿

Φ[𝜂, 𝒍, 𝒚]. (4.1)

This stationary-point problem concerns interior points of the domain Ω only, and proceeds order by order in the
expansion parameter 𝜂, the gradient effect being captured as a higher-order correction in 𝜂. The canonical form
derived in Section 3 provided us with the energy functionalΦ[𝜂,𝒍,𝒚]which we can now plug into the homogenization
engine developed in our previous work [Aud23].

The stationary point 𝒚⋆ obtained in (4.1) is a functional of 𝒍, as indicated by the square brackets. It is also a
function of 𝑿 whose values are denoted as 𝒚⋆[𝜂, 𝒍](𝑿). Equation (4.1) effectively slaves the microscopic degrees of
freedom 𝒚 to the macroscopic state 𝒍.

A homogenized energy functional Φ⋆ is obtained by inserting the stationary point 𝒚⋆ into the original energy,

Φ⋆[𝜂, 𝒍]=Φ[𝜂, 𝒍, 𝒚⋆[𝜂, 𝒍]]. (4.2)

The stationary point problem (4.1) is similar to that governing the equilibrium of the lattice, except that:

• only 𝒚 is allowed to vary, 𝒍 being kept fixed;

• the potential of the external loading Ψ is ignored, only the strain energy Φ being considered;

• the energy is written in the domain Ω strictly contained in the physical domain of the lattice, see Figure 2.3,
and boundary terms Φbc are ignored.
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Once homogenization is complete, the following additional steps should be addressed: the boundary layers taking
place outside the domain Ω must be analyzed, the boundary terms Φbc must obtained, and the total potential
energy—including the potential of the external loading Ψ—must be optimized with respect to 𝒍. When this is
done, the proper equilibrium of the lattice is recovered, warranting that the homogenization procedure summa-
rized in (4.1–4.2) is asymptotically consistent. This paper focusses on the derivation of the homogenized model
Φ⋆: its application to the solution of complete structural problems will be treated in future work.

Remark 4.1. The motivation for ignoring the potential of the external loading Ψ during homogenization is as
follows. It follows from standard assumptions on the magnitude of the load that the potential Ψ[𝜂, 𝒍] is a function
of 𝒍 but not of 𝒚: since 𝒍 is fixed during homogenization, it is then justified to ignore the external potential Ψ[𝜂, 𝒍]
during homogenization, and to restore it in the final step, when the total energy Φ⋆[𝜂, 𝒍]+Ψ[𝜂, 𝒍] is relaxed with
respect to 𝒍—see also the discussion in Section 3.1 in our previous work [AL23].

The homogenization method treats the scale separation parameter 𝜂≪1 as an expansion parameter and solves
the stationary point problem (4.1) order by order in 𝜂: the optimal microscopic displacement 𝒚⋆ is obtained in the
form of an expansion,

𝒚⋆[𝜂, 𝒍](𝑿)=𝒀(𝜂,𝑿) ⋅ 𝒍(𝑿)+𝒀′(𝜂,𝑿) :∇𝒍(𝑿)+𝒪(𝜂2), (4.3)

where the localization tensors 𝒀 and 𝒀′ are an output in symbolic form by the homogenization procedure. They scale
as

𝒀(𝜂,𝑿)=𝒪(𝜂0), 𝒀′(𝜂,𝑿)=𝒪(𝜂1). (4.4)

implying that the first term in the right-hand side of (4.3) is the leading-order term, whose order of magnitude agrees
with (3.17), while the second term is a corrector capturing the gradient effect.

The homogenized energy Φ⋆ in (4.2) is obtained in the form of an expansion as well, which can be written in
compact form as

Φ⋆[𝒍] = �
Ω
�𝑲(𝜂,𝑿) : 𝒍(𝑿)⊗𝒍(𝑿)2 +𝑨(𝜂,𝑿)∴(𝒍(𝑿)⊗∇𝒍(𝑿))+𝑩(𝜂,𝑿)t:: ∇𝒍(𝑿)⊗∇𝒍(𝑿)2 �d𝑿 +

�
∂Ω
�𝒌(𝜂,𝑿)∴�𝒍(𝑿)⊗𝒍(𝑿)2 ⊗𝒏(𝑿)�+𝒂(𝜂,𝑿)t:: (𝒍(𝑿)⊗∇𝒍(𝑿)⊗𝒏(𝑿))�da+𝒪(𝜂3).

(4.5)

The boundary integral ∮∂Ω ... da in the second line takes place over the boundary ∂Ω of the domain, with 𝒏 denoting
the unit outward normal and da the area (if d=3) or the length (if d=2) of a boundary element, see Figure 2.3. The
special integral sign ∮ will be used throughout for boundary integrals. Note that the boundary terms appearing
in (4.5) as a result of homogenization are different from those that appeared earlier in (3.37) as a result of continu-
alizing the energy: they must be summed up.

The homogenization procedure delivers the tensors characterizing the homogenized energy in symbolic form.
Their orders of magnitude are given by

𝑲(𝜂,𝑿)=𝒪(𝜂0), 𝑨(𝜂,𝑿)=𝒪(𝜂1), 𝑩(𝜂,𝑿)=𝒪(𝜂2), 𝒌(𝜂,𝑿)=𝒪(𝜂2), 𝒂(𝜂,𝑿)=𝒪(𝜂2). (4.6)

Remark 4.2. When the microscopic degrees of freedom and energy Φ⋆ are truncated to leading-order 𝒪(𝜂0), we
obtain the approximations

𝒚⋆[𝜂, 𝒍](𝑿)=𝒀(𝜂,𝑿) ⋅ 𝒍(𝑿)+𝒪(𝜂1), Φ⋆[𝜂, 𝒍]=�
Ω
𝑲(𝜂,𝑿) : 𝒍(𝑿)⊗𝒍(𝑿)2 d𝑿 +𝒪(𝜂1)

that correspond to classical homogenization, in which the effect of the gradient ∇𝒍 is ignored [CMR06; DO11; CP12;
Dav13; LR13].

Remark 4.3. The homogenization method producing Equations (4.3–4.5) has been presented in our previous
work [AL23] using different scaling conventions: the microscopic cell size, now 𝒪(𝜂1), was then 𝒪(𝜂0) and the
lattice size, now 𝒪(𝜂0), was then 𝒪(𝜂−1). The two approaches are ultimately equivalent. The scaling relations
announced in (4.4) and (4.6) are obtained by inserting the estimates (3.36) for 𝑬l, 𝑬l′, etc., into the homogeniza-
tion formula from Appendix C in [AL23]: in Equation [C.9] in this Appendix, for instance, 𝓙1=𝒪(𝑬l′, 𝑬y′)=𝒪(𝜂1)
while 𝓙11=𝒪(𝑬y′′) =𝒪(𝜂2) and similarly 𝓙2=𝒪(𝑬l′′, 𝑬y′′) =𝒪(𝜂2). The tensor 𝓐 in [C.19] capturing the first-
order gradient effect is then 𝒪(𝜂), like the quantity 𝑨0∼𝑨 that derives from it, see [C.21]. A similar analysis
shows that the quantities derived at second order, such as 𝒀′, 𝑩, etc., are all 𝒪(𝜂2).

4.2. Connecting with the discrete homogenization library
The homogenization of elastic lattices is implemented and distributed as an extension of the general-purpose homog-
enization library shoal [Aud23] described in Section 4.1. Both components of the library are written in the symbolic
calculation language Wolfram Mathematica. The extension is implemented as follows.

In terms of the parameters describing the lattice listed in Table 4.1, we calculate the following quantities in
symbolic form using Wolfram Mathematica [21]:

• the tensors 𝓜, 𝓝, 𝓤′, 𝓤′′, 𝓤′′′, 𝓖′ and 𝓖′′depending on space dimension d, from Appendix B;
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• the tensors 𝓣l(i), 𝓣y(i)
b and 𝓓𝜑 using (3.14), (3.20) and (2.15), respectively;

• the tensors 𝑬𝜑l
(i) and 𝑬𝜑

y(i) using (3.23) and then the tensors 𝑬l
(i) and 𝑬y

(i) using (3.35);

• the element stiffness matrix 𝓚𝜑, its contribution 𝓚𝜑
g to the global stiffness and the global stiffness 𝓚 itself

using (2.19), (3.31) and (3.39), respectively.

underlying topological lattice d space dimension
(see Table 2.1) nb number of Bravais sub-lattices

n𝜑 number of element families
b𝜑± elements connectivity

reference configuration 𝜌𝜑(𝜂,𝑿) density of element family
𝚫𝜑
±(𝜂,𝑿) endpoint position with respect to element center

elastic properties E A𝜑(𝜂,𝑿) traction modulus
𝜒
˘
𝜑(𝜂,𝑿) beam aspect-ratio parameter

variablematerialparameters 𝒎 (see Remark 7.1)
Table 4.1. Lattice specification used as an input to the homogenization procedure.

Next, we feed these quantities to the homogenization engine proposed in our previous work. Specifically, we
process and wrap up the data provided in Table 4.1 to produce the following list of arguments that are passed to
the homogenization engine—we are still considering the generic beam lattice from Figure 2.1 for the purpose of
illustration:

• the space dimension d=2, the dimension nl=3 of the macroscopic state vector, the number ny=2×3=6 of
microscopic degrees of freedom, the dimension nE=11 of the global strain vector and the numbers nc=2 of
kinematical constraint, see (3.11), (3.16), (3.26) and (3.33)2;

• the tensorial functions 𝑬l(𝜂, 𝑿), 𝑬l′(𝜂, 𝑿), 𝑬l′′(𝜂, 𝑿), 𝑬y(𝜂, 𝑿), 𝑬y′(𝜂, 𝑿) and 𝑬y′′(𝜂, 𝑿) of the strain expan-
sion (3.34);

• the constraint extraction matrix 𝓠 in (3.33)1;

• the global stiffness matrix 𝓚(𝜂,𝑿) in (3.39), in symbolic form;

• the list 𝒎 of variable material parameters declared by the user is forwarded to the homogenization engine.

This list 𝒎 declares all the symbols entering in the expressions of 𝓚, 𝑬l, 𝑬l′, 𝑬l′′, 𝑬y, 𝑬y′ or 𝑬y′′, that vary in space.
For lattices having homogeneous properties, 𝒎={} is set to be an empty list. For lattices having graded properties,
one can either work out the explicit dependence of 𝓚, 𝑬l, . . . on 𝑿 as in (3.34) and set 𝒎={X1, . . . , Xd}, or use the
simpler approach discussed in §7.1–7.3.

Remark 4.4. The explicit dependence of the various quantities on the scale-separation parameter 𝜂 was implicit in
our previous work [AL23] and is now denoted explicitly by the argument 𝜂. As long as the orders of magnitude are
preserved, nothing changes when the input to the homogenization procedure depends on 𝜂.

Remark 4.5. The homogenization procedure requires that the energy is positive-definite over the subspace of admis-
sible microscopic degrees of freedom, in the sense that (𝑬y(𝜂, 𝑿) ⋅ 𝒚) ⋅𝓚(𝜂,𝑿) ⋅ (𝑬y(𝜂, 𝑿) ⋅ 𝒚)>0 must be strictly
positive for any 𝒚 such that 𝑸 ⋅ 𝑬y(𝜂, 𝑿) ⋅ 𝒚 = 𝟎 (see equation (11) in our previous work [AL23]). We rely on the
homogenization engine to check this condition. Whenever present, offending microscopic vectors 𝒚 are reported as
‘soft modes’ and the engine aborts with an error message. In future work we will cover how soft modes can be dealt
with: this requires treating them as macroscopic degrees of freedom, i.e., incorporating them into the vector 𝒍.

5. SYMBOLIC HOMOGENIZATION OF A PERIODIC HONEYCOMB LATTICE

In this section, a first concrete application of the homogenization scheme is presented. Leaving more advanced
examples for the following sections, we start with a simple lattice geometry: we address the periodic (non-curved)
variant of the honeycomb lattice shown in Figure 2.1, limiting attention to the case of uniform elastic properties
in space. We derive a simple closed-form expression for its second-order homogenized energy, see Equation (5.9)
below. Its leading-order is consistent with existing results from the literature but we also include a higher-order
contribution which is novel to the best of our knowledge.

5.1. Setting up the lattice in the extensible case
The periodic honeycomb lattice is generated using the method described in Section 2, with the diffeomorphism set to
𝒇 = id2 (identity in the plane). The properties of topological honeycomb lattice listed in Table 2.1 are still used. The
resulting lattice is shown in Figure 7.2.
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𝒆1

Bravais lattice

Ω

ℓ =𝜂a

b=1
b=2

𝒆2

Figure 5.1. Undeformed configuration of the periodic honeycomb lattice having uniform properties, used as an input to the
homogenization procedure. For this un-curved lattice, the elements centers (red dots) coincide with the midpoints.

Since a contraction factor 𝜂 is applied to the underlying topological lattice (whose beam length is a=𝒪(1)), the
generated lattice has beam length ℓ =𝜂a≪1, see also Figure 2.1b. In view of the value of �̃�𝜑= 2

3 3� a2
in Table 2.1

and of Equation (3.40), the element density 𝜌𝜑 is given, for each one of the three element families 𝜑∈{I, II, III}, by

𝜌𝜑=
2

3 3� ℓ2
. (5.1)

With 𝒇 = id2, the element centers 𝑿𝛼c coincide with the midpoints (red dots in the figure), see (2.5).
The homogenization of the honeycomb lattice is carried out in the companion Mathematica notebook homogenize-

extensible-honeycomb.nb which is distributed along with the library. The quantities appearing in Table 4.1 are
passed on input:
• the integers d=2, nb=2, n𝜑=3 and the array b𝜑± characterizing the underlying topological lattice, see Ta-

ble 2.1,

• the reference configuration is characterized by 𝜌𝜑 from (5.1) and by the relative position 𝚫𝜑
± =±𝜂𝜹𝜑

2 of the
endpoints with respect to the element center (midpoints), where 𝜹𝜑 is available from Table 2.1,

• each one of the n𝜑=3 element type is assigned the stiffness matrix 𝓚𝜑 in (2.19) applicable to extensible
beams, with constant material parameters; indeed, for this particular lattice, the stretching modulus EA, the
beam length ℓ =𝜂 a and the aspect ratio parameter 𝜒 are all (i) invariant in space and (ii) identical for all
three element families 𝜑∈{I, II, III},

• the variable material parameters 𝒎={} is set up as an empty list since the lattice is homogeneous.
The parameters E A, ℓ and 𝜒 are treated as symbolic parameters by the library, and the homogenized energy is
delivered in the form of a function of E A, ℓ and 𝜒.

Remark 5.1. We noted earlier that the aspect-ratio parameter 𝜒≪1 needs to be small for the beam theory to be
applicable, see the discussion below Equation (2.17). Mathematically, 𝜒 has to be linked to the small parameter 𝜂,
see Remark 2.2. Remarkably, we can carry out homogenization without having to specify how 𝜒 scales with 𝜂: the
only assumption we made is 𝜒=𝒪(𝜂0) and this does not exclude more specific assumptions such as 𝜒=𝒪(𝜂1) or
𝜒=𝒪(𝜂2). Delaying the choice of this scaling law until after homogenization is complete enables us to carry out
homogenization once for all, and to identify the interesting scaling regimes based on the homogenized energy, see for
instance the pantograph application example in Section 7.5. In bending-dominated lattices such as the honeycomb,
the inextensible limit can be obtained simply by taking the limit 𝜒→0 in the homogenized energy (§5.3).

5.2. Homogenization results
This section is a summary of the symbolic homogenization results obtained in the companion Mathematica notebook
homogenize-extensible-honeycomb.nb. The library yields the homogenized energy Φ⋆[𝒍] in the form (4.5) that
makes use of the strain vector 𝒍= �̌� in Mandel representation, see (3.7) and (3.24). We systematically rewrite it in
terms of the standard 2D strain tensor 𝜺 with the help of (B.4).

The homogenization results can be summarized as follows, order by order:
• Leading order. The equivalent elastic continuum is isotropic,

Φ⋆ = 1
2 �Ω

1
2 �̌� ⋅𝑲 ⋅ �̌� d𝑿 +O(𝜂)

= 1
2 �Ω (𝜆tr

2𝜺+2𝜇𝜺 : 𝜺)d𝑿 +O(𝜂),
(5.2)

and its Lamé parameters are given by

𝜆= 3� E A
6 ℓ

1−12𝜒
1+12𝜒, 𝜇= 4 3� E A

ℓ
𝜒

1+12𝜒. (5.3)

This matches the previous results of [VDP14; GLTK19]. In the slender limit (𝜒→0), we have 𝜇=𝒪�E A𝜒/
ℓ�=𝒪(E I/ℓ3)≪𝜆=𝒪(E A/ℓ), from which we conclude that (i) the lattice is bending-dominated and not
stretching-dominated (due to 𝜇∝E I) and (ii) is incompressible in this limit (due to 𝜆∝E A, see (5.8) below).
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The microscopic displacement underlying this leading-order energy prediction (5.2–5.3) is obtained from
the localization tensor 𝒀 appearing in (4.3) as

�𝝃b�[0]⋆ =(−1)b+1 ℓ
4
1−12𝜒
1+12𝜒𝓙:𝜺, �𝜓b�[0]⋆ =0. (5.4)

where �𝝃b�[0]⋆ and �𝜓b�[0]⋆ are the leading-order microscopic displacement and rotation, respectively, of the
Bravais sub-lattice b∈{1, 2}, and 𝓙 is a constant tensor associated with the D6 symmetry,

𝓙=𝒆1⊗(−𝒆1⊗𝒆1+𝒆2⊗𝒆2)+𝒆2⊗(𝒆1⊗𝒆2+𝒆2⊗𝒆1). (5.5)

In (5.4), �𝜓b�[0]⋆ =0 means that the nodal rotation 𝜃b=𝛾 matches the macroscopic rotation 𝛾=−12∇𝒖:𝓝 set
by the macroscopic displacement 𝒖(𝑿), and not that the node rotation is zero—see (3.4)2.

• First order. When pushed to first order, the homogenization procedure delivers the homogenized tensors
𝑨=𝟎 and 𝒌=𝟎. In view of (4.5), and as usual with centrosymmetric lattices [ABB10], this implies that the
energy has no contribution of order 𝜂. As a result, the leading-order approximation (5.2) is exact up to 𝒪(𝜂2)
and not just 𝒪(𝜂).

• Second order. In the Mathematica notebook, both the bulk term 𝑩t:: ∇𝒍⊗∇𝒍2 and the boundary term 𝒂t:
: (𝒍⊗∇𝒍⊗𝒏) entering at order 𝜂2 in the energy (4.5) have been worked out in terms of invariants relevant
to the D6 symmetry of the hexagonal network: there are 6 invariants for the surface integral, and 5 for the
boundary integral. The full expressions are available in the Mathematica notebook but they are cumbersome
and are not included here—their values in the inextensible limit 𝜒→0 are nevertheless given in Section 5.3.

The first-order correction to the microscopic displacement �𝝃b�[1]⋆ and �𝜓b�[1]⋆ = 𝟎 that underlies this
second-order energy correction is encoded in the localization tensor 𝒀′ appearing in (4.3): interpreting the
result, we get

�𝝃b�[1]⋆ =𝟎, �𝜓b�[1]⋆ =−(−1)b+1 3 ℓ
4�1+12𝜒� curl (𝓙:𝜺), (5.6)

where curl𝒂=∂a2/∂X1−∂a1/∂X2 denotes the (scalar) curl of a vector field 𝒂(𝑿) in 2D.

5.3. Inextensible limit
We now take the slender limit 𝜒→0 in the homogenization results from Section 5.2. Specifically, we address the
distinguished limit in which the slenderness parameter 𝜒 and the scale separation parameter 𝜂 both go to zero with

(E A)𝜒=𝒪(𝜂). (5.7)

The equivalent compression modulus 𝜆∼ EA
ℓ =𝒪�𝜒−1�→∞ in (5.3) then becomes infinite while the shear modulus

𝜇∼ 𝜒EA
ℓ ∼𝒪(1) remains finite. For better legibility of the results, we eliminate EA in favor of EI everywhere using

E A=E I/�𝜒 ℓ2�, see (2.17), anticipating that in the limit, the beam elements are effectively inextensible and the
lattice deforms by pure bending.

In this limit 𝜆→∞ in (5.3)1, implying that the equivalent Cauchy medium is incompressible,

tr 𝜺(𝑿)=0, ∀𝑿. (5.8)

The homogenized energy is found by combining the shearing term in leading-order correction (5.2–5.3) with the
second-order correction described in words in Section 5.2, taking the kinematic constraint of incompressibility (5.8)
into account to remove the apparent divergences that arise when 𝜒→0. The result is obtained in the companion
Mathematica notebook in the form

Φ⋆ = E I
ℓ3
�12 �Ω 2×4 3� 𝜺 : 𝜺d𝑿

+ ℓ2
2 �Ω 3� �−7∇𝜺∴∇𝜺+ 223 ‖∇𝜺 : 𝑰2‖

2+2(div(𝓙:𝜺))2�d𝑿

+ ℓ2�
∂Ω

3�
2 �13∇𝜺 : 𝜺− 72 div(𝓙:𝜺)𝓙:𝜺� ⋅𝒏dS+𝒪(𝜂3),

(5.9)

where div𝒂=∂a1/∂X1+∂a2/∂X2 denotes the divergence of a 2D vector field 𝒂(𝑿). The successive lines in the right-
hand side represent the leading-order contribution— of order EI/ℓ3∼EA𝜒/ℓ=𝒪(1) by (5.7)—, the surface integral
for the second-order correction, and the boundary term for the second-order correction, respectively. In (5.9), 𝑰2
denotes the identity matrix in dimension 2 and the constant tensor 𝓙 has been defined in (5.5). Due to this 𝓙 term,
the equivalent strain-gradient continuum defined byΦ⋆ is D6-symmetric, like the original honeycomb itself, and the
effective isotropy obtained at the leading order is no longer applicable [RA16; RA19].

The analytical, second-order expansion (5.9) of the honeycomb energy is novel to the best of our knowledge.
In the inextensible limit, the microscopic displacement found in (5.4–5.6) becomes

𝝃b
⋆ = ℓ (((((((((((((−1)

b+1

4 𝓙:𝜺 ℓ0+0 ℓ1+𝒪(ℓ2))))))))))))),
𝜓b
⋆ = 0 ℓ0− 3(−1)

b+1

4 curl (𝓙:𝜺) ℓ1+𝒪(ℓ2).
(5.10)
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Remark 5.2. As mentioned earlier, the homogenized energy Φ⋆ approximates only the integral term Φ that is
produced by the continualization of the discrete energy Φd but not its companion boundary term Φbt, see (3.37).
The boundary terms in (5.9) must therefore be added up to Φbt. This will be covered in future work, along with an
analysis of the boundary layers.

Remark 5.3. The strain-gradient energy appearing in the second line of (5.9) is not positive, as is often the case
in higher-order homogenization. As discussed at the end of Section 4.1 of our previous paper [AL23], this lack of
positivity calls for a regularization of the functional, a point which we will address in future work.

5.4. Short track: homogenizing the inextensible lattice
In the previous sections (§5.1–5.3), we have homogenized a honeycomb lattice made up of extensible beams first,
and taken the inextensible limit 𝜒→0 in the homogenized energy next. Here, we show how it is possible to directly
homogenize a honeycomb lattice made up of inextensible beams. This yields the same results more elegantly.

The inextensible case is treated in a second Mathematica notebook, also distributed with the library, named
homogenize-inextensible-honeycomb.nb. The input to the homogenization is identical to that for the extensible
lattice (§5.1), except that:
• the beam elements are allocated with the keyword “inextensibleBeam” (as opposed to “beam” in the extensible

case) and make use of the properties E I and ℓ only (no E A or 𝜒 parameter),
• an option rankDeficiency=1 is passed to the library.

If the rankDeficiency option is overlooked, the solution of the leading-order problem fails as the underlying system
of linear equations is deficient (with rank 1) in the inextensible case: the library then stops with an error, identifies
the incompressibility condition (5.8) as the root of the deficiency, and suggests that the procedure is run again with
rankDeficiency=1.

With the option rankDeficiency=1, the library extends the vector 𝒍 representing the macroscopic degrees of
freedom with a fourth slot p= l4: using block-matrix notation, we have now

𝒍=� �̌� p �, (5.11)

where �̌� are the usual, 3 components of the 2D macroscopic strain tensor 𝜺 arranged in a vector, see (3.7). The
homogenized energy (4.5) produced by the library must be interpreted in the light of this new definition of 𝒍. The new
variable p is the Lagrange multiplier associated with the incompressibility condition (5.8) and can be interpreted as
a pressure.

The output for the inextensible honeycomb lattice, as worked out in the notebook, can be summarized as follows:
• A solvability condition on 𝒍 is issued by the homogenization engine, which, upon examination, is nothing but

the incompressibility condition (5.8). This solvability condition warrants that the right-hand sides of the
linear problems involving the rank-deficient matrix are indeed part of its image, so that the inversion of the
rank-deficient problem is mathematically possible: see Equation [E.11] in [AL23].

• The elasticity tensors 𝑲, 𝑨, 𝑩 and 𝒌 and localization tensors 𝒀 , 𝒀′ are calculated. When interpreted with
the help of (4.3) and (4.5), they yield the same energy (5.9) and microscopic displacement (5.10) as those from
Section 5.3.

In the homogenization library, inextensible lattices are implemented as follows:
• For each element family 𝜑∈{I, II, III}, the inextensibility constraint 𝜀𝜑=0 is handled by adding one row to

the constraint matrix 𝓠 appearing in (3.32–3.33). Each one of these new rows is filled with 0's, except for a
single entry equal to 1 in the column whose index corresponds to the position of the element strain 𝜀𝜑 in 𝑬,
warranting that the generic form of the kinematical constraint 𝓠⋅𝑬=0 used throughout now includes the
inextensibility constraints 𝜀𝜑=0.

• The element stiffness in (2.19) is changed to

𝓚𝜑(𝜂,𝑿)=
E I𝜑(𝜂,𝑿)
ℓ
˘
𝜑(𝜂,𝑿)

diag(0, 1, 12)∈𝕋(3,3) (2D inextensible beam), (5.12)

where E I𝜑(𝜂,𝑿) is the prescribed map of elastic (bending) modulus—we set E I𝜑(𝜂,𝑿)=(EI) in the present
case of a homogeneous lattice. The value (0) appearing in first position of the diagonal matrix in the right-
hand side is irrelevant: this is the modulus of the stretching mode which is inhibited by the inextensibility
constraint anyway.

The rest of the homogenization procedure is unchanged. Inextensible lattices make use the ability of the homogeniza-
tion engine to deal with rank-deficient linear problems, as documented in Appendix E of our previous paper [AL23].

6. NUMERICAL VERIFICATION

In this section, we set up a numerical procedure to test both the asymptotic validity of our homogenization scheme
in the limit of vanishingly small cell size, and its accuracy for small but fixed cell size. We start in this section with
honeycomb lattices subjected to various boundary conditions and loading types. More advanced illustrations will be
considered in Section 7.
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Near the physical edges of the lattice, boundary layers form and the homogenization breaks down [Dum86;
LM18]. Until we properly address these layers, they prevent us from making accurate global predictions of the
equilibrium solution based on the homogenized theory (4.5)—the analysis of the boundary layers is a significant
piece of work and we leave it to a follow-up paper. In the meantime, we give up on making predictions based
on the stand-alone homogenized theory (4.5) and keep it tethered to numerical simulations of the full lattice. Our
verification method proceeds by extracting the microscopic fluctuations from full numerical simulations of the lat-
tice, and by comparing them to the predictions of the homogenization procedure. This approach is purely local,
warranting that the systematic errors in the boundary layers do not interfere with the verification in the bulk.
Concretely, our verification method produces color maps of the lattice showing where the homogenization method
is accurate and where it is not: it is considered to be valid if the accuracy is good everywhere but in a neighbor-
hood of the boundaries, in the sense that the residual error goes sufficiently rapidly to zero with the cell size (see
the convergence plot in Figure 6.4).

The verification procedure builds up on the explicit construction of the continuous fields proposed in Remark 3.2.
We start from the nodal displacement and rotation ��̄�𝛽, 𝜽𝛽�∈ℝnn obtained numerically by running discrete lattice
simulations based on the energy (2.23). The procedure outlined in Remark 3.2 is implemented through a series
of interpolation and averaging steps detailed in Section 6.1 below, delivering interpolations for the macroscopic
displacement and the microscopic degrees of freedom �̄�(𝑿) = ��̄�1(𝑿)/𝜂, �̄�1(𝑿), . . . � in the form of continuous
functions of 𝑿 . Here, the overbar marks quantities extracted from the numerical simulation. By differentiating
�̄�(𝑿) symbolically, one can obtain the macroscopic strain 𝒍(𝑿) and its gradient ∇𝒍(𝑿). The accuracy of the homog-
enization procedure is assessed by comparing locally the microscopic degrees of freedom �̄�(𝑿) that are directly
extracted from the simulations, to the prediction 𝒚=𝒀 ⋅ 𝒍+𝒀′ ⋅∇𝒍 in (4.3) based on the localization tensors 𝒀 and 𝒀′
obtained via homogenization, combined with the interpolated macroscopic strain 𝒍(𝑿) and its gradient ∇𝒍(𝑿).

The verification is therefore focussed on the prediction (4.3) of the microscopic displacement 𝒚. This is indeed the
key prediction of the homogenization method as it slaves the microscopic displacement 𝒚 to the macroscopic degrees
of freedom. The expression of the homogenized energy (4.5) follows straightforwardly by inserting this expression of
𝒚 into the original energy.

6.1. Verification procedure
As a first illustration of the verification procedure, we consider a 2D rectangular strip made of a honeycomb lattice
subject to compression, as shown in Figure 6.1. The length of the strip is L= 1 and its width is 𝛿 = 0.36. The
displacements of the nodes at the left vertical boundary are blocked, 𝒗𝛽∈lb=𝟎. Those at the right boundary are
displaced by an amount Δ, 𝒗𝛽∈rb=−Δ𝒆1, where 𝒆1 is a unit vector along the long axis of the strip. The rotations are
blocked along both short edges, 𝜃𝛽∈lb=𝜃𝛽∈rb=0. We check convergence for finer and finer lattices, when the beam
length ℓ =𝒪(𝜂) goes to zero (ℓ →0).

The lattice is made up of extensible 2D beams, modeled with the discrete energy (2.19–2.20). All of them are
assigned a bending modulus E I=1 and a stretching modulus E A=1012: this warrants that the aspect-ratio para-
meter 𝜒= E I

EA ℓ 2 remains at most of order 10−10 in all our simulations, so that all beams are effectively in the
inextensible regime. The simulations results are compared to the inextensible homogenization theory (§5.3–5.4).

Δ

𝒆2

𝒆1

L=1

𝛿=0.36

ℓ

Figure 6.1. Honeycomb strip in compression: the lattice is loaded by bringing the short edges closer to one another by a
distanceΔ. Sliding and rotation is blocked on both short edges. We check convergence of the discrete numerical solution when
the beam length goes to zero, ℓ →0.

For a given beam length ℓ , the discrete simulation yields a set of nodal displacements �̄�𝛽 and rotations 𝜽𝛽. For
each beam 𝛼 in the lattice and for every Bravais sub-lattice b∈ {1, 2}, we pick 𝒩b

𝛼= 6 nodes from the sub-lat-
tice b in the neighborhood of the beam 𝛼, and use the corresponding nodal values 𝒗𝛽 and 𝜽𝛽 to build second-order
interpolations �̄�b

𝛼(𝑿) and 𝜽b
𝛼(𝑿) (in general, we need 𝒩b

𝛼= 1+ d+ d (d+ 1)/2 = (d+ 1) (d+2)/2 neighbors to
build the second-order interpolations in dimension d). These interpolations applied to the sub-lattice b are valid
in the neighborhood of the element 𝛼. In Figure 6.2b, we plot the interpolation of the longitudinal displacement
ūb
𝛼(X1)= �̄�b

𝛼(X1) ⋅ 𝒆1 for the particular case of simple compression (uniaxial stress): the interpolations ū1𝛼(X1) and
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ū2𝛼(X1) on the two Bravais sub-lattices are different (dashed lines), which points to the existence of a microscopic
displacement.

A

B A′

B′ A′′

B′′
X1

b=1
b=2

𝜎11

(a)

𝛼

X1

ū/Δ

ūA′

ūA′′

ūB′′

ūB

(b)

ūA
ū1𝛼(X1)

ū2𝛼(X1)

ū𝛼(X1)

ūB′

Figure 6.2. Local interpolations ūb
𝛼(𝑿)=�̄�b

𝛼(𝑿)⋅𝒆1 of the longitudinal displacement, illustrated in the particular case of uni-
axial compression of a honeycomb lattice. The state of uniaxial compression is obtained by modifying the boundary conditions
on the short edges of the lattice shown in Figure 6.1 to let the nodes to slide freely in the transverse direction. (a) Schematic
view of the deformed lattice. The link 𝛼 about which the interpolations are constructed is highlighted in blue. Only the
𝒩b

𝛼=6 neighboring nodes from each Bravais sub-lattice b∈{1,2} that enter into the interpolation are shown. (b) Longitudinal
displacement from discrete simulation (ū𝛼, open and filled disks), interpolated in each Bravais sub-lattice (ūb

𝛼(X1), dashed
lines) and macroscopic displacement (ū𝛼(X1), solid line). In this simple illustration, the X2 direction is an invariance direction
and all displacements are functions of X1 only.

Following Remark 3.2, we obtain a local interpolation �̄�𝛼(𝑿) of the macroscopic displacement by averaging over
the Bravais sub-lattices,

�̄�𝛼(𝑿)= 1
nb
�
b=1

nb

�̄�b
𝛼(𝑿). (6.1)

Differentiating symbolically with respect to 𝑿 , we obtain the displacement gradient∇�̄�𝛼(𝑿), from which we extract
the local interpolations for the macroscopic rotation �̄�𝛼(𝑿)=−12 ∇�̄�

𝛼(𝑿) :𝓝 and the macroscopic strain �̌̄�𝛼(𝑿)=
∇�̄�𝛼(𝑿) :𝓜 using (3.8). The macroscopic state vector is then defined as 𝒍𝛼(𝑿) = � �̄�𝛼(𝑿) �̄�𝛼(𝑿) �̌̄�𝛼(𝑿) � or
𝒍𝛼(𝑿)=� �̌̄�𝛼(𝑿) � depending on whether we use the standard definition (3.10) or the alternate one in (3.24).

Next, the local microscopic displacement and rotation associated to each Bravais sub-lattice b (1⩽ b⩽nb) are
extracted using (3.4) as

�̄�b
𝛼(𝑿)= �̄�b

𝛼(𝑿)− �̄�𝛼(𝑿) �̄�b
𝛼=�̄�b

𝛼
(𝑿)− �̄�𝛼(𝑿). (6.2)

We finally collect all the microscopic degrees of freedom following (3.15), and evaluate the interpolation at the center
𝑿𝛼c of the element being considered,

�̄�𝛼=(((((((((((((((((((
�̄�1𝛼(𝑿𝛼c)
𝜂 , �̄�1

𝛼(𝑿𝛼c), . . . ,
�̄�nb
𝛼 (𝑿𝛼c)
𝜂 , �̄�nb

𝛼 (𝑿𝛼c)))))))))))))))))))). (6.3)

We compare this to the leading order (𝒚⋆)[0]𝛼 and first correction (𝒚⋆)[1]𝛼 predicted by the homogenized results (5.10)
for an inextensible lattice,

(𝒚⋆)[0]𝛼 = a
4 � +𝓙: �̄�𝛼 0 −𝓙: �̄�𝛼 0 �,

(𝒚⋆)[1]𝛼 = −3a𝜂
4 � 𝟎2 curl (𝓙: �̄�𝛼) 𝟎2 −curl (𝓙: �̄�𝛼) �.

(6.4)

In the right-hand sides, we use the estimate �̄�𝛼 of the strain, and ∇�̄�𝛼 of the strain gradient at the element center
𝑿𝛼c, as obtained from the discrete numerical simulation: these values are extracted from the interpolations 𝒍𝛼(𝑿𝛼c)
and ∇𝒍𝛼(𝑿𝛼c), based on the definition (3.10) or (3.24) of 𝒍 in terms of the strain �̌� and the Mandel convention (3.7) for
representing the strain 𝜺 as a flat vector �̌�.

Specifically, we compute at every element 𝛼 the error e[0]𝛼 on the microscopic displacement based on leading-order
homogenization, the error e[1]𝛼 based on second-order homogenization, as well as its magnitude e[×]𝛼 in the raw output
of numerical simulations as

e[×]𝛼 = � �̄�
𝛼

aΔ�

e[0]𝛼 = �
�̄�𝛼−(𝒚⋆)[0]𝛼

aΔ �

e[1]𝛼 = ��̄�
𝛼−((𝒚⋆)[0]𝛼 +(𝒚⋆)[1]𝛼 )

aΔ �,

(6.5)

where a=𝒪(𝜂0) is the conventional length of the beams in the topological lattice and Δ is the conventional magni-
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tude of the applied load in the numerical simulations. The denominators in right-hand sides in (6.5) make the errors
e[⋅]𝛼 's independent of both these conventions. An interpolation present in the right-hand sides is evaluated at the
center 𝑿𝛼c of the element 𝛼.

In Figure 6.3, these errors are painted on the deformed lattice, for two different beam lengths ℓ , using a loga-
rithmic colormap. We observe a significant and consistent reduction on the magnitude of the error when we go from
no homogenization (e[×]𝛼 ) to leading-order homogenization (e[0]𝛼 ), and then to second-order homogenization (e[1]𝛼 ). As
anticipated earlier, this improvement takes place everywhere in the lattice, except in a layer that is a few cells thick
at the boundaries, where it does not decrease noticeably.

ℓ =0.0130 ℓ =0.00658

e[×]𝛼

Δ
no homogenization

Δ

log e

e[0]𝛼

Δ
leading-order homogenization

Δ

e[1]𝛼

Δ
second-order homogenization

Δ

Figure 6.3. Honeycomb strip in compression: error e[i]𝛼 on the microscopic displacement predicted by the leading-order (i=0)
or second-order (i=1) homogenization, compared with its magnitude (i=×) in the raw numerical solution, for two different
lattices (coarser one in the left column, finer one in the right column). The error is painted over the deformed lattice as a base-
10-logarithmic colormap. An arbitrary magnification factor is applied on the displacement for plotting the deformed lattice.
The numerical simulations were produced with an imposed displacement Δ=0.1 but the results are rescaled in such a way
that this value of Δ doest not affect the colors. The consistent decrease of the error in logarithmic scale with the order of
homogenization is a sign that the homogenization is correct.

This first visual indication that the homogenization is correct can be confirmed by a convergence test with respect
to the beam length (ℓ→0). We select a point in the interior of the rectangular domain, shown by the blue cross in the
inset in Figure 6.4, and we compute the local errors e[0]𝛼 and e[1]𝛼 at the nearest element center 𝑿𝛼c for finer and finer
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lattices. The numerical results, shown in Figure 6.4, reveal the following scaling laws: e[0]𝛼 =O(ℓ1) and e[1]𝛼 =O(ℓ2)
for ℓ→0. The fact that the order of the error increases from 1 to 2 when we switch from leading-order to second-order
homogenization is a numerical evidence that the latter is asymptotically correct. A similar behavior as in Figure 6.4
is obtained when a different target point is chosen (data not shown). For points close to the boundary, the scaling
regime seen in Figure 6.4 does not start until ℓ becomes significantly smaller than the distance to boundary (data
not shown).

0.006 0.007 0.008 0.009 0.010 0.011
1 10 4

5 10 4

0.001

0.005

0.010

e[1]𝛼 (second-order hom.)

e[0]𝛼 (leading-order hom.)
e𝛼

1

1
ℓ

1

2

finer lattice coarser lattice

Figure 6.4. Honeycomb strip in compression: log-log plot of the homogenization errors e[0]𝛼 and e[1]𝛼 computed at the nearest
element 𝛼 to a fixed target (blue cross in the inset) as a function of the ‘microscopic’ element length ℓ . The blue dashed lines
are linear fits with slope 1 and 2, respectively.

6.2. Sheared strip, with or without a hole

Next, we test the rectangular strip when subjected to a shearing displacement Δ, as shown in Figure 6.5. The
displacement is still blocked along the short boundary on the left-hand side (𝒗𝛽∈lb=𝟎) and the nodes along the
short boundary on the right-hand side are moved vertically (𝒗𝛽∈rb=+Δ𝒆2). In addition, the nodes along both short
boundaries can now rotate freely.

𝒆2

𝒆1

ℓ

L=1
Δ

𝛿=0.36

Figure 6.5. Honeycomb strip subjected shear: loading geometry. The nodes on both short edges can now rotate freely.

The same testing procedure is applied. The colormaps of the homogenization errors are shown in logarithmic
scale in Figure 6.6 for two different beam lengths (a base-10 logarithm is used throughout in the paper). Here again,
the higher-order correction significantly increases the accuracy of the prediction, except in a small layer along the
boundaries.
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ℓ =0.0130 ℓ =0.00658

e[×]𝛼

no homogenization
Δ Δ

log e

e[0]𝛼

leading-order homogenization
Δ Δ

e[1]𝛼

second-order homogenization
Δ Δ

Figure 6.6. Honeycomb strip subjected to shear: homogenization error for two different lattices (columns), using the same
conventions as in Figure 6.3. The boundary conditions are represented in a simplified way, the reader is referred to Figure 6.5
for details.

In the next test, we punch the lattice by removing a disk-like region with radius r= 0.04 in its center. The
boundary conditions are identical to those in Figure 6.5. This relatively small hole causes stress concentration, visible
on the raw output of the numerical simulations in the first row in Figure 6.7. The typical flower-like stress concen-
tration pattern survives to leading-order homogenization, see the second row. When higher-order homogenization
is used (third row), however, it almost disappears from the error map, indicating that second-order homogeniza-
tion accurately captures the fast variations of the stress in the vicinity of the hole: the error goes to zero quickly
away from the hole. The existence of a ‘safe zone’ surrounding the hole (extended blue region in this third row,
where the relative error is as small as ∼10−3) suggests that the punched strip could be very accurately represented
by combining effective boundary conditions along the edge of the hole with a higher-order continuum model for
the strip. This is probably not possible with leading-order homogenization (second row) as the region of influence
of the hole stretches all the way to the lateral boundaries.
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ℓ =0.0130 ℓ =0.00658

e[×]𝛼

Δ

no homogenization

Δ

log e

e[0]𝛼

Δ

leading-order homogenization

Δ

e[1]𝛼

Δ

second-order homogenization

Δ

Figure 6.7. Honeycomb strip with a hole, subjected to shear: homogenization error for two different lattices (columns), using
the same conventions as in Figure 6.3 and 6.5. Same boundary conditions as in Figure 6.5.

6.3. Cracked strip in tension
Before moving on to more complex examples, we consider the cracked version of the rectangular honeycomb strip
shown in Figure 6.8, having an aspect-ratio 𝛿/L=0.78. The crack is obtained by removing the beams that intersect
the segment with length a, making an angle π/6 with the direction 𝒆1, and whose midpoint is at the center of the
lattice. Crack propagation is not considered. The same boundary conditions are used as for the shearing test, but a
longitudinal displacement 𝒗𝛽∈rb=Δ𝒆1 is imposed on the right-hand-side boundary.

L=1

𝒆2

𝒆1

a
𝛿=0.78 Δ

Figure 6.8. Cracked honeycomb strip in tension.

Colormaps of the homogenization error are shown in Figure 6.9 for ℓ =0.0125. Similar to what has been obtained
for a punched lattice, some stress concentration is observed at both crack tips. When second-order homogenization
is used, not only does the homogenization error drop significantly, it is also very small except in the intermediate
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neighborhood of the crack tips and lips and of the edges of the rectangular region. The fact that the perturbation
at the crack tips are disconnected from each other suggests that this geometry can be accurately represented by a
higher-order continuum model endowed with effective boundary conditions for the crack tips, crack lips and free
boundaries.

no homogenization leading-order homogenization higher-order homogenization

log e

e[×]𝛼 e[0]𝛼 e[1]𝛼

Figure 6.9. Cracked honeycomb strip in tension: homogenization errors for ℓ =0.0125, using the same conventions as in
Figure 6.3. The representation of the boundary conditions is simplified, the reader is referred to Figure 6.8 for details.

7. EXTENSIONS AND FURTHER ILLUSTRATIONS

This section illustrates (i) more advanced features of the homogenization method, namely non-uniform elastic prop-
erties (§7.1), non-uniform geometric properties (§7.3) and pre-strain (§7.2), as well as (ii) its versatility, by exploring
different lattice topologies (2D Kagome lattice in §7.2), different types of elements (springs §7.3–7.5), different space
dimensions (3D truss in §7.4, 1D truss in §7.5) as well the case of a large elastic contrast (§7.5).

7.1. Inhomogeneous elastic properties

We consider an extension of the honeycomb compression test done in Section 6.1, now using a lattice whose bending
rigidity is graded in space: a beam 𝛼 with midpoint position 𝑿𝛼c is assigned a stiffness E I(𝑿𝛼c), where

E I(X1, X2)=
1
6 ((((((((((((1+5tanh2((((((((((((6 2 X23− X1

1+4 X22 )))))))))))))))))))))))), (7.1)

for −1/2⩽ X1⩽+1/2 and −𝛿/2⩽ X2⩽+𝛿/2, with the origin of the coordinate axes at the center of the lattice and
𝛿=0.84. The distribution (7.1) of bending stiffness is shown in Figure 7.1. The lattice is six times softer along an
S-shaped region that extends to opposite corners. As earlier, we work in the inextensible regime by using a large
stretching modulus E A=1012 for all beams. The detailed boundary conditions are shown in Figure 7.1.

L

𝒆2

E I

Δ

𝒆1

𝛿=0.84

Figure 7.1. Honeycomb lattice with a graded bending modulus EI(𝑿) given by (7.1). The bending modulus EI is constant in
every beam and is found by evaluating the function E I(𝑿) at the beam midpoint 𝑿𝛼c . The boundary conditions are depicted
using the same conventions as earlier.

The homogenization is based on the inextensible beam model, as earlier. Compared to the homogeneous case
(§5.4), the only change is that the symbolic parameter E I must now be included in the list of variable material
parameters,

𝒎={E I}. (7.2)
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This is done by changing a single line of code: m={} is replaced with m={EI}, see the companion notebook homogenize-

honeycomb-inextensible-variable.nb. The library delivers the microscopic displacement in the form

𝝃b
⋆ = ℓ (((((((((((((−1)

b+1

4 𝓙:𝜺 ℓ0+0 ℓ1+𝒪(ℓ2))))))))))))),
𝜓b
⋆ = 0 ℓ0+ 3(−1)

b+1

4 (((((((((−curl (𝓙:𝜺)+ (𝓙:𝜺)∧∇(E I)
E I ))))))))) ℓ1+𝒪(ℓ2),

(7.3)

where the constant tensor 𝓙 has been defined in (5.5), the curl operator has been introduced in (5.6), and ∧ denotes
the 2D wedge product, 𝒂∧𝒃=a1b2−a2b2. The only difference with the homogeneous case (5.10) is the presence of the
gradient term ∇(EI) in the microscopic rotation 𝜓b. The gradient effect has now two contributions, one associated
with the strain gradient ∇𝜺 and the other one with the gradient of elastic properties ∇(E I).

Remark 7.1. The statement (7.2) informs the library that the parameter E I entering in the stiffness 𝓚 varies in
space, implying that the gradient must be calculated by the chain rule as ∇𝓚= d𝓚

d(EI) ⋅∇E I. The library does not
know about the specific profile EI(𝑿) in (7.1) and treats the gradient ∇(EI) symbolically: the explicit expression of
∇(E I) must be inserted by the user into the output (7.3) of the library.

The validity of the predictions (7.3) are tested using the same procedure as earlier. The results are shown in
Figure 7.2. In the discrete simulations, the deformation is concentrated in the soft part of the lattice; by a Poisson's
effect, the lattice forms a neck in the center. The rapid variations in bending stiffness creates strong gradients
that make the predictions of the leading-order homogenization relatively inaccurate, see Figure 7.2(b). Taking this
gradient effect into account improves the accuracy by approximately one order of magnitude, see Figure 7.2(c). Both
terms in (7.3)2 are equally important: dropping either one deteriorates the accuracy significantly (plots not shown).

(a) no homogenization (b) leading-order homogenization (c) second-order homogenization

log e

e[×]𝛼 e[0]𝛼 e[1]𝛼

Figure 7.2. Honeycomb lattice with graded bending modulus: accuracy of the prediction (7.3) for the microscopic displace-
ment. All beams have length ℓ =0.0125.

7.2. Kagome lattice with pre-strain

In this section, we change the lattice topology to Kagome and analyze the effect of a non-uniform pre-strain, as
produced typically by thermal expansion in the presence of a localized heat source. The rectangular lattice is shown
in Figure 7.3a: it is pinned at two adjacent corners and there are no other loading than the pre-strain. It is made
up of beams with length ℓ =0.006579, aspect-ratio parameter 𝜒=0.002, stretching modulus E A=1 and bending
modulus EI=EA ℓ2𝜒.

In the discrete simulations, the extensional pre-strain p(𝑿) is accounted for by changing the strain energy (2.20)
of the beams to

w𝛼(𝑬𝛼)=
1
2 �𝑬𝛼−𝑬0�p(𝑿𝛼c)��⋅𝓚𝜑𝛼⋅�𝑬𝛼−𝑬0�p(𝑿𝛼c)�� where 𝑬0(p)=(p, 0, 0). (7.4)

The pre-strain vector 𝑬0 reflects the ordering convention in (2.12): the pre-strain p being extensional, it offsets the
first slot of 𝑬𝛼 representing the stretching strain 𝜀𝛼. In (7.4), the value of the pre-strain p in any particular beam 𝛼
is picked based on a pre-strain map p(𝑿) evaluated at the midpoint 𝑿𝛼c: in the simulations, we use the map

p(𝑿)=Δ exp�−� ‖𝑿‖0.2�
2� (7.5)

plotted in Figure 7.3a, which has a maximum at the center 𝑿=𝟎 of the upper boundary, and decreases exponentially
away from this point. The pre-strain magnitude is set to Δ=0.3 in the simulations but this value is a matter of
convention as all our results are rescaled by Δ. The results of the discrete simulations are shown in Figure 2.20
(deformed lattice) along with the homogenization results (colors).
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Figure 7.3. Kagome lattice with pre-strain. (a) Imposed pre-strain map p(𝑿) and boundary conditions. (b) Underlying
topological lattice, made up of n𝜑=6 beam families and nb=3 Bravais sub-lattices. In each family, a particular beam is shown
using a thick line, with the arrow denoting the conventional orientation. All beams have equal length ℓ =0.006579, stretching
modulus EA=1 and aspect-ratio parameter 𝜒=0.002.

We proceed to homogenize the lattice. The underlying topological Kagome lattice makes use of the conventions
shown in Figure 7.3b. It is specified in the homogenization code based on the properties listed in in Table 7.1.

d nb n𝜑 𝜌𝜑

2 3 6 1
2 3� ℓ 2

𝜑 I II III IV V VI
b𝜑− 1 1 3 2 2 3
b𝜑+ 2 3 2 1 3 1

𝜹𝜑 ℓ 𝒆1 ℓ �𝒆12 − 3�
2 𝒆2� ℓ �𝒆12 +

3�
2 𝒆2� ℓ 𝒆1 ℓ �𝒆12 +

3�
2 𝒆2� ℓ �𝒆12 − 3�

2 𝒆2�

Table 7.1. Properties of the topological Kagome lattice shown in Figure 7.3b, used as an input to the homogenization code:
space dimension d, number of Bravais sub-lattices nb, number of element families n𝜑, density �̃�𝜑 per unit area of element
belonging to any particular family 𝜑, connectivity matrix b𝜑± and end-to-end vector 𝜹𝜑=𝚫𝜑

+ −𝚫𝜑
− for a beam of type 𝜑 in

reference configuration.

In the homogenization library, the pre-strain is taken into account by expanding (7.4) as

w𝛼(𝑬𝛼)=
1
2 𝑬𝛼 ⋅ �𝓚𝜑𝛼� ⋅𝑬𝛼+1�−𝓚𝜑𝛼 ⋅𝑬0(p(𝑿𝛼c))� ⋅𝑬𝛼+

1
2 1�𝑬0(p(𝑿𝛼c)) ⋅𝓚𝜑𝛼 ⋅𝑬0(p(𝑿𝛼c))�1. (7.6)

Contrary to what was assumed earlier in (3.29), the element energy (7.6) is no longer homogeneous of degree 2
with respect to the unknown strain 𝑬𝛼. To work around this, we incorporate the 1's appearing in (7.6) into the
macroscopic strain 𝑬, amending its definition (3.25) as—mind the trailing 1,

𝑬=((((((((((((((𝜀I, 𝜅I, 𝜏I, . . . , 𝜀n𝜑, 𝜅n𝜑, 𝜏n𝜑, 𝜂−1�
b=1

nb

�𝜉b�1, . . . , 𝜂−1�
b=1

nb

�𝜉b�d, 1)))))))))))))). (7.7)

Equation (7.6) can then be implemented by incorporating the square brackets appearing in (7.6) into the element
contribution 𝓚𝜑

g (3.31), which we now define as

𝓚𝜑
g(𝜂,𝑿)=

((((((((((((((((((
((((((((((((((((((
((((((((((((((((((
(((((

(

( 𝟎p𝜑×p𝜑 𝟎p𝜑×nE𝜑 𝟎p𝜑×(p𝜑′−1) 𝟎p𝜑×1

𝟎nE𝜑×p𝜑 �𝓚𝜑� 𝟎nE𝜑×(p𝜑′−1) �−𝓚𝜑 ⋅𝑬0(p(𝑿))�
𝟎(p𝜑′−1)×p𝜑 𝟎(p𝜑′−1)×nE𝜑

𝟎(p𝜑′−1)×(p𝜑′−1) 𝟎(p𝜑′−1)×1

𝟎1×p𝜑 �−𝓚𝜑 ⋅𝑬0(p(𝑿))�T 𝟎1×(p𝜑′−1) �𝑬0(p(𝑿)) ⋅𝓚𝜑 ⋅𝑬0(p(𝑿))� ))))))))))))))))))
))))))))))))))))))
))))))))))))))))))
)))))

)

)
. (7.8)

Now, since 𝑬 is required to depend linearly on 𝒍, 𝒚 and their gradients by (3.34), the updated definition of 𝑬 in (7.7)
requires that we append a trailing entry 1 in the macroscopic strain 𝒍 as well, modifying (3.24) into

𝒍=��̌�1=𝜀11, �̌�2=𝜀22, �̌�3= 2� 𝜀12, 1�, (7.9)

and that we propagate it to 𝑬: to do so, we extend the dimension of the tensors 𝑬l, . . . , 𝑬y′′ appropriately and fill
the new entries with 0's, except that in the lower-right corner of 𝑬l which is set to 1. In the library, the content
of the vectors 𝒍, 𝒚, 𝑬, etc. is not fixed once for all but can instead be chosen in a flexible way, as documented in
the Implementation notes that are distributed along with the library: this makes the implementation of the above
changes straightforward.

From the user's perspective, the pre-strain is dealt with by including an option includeUnitStrain=True that
sets up the trailing 1's in both 𝑬 and 𝒍, and by providing an optional argument prestrain={"ϵ":p} to the con-
structor for beam elements. The pre-strain is represented by a pure symbol p that is treated in a similar way as the
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variable stiffness in section 7.1: it is declared as a variable material parameter by the assignment m={p}, and the
homogenization results are given symbolically in terms of 𝒎=(p) and its gradient ∇𝒎=(∇p), as well as on 𝒍 and
its gradients ∇𝒍, etc. To interpret these results, the user must take into account the fact that (∇l)4i=∂(l4)/∂Xi=
∂1/∂Xi=0 in view of (7.9).

In the limit EI→0 of perfectly flexible beams, the Kagome lattice possesses a number of zero-energy modes [HF06].
One of these zero modes has infinite wavelength and therefore survives homogenization: it involves a rigid rota-
tion of adjacent triangles in opposite directions and translates the Bravais sub-lattice having index b by a vector𝓦b,

𝓦1=
−𝒆1− 3� 𝒆2

2 , 𝓦2=
−𝒆1+ 3� 𝒆2

2 , 𝓦3=𝒆1. (7.10)

Indeed, the corresponding microscopic displacement 𝒚 = (𝓦1 0 𝓦2 0 𝓦3 0 ) makes all the extensional degrees of
freedom in 𝑬l ⋅ 𝒚 vanish.

The Kagome lattice is homogenized in the Mathematica notebook homogenize-kagome-prestress.nb distributed
along with the library. The lattice made up of extensible beams, corresponding to the element stiffness matrix
in (2.19). The microscopic displacement computed by the library takes the form

𝝃b
⋆ = ℓ

(((((((((((((((((
(((((((((((((((((
(((((((((((((((

(

(
𝟎 ℓ0+

(((((((((((((((((
(((((((((((((((((
(((((((((((((((

(

( c1�𝜒�
𝜒 div(𝓙:𝜺)𝓦b

[𝓦b ⋅𝓙] ⋅�c2�𝜒�(∇tr𝜺−2∇p)+ c3�𝜒�𝓙:∇(𝓙:𝜺)�
+c4�𝜒�curl (𝓙:𝜺)[𝓐T ⋅𝓦b] )))))))))))))))))

)))))))))))))))))
)))))))))))))))

)

)
ℓ +𝒪(ℓ2)

)))))))))))))))))
)))))))))))))))))
)))))))))))))))

)

)

𝜓b
⋆ = −12𝓦b∧(𝓙:𝜺) ℓ0+0 ℓ1+𝒪(ℓ2),

(7.11)

where𝓐 is the Levi-Civita (purely anti-symmetric) symbol in dimension 2, 𝓐=𝒆1⊗𝒆2−𝒆2⊗𝒆1 and the coefficients
ci are rational functions of 𝜒 that are bounded for 𝜒→0,

c1�𝜒� =
1+18𝜒
288 c2�𝜒� =

1
12�1+12𝜒�

c3�𝜒� =
1−24𝜒

24�1+12𝜒� c4�𝜒� = −𝜒/4.
(7.12)

The compact tensorial expressions in (7.11) has been obtained by applying to the raw output of the homogenization
code a procedure similar to that yielding the irreducible form of elasticity tensors in the presence of symme-
tries [AKO17].

In Figure 7.4, the expression (7.11) of the microscopic displacement is verified using the usual procedure. The
leading-order homogenization fails to give accurate predictions in regions where the gradient of pre-strain is impor-
tant and the improvement brought about by second-order homogenization is very significant there. If the correction
proportional to∇p is dropped in the second-order homogenization results (7.11)2, the agreement with the numerical
solution degrades noticeably (data not shown).

e[×]𝛼

no homogenization

log e
e[0]𝛼

leading-order homogenization

e[1]𝛼

second-order homogenization

Figure 7.4. Kagome lattice with spatially graded pre-strain: verification of the microscopic displacement (7.11) based on the
discrete numerical solution. Same lattice as in Figure 7.3.
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Remark 7.2. We have considered a Kagome lattice made up of extensible beams. Indeed, it is neither possible
to use springs E I = 0 as the lattice then possess a zero-energy mode—the library aborts, printing out the zero
mode (7.10)—, nor inextensible beams (𝜒=0) as this makes the lattice fully rigid—the library aborts, reporting a
compatibility condition in the form 𝜺(𝑿)=𝟎 for all 𝑿 .

Remark 7.3. The 𝜒−1 coefficient in factor of c1 in the right-hand side of (7.11)1 implies that the amplitude of the soft
mode𝓦b becomes larger and larger in the limit of inextensible beams,𝜒→0. This is not surprising as, by definition,
this mode has a vanishing elastic energy in the limit. A detailed analysis of the inextensible limit of the Kagome
lattice is beyond the scope of this paper—in principle, a limit energy can be obtained by analyzing the energy of the
discrete lattice computed by the library in the limit 𝜒→0, similar to what we did earlier in Section 5.3.

7.3. Circular arch
Our next example is an half-annular lattice made up of elastic springs (EI=0), sketched in Figure 7.5. This lattice
features spatial inhomogeneity: both the orientation and the natural length of the springs vary across the annular
domain.

The discrete arch is generated as follows. We pick two integers n1 and n2 and define

𝜂= π
n2

and 𝛿=π n1
n2
. (7.13)

In the simulations shown in Figure 7.7, we used (n1,n2)=(13,90). The nodes are indexed by a pair of integers (i, j)
with −n1⩽ i⩽+n1 and 0⩽ j⩽n2 and their position 𝑿(i, j) in reference configuration is set to

𝑿(i, j)=exp(𝜂 i)𝒆r(𝜂 j) where 𝒆r�𝜃�=cos𝜃 𝒆1+sin𝜃 𝒆2. (7.14)

The inner and outer radii of the arch are therefore given as exp(±𝜂n1)=exp�±𝛿�. Each node is assigned a Bravais
index b with b=1 if i+ j is even (black nodes in the figure) and b=2 if it is odd (white nodes). As shown in the figure,
we set up elastic springs radially between all pairs of adjacent nodes, azimuthally between all pairs of adjacent
nodes, and diagonally between pairs of adjacent black nodes (b=1).

𝟎

1e+𝛿

i=
+n

1

i=
0

i=
−n
1

j=n2

𝑿(i, j)

𝒆1

𝒆2

e−𝛿 b=2
b=1

j=0

j

i

𝒈(i, j)

Figure 7.5. Circular arch. This annular lattice is made up of spring elements connecting nodes 𝑿(i, j) indexed by two integers,
a radial coordinate −n1⩽ i⩽+n1 and an azimuthal coordinate 0⩽ j⩽n2. The short edge j=n2 is blocked and the other edges
are free. A weight-like vertical force 𝒈(i, j) is applied on the nodes, with uniform density Δ per unit area.

The elasticity of the spring (elements) is set up as follows. Considering a spring 𝛼 having adjacent nodes (i𝛼−,
j𝛼−) and (i𝛼+, j𝛼+), we define the undeformed end-to-end vector as 𝜹𝛼=𝑿(i𝛼+, j𝛼+)−𝑿(i𝛼−, j𝛼−), the natural spring length as
ℓ𝛼=�𝜹𝛼�, the undeformed unit tangent 𝒕𝛼=𝜹𝛼/ℓ𝛼 and the linearized spring elongation z𝛼 as

z𝛼=𝒕𝛼 ⋅ (𝒗(i𝛼+, j𝛼+)−𝒗(i𝛼−, j𝛼−)). (7.15)

The spring is assigned an elastic energy w𝛼= 1
2 k𝛼 z𝛼2, where k𝛼 is the spring constant which we set up as

k𝛼=
E A
ℓ𝛼

(7.16)

to represent elastic bars having all the same traction modulus E A. The short edge j=n2 is blocked and a force
𝒈(i, j)=−Δ(𝜂 ri)2𝒆2 (7.17)

is applied on the node (i, j), representing a weight-like force having a constant density (−Δ𝒆2) per unit area, where
ri=exp(𝜂 i) is the radial coordinate of the node. The nodal displacements 𝒗𝛽 at equilibrium are proportional to Δ
and independent of the global elasticity constant E A. The invariable forces 𝒈(i, j) are taken into account through
their potential energy −∑i=−n1

+n1 ∑j=0
n2 𝒈(i, j) ⋅ 𝒗(i, j).
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Typical results of the discrete simulations are shown in Figure 7.7 (deformed lattice), along with a comparison to
the predictions of homogenization (colors) which we proceed to derive now.

We use homogenization to characterize the limit where both discretization parameters n1 and n2 are large: the
scale separation parameter 𝜂=𝒪(1/n2) is then small, 𝜂≪1. We limit attention to the case of a stubby arch, and
not a slender one, by assuming that the aspect-ratio parameter 𝛿=𝒪(n1/n2) remains finite.

The periodic topological lattice underlying the arch is shown in Figure 7.6a. Its nodes are positioned on a square
lattice spanning a rectangular domain, �̃�(i, j)= i𝒆1+ j𝒆2, with −n1⩽ i⩽+n1 and 0⩽ j⩽n2. There are n𝜑=6 element
families (colors in Figure 7.6a) whose properties are listed in Table 7.2. In this imaginary configuration, the area
density of the elements belonging to any particular family 𝜑 is �̃�𝜑=1/2.

d nb n𝜑 �̃�𝜑
2 2 6 1/2

𝜑 I II III IV V VI
b𝜑− 1 2 2 1 1 1
b𝜑+ 2 1 1 2 1 1
𝜹𝜑 𝒆2 𝒆2 𝒆1 𝒆1 𝒆1+𝒆2 𝒆1−𝒆2

Table 7.2. Properties of the topological square lattice underlying the arch shown Figure 7.6a: space dimension d, number nb
of Bravais sub-lattices, number n𝜑 of element (spring) families, element density �̃�𝜑, connectivity b𝜑±, and end-to-end vectors 𝜹𝜑.

𝜹I𝜹II

𝜹IV

𝜹V
𝜹VI

𝒆1

𝒆2

j+1
i

j

�̃�(i, j)
1

�̃�I
c
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𝚫I−

𝚫I
+

𝑿I
c

𝜹I

𝜃

r

𝑿(i, j)

b=1
b=2

𝜹III

𝒪(𝜂)

j

j+
1

i

𝒆𝜃 𝒆r
b)a)

𝑿=𝒇 (𝜂 �̃�)

Figure 7.6. Circular arch: homogenization conventions. (a) Underlying periodic topological lattice, with the different element
families represented by colors. (b) Close-up view of particular element of type 𝜑= I in reference configuration, drawn with a
large value of the cell size ∼𝜂 for the sake of legibility. Note that the element center 𝑿I

c (target-like symbol, defined as the
image of the element midpoint �̃�I

c by the diffeomorphism 𝒇 ) is distinct from the spring midpoint.

The node positions 𝑿(i, j) in (7.14) are produced by applying the map 𝑿(i, j)=𝒇 (𝜂 �̃�(i, j)) in (2.3) to the topological
lattice �̃�(i, j) using an exponential-map diffeomorphism 𝒇 similar to (2.4),

𝒇 (�̃�)=exp(x̃1)𝒆r(x̃2). (7.18)

The arch therefore complies with the lattice generation framework presented in Section 2. The Jacobian can be
calculated as J𝒇(�̃�)=exp(2 x̃1), and Equation (3.40) yields the density of springs in a given family 𝜑 as

𝜌𝜑�r, 𝜃�=
1

2(𝜂 r)2
, (7.19)

where �r, 𝜃� are the polar coordinates in reference configuration, 𝑿= r𝒆r�𝜃�.
As shown by the target-like symbols in Figures 2.1b' and 7.6b, the link centers 𝑿𝛼c , conventionally defined as the

image by the diffeomorphism of the edge midpoints, see (2.5), do not coincide with the midpoints. The vectors 𝚫𝜑
±

yielding the endpoints ± relative to the center 𝑿𝛼c (thin black arrows in Figure 7.6b) are given by Equation (2.7) in
terms of the family index 𝜑, the scale separation parameter 𝜂 and of the polar coordinates �r, 𝜃� of the center 𝑿𝛼c as

𝚫𝜑
±�𝜂, r, 𝜃�= rexp�±𝜂2 𝜹𝜑 ⋅ 𝒆1�𝒆r�𝜃±

𝜂
2 𝜹𝜑 ⋅ 𝒆2�− r𝒆r�𝜃�, (7.20)

where the edge vectors 𝜹𝜑 of the topological lattice are listed in Table 7.2.
In the homogenization code, the lattice is initialized with the information listed in Table 7.2, along with the

expressions of 𝜌𝜑 in (7.19) and 𝚫𝜑
± in (7.20).

The following changes are made to the code to handle spring elements, as opposed to the beam elements that have
been used so far. The rotational degrees of freedom 𝝍b are dropped. There is a single strain (nE𝜑=1) attached to a
spring 𝛼, namely the elongation z𝛼: the element strain in (2.12) becomes 𝑬𝛼= ( z𝛼 ). In view of the expression (7.15)
of the elongation, we change the displacement-strain matrix in (2.14–2.15) to

𝓓𝜑�𝜂, r, 𝜃�=(((((((((((((( ((((((((((((((((((((( −𝒕
˘
𝜑�𝜂, r, 𝜃�

+𝒕
˘
𝜑�𝜂, r, 𝜃� ))))))))))))))))))

)
)
) ))))))))))))))∈𝕋(1,2,2) (2D springs), (7.21)
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where 𝒕
˘
𝜑 is still defined by (2.13). The choice of the spring constants in (7.16) is captured by setting up the element

stiffness matrix as
𝓚𝜑�𝜂, r, 𝜃�=((((((((( EA

ℓ
˘
𝜑�𝜂, r, 𝜃� )))))))))∈𝕋(1,1) (springs), (7.22)

so that (2.20) yields the elastic energy of the springs.
As anticipated in Section 2, the properties (such as 𝓚𝜑, 𝜌𝜑, etc.) of this curved lattice depend on position 𝑿

through the polar coordinates �r, 𝜃�. To inform the library that the symbols r and 𝜃 vary in space, we set up the list
of variable material parameters as

𝒎=�r, 𝜃�. (7.23)

The library furnishes the homogenized tensors in terms 𝒎 and ∇𝒎, treated as symbolic quantities: in the com-
panion Mathematica notebook homogenize-circulararch.nb, we insert the explicit expression of the gradient∇𝒎=
�𝒆r�𝜃�, 𝒆𝜃�𝜃�/r� in this symbolic output, where 𝒆𝜃�𝜃�=−sin𝜃 𝒆1+cos𝜃 𝒆2 is the azimuthal unit vector.

The homogenization proceeds automatically as usual, except that the symbolic expressions of 𝑬l�𝜂; r, 𝜃�, . . . ,
𝑬y′′�𝜂; r, 𝜃� obtained by (3.23) are so long that they make the procedure hang: to work around this, we replace
𝑬l�𝜂; r, 𝜃�, . . . , 𝑬y′′�𝜂; r, 𝜃� by their Taylor expansions with respect to 𝜂 to order 𝜂3, which are considerably simpler.
These quantities being all of order 𝜂, expanding to order 𝜂3 warrants a relative accuracy of order 𝜂2 is preserved,
which is consistent with our second-order homogenization scheme.

The second-order homogenization procedure delivers the microscopic displacement in the form

𝝃b
⋆=(−1)b+1 r𝜂((((((((((((((0𝜂0+ 𝜂1

8 2� [[[[[[[[[(((((((((−tr 𝜺+ r ∂tr 𝜺∂r +2 ∂𝜀r𝜃
∂𝜃 )))))))))𝒆r+(((((((((2𝜀r𝜃+

∂tr𝜺
∂𝜃

+2 r ∂𝜀r𝜃
∂r )))))))))𝒆𝜃]]]]]]]]]+𝒪(𝜂2))))))))))))))). (7.24)

where tr𝜺=𝜀rr+𝜀𝜃𝜃, and 𝜀rr, 𝜀𝜃𝜃 and 𝜀r𝜃 are the components of the macroscopic strain in the polar basis (𝒆r, 𝒆𝜃). This
prediction is verified by comparing to discrete simulations following the usual procedure in Figure 7.7. The van-
ishing contribution 0𝜂0 in the parenthesis in (7.24) points to the fact that the leading-order microscopic displacement
is zero for this particular truss: it does not help improving the error, e[0]𝛼 = e[×]𝛼 (Figure 7.7, top). The higher-order
term in (7.24) improves the error substantially and uniformly in the interior (Figure 7.7, bottom).

no homogenization
= first-order homogenization

e[×]𝛼 = e[0]𝛼

log e

second-order homogenization

e[1]𝛼

Figure 7.7. Circular arch subjected to a weight-like force −Δ𝒆2 per unit area, with discretization parameters (n1,n2)=(13,
90) and loading intensity Δ=0.1. The logarithmic color maps represents the error on the microscopic displacement: the first
non-zero prediction from homogenization in (7.24) comes from second-order (bottom).

Remark 7.4. The microscopic displacement in (7.24) can be rewritten as

𝝃b
⋆=(−1)b+1 r𝜂((((((((((((((0𝜂0+ 𝜂1

8 2�
��𝓙p+𝒆r⊗(𝓙r − 𝑰2)� : 𝜺+ r�∇tr𝜺+𝓙𝜃 ⋅∇(𝓙𝜃 : 𝜺)��+𝒪(𝜂2))))))))))))))), (7.25)
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where 𝓙p is the polar version of the tensor 𝓙 introduced in (5.5), 𝓙p=𝒆r⊗𝓙r+𝒆𝜃⊗𝓙𝜃 with 𝓙r=−𝒆r⊗𝒆r+𝒆𝜃⊗𝒆𝜃
and 𝓙𝜃=𝒆r⊗𝒆𝜃+𝒆𝜃⊗𝒆r. In the presence of variable properties, the corrective displacement not only includes a
term proportional to ∇𝜺 but also one proportional to 𝜺 (see the first term in the square bracket above). The latter
is produced by inserting ∇𝒎=�𝒆r�𝜃�, 𝒆𝜃�𝜃�/r� into the corrective ∇𝒎⊗𝜺 term returned by the library in symbolic
form.

7.4. Shearing and twisting of a 3D elastic truss

We now address an example in dimension d=3, namely an elastic lattice made up of springs whose unit cell is shown
in Figure 7.8. The unit cell dimensions is ℓ ×ℓ × 3� ℓ . There are n𝜑=11 different types of bars: their length is ℓ𝛼=ℓ
for types 𝜑∈{I,VI}, ℓ𝛼= 3� ℓ for type 𝜑= XI, and ℓ𝛼= 5� ℓ /2 for the other types 𝜑. The spring constants k𝛼 in
Equation (7.16) are used, representing elastic bars have all the same stretching modulus E A. As earlier in 2D, the
spring elongation z𝛼 is given by (7.15) and their energy is of the form w𝛼=k𝛼 z𝛼2/2.

V

I
𝒆1

𝒆3
𝒆2

II IV

VI

VII
IX

XI VIII

X

b=1

b=2

III

ℓ

ℓ 3� ℓ

Figure 7.8. Unit cell of a 3D lattice made up of springs, with box dimensions ℓ × ℓ × 3� ℓ . The lattice has nb=2 Bravais sub-
lattices (solid vs. open disks) and n𝜑=11 element families (colors). The springs are treated as elastic bars having identical
stretching modulus EA.

In Figure 7.9, a shear test is conducted on a block comprising 20 × 10 × 10 unit cells: the displacement of the
nodes belonging to the face shown in the left-side is blocked, whereas that of those belonging to the opposite face is
set toΔ𝒆3, with Δ=0.1ℓ . In Figure 7.10, a twisting test is conducted on a block comprising 30×15×11 unit cells: a
rotation by an angle Δ is imposed on the second face, with Δ=0.1 (only the components of the displacement in the
perpendicular plane (𝒆2, 𝒆3) are prescribed, the longitudinal component along 𝒆1 remaining unconstrained).

d nb n𝜑 𝜌𝜑
3 2 11 � 3� ℓ3�−1

Table 7.3. Parameters used to set up the 3D elastic truss in the homogenization code, see Figures 7.8–7.10. The connectivity
matrix b𝜑± and the edge vectors 𝜹𝜑 are omitted as they can be read off easily from Figure 7.8.

The homogenization of the 3D truss is carried out in the companion notebook homogenize-3Dtruss.nb. The

YANG YE, B. AUDOLY, C. LESTRINGANT 31



lattice is set up using the parameters listed in Table 7.3 (the connectivity matrix b𝜑± and the edge vectors 𝜹𝜑 are pro-
vided to the library but are not included in the table). To represent the springs, the 3D version of the displacement-
to-strain matrix 𝓓𝜑 in (7.21) is used, along with the element stiffness 𝓚𝜑 in (7.22). For this particular truss, the
leading-order microscopic displacement vanishes, 𝒀0=𝟎, and the first-order one is returned by the library in the form

𝝃b
⋆=(−1)b+1 ℓ ((((((((((((((0 ℓ0+ 5 5�

64 ℓ((((((((((((((−𝜀11,1𝒆1+𝜀22,2𝒆2+
1
3�
𝜀33,3𝒆3))))))))))))))+𝒪(ℓ2))))))))))))))). (7.26)

This prediction is verified against numerical simulations in Figures 7.9 and 3.4, by the usual procedure. As in all
the previous examples, a significant improvement is brought about by second-order homogenization, except in the
vicinity of the edges.

𝒆2

𝒆1
𝒆3

no homogenization
= first-order homogenization

e[×]𝛼 = e[0]𝛼

Δ

second-order homogenization

e[1]𝛼

Δ
log e

Figure 7.9. 3D truss, shearing test. The springs are colored according to the magnitude of the microscopic displacement (no
homogenization) or of the error the displacement predicted by first-order or second-order homogenization. To aid visualization,
a single layer of springs is shown, the full lattice domain being shown by the black box.

𝒆2
𝒆3

e[×]𝛼 = e[0]𝛼

Δ

no homogenization
= first-order homogenization

𝒆1

second-order homogenization

Δ

e[2]𝛼
log e

(a) 𝒚=‖𝒚c‖ (b) 𝒚=‖𝒚c −𝒚[1]⋆ ‖

Figure 7.10. 3D truss, twisting test. Same conventions as in Figure 7.9. On the face shown in foreground, the rotation
with angle Δ is imposed on the 𝒆2 and 𝒆3 (normal) components of the displacement, the 𝒆1 (longitudinal) component remains
unconstrained.

7.5. A pantograph
Our final example is the 1D elastic truss shown in Figure 7.11, known as a pantograph. It is made up of springs
having identical elastic constants k, except for the vertical springs whose elastic constant is 𝜒 k≪ k; we address
the case of a small elastic contrast, 𝜒≪1. The homogenization of pantograph-like lattices has been studied in a
number of work, see for instance [SAd11; AS18b]. More broadly, microstructures featuring large elastic contrast
have been extensively studied, see for instance the work of [PS97; Bel17; JS20]. By recovering known results about
the pantograph, we demonstrate how our method can handle the special case of a large elastic contrast.

In all the previous illustrations given in this paper, the gradient effect was a correction to the leading order
effect—our homogenization scheme has indeed been derived with this situation in mind. The pantograph is different
as the strain-gradient term d𝜀11/dX1 ends up contributing to its energy at the same order as the strain 𝜀11, see
Equation (7.29) below. Our homogenization scheme can be revisited to deal with this situation, as we show now.
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ℓ /3 ℓ /6

5

6
34

𝒆2

𝒆1

2

ℓ /6

ℓ /3

𝜒k
k

b=1

Figure 7.11. A pantograph is a 1D truss made up of springs. All springs have the same constant k, except for the vertical
dashed springs whose spring constant is𝜒k. We consider the limit of large elastic contrast𝜒≪1. There are nb=6Bravais sub-
lattices (symbols and integers) and n𝜑=13 different types of springs: a unit cell is shown using colored segments. In the limit
𝜒=0 where the dashed vertical springs are absent, the truss possesses a zero-energy mechanism. This is the same lattice as
studied in [AS18b], except that beams have been replaced by springs and the weak (dashed vertical) springs have been added.

The pantograph is homogenized in the companion Mathematica notebook homogenize-pantograph-springs-
highcontrast.nb. In is drawn in the Euclidean plane (d=2), see Figure 7.11, but the limit model is a one-dimen-
sional bar. We could write specialized code handling 2D lattices that are 1D in the limit but a straightforward
work-around is to work in the plane and imagine that we are homogenizing an infinite number of replicas of the
pantograph obtained by copying the original one, translating it along 𝒆2 and pasting it, repeatedly. Concretely, we
set up the dimension as d=2 in the library and identify the density per area 𝜌𝜑 of each family of elements with its
density per unit length 𝜌𝜑=1/ℓ , where ℓ =O(𝜂) is the size of the unit cell. We also check that the homogenized
energy computed by the library does not depend on 𝜀12 and 𝜀22 since the replicas are disconnected.

The homogenized energy returned by the library takes the form

Φ⋆= k ℓ
2 �−∞

+∞
�4𝜒 c5�𝜒�(𝜀11)2+

2
23 c6�𝜒��ℓ d𝜀11dX1

�
2
+𝒪(𝜂3)�dX1, (7.27)

where c5�𝜒�=�1+ 7
2 𝜒�

−1 and c6�𝜒�=�1− 19
54 𝜒− 109

27 𝜒
2�/�1+ 7

2 𝜒�
2 are 𝒞∞-smooth functions of 𝜒 at 𝜒=0, with

c5(0)= c6(0)=1. The underlying microscopic displacement 𝝃b
⋆ is available from the companion notebook. We have

not yet specified how 𝜒 scales with the cell size 𝜂, and the above result is correct as long as 𝜒 remains bounded,
𝜒=𝒪(𝜂0), see Remark 2.2.

The limit of large elastic contrast is now addressed by taking the formal limit 𝜒→0 in (7.27). The distinguished
limit where both 𝜒→0 and 𝜂→0 with

𝜒=𝒪(ℓ2)=𝒪(𝜂2) (7.28)

is particularly interesting, as it makes the two terms balanced in the integral: at leading order, we then have

Φ⋆=
4k ℓ 𝜒
2 �

−∞

+∞

(((((((((((((((((𝜀11)2+
1
46 ((((((((((((((((

ℓ
𝜒1/2

d𝜀11
dX1))))))))))))))))

2
+𝒪(𝜂)))))))))))))))))dX1, (7.29)

where ℓ /𝜒1/2=𝒪(1) is the macroscopic persistence length of the gradient effect. This energy can be interpreted
based on the existence of a soft mode having zero energy in the limit 𝜒→0 (vertical dashed springs are removed).
This soft mode involves combined rigid rotations of the triangles, as shown by the light grey circular arrows in
Figure 7.11, with an amplitude proportional to the macroscopic strain 𝜀11. The first term in the integral in (7.29) can
be rewritten as 1

2 ∫�k𝜒�(ℓ 𝜀11)
2dX1/ℓ , which describes the small energy penalty brought about by the weak springs

when the soft mode is activated. Classical homogenization captures only this term, yielding a non-definite energy
functional 12 ∫0×(ℓ 𝜀11)

2dX1/ℓ in the limit of large elastic contrast 𝜒=0. The gradient effect solves this issue.
The pantograph example shows that the special behavior of high-contrast microstructures, which has been

documented in the literature, can be readily recovered by taking the formal limit 𝜒→0 in the output of the homog-
enization library. The symbolic and second-order capabilities of the library are instrumental here.

Remark 7.5. For consistency with the scaling assumption that the energy isΦ⋆=𝒪(𝜂0), one should view the spring
constant k as quantity of order 1/ℓ3=𝒪(𝜂−3). However, the magnitude of this overall multiplicative constant in the
energy is a matter of convention; nothing changes if different scaling assumptions are used.

8. DISCUSSION AND CONCLUSION

We have proposed a symbolic, second-order homogenization method for elastic lattices. It is distributed as a library,
named shoal, implemented in the symbolic calculation language Wolfram Mathematica: given a description of
the lattice, the library runs automatically and returns both the localization tensors in (4.3) and the homogenized
energy (4.5) in symbolic form.
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In the design of the library, emphasis has been placed on versatility: it works in arbitrary dimension d (1⩽d⩽3),
can handle lattices featuring graded geometric and/or elastic properties, pre-stress or a large elastic contrast. Elastic
lattices made up of springs or beams have been demonstrated and new types of elements can be created easily. We
are not aware of previous work addressing both graded properties and pre-stress in the context of higher-order,
discrete homogenization.

For a variety of lattices, we have derived in closed analytical form both the nodal displacements and rota-
tions—see Equations (5.10), (7.3), (7.11), (7.25), (7.26)—and the homogenized energy—see Equations (5.9), (7.29)—up
to second order. Expressions of this kind are novel to the best of our knowledge. Being symbolic, they fully convey
the influence of the various lattice parameters. We hope that this kind of results will be used in the future to
gain analytical insights into the effective properties of various lattices.

We have proposed a procedure for verifying the correctness (in an asymptotic sense) of the microscopic displace-
ment predicted by the library, based on comparisons with discrete simulations, see Figure 6.4. We have presented a
number of validation examples for which we have plotted physical maps of the homogenization error. The improve-
ment in accuracy brought about by second-order homogenization is significant everywhere except in layers forming
at free boundaries, where the assumption of scale separation breaks down.

Until these boundary layers have been analyzed and accounted for in the homogenized energy Φ⋆, it is not
possible to solve global equilibrium problems for the lattice by making the functional Φ⋆ stationary. This is one
main limitation of the present work, which is just a step towards this goal—a rather ambitious one in the context
of higher-order homogenization. The derivation of the other boundary terms in (4.5)—produced by homogenization
and not by boundary layers—is original to the best of our knowledge and will need to be included in the homogenized
energy functional predicting equilibrium.

There is a second reason that prevents the homogenized energyΦ⋆ from being used in self-contained simulations,
at least in its current form. As noted in Remark 5.3 and in our previous work [AL23], it contains negative strain-
gradient moduli, such as the coefficient −7 appearing in the second line of (5.9), and is therefore non-positive. This
is a common finding in higher-order homogenization [LM18; DLSS22]. This strong limitation explains the limited
popularity of higher-order homogenization so far. In future work, we hope to introduce a regularization strategy that
preserves the accuracy of the solution while restoring the desired positivity.

The library is symbolic and does second-order homogenization. When combined together, these two original
features are quite powerful. Consider for instance the challenging class of lattice homogenization problems involving
a small dimensionless parameter 𝜒≪1 (such as the slenderness ratio E I/[E A ℓ2] in beam lattices or the elastic
contrast, see §7.5) in addition to the scale separation parameter 𝜂≪1. Non-conventional limit behaviors can be
obtained in such lattices, which have been approached using specialized methods in the literature. These limit
behaviors are often associated with the presence of a large-amplitude, slowly decaying soft mode (Remark 7.6 in
§7.2, §7.5). Our approach provides both a unifying perspective and a straightforward approach to these problems: by
homogenizing (𝜂→0) with fixed𝜒 first, and taking a distinguished limit in 𝜒 and 𝜂 in the homogenized energy next,
one can identify the limit energy based on simple dimensional analysis (§7.5). This approach involves exchanging
the limits on 𝜒 and 𝜂, which is not mathematically rigorous but yields correct results in all the cases we have tried.

Along the same lines, albeit at a more basic (and less original) level, the homogenization procedure handles
bending-dominated and stretching-dominated lattices in a unified way: the class of a particular lattice can be
deducted from the symbolic expression of the leading-order homogenized energy, see the discussion immediately
after Equation (5.3).

The proposed method is subject to the following practical limitations. (i) The library solves linear algebra prob-
lems in symbolic form, which can require a large amount of computing time especially if there are many microscopic
degrees of freedom. When this happens, it is possible to revert to numeric homogenization; this is done easily, by
assigning numerical values to the lattice parameters. The symbolic computations required to generate the results
included in this paper all took from a few seconds to less than a minute on a personal computer. (ii) The homogenized
energy and microscopic displacement computed by the library have been cast by hand into compact tensor form,
shown for instance in Equation (5.9–5.10): this process could in principle be automated by exploiting the symmetries
of the lattice. (iii) We have homogenized discrete lattices made up of 1D beams of springs, without questioning the
validity of these 1D models. To address this question, one needs to revert to the equations of bulk elasticity in a
periodic domain comprising slender junctions [AB21; DLSS22].

In this work, we have limited attention to linear elastic lattices and thus have not considered material or geo-
metrical nonlinearity. When treated incrementally, homogenization problems for lattices having a more general
constitutive behavior (such as non-linearly elastic, visco-elastic or elasto-plastic) yield linearized problems featuring
both pre-stress and spatially graded properties (such as the tangent elastic stiffness). This is precisely the kind of
problems that our approach can solve. In future work, we plan to apply our homogenization scheme incrementally.
By doing so, we hope to gain insights into the homogenizing of lattices featuring a wide range of constitutive behav-
iors.

Acknowledgements Yang Ye thanks the China Scholarship Council (CSC) for his doctoral funding. This manu-
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APPENDIX A. NOTATIONS AND TOOLBOX

A.1. Tensors
The dimension of the Euclidean space is denoted as d. We address both elastic lattices in the plane (d=2, see the
illustration examples in §2.6–7.3 and §7.5) and in the three-dimensional space (d=3, §7.4). The Euclidean space
is endowed with an orthonormal Cartesian basis (𝒆1, . . . , 𝒆d). A generic point in the Euclidean space is denoted as
𝑿∈ℝd, see Figure 2.3.

We denote as 𝕋(n1,n2, . . . ,np) the tensor space 𝕋(n1,n2, . . . ,np)=ℝn1⊗ℝn2⊗ . . . ⊗ℝnp made of tensors 𝑮 of rank p and
dimensions n1×n2× ⋅ ⋅ ⋅ × np. In particular, 𝑰r∈𝕋(r,r) denotes the identity matrix in dimension r and 𝟎n1×⋅ ⋅ ⋅×np∈
𝕋(n1,n2, . . . ,np) the null tensor with dimensions n1× ⋅ ⋅ ⋅ ×np.

Tensors and vectors are denoted using bold symbols, while scalars (including tensor components) are denoted
using non-bold symbols.

Given two tensors 𝑮∈𝕋(n1,n2, . . . ,np) and 𝑮′∈𝕋(n1′,n2′, . . . ,np′), we denote as
• 𝑮 ⋅𝑮′∈𝕋(n1,n2, . . . ,np−1,n2′, . . . ,np′) their simple contraction (whose existence requires np=n1′ ),
• 𝑮 :𝑮′∈𝕋(n1,n2, . . . ,np−2,n3′, . . . ,np′) their double contraction (whose existence requires np−1=n1′ and np=n2′ ),
• 𝑮∴𝑮′∈𝕋(n1,n2, . . . ,np−3,n4′, . . . ,np′) their triple contraction, (whose existence requires np−2=n1′ , np−1=n2′ and np=

n3′ ),
• etc.

The contracted tensors are given by

(G ⋅G′)i1. . .ip−1i2′. . .ip′ = Gi1. . .ip−1 j Gji2′. . .ip′′
(G :G′)i1. . .ip−2i3′. . .ip′ = Gi1. . .ip−1 jk Gjki2′. . .ip′′
(G∴G′)i1. . .ip−3i4′. . .ip′ = Gi1. . .ip−1 jkl Gjkli2′. . .ip′′ .

(A.1)

Here and elsewhere in the paper, we use Einstein summation whereby any index that is repeated on one side of the
equal sign is implicitly summed. Note the ordering of the contracted indices j, k, l, etc. in the right-hand sides.

The action of a matrix 𝑮 on a vector 𝒗 is viewed as a special case of the contraction of a tensor of rank 2 with a
tensor of rank 1, and is denoted as 𝑮⋅𝒗, with a dot.

The outer product of two tensors 𝑻 and 𝑻′ is denoted as 𝑻⊗𝑻′. In particular, the outer product of two vectors is
denoted as 𝒗⊗𝒗′. Vector transposition is never used nor is even meaningful.

Given a tensor 𝑮∈𝕋(n1,n2, . . . ,np), and a permutation (𝜎1, . . . ,𝜎p) of the levels (1, . . . , p) of the tensor, we denote as
𝑮T𝜎1. . .𝜎p the generalized transpose of 𝑮, such that the level i in the original tensor becomes level 𝜎i in the transpose:

�GT𝜎1. . .𝜎p�i1. . .ip
=Gi𝜎1. . .i𝜎p. (A.2)

For a tensor of rank p=4 and the permutation (𝜎1, 𝜎2, 𝜎3, 𝜎4)=(1, 3, 4, 2), for instance, we have (GT1342)ijkl=Giklj.
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Transposing enables us to reorder the indices of a tensor in any desired order. Suppose that we wish to rewrite
an expression Giklj as the component Gijkl′ of another tensor whose indices are in alphabetical order:𝑮′ is a transpose
of 𝑮, the permutation being found by noting that the levels (1,2, 3, 4) in the original tensor 𝑮, corresponding to the
indices (i,k, l, j), become respectively the levels (1, 3, 4, 2)=(𝜎1, 𝜎2, 𝜎3, 𝜎4) in 𝑮′. This yields

Giklj=(GT1342)ijkl. (A.3)

Index reordering using transposition will be routinely used in combination with contractions to remove indices in
tensor algebra, as in Giklj Gijkl′ =𝑮T1324t:: 𝑮′. The usual transpose 𝑮T of a matrix 𝑮∈𝕋(n1,n2) is a particular case of
the generalized transpose, 𝑮T=𝑮T21.

Given a tensor𝑮(𝒀)∈𝕋(n1,n2, . . . ,np) taking an argument 𝒀∈ℝs, we denote as∇𝑮(𝒀)∈𝕋(n1,n2, . . . ,np,s) its gradient,

∇Gi1. . .ipj=
∂Gi1. . .ip

∂Yj
.

By a standard convention, the index j corresponding to differentiation is therefore the last one even though the
symbol ∇ appears first in ∇𝑮.

A.2. Infinitesimal rotations
In terms of the dimension d of the Euclidean space, we define nr= d (d −1)

2 as the dimension of infinitesimal rotations:
nr=1 in dimension d=2 and nr=3 in dimension d=3. An infinitesimal rotation is represented by a vector 𝜽 ∈ℝnr,
also known as a pseudo-vector. By convention, its indices are written as

𝜽 ={{{{{{{{{{{{{{{{{{{{{{{{{{{{ �𝜃3� (d=2)
�𝜃1, 𝜃2, 𝜃3� (d=3),

(A.4)

i.e., the unique index k of 𝜃k is taken to be k=3 and not k=1 when d=2, as 𝜽 then lives on the line perpendicular
to the Euclidean plane ℝ2.

The pseudo-vector 𝜽 is uniquely associated with an antisymmetric matrix 𝜽 ∈𝕋(d,d) by

𝜽 =−𝓝⋅𝜽 ⇔ 𝜽=−12 𝜽 :𝓝, (A.5)

where 𝓝∈𝕋(d,d,nr) is a constant rank-3 tensor that is is antisymmetric with respect to its first pair of indices,

𝒩ijk={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
�̃�ij3 (d=2)
�̃�ijk (d=3).

(A.6)

Here �̃�ijk is the alternating symbol in dimension 3: �̃�ijk∈{−1, 0,+1} is 0 if at least two of the indices (i, j,k) are
identical, or the signature ±1 of the permutation if (i, j,k) is a permutation of (1,2, 3). In dimension d=2, the last
index k of 𝒩ijk in (A.6) is restricted to k=3 as in (A.4), which warrants that the contraction appearing in (A.5)1, as
well as the right-most indices on both sides of (A.5)2, are consistent.

The equivalence in (A.5) is established in Appendix B.2.
When represented using an antisymmetric matrix 𝜽, the infinitesimal rotation maps a vector 𝒙∈ℝd to 𝒙′ =

�𝑰d+𝜽� ⋅𝒙. When represented as a pseudo-vector 𝜽, it maps 𝒙 to 𝒙′=𝒙+𝜃3(𝓐T ⋅ 𝒙) when d=2 (with 𝓐 as the 2D
Levi-Civita symbol, defined below Equation (7.11)), or 𝒙′= 𝒙+𝜽 ×𝒙 when d=3 (with × as the 3D cross-product).
Equation (A.5) warrants that the result is the same.

A.3. Toolbox for a strain-gradient elasticity
In Appendix B, we show that the higher-order gradients ∇k𝒖 and ∇k𝜸 of the displacement and rotation (for k⩾1)
can be expressed in terms of 𝜸 and of the gradients ∇ j�̌� (with j⩾0) as

∇𝜸(𝑿) = 𝓖′ :∇�̌�(𝑿)
∇2𝜸(𝑿) = 𝓖′′∴∇2�̌�(𝑿)
∇𝒖(𝑿) = 𝓤′⋅ �̌�(𝑿)−𝓝⋅𝜸(𝑿)
∇2𝒖(𝑿) = 𝓤′′ :∇�̌�(𝑿)
∇3𝒖(𝑿) = 𝓤′′′∴∇2�̌�(𝑿).

(A.7)

Note that no gradient of the rotation appears in the right-hand sides above. The constant tensors 𝓖′∈𝕋(nr,d,n𝜀,d),
𝓖′′∈𝕋(nr,d,d,n𝜀,d,d),𝓤′∈𝕋(d,d,n𝜀),𝓤′′∈𝕋(d,d,d,n𝜀,d) and𝓤′′′∈𝕋(d,d,d,d,n𝜀,d,d) are defined in Equations (B.9), (B.11),
(B.13) and (B.15) in the Appendix. They are symmetric with respect to any pair of indices associated with second or
third gradients, as specified in Appendix B. They depend only on the dimension d of the Euclidean space.

Equation (A.7) is a reformulation of a result by [ME68] who derived expressions for∇𝜸,∇2𝒖 and their successive
gradients in terms of the strain �̌� and its gradients.

Equation (A.7) yields the Taylor expansion of the macroscopic fields 𝒖 and 𝜸 about a point 𝑿c as

𝒖(𝑿) = 𝒖(𝑿c) + [𝓤′ ⋅ �̌�(𝑿c)−𝓝⋅𝜸(𝑿c)] ⋅ (𝑿 −𝑿c) + [𝓤′′ :∇�̌�(𝑿c)] :
(𝑿 −𝑿c)⊗2

2
+[𝓤′′′∴∇2�̌�(𝑿)] : (𝑿 −𝑿c)⊗3

6 + ⋅ ⋅ ⋅

𝜸(𝑿) = 𝜸(𝑿c) + [𝓖′ :∇�̌�(𝑿)] ⋅ (𝑿 −𝑿c) + [𝓖′′∴∇2�̌�(𝑿)] : (𝑿 −𝑿c)⊗2
2 + ⋅ ⋅ ⋅

(A.8)
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where 𝒙⊗2=𝒙⊗𝒙, 𝒙⊗3=𝒙⊗𝒙⊗𝒙. In Section 3, Equation (A.8) is used to write the strain energy of a particular
element, which is expressed in terms of the degrees of freedom at the adjacent nodes, into a Taylor expansion at the
center of the element.

APPENDIX B. PROOF OF THE GEOMETRIC IDENTITIES

B.1. Mandel representation ε̌ of the macroscopic strain
We introduce the following constant tensor𝓜∈𝕋(d,d,n𝜀) depending only on the dimension d of the Euclidean space,

𝓜=�
i=1

d

�𝒊i
d⊗𝒊i

d�⊗𝒊i
n𝜀+ �

1⩽i< j⩽d [[[[[[[[[[[[
[[[[
𝒊i
d⊗𝒊jd+𝒊jd⊗𝒊i

d

2� ]]]]]]]]]]]]]]]]⊗𝒊i+( j−i)�d− j−i−1
2 �

n𝜀 , (B.1)

where 𝒊ab∈ℝb is the discrete Dirac vector in dimension b, whose components are all zero except for the a-th one which
is equal to 1,

(𝒊ab)j={{{{{{{{{{{{{{{{{{ 0 if j≠a
1 if j=a , with 1⩽ j⩽b. (B.2)

The rationale behind the definition of 𝓜 is that the quantities in square brackets form an orthonormal basis of
the space of symmetric d× d matrices, and that the indices i (first term) and i+( j − i) �d − j − i −1

2 � (second term)
provide a sequential numbering of the tensors forming this orthonormal basis, from 1 to n𝜀. The orthonormal basis
of symmetric d×d matrices can be therefore be extracted as (𝓜⋅𝒊k

n𝜀)1⩽k⩽n𝜀.
The following two identities are a consequence of the orthonormal character of the basis appearing in square

brackets in (B.1),
𝓜T231 :𝓜=𝑰n𝜀 𝓜⋅𝓜T231=((𝑰d⊗𝑰d)T1324)S12∘S34, (B.3)

where we recall that ∘ stands for the composition of symmetrization operations, see (5.1–2.3).
The Mandel representation �̌� ∈ℝn𝜀 of the strain tensor 𝜺 introduced in (3.7) is nothing but the decomposition of

𝜺 in this orthonormal basis,
�̌�=𝜺 :𝓜. (B.4)

Conversely, the symmetric strain tensor 𝜺 can be reconstructed from the vector �̌� by
𝜺=𝓜⋅ �̌�, (B.5)

as can be shown using (B.3).

B.2. Properties of the tensor 𝓝
The tensor 𝓝 introduced in (A.6) is similar to 𝓜 as it delivers an orthogonal (but not orthonormal) basis of anti-
symmetric tensors in 𝕋(d,d) indexed by k in the form (𝓝⋅𝒊knr) where
• in dimension d=2, the only possible rotation index k is limited to k∈{3} and we set 𝒊31=(1),
• in dimension d=3, 1⩽k⩽3 and the usual definition of 𝒊knr in (B.2) applies.

In view of this and of Equation (A.5)1, 𝜽 is nothing but the components of 𝜽 in this basis, up to a sign. The reciprocal
formula (A.5)2 follows from the identity

1
2𝓝

T231 :𝓝=𝑰nr, (B.6)

which expresses itself the orthogonal character of the underlying basis.

B.3. Elimination of the rotation gradient
In this section, we provide a detailed justification of the identities (A.7), as well as expressions of the geometric
tensors 𝓖′, 𝓖′′, 𝓤′, 𝓤′′, 𝓤′′′ appearing in the right-hand side. These tensors depend on the dimension d of the
Euclidean space only.

Combining the decomposition of ∇𝒖=𝜺+ �̂� into a symmetric and antisymmetric part with (B.5) and (A.5)1, we
have ∇𝒖(𝑿)=𝓜⋅�̌�(𝑿)−𝓝⋅𝜸(𝑿) which is nothing but (A.7)3 when we identify

𝓤′=𝓜. (B.7)

Next, we repeat the classical argument yielding the rotation gradient ∇𝜸 in terms of the strain gradient ∇�̌�.
The rotation in (3.8)2 can be written in components as 𝛾a=−12 uc,d𝒩cda=+12𝒩dca uc,d, where a comma in subscript
denotes differentiation. The gradient of rotation thus takes the form 𝛾a,b= 1

2𝒩dca uc,db. Since the second gradient
uc,db is symmetric with respect to the indices (b,d), this can be rewritten as 𝛾a,b= 1

2𝒩dca (uc,b),d= 1
2𝒩dca (uc,b+

ub,c),d − 1
2𝒩dca ub,cd. The last term is zero since it is a contraction over the indices (c,d) of an antisymmetric tensor

𝒩dca and a symmetric tensor ub,cd. This yields 𝛾a,b=𝒩dca 𝜀cb,d=𝒩dcaℳcbe �̌�e,d by (B.5), which we can rewrite in
tensor form as

∇𝜸(𝑿)=𝓖′ :∇�̌�(𝑿), (B.8)
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where
𝓖′=(𝓝T231 ⋅ℳ)T1423, (B.9)

as announced in (A.7)1.
Differentiating one more time, we get ∇2𝜸(𝑿)=𝓖′ :∇2�̌�(𝑿)=(𝓖′⊗𝑰d)T124536∴∇2�̌�(𝑿). We enforce the natural

symmetries of ∇2𝜸 with respect to the pairs of indices (2, 3) and (5, 6) by writing

∇2𝜸(𝑿)=𝓖′′∴∇2�̌�(𝑿), (B.10)
as announced in (A.7)2, where

𝓖′′=((𝓖′⊗𝑰d)T124536)S23∘S56, (B.11)

and S23 ∘S56 denotes successive symmetrization with the two pairs of indices.
Differentiating (A.7)3 in components and using (B.8), we obtain the second gradient of displacement as ua,bc=

�𝒰abe′ �̌�e −𝒩abd𝛾d�,c=𝒰abe′ �̌�e,c −𝒩abd𝒢dcef′ �̌�e,f =�𝒰abe′ 𝛿cf −𝒩abd𝒢dcef′ � �̌�e,f , which we can rewrite as

∇2𝒖(𝑿)=𝓤′′ :∇�̌�(𝑿) (B.12)
where 𝓤′′ is given by

𝓤′′=(𝓤′⊗𝑰d)T12435−𝓝⋅𝓖′. (B.13)

Since ∇2𝒖 is symmetric with respect to its last pair of indices in the left-hand side of (B.12), 𝓤′′ is automatically
symmetric with respect to the pair (2, 3). Equation (B.12) proves (A.7)4.

Next, we have ∇3𝒖=𝓤′′ : ∇2�̌� = (𝓤′′ ⊗ 𝑰d)T1235647 ∴∇2�̌�. The natural symmetries by any permutation of the
indices (2, 3, 4) on the one hand and (6, 7) on the other hand, are enforced by writing

∇3𝒖(𝑿)=𝓤′′′∴∇2�̌�(𝑿) (B.14)
as announced in (A.7)5, where

𝓤′′′=((𝓤′′⊗𝑰d)T1235647)S234∘S67, (B.15)

and S234 ∘S67 denotes symmetrization with respect to the set of indices in subscript.
The proof of the identities (A.7) is complete.

YANG YE, B. AUDOLY, C. LESTRINGANT 39


	Keywords
	1. Introduction
	2. Generating the elastic lattice
	2.1. Underlying topological lattice
	2.2. Curved reference configuration
	2.3. Assumed power-series dependence on η
	2.4. Kinematic analysis of the beam-elements
	2.5. Strain energy of the lattice

	3. Homogenization problem in canonical form
	3.1. Parameterization of discrete solution using continuous functions
	3.2. Macroscopic strain 𝜺ˇ and rotation 𝜸
	3.3. Macroscopic state vector 𝒍
	3.4. Microscopic degrees of freedom 𝒚
	3.5. Element strain expansion
	3.6. Assembly
	3.7. Continualized strain energy
	3.8. Summary: canonical form

	4. Second-order homogenization
	4.1. Principle of the homogenization method
	4.2. Connecting with the discrete homogenization library

	5. Symbolic homogenization of a periodic honeycomb lattice
	5.1. Setting up the lattice in the extensible case
	5.2. Homogenization results
	5.3. Inextensible limit
	5.4. Short track: homogenizing the inextensible lattice

	6. Numerical verification
	6.1. Verification procedure
	6.2. Sheared strip, with or without a hole
	6.3. Cracked strip in tension

	7. Extensions and further illustrations
	7.1. Inhomogeneous elastic properties
	7.2. Kagome lattice with pre-strain
	7.3. Circular arch
	7.4. Shearing and twisting of a 3D elastic truss
	7.5. A pantograph

	8. Discussion and conclusion
	Acknowledgements

	Bibliography
	Appendix A. Notations and toolbox
	A.1. Tensors
	A.2. Infinitesimal rotations
	A.3. Toolbox for a strain-gradient elasticity

	Appendix B. Proof of the geometric identities
	B.1. Mandel representation 𝜺ˇ of the macroscopic strain
	B.2. Properties of the tensor 𝓝
	B.3. Elimination of the rotation gradient


