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MULTI-STEP VARIANT OF THE PARAREAL ALGORITHM: CONVERGENCE
ANALYSIS AND NUMERICS

Katia Ait-Ameur1,* and Yvon Maday2,3

Abstract. In this paper, we consider the problem of accelerating the numerical simulation of time
dependent problems involving a multi-step time scheme by the parareal algorithm. The parareal method
is based on combining predictions made by a coarse and cheap propagator, with corrections computed
with two propagators: the previous coarse and a precise and expensive one used in a parallel way
over the time windows. A multi-step time scheme can potentially bring higher approximation orders
than plain one-step methods but the initialisation of each time window needs to be appropriately
chosen. Our main contribution is the design and analysis of an algorithm adapted to this type of
discretisation without being too much intrusive in the coarse or fine propagators. At convergence, the
parareal algorithm provides a solution that coincides with the solution of the fine solver. In the classical
version of parareal, the local initial condition of each time window is corrected at every iteration.
When the fine and/or coarse propagators is a multi-step time scheme, we need to choose a consistent
approximation of the solutions involved in the initialisation of the fine solver at each time windows.
Otherwise, the initialisation error will prevent the parareal algorithm to converge towards the solution
with fine solver’s accuracy. In this paper, we develop a variant of the algorithm that overcome this
obstacle. Thanks to this, the parareal algorithm is more coherent with the underlying time scheme and
we recover the properties of the original version. We show both theoretically and numerically that the
accuracy and convergence of the multi-step variant of parareal algorithm are preserved when we choose
carefully the initialisation of each time window.
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1. Introduction

Solving complex models with high accuracy and within a reasonable computing time has motivated the
search for numerical schemes that exploit efficiently parallel computing architectures. In this work, the model
consists of a Partial Differential Equation (PDE) set on a space time domain Ω. In this context, one of the
main ideas to parallelize a simulation is to break the problem into subproblems defined over subdomains of a
partition of Ω. The domain can potentially have higher dimensionality and be composed of additional variables
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to space and time like velocity or even more specific variables for some problems. There exist algorithms with
very good scalability properties for the decomposition of the spatial variable (see [33] or [35] for an overview).
Time domain decomposition is more and more considered to complement this strategy when the speed up
performance stagnates despite remaining computing resources. This strategy of parallelization can be very
efficient especially for long time simulations where the final time 𝑇 and characteristic time step 𝛿𝑡 are such that
𝑇
𝛿𝑡 is huge. Research on time parallel algorithms is currently very active and has by now a history of at least
50 years (back to at least [31]) during which several algorithms have been explored (see [19,32] for an overview).
Four iterative algorithms have received significant attention, namely Parareal [28], PFASST [14], MGRIT [15]
and a specific form of Space-Time Multi-Grid (STMG) [22]. Other algorithms have been proposed, e.g. the
parallel implicit time-integrator PITA [18] which is very similar to Parareal, the diagonalization technique [30],
RIDC [8], ParaExp [20] or REXI [34].

Much work has been done on developing efficient time stepping methods. This work has resulted in very effi-
cient variable step and, in the case of linear multi-step methods, variable order adaptive methods. In particular,
the linear multi-step methods have been shown to be very efficient in a number of application areas [3, 27]. In
contrast to one-step methods, where the numerical solution is obtained solely from the differential equation and
the initial value, the algorithm of multi-step time schemes consists of two parts: firstly, a starting procedure
which provides 𝑢1, . . . , 𝑢𝑛−1 (approximations to the exact solution at the points 𝑡0 + 𝛿𝑡, . . . , 𝑡0 + (𝑛− 1)𝛿𝑡) and,
secondly, a multi-step formula to obtain an approximation to the exact solution 𝑢(𝑡0 +𝑛𝛿𝑡). This is then applied
recursively, based on the numerical approximations of 𝑛 successive steps, to compute 𝑢(𝑡0 +(𝑛+1)𝛿𝑡). There are
several possibilities for obtaining the missing starting values. In Adams methods [5], they are actually computed
using the Taylor series expansion of the exact solution. Another possibility is the use of any one-step method,
e.g., a Runge–Kutta method. Other multi-step formulas are based on the numerical differentiation of a given
function and are known as backward differentiation formulas (or BDF-methods). These methods are, since the
work of [24], widely used for the integration of stiff differential equations. A general theory of multi-step methods
was started by the work of Dahlquist [9,10]. As the numerical solution of a multi-step method does not depend
only on the initial value problem but also on the choice of the starting values, the definition of the local error is
not as straightforward as for one-step methods. A challenge with parallel-in-time methods has been developing
strategies that accommodate these highly efficient adaptive methods.

In this work, we report our recent effort to adapt one particular time-parallel algorithm: the parareal in
time algorithm, to multi-step time schemes. The parareal method was first introduced in [28] and has been
well accepted by the community because it is easily applicable to a relatively large spectrum of problems
(some specific difficulties are nevertheless encountered on certain types of PDEs as reported in [11, 18] for
hyperbolic systems or [12] for hamiltonian problems). Some limitations persist for the classical version of the
parareal algorithm like the parallel efficiency that decreases with the final number of iterations 𝐾 as 1/𝐾. This
limitation is addressed in [29] that proposes an adaptive variant of the parareal method where the accuracy
of the fine solver is dynamically increasing across the parareal iterations (see [6, 25] for the coupling between
space domain decomposition methods and the parareal algorithm). Without entering into very specific details
of the algorithm at this stage, we can summarize the procedure by saying that we build iteratively a sequence to
approximate the exact solution of the problem by a predictor-corrector algorithm. At every iteration, predictions
are made by a solver which has to be as numerically inexpensive as possible since it is run on the full time
interval. It usually involves coarse physics and/or coarse solution. Corrections involve a solver with high-fidelity
physics and high accuracy (and thus expensive) solution which is propagated independently in parallel over
small non overlapping time subdomains. In the classical version of the parareal algorithm, the fine solver has
a fixed high accuracy across all iterations. It is set to the one that we would use to solve the dynamics at
the desired accuracy with a purely sequential solver. One classical property of the parareal algorithm is the so
called “consistency” that states that the solution of the parareal algorithm is exact after a number of iterations
equal to the number of time windows (of course it is expected that the iterative process converges to a given
threshold more rapidly). We would like to preserve this notion of consistency in the context of multi-step times
schemes. At each iteration, the local initial conditions are corrected for every time windows until convergence.
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Multi-step time schemes require several previous steps for the initialization of the time propagation on each
time window. We thus need to choose an initialization that preserves the consistency of the parareal scheme.
Otherwise, the initialisation error will prevent the parareal algorithm to converge towards the solution with the
fine solver’s accuracy. This point was addressed in the context of multigrid in time method in [16, 17]. Here,
the authors adapt the MGRIT algorithm framework to the use of multi-step time schemes, the BDF methods.
In our work, we propose a variant of the parareal algorithm that overcome this obstacle. Thanks to this, the
parareal algorithm is more coherent with the underlying time scheme and we recover the properties of the
original version: consistency with the sequential fine solver and same convergence rate.

We present in Section 2 the variant of the parareal algorithm adapted to multi-step time schemes. This
method includes additional corrections at previous steps involved in the initialisation of the fine and/or coarse
solver at each time window. This choice has the benefit to be non intrusive into the code we seek to parallelise by
a time domain decomposition. In Section 2.4, we discuss how the new paradigm can be generalised to multi-step
time schemes, not only two-step times schemes, used in the fine and/or the coarse solver. In the last section,
we illustrate the performance of the algorithm on numerical examples: the Brusselator and the Van der Pol
oscillator. We show that this variant allows the parareal algorithm to converge towards the solution with fine
solver’s accuracy.

2. A multi-step variant of the parareal algorithm

In this section, after introducing some preliminary notations in Section 2.1, we formulate the new variant
of the parareal algorithm adapted to multi-step time schemes (Sect. 2.3). We then present the hypothesis we
consider in this article and restrict ourselves to two-step time schemes for the convergence analysis (Sect. 2.2).
We prove that the multi-step variant converges with a convergence rate similar to that of the classical parareal
algorithm.

2.1. Notations and preliminaries

Let U be a Banach space of functions defined over a domain Ω ⊂ R𝑑 (𝑑 ≥ 1). Let

𝐸 : [0, 𝑇 ]× [0, 𝑇 ]× U → U, (1)

be a propagator, that is, an operator such that, for any given time 𝑡 ∈ [0, 𝑇 ], 𝑠 ∈ [0, 𝑇 − 𝑡] and any function
𝑤 ∈ U, 𝐸(𝑡, 𝑠, 𝑤) takes 𝑤 as an initial value at time 𝑡 and propagates it at time 𝑡+𝑠. We assume that 𝐸 satisfies
the semi group property

𝐸(𝑟, 𝑡− 𝑟, 𝑤) = 𝐸(𝑠, 𝑡− 𝑠, 𝐸(𝑟, 𝑠− 𝑟, 𝑤)), ∀𝑤 ∈ U, ∀(𝑟, 𝑠, 𝑡) ∈ [0, 𝑇 ]3, 𝑟 < 𝑠 < 𝑡. (2)

We further assume that 𝐸 is implicitly defined through the solution 𝑢 ∈ 𝒞1([0, 𝑇 ], U) of the time-dependent
problem {︃

𝑢′(𝑡) +𝒜(𝑡, 𝑢(𝑡)) = 0, 𝑡 ∈ [0, 𝑇 ],
𝑢(0) ∈ U,

(3)

where 𝒜 is an operator from [0, 𝑇 ]×U into U with adequate regularity we shall detail later. Then, given 𝑤 ∈ U,
𝐸(𝑡, 𝑠, 𝑤) denotes the solution to (3) at time 𝑡 + 𝑠 with initial condition 𝑤 at time 𝑡 ≥ 0. Let us note that 𝑠
can be negative if it is small enough. The propagator 𝐸 could also be associated to a discretized version of the
evolution equation.

Since, in general, the problem (3) does not have an explicit solution, we seek to approximate the solution
of problem (3) at a given target accuracy 𝜂 > 0 by a solver 𝑆. Given a time discretisation of the time interval
[0, 𝑇 ], we denote 𝑆 the time propagator such that, for any discrete time 𝑡 and any function 𝑤 ∈ U takes an
initial value at time 𝑡 and propagates it at time 𝑡 + 𝑠. 𝑆 is a generic time propagator that can be a coarse
propagator G or a fine time propagator F.

‖𝐸(𝑡, 𝑠, 𝑤)− 𝑆(𝑡, 𝑠, 𝑤)‖ ≤ 𝜂𝑠(1 + ‖𝑤‖), (4)
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where ‖ · ‖ denotes the norm in U. Thus, 𝑆(𝑡, 𝑠, 𝑤) approximates 𝐸(𝑡, 𝑠, 𝑤) with an accuracy 𝜂. We consider a
given decomposition of the time interval [0, 𝑇 ] into 𝑁 subdomains [𝑇𝑛, 𝑇𝑛+1], 𝑛 = 0, . . . , 𝑁 − 1. Without loss
of generality, we will take them of uniform size ∆𝑇 = 𝑇/𝑁 which means that 𝑇𝑛 = 𝑛∆𝑇 for 𝑛 = 0, . . . , 𝑁 .
For a given target accuracy 𝜂 > 0, the goal of the parareal algorithm is to accelerate the computation of an
approximation 𝑢̃(𝑇𝑛) of 𝑢(𝑇𝑛) such that:

max
1≤𝑛≤𝑁

‖𝑢(𝑇𝑛)− 𝑢̃(𝑇𝑛)‖ ≤ 𝜂.

The classical way to compute such an approximation is to set 𝑢̃(𝑇𝑛) = 𝑆(0, 𝑇𝑛, 𝑢(0)), 1 ≤ 𝑛 ≤ 𝑁 , where 𝑆 is
some sequential solver in [0, 𝑇 ]. On the other hand, the strategy of the parareal algorithm follows the following
steps, using two propagation operators:

– 𝐺(𝑡, 𝑠, 𝑤): provides a coarse approximation of the solution of (3), 𝑢(𝑟), 𝑟 ∈ [𝑡, 𝑡 + 𝑠] with initial condition
𝑢(𝑡) ≃ 𝑤. The coarse propagation is sequential but has a low computational cost.

– 𝐹 (𝑡, 𝑠, 𝑤): provides a more accurate approximation of the solution of (3), 𝑢(𝑟), 𝑟 ∈ [𝑡, 𝑡 + 𝑠] with initial
condition 𝑢(𝑡) ≃ 𝑤. The action of 𝐹 is distributed over 𝑁 time windows and 𝑁 processors solve over each
interval [𝑇𝑛, 𝑇𝑛+1] of size ∆𝑇 instead of solving over [0, 𝑇 ]. The fine time step is chosen in order to reach
the target approximation of the exact solution with accuracy 𝜂 defined in (4). This choice has also to respect
the stability conditions of the fine solver 𝐹 . The fine time step size is not necessarily the same for all the
coarse intervals and an adaptive time stepping scheme can be used.

The parareal algorithm starts with an initial approximation 𝑢𝑛
0 , 𝑛 = 0, . . . , 𝑁 , at time 𝑇 0, . . . , 𝑇𝑁 given by

the coarse computation of 𝑢𝑛+1
0 = 𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛

0 ), with 𝑢0
0 = 𝑢(0), and then performs for 𝑘 ≥ 0 the correction

iteration: {︃
𝑢𝑛+1

0 = 𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛
0 ), 0 ≤ 𝑛 ≤ 𝑁 − 1,

𝑢𝑛+1
𝑘+1 = 𝐺

(︀
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘+1

)︀
+ 𝐹 (𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘 )−𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛
𝑘 ), 0 ≤ 𝑛 ≤ 𝑁 − 1, 𝑘 ≥ 0.

(5)

The parareal algorithm consists in building iteratively a series 𝑢𝑛
𝑘 of approximations of 𝑢(𝑇𝑛) for 0 ≤ 𝑛 ≤ 𝑁

following the recursive formula (5). We initialise 𝑢0
𝑘+1 = 𝑢0 and then calculate 𝑢1

𝑘+1, 𝑢
2
𝑘+1, . . . , 𝑢

𝑁
𝑘+1. The second

equation in (5) is recursive in 𝑘. For a given iteration 𝑘, 𝑁 fine propagations of size ∆𝑇 are required, each
of them over distinct intervals [𝑇𝑛, 𝑇𝑛+1], each of them with independent initial conditions 𝑢𝑛

𝑘 . Since they are
independent from each other, they can be computed over 𝑁 parallel processors and the original computation
over [0, 𝑇 ] is decomposed into parallel computations over 𝑁 subintervals of size ∆𝑇 .

2.2. Necessary assumptions

The choice of the solver 𝐹 determines the quality of the approximation and the computational cost of its
implementation. One can potentially bring higher approximation orders than plain one-step methods by using
a multi-step time discretisation method or Runge–Kutta time schemes [26]. Multi-step time schemes require
several previous steps to compute the solution at a new point in time. For a example with a two-step time scheme,
the computation of the solution 𝑢𝑛+1 at time 𝑇𝑛+1 depends on the solutions 𝑢𝑛 and 𝑢𝑛−1 at times 𝑇𝑛 and 𝑇𝑛−1,
respectively. At the initial step 𝑇 0, a common choice is to set 𝑢𝑛−1 = 𝑢𝑛. In the parareal algorithm, we need to
initialise the two-step time scheme for each time window [𝑇𝑛, 𝑇𝑛+1] in a way to recover the fine solution with the
target accuracy 𝜂. A first option is to make a one-step time scheme iteration to initialise the fine propagations
in each time window [𝑇𝑛, 𝑇𝑛+1], as in [4], when the authors propose a consistent approximation in the context
of the simulation of molecular dynamics. The proposed method is based on second-order approximations of the
solution 𝑢(𝑇𝑛 − 𝛿𝑡) at each time window allowing to initialise the two-step time scheme, the Verlet integrator.
The consistency of their algorithm is shown up to the second order. We will see later in the numerical results
that making an initialisation error for a multi-step fine solver will prevent the parareal algorithm to obtain the
approximation of the exact solution with the desired accuracy. In this work, we propose a new variant of the
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parareal algorithm that takes into account a consistent approximation of 𝑢(𝑇𝑛− 𝛿𝑡) and allows to recover a full
consistency and accuracy according to multi-time schemes. In order to define this new algorithm, we introduce
a different notation for the fine time propagators that are based on two-step time schemes:

𝐹 : [0, 𝑇 ]× [0, 𝑇 ]× U× U → U, (6)

such that 𝐹 (𝑡, 𝑠, 𝑤1, 𝑤2) for any given time 𝑡 ∈ [0, 𝑇 ], 𝑠 ∈ [0, 𝑇 − 𝑡] and any functions 𝑤1, 𝑤2 ∈ U takes two
initial values at times 𝑡 and 𝑡− 𝛿𝑡 and propagates them at time 𝑡 + 𝑠, where 𝛿𝑡 is the time step of the two-step
time scheme 𝐹 .

In what follows, we analyse the convergence rate of the multi-step variant of parareal algorithm when the
coarse solver is a one-step time scheme and the fine one is a two-step time scheme. The algorithm relies on the
use of a solvers 𝐺 and 𝐹 with the following properties involving the operators:

𝛿𝐺 = 𝐸 −𝐺, 𝛿𝐹 = 𝐸 − 𝐹.

In the following, we assume the exact propagator 𝐸 is such that 𝐸(𝑡,−𝛿𝑡, 𝑦)) is defined for 𝑦 ∈ U and for any
𝑡 ∈ [0, 𝑇 ].

Assumptions (H). There exists 𝜀𝐺, 𝐶𝑑, 𝐶 > 0 such that for any functions 𝑥, 𝑦 ∈ U and for any 𝑡 ∈ [0, 𝑇 ] and
𝑠 such that 𝑠 ∈ [∆𝑇, 𝑇 − 𝑡], 𝑠

𝛿𝑡 ≫ 1,

‖𝐸(𝑡, 𝑠, 𝑥)−𝐺(𝑡, 𝑠, 𝑥)‖ ≤ 𝑠(1 + ‖𝑥‖)𝜀𝐺 ⇔ ‖𝛿𝐺(𝑡, 𝑠, 𝑥)‖ ≤ 𝑠𝜀𝐺(1 + ‖𝑥‖), (7)
‖𝐺(𝑡, 𝑠, 𝑥)−𝐺(𝑡, 𝑠, 𝑦)‖ ≤ (1 + 𝐶𝑠)‖𝑥− 𝑦‖, (8)
‖𝐹 (𝑡, 𝑠, 𝑥1, 𝑦1)− 𝐹 (𝑡, 𝑠, 𝑥2, 𝑦2)‖ ≤ (1 + 𝐶𝑠)(‖𝑥1 − 𝑥2‖+ ‖𝑦1 − 𝑦2‖), (9)
‖𝛿𝐺(𝑡, 𝑠, 𝑥)− 𝛿𝐺(𝑡, 𝑠, 𝑦)‖ ≤ 𝐶𝑑𝑠𝜀𝐺‖𝑥− 𝑦‖, (10)
‖(𝐹 (𝑡, 𝑠, 𝐸(𝑡,−𝛿𝑡, 𝑦1), 𝑦1)− 𝐸(𝑡, 𝑠, 𝑦1))− (𝐹 (𝑡, 𝑠, 𝐸(𝑡,−𝛿𝑡, 𝑦2), 𝑦2)− 𝐸(𝑡, 𝑠, 𝑦2))‖ ≤ 𝐶𝑠𝛿𝑡‖𝑦1 − 𝑦2‖, (11)
‖(𝐹 (𝑡, 𝑠− 𝛿𝑡, 𝑦1 − 𝛿1, 𝑦1)− 𝐹 (𝑡, 𝑠− 𝛿𝑡, 𝑦2 − 𝛿2, 𝑦2))− (𝐹 (𝑡, 𝑠, 𝑦1 − 𝛿1, 𝑦1)− 𝐹 (𝑡, 𝑠, 𝑦2 − 𝛿2, 𝑦2))‖

≤ (1 + 𝐶𝑠)𝛿𝑡(‖𝛿1 − 𝛿2‖+ ‖𝑦1 − 𝑦2‖), (12)
‖𝐹 (𝑡, 𝑠, 𝐸(𝑡,−𝛿𝑡, 𝑦), 𝑦)− 𝐸(𝑡, 𝑠, 𝑦)‖ ≤ 𝑠𝜀𝐹 (1 + ‖𝑦‖). (13)

2.3. The multi-step variant of the parareal method

We now detail our algorithm:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑛+1
0 = 𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛

0 ), 0 ≤ 𝑛 ≤ 𝑁 − 1,

𝑢𝑛,𝑁𝑓−1
0 = 𝑢𝑛+1

0 , 0 ≤ 𝑛 ≤ 𝑁 − 1,

𝑢𝑛+1
𝑘+1 = 𝐺

(︀
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘+1

)︀
+ 𝐹

(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛−1,𝑁𝑓−1

𝑘 , 𝑢𝑛
𝑘

)︁
−𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘 ), 0 ≤ 𝑛 ≤ 𝑁 − 1, 𝑘 ≥ 0,

𝑢𝑛,𝑁𝑓−1
𝑘+1 = 𝐹

(︁
𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢𝑛−1,𝑁𝑓−1

𝑘 , 𝑢𝑛
𝑘

)︁
+ 𝑢𝑛+1

𝑘+1

−𝐹
(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛−1,𝑁𝑓−1

𝑘 , 𝑢𝑛
𝑘

)︁
, 0 ≤ 𝑛 ≤ 𝑁 − 1, 𝑘 ≥ 0.

(14)

At this point, several comments are in order. To derive a consistent approximation of 𝑢(𝑇𝑛 − 𝛿𝑡),
we use the last fine trajectory at our disposal which is 𝐹 (𝑇𝑛−1, ∆𝑇, 𝑢𝑛−2,𝑁𝑓−1

𝑘 , 𝑢𝑛−1
𝑘 ). Its final value

at 𝑇𝑛 is: 𝐹 (𝑇𝑛−1, ∆𝑇, 𝑢𝑛−2,𝑁𝑓−1
𝑘 , 𝑢𝑛−1

𝑘 )(𝑇𝑛) from which we compute 𝑢𝑛
𝑘+1 by the parareal correction.

Hence, we translate the solution: 𝐹 (𝑇𝑛−1, ∆𝑇 − 𝛿𝑡, 𝑢𝑛−2,𝑁𝑓−1
𝑘 , 𝑢𝑛−1

𝑘 )(𝑇𝑛 − 𝛿𝑡) by the same correction:

𝑢𝑛
𝑘+1 − 𝐹 (𝑇𝑛−1, ∆𝑇, 𝑢𝑛−2,𝑁𝑓−1

𝑘 , 𝑢𝑛−1
𝑘 ) and obtain the so called consistent approximation 𝑢𝑛−1,𝑁𝑓−1

𝑘+1 to initialize
the fine propagation in [𝑇𝑛, 𝑇𝑛+1].
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2.4. Comments and extensions

An important feature of this algorithm is to preserve a well known property of the parareal algorithm:

𝑢𝑛
𝑘 = 𝐹

(︀
𝑇 0, 𝑇𝑛 − 𝑇 0, 𝑢0

)︀
, for 𝑛 ≤ 𝑘, 𝑛 = 0, . . . , 𝑁. (15)

In our case, the multi-step variant of the parareal algorithm verifies (15) and the additional correction of the
solution at time 𝑇𝑛 − 𝛿𝑡 leads to:

𝑢𝑛,𝑁𝑓−1
𝑘+1 = 𝐹

(︁
𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢𝑛−1,𝑁𝑓−1

𝑘 , 𝑢𝑛
𝑘

)︁
+ 𝑢𝑛+1

𝑘+1

− 𝐹
(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛−1,𝑁𝑓−1

𝑘 , 𝑢𝑛
𝑘

)︁
, 0 ≤ 𝑛 ≤ 𝑁 − 1, 𝑘 ≥ 0,

= 𝐹
(︁
𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢𝑛−1,𝑁𝑓−1

𝑘 , 𝑢𝑛
𝑘

)︁
+ 𝐺

(︀
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘+1

)︀
−𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘 ), 0 ≤ 𝑛 ≤ 𝑁 − 1, 𝑘 ≥ 0.

Hence, the multi-step parareal method satisfies the same property (15) at time 𝑇𝑛 − 𝛿𝑡:

𝑢𝑛,𝑁𝑓−1
𝑘 = 𝐹

(︀
𝑇 0, 𝑇𝑛 − 𝛿𝑡− 𝑇 0, 𝑢0

)︀
, for 𝑛 ≤ 𝑘, 𝑛 = 0, . . . , 𝑁. (16)

This new variant of the parareal algorithm (14) proposes a consistent approximation of the solution at
time 𝑇𝑛 − 𝛿𝑡 in a non intrusive way. The initialisation of the fine propagation in each time window has to be
appropriately chosen because an initialisation error would be propagated over the whole time interval and would
prevent the parareal algorithm to converge towards the target solution. Another option to treat this issue is
to use a one-step time scheme or a multi-stage Runge–Kutta method to initialize the fine computation. This
option is intrusive since we have to implement new time schemes for the initialisation. Moreover, we will see in
Section 4 that this strategy prevents the parareal to converge to the numerical solution with the target accuracy
since the first-order scheme error will dominate.

The multi-step parareal adds consistency with the fine scheme. This strategy can be extended to the case of
a general multi-step time scheme involving several fine time steps preceding the time 𝑇𝑛. The same correction
can be applied to the terms taking the form: 𝑢𝑛,𝑁𝑓−𝑖

𝑘+1 , 𝑖 = 1, . . . , 𝐼.
We detail the algorithm for a multi-step time scheme involving more than one fine time step preceding time

𝑇𝑛.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑛+1
0 = 𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛

0 ), 0 ≤ 𝑛 ≤ 𝑁 − 1,

𝑢𝑛+1
𝑘+1 = 𝐺

(︀
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘+1

)︀
+ 𝐹

(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛−1,𝑁𝑓−𝐼

𝑘 , 𝑢𝑛−1,𝑁𝑓−𝐼+1
𝑘 , . . . , 𝑢𝑛

𝑘

)︁
−𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘 ), 0 ≤ 𝑛 ≤ 𝑁 − 1, 𝑘 ≥ 0,

𝑢𝑛,𝑁𝑓−𝑖
𝑘+1 = 𝐹

(︁
𝑇𝑛, ∆𝑇 − 𝑖𝛿𝑡, 𝑢𝑛−1,𝑁𝑓−𝐼

𝑘 , 𝑢𝑛−1,𝑁𝑓−𝐼+1
𝑘 , . . . , 𝑢𝑛

𝑘

)︁
+ 𝑢𝑛+1

𝑘+1

−𝐹
(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛−1,𝑁𝑓−𝐼

𝑘 , 𝑢𝑛−1,𝑁𝑓−𝐼+1
𝑘 , . . . , 𝑢𝑛

𝑘

)︁
, 𝑖 = 0, . . . , 𝐼,

0 ≤ 𝑛 ≤ 𝑁 − 1, 𝑘 ≥ 0,

(17)

where we denote 𝐹 (𝑡, 𝑠, 𝑤1, 𝑤2, . . . , 𝑤𝐼), the multi-step propagator such that, for any given time 𝑡 ∈ [0, 𝑇 ],
𝑠 ∈ [0, 𝑇 − 𝑡] and any function 𝑤1, . . . , 𝑤𝐼 ∈ U, 𝐹 takes 𝐼 initial values at times 𝑡 − 𝑖𝛿𝑡, 𝑖 = 0, . . . , 𝐼 − 1 and
propagates it at time 𝑡 + 𝑠, where 𝛿𝑡 is the fine time step. We illustrate the good convergence properties in the
next section by applying the parareal algorithm to an ODE system solved by a coarse solver based on a one-step
time scheme and a fine solver based on a third-order BDF method.

When the coarse solver is a multi-step time scheme, there exists several options to initialise it on each time
window:

– If the coarse time step 𝛿𝑇 is equal to the size of the time window ∆𝑇 , there is no additional correction in
the parareal algorithm since the solution at every coarse time steps are updated.
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– If 𝛿𝑇 < ∆𝑇 , there are intermediate coarse time iterations in each time window. In [4], the initialisation of
the coarse solver is addressed and the authors propose a parareal-type correction at time 𝑇𝑛 − 𝛿𝑇 :

𝑢
𝑛+1−𝑁𝑐

int
𝑘+1 = 𝐺

(︁
𝑇𝑛, ∆𝑇 − 𝛿𝑇, 𝑢

𝑛−𝑁𝑐
int

𝑘+1 , 𝑢𝑛
𝑘+1

)︁
+ 𝐹

(︁
𝑇𝑛, ∆𝑇 − 𝛿𝑇, 𝑢𝑛−1,𝑁𝑓−1

𝑘 , 𝑢𝑛
𝑘

)︁
−𝐺

(︁
𝑇𝑛, ∆𝑇 − 𝛿𝑇, 𝑢

𝑛−𝑁𝑐
int

𝑘 , 𝑢𝑛
𝑘

)︁
, 𝑁 𝑐

int =
𝛿𝑇

𝛿𝑡
0 ≤ 𝑛 ≤ 𝑁 − 1, 𝑘 ≥ 0. (18)

3. Convergence analysis of the multi-step parareal method

3.1. Comments on the assumptions

Assumptions (7)–(10) are the classical properties of numerical schemes related to stability and accuracy. The
parameters 𝜖𝐺 depends on the coarse time step ∆𝑇 and on the order accuracy 𝛼 of the coarse propagator 𝐺.
Thus 𝜖𝐺 ≃ ∆𝑇𝛼. The parameters 𝐶𝑑 and 𝐶 depend on the regularity of the operator 𝒜 and of the solution 𝑢
and on final time 𝑇 𝑓 . Assumptions (8) and (9) are Lipschitz conditions and the quantity 𝜀𝐺 is a small constant
which, in the case of the explicit Euler scheme, would be proportional to the time step size. Assumptions (11)
and (12) are specific to two-step time schemes in the context of time domain decomposition. There are two
sources of error for two-step time schemes:

– the error from the discretisation of the time derivative, common to one-step time schemes;
– the error from the inconsistency between the two initial conditions 𝑥1 and 𝑦1 in 𝐹 (𝑡, 𝑠, 𝑥1, 𝑦1).

In hypothesis (11), there is no inconsistency between the two initial values since 𝑥1 is computed with the
exact propagator starting from 𝑦1. Hence, the only remaining errors are:

– the difference between 𝑦1 and 𝑦2;
– the error from the time propagation over a time window of size 𝑠;
– the error between the fine and the exact propagators that is proportional to the fine time step 𝛿𝑡.

On the other hand, we assume hypothesis (12) holds for 𝑠 ≥ ∆𝑇 , the time window size. This hypothesis
includes the inconsistency between the two initial values and is denoted 𝛿1 and 𝛿2. Hence, we describe here the
errors coming from:

– the inconsistency 𝛿𝑖 between the two initial values 𝑥𝑖 and 𝑦𝑖 of the fine solver;
– the difference between the principal initial values 𝑦1 and 𝑦2;
– the time propagation over time windows of size 𝑠.

Example 3.1. Here, we illustrate the validity of hypothesis (12) on a simple linear ODE.{︃
𝑦′(𝑡) = 𝑦(𝑡), 𝑡 ∈ [0, 𝑇 ],
𝑦0𝑎, 𝑦0𝑏 ∈ R given,

(19)

where 𝑦0𝑎, 𝑦0𝑏 are the two seed values to initialise the time propagation with the second-order BDF method:

3
2
𝑦𝑛+1 − 2𝑦𝑛 +

1
2
𝑦𝑛−1 = 𝛿𝑡𝑦𝑛+1. (20)

The parameters involved in hypothesis (12) are: 𝑠, 𝑦1, 𝑦2, 𝛿1 and 𝛿2. In this example, we have:

𝑦0𝑎 = (𝑦1 − 𝛿1)− (𝑦2 − 𝛿2), 𝑦0𝑏 = 𝑦1 − 𝑦2.

We solve the ODE (19) by the second-order BDF method (20). We obtain the expression of the numerical
solution 𝑦𝑛 for 𝑛 = 0, . . . , 𝑁𝑓 with 𝑁𝑓 = 𝑇

𝛿𝑡 , the number of fine time steps per time window:

𝑦𝑛 = 𝛼𝑟𝑛
1 + 𝛽𝑟𝑛

2 ,

such that:



680 K. AIT-AMEUR AND Y. MADAY

– 𝑟1 = 2+
√

1+2𝛿𝑡
3−2𝛿𝑡 = 1 + 𝛿𝑡 +𝒪(𝛿𝑡2).

– 𝑟2 = 2−
√

1+2𝛿𝑡
3−2𝛿𝑡 = 1

3 −
𝛿𝑡
9 +𝒪(𝛿𝑡2).

In (20), the term 𝑟𝑛
2 tends rapidly to zero when 𝑛 goes to infinity. Here, we are interested in illustrating

Hypothesis (12) on a simple case for 𝑠 such that the ratio 𝑠
𝛿𝑡 is large. This corresponds to the study of the

sequence 𝑦𝑛 for large 𝑛. In this context, we can consider that the term 𝑟𝑛
2 is negligible. Thus we neglect its

contribution.
– 𝛼 = 𝑟2(𝛿1−𝛿2)+(1−𝑟2)(𝑦1−𝑦2)

𝑟1−𝑟2
.

– 𝛽 = (𝑟1−1)(𝑦1−𝑦2)−𝑟1(𝛿1−𝛿2)
𝑟1−𝑟2

.

In the linear case, we can write hypothesis (12), where the norm here is the absolute value:⃦⃦
𝑦𝑁+1 − 𝑦𝑁

⃦⃦
≤ (1 + 𝐶𝑠)𝛿𝑡

⃦⃦
𝑦0𝑎 − 𝑦0𝑏

⃦⃦
+ (1 + 𝐶𝑠)𝛿𝑡

⃦⃦
𝑦0𝑏
⃦⃦
,

where: 𝑦𝑁 = 𝐹 (0, 𝑠 − 𝛿𝑡, 𝑦0𝑎, 𝑦0𝑏), 𝑦𝑁+1 = 𝐹 (0, 𝑠, 𝑦0𝑎, 𝑦0𝑏) and (𝑁 + 1) is the number of fine time steps in a
time window of size 𝑠: 𝑁 + 1 = 𝑠

𝛿𝑡 = Δ𝑇
𝛿𝑡 . From the expression of 𝑦𝑛 in (20):

𝑦𝑁+1 − 𝑦𝑁 = 𝛼𝑟𝑁
1 (𝑟1 − 1) + 𝛽𝑟𝑁

2 (𝑟2 − 1).

Neglecting the term 𝑟𝑁
2 , we obtain:

𝑦𝑁+1 − 𝑦𝑁 =
𝑟2

𝑟1 − 𝑟2
(1 + ∆𝑇 )𝛿𝑡(𝛿1 − 𝛿2) +

1− 𝑟2

𝑟1 − 𝑟2
(1 + ∆𝑇 )𝛿𝑡(𝑦1 − 𝑦2) +𝒪

(︀
𝛿𝑡2
)︀
.

Hence, the second-order BDF method verify hypothesis (12), in the linear case which makes it reasonable to
extend it to non linear case under suitable assumptions, e.g. uniform Lipschitz continuity, on operator 𝒜 in (3).

In the proof of convergence, we apply this hypothesis (12) for 𝑦1 = 𝑢𝑛
𝑘−1, the parareal solution at iteration

(𝑘 − 1) and time 𝑇𝑛, and 𝑦2 = 𝑢(𝑇𝑛), the exact solution at time 𝑇𝑛, hence these two values are very close. On
the other hand, 𝛿1 = 𝑢𝑛

𝑘−1 − 𝑢𝑛−1,𝑁𝑓−1
𝑘−1 , where 𝑢𝑛−1,𝑁𝑓−1

𝑘−1 is the parareal solution at iteration (𝑘 − 1) and time
𝑇𝑛 − 𝛿𝑡, and 𝛿2 = 𝑢(𝑇𝑛)− 𝑢(𝑇𝑛 − 𝛿𝑡), where 𝑢(𝑇𝑛 − 𝛿𝑡) is the exact solution at time 𝑇𝑛 − 𝛿𝑡 and 𝑠 is equal to
the time window size ∆𝑇 .

3.2. Preliminary results

The convergence result of Theorem 3.4 and its proof are helpful to understand the main mechanisms driving
the convergence of the algorithm and explaining its behavior. To present it, we introduce the shorthand notation
for the error norm:

𝐸𝑛
𝑘 := 𝑢𝑛

𝑘 − 𝐸(𝑇 0, 𝑇𝑛 − 𝑇 0, 𝑢0), 𝑘 ≥ 0, 0 ≤ 𝑛 ≤ 𝑁.

We introduce the following quantities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛼 := 𝐶𝑑𝜀𝐺∆𝑇,

𝜇 := 𝐶∆𝑇𝛿𝑡,

𝛽 := 1 + 𝐶∆𝑇,

𝛾𝐺 := ∆𝑇𝜀𝐺 max0≤𝑛≤𝑁 (1 + ‖𝑢(𝑇𝑛)‖),
𝛾𝐹 := ∆𝑇𝜀𝐹 max0≤𝑛≤𝑁 (1 + ‖𝑢(𝑇𝑛)‖),

(21)

as shorthand notations for the proof of convergence. We denote 𝑒𝑛
𝑘 a perturbation of the error term ‖𝐸𝑛

𝑘 ‖ made
by the multi-step parareal algorithm.

Proposition 3.2 (Convergence of the error perturbation sequence). If the sequence {𝑒𝑛
𝑘}0≤𝑛≤𝑁,0≤𝑘≤𝐾 verifies

the following recursive inequalities: ⎧⎪⎨⎪⎩
𝑒𝑛
0 ≤ 𝛽𝑒𝑛−1

0 + 𝛾𝐺,

𝑒𝑛
1 ≤ 𝛽𝑒𝑛−1

1 + 𝛼̃𝑒𝑛−1
0 + 𝛾𝐹 ,

𝑒𝑛
𝑘 ≤ 𝛽𝑒𝑛−1

𝑘 + 𝛼̃𝑒𝑛−1
𝑘−1 + 𝐶2𝛿𝑡𝑒𝑛−2

𝑘−2 ,

(22)



MULTI-STEP VARIANT OF THE PARAREAL ALGORITHM 681

with 𝑒0
0 = 0, for some 𝛼̃, 𝛾𝐺, 𝛾𝐹 such that:

𝐶2𝛿𝑡

(𝛼 + 3𝜇 + 𝐶𝛿𝑡)2
< 1,

then the error perturbation 𝑒𝑛
𝑘 of the multi-step parareal scheme (14) is bounded by:

𝑒𝑛
0 ≤

𝛾𝐺

𝐶𝑇
𝑁𝑒𝐶𝑛Δ𝑇 , 𝑛 ≥ 1,

𝑒𝑛
𝑘 ≤ 𝛾𝐺𝛼̃𝑘𝑓𝑘

(︂
𝑛

𝑘 + 1

)︂
𝛽𝑛−𝑘−1 + 𝛾𝐹 𝛼̃𝑘−1𝑓𝑘−1

(︂
𝑛

𝑘

)︂
𝛽𝑛−𝑘, 𝑛 ≥ 𝑘 + 1, 𝑘 ≥ 1. (23)

Proof. The proof of Proposition 3.2 is given in Appendix A. �

In the context of fine propagators based on second-order multi-step time schemes, we assume that the operator
𝒜, from system (3), and its derivatives 𝜕𝒜

𝜕𝑡 , 𝜕𝒜
𝜕𝑢 are locally Lipschitz. For higher order multi-step time schemes,

additional assumptions have to be made on the regularity of operator 𝒜 to satisfy the convergence Theorem 3.4.

Lemma 3.3 (Behavior of the multi-step parareal errors). We denote 𝐸𝑛+1
𝑘 , 𝐸𝑛,𝑁𝑓−1

𝑘 , 𝛿𝐸𝑛+1
𝑘 , the error terms

made by the multi-step parareal algorithm (14), defined by:⎧⎪⎨⎪⎩
𝐸𝑛+1

𝑘 = 𝑢𝑛+1
𝑘 − 𝐸

(︀
𝑇 0, 𝑇𝑛+1 − 𝑇 0, 𝑢0

)︀
,

𝐸𝑛,𝑁𝑓−1
𝑘 = 𝑢𝑛,𝑁𝑓−1

𝑘 − 𝐸
(︀
𝑇 0, 𝑇𝑛+1 − 𝛿𝑡− 𝑇 0, 𝑢0

)︀
,

𝛿𝐸𝑛+1
𝑘 = 𝐸𝑛,𝑁𝑓−1

𝑘 − 𝐸𝑛+1
𝑘 ,

(24)

then, there exists 𝛿𝑡0 > 0 such that for any 𝛿𝑡 ≤ 𝛿𝑡0, the sequences {𝐸𝑛
𝑘 }0≤𝑛≤𝑁,0≤𝑘≤𝐾 , {𝐸𝑛,𝑁𝑓−1

𝑘 }0≤𝑛≤𝑁,0≤𝑘≤𝐾 ,
{𝛿𝐸𝑛

𝑘 }0≤𝑛≤𝑁,0≤𝑘≤𝐾 verify the following recurrence relations:

⃦⃦
𝐸𝑛+1

𝑘

⃦⃦
≤ 𝛽‖𝐸𝑛

𝑘 ‖+
(︂

𝛼 + 𝜇 + 𝐶𝛿𝑡 +
𝐶𝛿𝑡2

2

)︂⃦⃦
𝐸𝑛

𝑘−1

⃦⃦
+ 𝐶

⃦⃦
𝛿𝐸𝑛

𝑘−1

⃦⃦
+ 𝛾𝐹 , (25)⃦⃦⃦

𝐸𝑛,𝑁𝑓−1
𝑘

⃦⃦⃦
≤ 𝛽‖𝐸𝑛

𝑘 ‖+
(︂

𝛼 + 𝜇 + 2𝐶𝛿𝑡 +
𝐶𝛿𝑡2

2

)︂⃦⃦
𝐸𝑛

𝑘−1

⃦⃦
+ 𝐶(1 + 𝛿𝑡)

⃦⃦
𝛿𝐸𝑛

𝑘−1

⃦⃦
+ 3𝛾𝐹 , (26)⃦⃦

𝛿𝐸𝑛+1
𝑘

⃦⃦
≤ 𝐶𝛿𝑡

⃦⃦
𝛿𝐸𝑛

𝑘−1

⃦⃦
+ 𝐶𝛿𝑡

⃦⃦
𝐸𝑛

𝑘−1

⃦⃦
+ 2𝛾𝐹 . (27)

Proof. The proof is in the spirit of existing results from the literature [7, 21,28,29] with similar techniques.
If 𝑘 = 0, using definition (14) for 𝑢𝑛

0 , we have for 0 ≤ 𝑛 ≤ 𝑁 − 1,

𝐸𝑛+1
0 = 𝑢𝑛+1

0 − 𝐸
(︀
𝑇 0, 𝑇𝑛+1 − 𝑇 0, 𝑢0

)︀
,

𝐸𝑛+1
0 = 𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛

0 )− 𝐸(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)),⃦⃦
𝐸𝑛+1

0

⃦⃦
≤ ‖𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛

0 )−𝐺(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛))‖+ ‖𝐺(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛))− 𝐸(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛))‖,
≤ (1 + 𝐶∆𝑇 )‖𝐸𝑛

0 ‖+ ∆𝑇𝜀𝐺(1 + ‖𝑢(𝑇𝑛)‖),
≤ 𝛽‖𝐸𝑛

0 ‖+ 𝛾𝐺,

where we have used (7) and (8) to derive the second to last inequality.
For 𝑘 ≥ 1, starting from (14), we have

𝐸𝑛+1
𝑘 = 𝑢𝑛+1

𝑘 − 𝐸
(︀
𝑇 0, 𝑇𝑛+1 − 𝑇 0, 𝑢0

)︀
,

= 𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛
𝑘 ) + 𝐹

(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛−1,𝑁𝑓−1

𝑘−1 , 𝑢𝑛
𝑘−1

)︁
−𝐺

(︀
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘−1

)︀
− 𝐸(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)).

In what follows, we add and substract the following quantities to 𝐸𝑛+1
𝑘 :
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– 𝐺(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)) and 𝐸(𝑇𝑛, ∆𝑇, 𝑢𝑛
𝑘−1),

– 𝐸(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)) and 𝐹 (𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛)),

– 𝐹 (𝑇𝑛, ∆𝑇, 𝑢𝑛
𝑘−1 − 𝛿𝑥, 𝑢𝑛

𝑘−1) and 𝐹 (𝑇𝑛, ∆𝑇, 𝑢𝑛
𝑘−1 − 𝛿𝑥, 𝑢𝑛

𝑘−1),

where:

𝛿𝑥 = 𝑢(𝑇𝑛)− 𝑢(𝑇𝑛 − 𝛿𝑡), 𝛿𝑥 = 𝑢𝑛
𝑘−1 − 𝑢𝑛−1,𝑁𝑓−1

𝑘−1 , 𝛿𝑥 = 𝑢𝑛
𝑘−1 − 𝐸

(︀
𝑇𝑛,−𝛿𝑡, 𝑢𝑛

𝑘−1

)︀
𝐸𝑛+1

𝑘 = 𝐺(𝑇𝑛, ∆𝑇, 𝑢𝑛
𝑘 )−𝐺(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛))− 𝛿𝐺(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)) + 𝛿𝐺

(︀
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘−1

)︀
+ 𝐹

(︀
𝑇𝑛, ∆𝑇, 𝐸

(︀
𝑇𝑛,−𝛿𝑡, 𝑢𝑛

𝑘−1

)︀
, 𝑢𝑛

𝑘−1

)︀
− 𝐸

(︀
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘−1

)︀
− (𝐹 (𝑇𝑛, ∆𝑇, 𝐸(𝑇𝑛,−𝛿𝑡, 𝑢(𝑇𝑛)), 𝑢(𝑇𝑛))− 𝐸(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)))

+ 𝐹
(︀
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘−1 − 𝛿𝑥, 𝑢𝑛
𝑘−1

)︀
− 𝐹

(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘−1 − 𝛿𝑥, 𝑢𝑛
𝑘−1

)︁
+ 𝐹

(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘−1 − 𝛿𝑥, 𝑢𝑛
𝑘−1

)︁
− 𝐹

(︀
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘−1 − 𝛿𝑥, 𝑢𝑛
𝑘−1

)︀
+ 𝐹 (𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛 − 𝛿𝑡), 𝑢(𝑇𝑛))− 𝐸(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)).

Taking norms and using (8)–(11) and (13), we derive:⃦⃦
𝐸𝑛+1

𝑘

⃦⃦
≤ (1 + 𝐶∆𝑇 )‖𝐸𝑛

𝑘 ‖+ 𝐶∆𝑇𝜀𝐺

⃦⃦
𝐸𝑛

𝑘−1

⃦⃦
+ 𝐶∆𝑇𝛿𝑡

⃦⃦
𝐸𝑛

𝑘−1

⃦⃦
+ 𝐶

⃦⃦⃦
𝛿𝑥− 𝛿𝑥

⃦⃦⃦
+ 𝐶

⃦⃦⃦
𝛿𝑥− 𝛿𝑥

⃦⃦⃦
+ ∆𝑇𝜀𝐹 (1 + ‖𝑢(𝑇𝑛)‖). (28)

Let us note that in Assumption (9) we can limit the factor (1 + 𝐶∆𝑇 ) by a constant 𝐶(𝑇 ) that only depends
on the final time 𝑇 , since we have ∆𝑇 ≤ 𝑇 .

On the one hand, the term 𝛿𝑥− 𝛿𝑥 becomes:

𝛿𝑥− 𝛿𝑥 = 𝑢𝑛−1,𝑁𝑓−1
𝑘−1 − 𝑢(𝑇𝑛 − 𝛿𝑡)−

(︀
𝑢𝑛

𝑘−1 − 𝑢(𝑇𝑛)
)︀

= 𝐸𝑛,𝑁𝑓−1
𝑘 − 𝐸𝑛+1

𝑘 = 𝛿𝐸𝑛+1
𝑘 .

On the other hand, we derive a bound for the term ‖𝛿𝑥− 𝛿𝑥‖:⃦⃦⃦
𝛿𝑥− 𝛿𝑥

⃦⃦⃦
=
⃦⃦
𝑢(𝑇𝑛 − 𝛿𝑡)− 𝐸

(︀
𝑇𝑛,−𝛿𝑡, 𝑢𝑛

𝑘−1

)︀
−
(︀
𝑢(𝑇𝑛)− 𝑢𝑛

𝑘−1

)︀⃦⃦
.

Writing the Taylor expansions of 𝑢(𝑇𝑛 − 𝛿𝑡) and 𝐸(𝑇𝑛,−𝛿𝑡, 𝑢𝑛
𝑘−1) around 𝑇𝑛 and 𝑢𝑛

𝑘−1 respectively, we obtain
formally:

𝑢(𝑇𝑛 − 𝛿𝑡)− 𝑢(𝑇𝑛) = 𝛿𝑡𝒜(𝑇𝑛, 𝑢(𝑇𝑛)) +
𝛿𝑡2

2

(︂
𝜕𝒜
𝜕𝑡

+
𝜕𝒜
𝜕𝑢
𝒜
)︂

(𝑇𝑛, 𝑢(𝑇𝑛)) +𝒪
(︀
𝛿𝑡3
)︀
,

𝐸
(︀
𝑇𝑛,−𝛿𝑡, 𝑢𝑛

𝑘−1

)︀
− 𝑢𝑛

𝑘−1 = 𝛿𝑡𝒜
(︀
𝑇𝑛, 𝑢𝑛

𝑘−1

)︀
+

𝛿𝑡2

2

(︂
𝜕𝒜
𝜕𝑡

+
𝜕𝒜
𝜕𝑢
𝒜
)︂(︀

𝑇𝑛, 𝑢𝑛
𝑘−1

)︀
+𝒪

(︀
𝛿𝑡3
)︀
.

Since the operator 𝒜 from system (3) and its derivatives 𝜕𝒜
𝜕𝑡 , 𝜕𝒜

𝜕𝑢 are locally Lipschitz:⃦⃦⃦
𝛿𝑥− 𝛿𝑥

⃦⃦⃦
≤
(︂

𝐶𝛿𝑡 +
𝐶𝛿𝑡2

2

)︂⃦⃦
𝐸𝑛

𝑘−1

⃦⃦
+ 𝐶𝛿𝑡3.

We recall: 𝛾𝐹 = ∆𝑇𝜀𝐹 max0≤𝑛≤𝑁 (1+‖𝑢(𝑇𝑛)‖). Since, the fine solver is based on a two-step time then 𝜀𝐹 ≈ 𝛿𝑡2.
Neglecting the contribution of 𝛿𝑡3 in (28) with respect to 𝛾𝐹 is valid only for 𝛿𝑡 ≤ 𝛿𝑡0 with some 𝛿𝑡0 chosen
small enough. That leads to:⃦⃦

𝐸𝑛+1
𝑘

⃦⃦
≤ 𝛽‖𝐸𝑛

𝑘 ‖+
(︂

𝛼 + 𝜇 + 𝐶𝛿𝑡 +
𝐶𝛿𝑡2

2

)︂⃦⃦
𝐸𝑛

𝑘−1

⃦⃦
+ 𝐶

⃦⃦
𝛿𝐸𝑛

𝑘−1

⃦⃦
+ 𝛾𝐹 .
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Now, we derive an upper bound for the error term 𝛿𝐸𝑛+1
𝑘 .

𝛿𝐸𝑛+1
𝑘 = 𝐸𝑛,𝑁𝑓−1

𝑘 − 𝐸𝑛+1
𝑘 ,

𝛿𝐸𝑛+1
𝑘 = 𝑢𝑛,𝑁𝑓−1

𝑘 − 𝐸
(︀
𝑇 0, 𝑇𝑛+1 − 𝛿𝑡− 𝑇 0, 𝑢0

)︀
− 𝑢𝑛+1

𝑘 + 𝐸
(︀
𝑇 0, 𝑇𝑛+1 − 𝑇 0, 𝑢0

)︀
.

Using the definition of 𝑢𝑛,𝑁𝑓−1
𝑘 in the multi-step parareal algorithm (14), we obtain:

𝛿𝐸𝑛+1
𝑘 = 𝐹

(︁
𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢𝑛

𝑘−1 − 𝛿𝑥, 𝑢𝑛
𝑘−1

)︁
− 𝐸(𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢(𝑇𝑛))

−
(︁
𝐹 (𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘−1 − 𝛿𝑥, 𝑢𝑛
𝑘−1)− 𝐸(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛))

)︁
,

where:
𝛿𝑥 = 𝑢𝑛

𝑘−1 − 𝑢𝑛−1,𝑁𝑓−1
𝑘−1 .

In what follows, we add and substract the following quantities to 𝛿𝐸𝑛+1
𝑘 :

𝐹 (𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛)), 𝐹 (𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛)), (29)

and we obtain:

𝛿𝐸𝑛+1
𝑘 = 𝐹 (𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛))− 𝐸(𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢(𝑇𝑛))

− (𝐹 (𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛))− 𝐸(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)))

+ 𝐹
(︁
𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢𝑛

𝑘−1 − 𝛿𝑥, 𝑢𝑛
𝑘−1

)︁
− 𝐹 (𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛))

−
(︁
𝐹
(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘−1 − 𝛿𝑥, 𝑢𝑛
𝑘−1

)︁
− 𝐹 (𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛))

)︁
.

Taking norms and using (12) and (13), we derive:⃦⃦
𝛿𝐸𝑛+1

𝑘

⃦⃦
≤ 2∆𝑇𝜀𝐹 (1 + ‖𝑢(𝑇𝑛)‖) + 𝐶𝛿𝑡

⃦⃦⃦
𝑢𝑛−1,𝑁𝑓−1

𝑘−1 − 𝑢(𝑇𝑛 − 𝛿𝑡)− (𝑢𝑛
𝑘−1 − 𝑢(𝑇𝑛))

⃦⃦⃦
+ 𝐶𝛿𝑡

⃦⃦
𝑢𝑛

𝑘−1 − 𝑢(𝑇𝑛)
⃦⃦
,⃦⃦

𝛿𝐸𝑛+1
𝑘

⃦⃦
≤ 𝐶𝛿𝑡

⃦⃦
𝛿𝐸𝑛

𝑘−1

⃦⃦
+ 𝐶𝛿𝑡

⃦⃦
𝐸𝑛

𝑘−1

⃦⃦
+ 2𝛾𝐹 .

Let us note that in Assumption (12) we can limit the factor (1 + 𝐶∆𝑇 ) by a constant 𝐶(𝑇 ) that only depends
on the final time 𝑇 , since we have ∆𝑇 ≤ 𝑇 .

Now, we derive an upper bound for the error term 𝐸𝑛,𝑁𝑓−1
𝑘 .

𝐸𝑛,𝑁𝑓−1
𝑘 = 𝑢𝑛,𝑁𝑓−1

𝑘 − 𝐸(𝑇 0, 𝑇𝑛+1 − 𝛿𝑡− 𝑇 0, 𝑢0),

= 𝐹
(︁
𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢𝑛−1,𝑁𝑓−1

𝑘−1 , 𝑢𝑛
𝑘−1

)︁
+ 𝑢𝑛+1

𝑘 − 𝐹
(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛−1,𝑁𝑓−1

𝑘−1 , 𝑢𝑛
𝑘−1

)︁
− 𝐸(𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢(𝑇𝑛)).

In what follows, we add and substract the same quantities (29) to 𝐸𝑛,𝑁𝑓−1
𝑘 as those for the term 𝛿𝐸𝑛+1

𝑘 .

𝐸𝑛,𝑁𝑓−1
𝑘 = 𝑢𝑛+1

𝑘 − 𝐸(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)) + 𝐹 (𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛))− 𝐸(𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢(𝑇𝑛))
− (𝐹 (𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛))− 𝐸(𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)))

+ 𝐹
(︁
𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢𝑛

𝑘−1 − 𝛿𝑥, 𝑢𝑛
𝑘−1

)︁
− 𝐹 (𝑇𝑛, ∆𝑇 − 𝛿𝑡, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛))

−
(︁
𝐹
(︁
𝑇𝑛, ∆𝑇, 𝑢𝑛

𝑘−1 − 𝛿𝑥, 𝑢𝑛
𝑘−1

)︁
− 𝐹 (𝑇𝑛, ∆𝑇, 𝑢(𝑇𝑛)− 𝛿𝑥, 𝑢(𝑇𝑛))

)︁
.
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Taking norms and using (12) and (13), we derive:⃦⃦⃦
𝐸𝑛,𝑁𝑓−1

𝑘

⃦⃦⃦
≤ 𝛽‖𝐸𝑛

𝑘 ‖+ (𝐶 + 𝐶𝛿𝑡)
⃦⃦
𝛿𝐸𝑛

𝑘−1

⃦⃦
+
(︂

𝛼 + 𝜇 + 2𝐶𝛿𝑡 +
𝐶𝛿𝑡2

2

)︂⃦⃦
𝐸𝑛

𝑘−1

⃦⃦
+ 3𝛾𝐹 .

�

3.3. The main convergence theorem

Theorem 3.4 (Convergence of the multi-step parareal algorithm). Let 𝐺, 𝐹 and 𝛿𝐺 satisfy Assumptions (7)–
(13). Let 𝑘 ≥ 0 be any given positive integer. If the time step 𝛿𝑡 of the fine solver verifies:

𝛿𝑡 ≤ 𝐶∆𝑇 2𝜀2
𝐺, (30)

then the sequence (𝑢𝑛
𝑘 )𝑛 defined by the multi-step parareal scheme (14) satisfy:⎧⎪⎨⎪⎩

max0≤𝑛≤𝑁‖𝑢𝑛
0 − 𝑢(𝑇𝑛)‖ ≤ 𝛾𝐺

𝐶𝑇
𝑁𝑒𝐶𝑛Δ𝑇 , 𝑛 ≥ 1,

max0≤𝑛≤𝑁‖𝑢𝑛
𝑘 − 𝑢(𝑇𝑛)‖ ≤ 𝜆 𝜏𝑘+1

𝑘+1!

(︁
𝑓𝑘

2𝑘+1
𝛾𝐺

𝛾𝐺

(︀
𝛼̃
𝛼

)︀𝑘
+ 𝑘+1

𝜏
𝑓𝑘−1
2𝑘+1

𝛾𝐹

𝛾𝐺

(︀
𝛼̃
𝛼

)︀𝑘−1
)︁
, 𝑛 ≥ 𝑘 + 1, 𝑘 ≥ 1,

(31)

where:

𝜆 =
𝑒𝐶𝑇 max0≤𝑛≤𝑁 (1 + ‖𝑢(𝑇𝑛)‖)

𝐶𝑑
, 𝜏 = 2𝜏 = 2𝐶𝑑𝑇𝑒−𝐶Δ𝑇 𝜀𝐺,

and 𝛼̃, 𝛾𝐺 and 𝛾𝐹 being given by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛼̃ = 𝛼 + 3𝜇 + 3𝐶𝛿𝑡 + 𝐶𝛿𝑡2

2 ,

𝛾𝐺 = 𝛾𝐺 + 𝐶𝛿𝑡 + 2𝐶+3+2𝐶2𝛿𝑡

𝛽−1+𝛼+3𝜇+𝐶𝛿𝑡+𝐶 𝛿𝑡2
2 +𝐶2𝛿𝑡

𝛾𝐹 ,

𝛾𝐹 =
(︂

2𝐶+3+2𝐶2𝛿𝑡

𝛽−1+𝛼+3𝜇+𝐶𝛿𝑡+𝐶 𝛿𝑡2
2 +𝐶2𝛿𝑡

+ 3
)︂

𝛾𝐹 + 𝐶𝛿𝑡 + 2𝐶𝛿𝑡2.

(32)

Remark 3.5. Let us make a couple of remarks before giving the proof of the theorem. First, we recall that
the factors 𝛼, 𝜇, 𝛼̃, 𝛾𝐺 and 𝛾𝐹 depend on the time window size ∆𝑇 . Then, the convergence rate of the multi-
step parareal algorithm is similar to the one of the classical parareal algorithm with the factor 𝜏𝑘+1

𝑘+1! , since in

the classical version the convergence rate is 𝜏𝑘+1

𝑘+1! . The remaining factors 𝛾𝐺

𝛾𝐺
and ( 𝛼̃

𝛼 )𝑘 are close to 1 and thus
bounded by a constant, independent of 𝑛. The factor 𝛾𝐹

𝛾𝐺
is negligible in the sense that we have:

𝛾𝐹

𝛾𝐺
= 𝒪(∆𝑇𝜀𝐺) ≪ 1.

The factors 𝛼̃, 𝛾𝐺 and 𝛾𝐹 are perturbations of the coefficients 𝛼, 𝛾𝐺 and 𝛾𝐹 respectively, such that:

𝛾𝐺

𝛾𝐺
= 1 +𝒪(∆𝑇𝜀𝐺),

𝛼̃

𝛼
= 1 +𝒪(∆𝑇𝜀𝐺).

The term 𝑓𝑘

2𝑘+1 is specific to the multi-step variant and tends to zero exponentially fast when 𝑘 goes to infinity.
Indeed, it has the following asymptotic behaviour:

𝑓𝑘 =
(1 +

√
5)𝑘+1 − (1−

√
5)𝑘+1

2𝑘+1
√

5
,

𝑓𝑘

2𝑘+1
∼

𝑘→+∞

1√
5

(︃
1 +

√
5

4

)︃𝑘+1

·

In practise, in order to respect assumption (30), we choose the fine time step 𝛿𝑡 such that the condition
𝛿𝑡 ≤ 𝐶∆𝑇 2+2𝛼 is satisfied.
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Proof. The proof is in the spirit of existing results from the literature [7,21,28,29] with similar techniques based
on the use of generating functions (A.4). We also refer to [23] for the convergence study of several parallel in
time algorithms with generating functions.

From Lemma 3.3, the error terms made by the multi-step parareal method (14) verify the inequalities (25)–
(27). Since the upper bound of the error term ‖𝐸𝑛,𝑁𝑓−1

𝑘 ‖ depends on the error terms ‖𝐸𝑛+1
𝑘 ‖ and ‖𝛿𝐸𝑛+1

𝑘 ‖ we
focus on the inequalities (25)–(27). Hence, we can write by induction:

‖𝐸𝑛
𝑘 ‖ ≤ 𝛽

⃦⃦
𝐸𝑛−1

𝑘

⃦⃦
+
(︂

𝛼 + 𝜇 + 𝐶𝛿𝑡 +
𝐶𝛿𝑡2

2

)︂⃦⃦
𝐸𝑛−1

𝑘−1

⃦⃦
+ 𝐶2𝛿𝑡

𝑘∑︁
𝑗=2

(𝐶𝛿𝑡)𝑗−2
⃦⃦⃦
𝐸𝑛−𝑗

𝑘−𝑗

⃦⃦⃦
+ 𝐶(𝐶𝛿𝑡)𝑘−1

⃦⃦
𝛿𝐸𝑛−𝑘

0

⃦⃦
+
(︂

1 + 2𝐶
1− (𝐶𝛿𝑡)𝑘−1

1− (𝐶𝛿𝑡)

)︂
𝛾𝐹 . (33)

The governing term in the sum 𝐶2𝛿𝑡
∑︀𝑘

𝑗=2(𝐶𝛿𝑡)𝑗−2‖𝐸𝑛−𝑗
𝑘−𝑗 ‖ is the term 𝐶2𝛿𝑡‖𝐸𝑛−2

𝑘−2 ‖. To ensure that it does not

dominate the term (𝛼 + 𝜇 + 𝐶𝛿𝑡 + 𝐶𝛿𝑡2

2 )‖𝐸𝑛−1
𝑘−1 ‖, we suppose that the fine time step verifies: 𝛿𝑡 ≤ 𝐶∆𝑇 2𝜀2

𝐺 (see
hypothesis (30)).

In what follows, we show that the residual terms 𝛿𝐸𝑛−𝑘
0 , (1 + 2𝐶 1−(𝐶𝛿𝑡)𝑘−1

1−(𝐶𝛿𝑡) )𝛾𝐹 and all the terms of the sum
for 𝑗 ≥ 3 can be distributed over the terms: 𝑒𝑛

𝑘 , 𝑒𝑛−1
𝑘 , 𝑒𝑛−1

𝑘−1 and 𝑒𝑛−2
𝑘−2 , where 𝑒𝑛

𝑘 is a perturbation of ‖𝐸𝑛
𝑘 ‖.

Setting the error perturbation to:

𝑒𝑛
𝑘 = ‖𝐸𝑛

𝑘 ‖+ ‖𝛿𝐸𝑛
𝑘 ‖+ 𝐶𝛿𝑡

(︀⃦⃦
𝐸𝑛−1

𝑘−1

⃦⃦
+
⃦⃦
𝛿𝐸𝑛−1

𝑘−1

⃦⃦)︀
+

2𝐶 + 3 + 2𝐶2𝛿𝑡

𝛽 − 1 + 𝛼 + 3𝜇 + 𝐶𝛿𝑡 + 𝐶𝛿𝑡2

2 + 𝐶2𝛿𝑡
𝛾𝐹 . (34)

We show in the sequel that the error perturbation 𝑒𝑛
𝑘 satisfy the inequality (22).

– We start from the inequality satisfied by ‖𝐸𝑛
𝑘 ‖ (25) and replace 𝛿𝐸𝑛−1

𝑘−1 by its upper bound in (27) that
depends on 𝛿𝐸𝑛−3

𝑘−3 , 𝐸𝑛−3
𝑘−3 and 𝐸𝑛−2

𝑘−2 .
– Then we add ‖𝛿𝐸𝑛

𝑘 ‖ + 𝐶𝛿𝑡(‖𝐸𝑛−1
𝑘−1 ‖ + ‖𝛿𝐸𝑛−1

𝑘−1 ‖) + 2𝐶+3+2𝐶2𝛿𝑡

𝛽−1+𝛼+3𝜇+𝐶𝛿𝑡+ 𝐶𝛿𝑡2
2 +𝐶2𝛿𝑡

𝛾𝐹 to obtain ‖𝐸̃𝑛
𝑘 ‖ on the left

hand side (34).
– Each term of the sum is bounded by the error perturbation:

∙ For the error term ‖𝐸̃𝑛−1
𝑘 ‖, we have:

𝛽

(︃⃦⃦
𝐸𝑛−1

𝑘

⃦⃦
+

2𝐶 + 3 + 2𝐶2𝛿𝑡

𝛽 − 1 + 𝛼 + 3𝜇 + 𝐶𝛿𝑡 + 𝐶𝛿𝑡2

2 + 𝐶2𝛿𝑡
𝛾𝐹

)︃
≤ 𝛽

⃦⃦⃦
𝐸̃𝑛−1

𝑘

⃦⃦⃦
.

∙ For the error term ‖𝐸̃𝑛−1
𝑘−1 ‖, we have:(︂

𝛼 + 𝜇 + 𝐶𝛿𝑡 +
𝐶𝛿𝑡2

2

)︂⃦⃦
𝐸𝑛−1

𝑘−1

⃦⃦
+ 2𝐶𝛿𝑡

(︃
𝐸𝑛−1

𝑘−1

⃦⃦
+
⃦⃦
𝛿𝐸𝑛−1

𝑘−1

⃦⃦
+

2𝐶 + 3 + 2𝐶2𝛿𝑡

𝛽 − 1 + 𝛼 + 3𝜇 + 𝐶𝛿𝑡 + 𝐶𝛿𝑡2

2 + 𝐶2𝛿𝑡
𝛾𝐹

)︃

≤
(︂
𝛼 + 3𝜇 + 𝐶𝛿𝑡 +

𝐶𝛿𝑡2

2

)︂⃦⃦⃦
𝐸̃𝑛−1

𝑘−1

⃦⃦⃦
.

∙ For the error term ‖𝐸̃𝑛−2
𝑘−2 ‖, we have:

𝐶2𝛿𝑡

(︃⃦⃦
𝐸𝑛−2

𝑘−2

⃦⃦
+ 𝐶𝛿𝑡

⃦⃦
𝐸𝑛−3

𝑘−3

⃦⃦
+ 𝐶𝛿𝑡

⃦⃦
𝛿𝐸𝑛−3

𝑘−3

⃦⃦
+

2𝐶 + 3 + 2𝐶2𝛿𝑡

𝛽 − 1 + 𝛼 + 3𝜇 + 𝐶𝛿𝑡 + 𝐶𝛿𝑡2

2 + 𝐶2𝛿𝑡
𝛾𝐹

)︃
≤ 𝐶2𝛿𝑡

⃦⃦⃦
𝐸̃𝑛−2

𝑘−2

⃦⃦⃦
.



686 K. AIT-AMEUR AND Y. MADAY

Hence, the error perturbation 𝑒𝑛
𝑘 satisfy the inequality (22). Since ‖𝐸𝑛

𝑘 ‖ ≤ 𝑒𝑛
𝑘 , we derive the upper bound (23)

for the error term ‖𝐸𝑛
𝑘 ‖ by applying Proposition 3.2 to the error perturbation 𝑒𝑛

𝑘 defined by (34).

‖𝐸𝑛
0 ‖ ≤ 𝑒𝑛

0 ≤
𝛾𝐺

𝐶𝑇
𝑁𝑒𝐶𝑛Δ𝑇 , 𝑛 ≥ 1,

‖𝐸𝑘
𝑘‖ = 𝒪(𝜀𝐹 ), 𝑘 ≥ 1,

‖𝐸𝑛
𝑘 ‖ ≤ 𝑒𝑛

𝑘 ≤ 𝛾𝐺𝛼̃𝑘𝑓𝑘

(︂
𝑛

𝑘 + 1

)︂
𝛽𝑛−𝑘−1 + 𝛾𝐹 𝛼̃𝑘−1𝑓𝑘−1

(︂
𝑛

𝑘

)︂
𝛽𝑛−𝑘, 𝑛 ≥ 𝑘 + 1, 𝑘 ≥ 1,

which ends the proof. �

We illustrate the behavior of the multi-step parareal algorithm with specific initialisations in the next section
in the case of a second and third order time integration method.

4. Numerical tests

We apply our multi-step parareal algorithm to two stiff ODEs, the Brusselator system and the Van der Pol
oscillator. Our results illustrate that our approach improves the convergence properties with respect to the
classical parareal algorithm. We also show that the generalisation of this approach to third-order time schemes
holds and the convergence properties derived in Theorem 3.4 are preserved. Finally, we address the question
of the parallel efficiency of multi-step parareal. In the last section, we apply the adaptive parareal algorithm
(see [29]) where the accuracy of the fine solver is increased across the iterations.

4.1. Numerical convergence results

4.1.1. The Brusselator system

We consider the Brusselator system where the unknows vector is given by 𝑢 =
(︂

𝑥
𝑦

)︂
:{︃

𝑥′ = 𝐴 + 𝑥2𝑦 − (𝐵 + 1)𝑥,

𝑦′ = 𝐵𝑥− 𝑥2𝑦,

with initial condition 𝑥(0) = 0 and 𝑦(0) = 1. This is a stiff ODE that models a chain of chemical reactions.
It was already studied in previous works on the parareal algorithm, [21, 29]. The system has a fixed point at
𝑥 = 𝐴 and 𝑦 = 𝐵

𝐴 which becomes unstable when 𝐵 > 1 + 𝐴2 and leads to oscillations. We place ourselves in
this oscillatory regime by setting 𝐴 = 1 and 𝐵 = 3. The dynamics present large velocity variations in some time
sub-intervals, making the use of high order time schemes particularly desirable for an appropriate treatment of
the transient. The coarse solver is a Backward Euler method with a coarse time step:

∆𝑇 = 0.1,

which corresponds to 180 time windows since 𝑇 = 18. The fine solver is a second-order BDF method with a fine
time step 𝛿𝑡 = 10−4 (respecting hypothesis (30)). In Figure 1, the fine solver is based on a two-step time scheme
where the computation of the solution 𝑢𝑛,𝑗+1 at time 𝑇𝑛 + (𝑗 + 1)𝛿𝑡 depends on the solutions 𝑢𝑛,𝑗 and 𝑢𝑛,𝑗−1

at times 𝑇𝑛 + 𝑗𝛿𝑡 and 𝑇𝑛 + (𝑗 − 1)𝛿𝑡, respectively. We use the multi-step variant of parareal (14) to initialise
the fine solver in each time window, starting from the parareal iteration 𝑘 ≥ 2. At the parareal iteration 𝑘 = 1,
we use a Backward Euler method to initialise the fine solver since we did not use the fine propagator yet.

In this section, we analyse the evolution of two different errors across the parareal iterations:

– the error between the fine solution computed in a sequential way and the parareal solution in 𝐿∞(0, 𝑇 )
norm,

max
1≤𝑛≤𝑁

⃦⃦
𝑢𝑛

𝑘 − 𝐹 (𝑇 0, 𝑇𝑛 − 𝑇 0, 𝑢0)
⃦⃦
, (35)
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Figure 1. Convergence of the multi-step parareal for the second-order BDF method, 𝛿𝑡 = 10−4

(left: error (35), right: error (36)).

– the error between the exact solution and the parareal solution in 𝐿∞(0, 𝑇 ) norm

max
1≤𝑛≤𝑁

‖𝑢𝑛
𝑘 − 𝑢(𝑇𝑛)‖. (36)

In all the figures of this section, we plot the evolution of errors (35) and (36) in the two following cases:

– Without a multi-step adaptation (red curve): the error between the parareal solution where the Backward
Euler method is used at each iteration for the initialisation of the fine solver and the fine solution computed
in a sequential way for (35) (the exact solution for (36)), on one hand.

– With a multi-step adaptation (blue curve): the error between the solution given by the multi-step parareal
algorithm and the fine solution computed in a sequential way for (35) (the exact solution for (36)), on the
other hand.

In Figure 1, we see that without the multi-step adaptation the error (35) stagnates around 10−6 without
recovering the fine solution at the machine precision, even after 180 iterations. On the other hand, using the
multi-step parareal algorithm, the error continues to decrease until reaching the machine precision. Moreover,
in the right figure, we see that the only way to recover the correct approximation of the exact solution is to
use a multi-step adaptation, otherwise, without adaptation, the parareal algorithm will not reach the target
accuracy. This result shows that making an initialisation error for a multi-step fine solver will prevent the
parareal algorithm to obtain the approximation of the exact solution with the desired accuracy.

The convergence properties are illustrated in Figure 1 on a fine solver based on the second-order BDF method
with time step 𝛿𝑡 = 10−4.

In Figure 2, we apply the extension of the multi-step parareal algorithm (17) to three-step time schemes by
giving a consistent approximation of the solutions 𝑢(𝑇𝑛 − 𝛿𝑡) and 𝑢(𝑇𝑛 − 2𝛿𝑡). We illustrate the convergence
properties of this strategy by applying it on a fine solver based on the third-order BDF method with time
steps 𝛿𝑡 = 10−4 (see Fig. 2). We observe the same behavior of the errors (35) and (36): without a multi-step
adaptation, the fine propagation is initialised by two Backward Euler iterations and does not allow to recover
the target approximation of the exact solution while the multi-step parareal converges to the exact solution
with the desired accuracy.
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Figure 2. Convergence of the multi-step parareal for the third-order BDF method, 𝛿𝑡 = 10−4

(left: error (35), right: error (36)).

4.1.2. The Van der Pol oscillator

We next consider the Van der Pol oscillator{︃
𝑥′ = 𝑦,

𝑦′ = 𝜇(1− 𝑥2)𝑦 − 𝑥,

with initial condition 𝑥(0) = 2 and 𝑦(0) = 0. When 𝜇 = 0, this equation is a simple nonstiff harmonic oscillator.
When 𝜇 > 0, the system has a limit cycle and becomes stiffer and stiffer as its value is increased. For our tests,
we set 𝜇 = 4 which is a relatively stiff case.

The coarse solver is an explicit Runge–Kutta method of order 3 with an adaptive time stepping (see [13]).
The time window size is ∆𝑇 = 0.1 which corresponds to 200 time windows since 𝑇 = 20. The fine solver is
a third-order BDF method with a fine time step 𝛿𝑡 = 10−4 (respecting hypothesis (30)). In Figure 3, the fine
solver is based on a three-step time scheme. We apply the extension of the multi-step parareal algorithm (17)
to three-step time schemes by giving a consistent approximation of the solutions 𝑢(𝑇𝑛 − 𝛿𝑡) and 𝑢(𝑇𝑛 − 2𝛿𝑡).

Likewise, we analyse the evolution of the errors (35) and (36) across the parareal iterations. In Figure 3, we
see that without the multi-step adaptation the error (35) stagnates around 10−5 without recovering the fine
solution at the machine precision, even after 200 iterations. On the other hand, using the multi-step parareal
algorithm, the error continues to decrease until reaching the machine precision. Moreover, in the right figure, we
see that the only way to recover the correct approximation of the exact solution is to use a multi-step adaptation,
otherwise, without adaptation, the parareal algorithm will not reach the target accuracy. This result shows that
making an initialisation error for a multi-step fine solver will prevent the parareal algorithm to obtain the
approximation of the exact solution with the desired accuracy.

The convergence properties are illustrated in Figure 3 on a fine solver based on the third-order BDF method
with time step 𝛿𝑡 = 10−4.

4.2. Parallel efficiency

We address in this section the question of the speed up performance for the multi-step parareal algorithm.
The only additional operations in the multi-step variant compared to the classical parareal are the corrections
of solutions involved in the initialisation of the fine solver in each time window (update of 𝑢𝑛,𝑁𝑓−1

𝑘+1 in (14) for
example). Hence, we consider that the computational cost of the multi-step variant is the same as the one of
the classical parareal. In [29], the authors propose a new method, the adaptive parareal algorithm, where the
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Figure 3. Convergence of the multi-step parareal for the third-order BDF method, 𝛿𝑡 = 10−4

(left: error (35), right: error (36)).

accuracy of the fine solver is increased across the iterations. This new point of view improves the speed up
performance of the parareal method. In this section, we seek to improve the parallel efficiency of the multi-step
parareal method by increasing the accuracy of the fine solver at each iteration. We first recall the parallel
efficiency for the classical parareal (CP) and the adaptive parareal (AP) to obtain a solution with accuracy 𝜂
and a propagation over [0, 𝑇 ]:

eff𝐶𝑃 (𝜂, [0, 𝑇 ]) ∼ 1
𝐾(𝜂) ,

eff𝐴𝑃 (𝜂, [0, 𝑇 ]) ∼ 1

1+𝜀
1/𝛼
𝐺

, under the hypothesis of Proposition 3.1 in [29],

where 𝐾(𝜂) is the number of parareal iterations to obtain the approximation of the exact solution with the target
accuracy 𝜂 and 𝛼, the order of the fine time scheme. To apply this approach on the multi-step variant, we need
to carefully initialise each time window. If the fine scheme is the second-order BDF method, the computation
of 𝑢𝑛+1 depends on 𝑢𝑛 and 𝑢𝑛−1 and with the adaptive paradigm we have:

𝑡𝑛 − 𝑡𝑛−1 ̸= 𝑡𝑛+1 − 𝑡𝑛.

Hence, we initialise the fine solver with one variable step-size BDF method.
We apply this strategy to the Brusselator system with the Backward Euler method as a coarse solver

(∆𝑇 = 0.1) and the second-order BDF method as a fine solver with the sequence of time steps indicated in
Table 1.

The multi-step parareal algorithm with adaptivity converges to the exact solution with an accuracy obtained
by a sequential fine solution with time step 𝛿𝑡 = 10−3 after 8 iterations such as the multi-step method without
adaptivity (see Tab. 1). With the sequence of fine time steps used in the adaptive parareal method, convergence
is reached with the same number of iterations as the multi-step variant. The adaptive algorithm allows to obtain
better speed-up performance compared to the nonadaptive version since the fine solver (𝛿𝑡 = 10−3) is used only
one time instead of 8 times in the multi-step variant. In Table 2, we give the speed-up and the efficiency of the
adaptive and multi-step parareal algorithms applied to the Brusselator system. The speed-up is defined as the
ratio:

𝑆(𝜂, [0, 𝑇 ]) :=
𝑇seq(𝜂, [0, 𝑇 ])
𝑇par(𝜂, [0, 𝑇 ])

,

between the cost to run a sequential fine solver achieving a target accuracy 𝜂 with the cost to run a parareal
algorithm providing at the end the same target accuracy 𝜂. The parallel efficiency of the method is then defined
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Table 1. Convergence of adaptive parareal and multi-step parareal with a target accuracy
𝜂 = 10−5.

Multi-step parareal Adaptive parareal

Iteration Time step Error Time step Error

𝑘 = 1 10−4 5× 10−2 10−2 5× 10−2

𝑘 = 2 10−4 9× 10−3 5× 10−3 2× 10−2

𝑘 = 3 10−4 10−3 10−3 3× 10−3

𝑘 = 4 10−4 9× 10−5 5× 10−4 3× 10−4

𝑘 = 5 10−4 7× 10−6 4× 10−4 2× 10−5

𝑘 = 6 10−4 4× 10−7 2.5× 10−4 3× 10−6

𝑘 = 7 10−4 3.8× 10−8 2× 10−4 3× 10−7

𝑘 = 8 10−4 2× 10−8 10−4 2.9× 10−8

Table 2. Speed up and efficiency with 𝑇 = 18, 𝛿𝑡 = 10−3 and 𝑁 = 180.

Speed-up
Multi-step
parareal

Adaptive
parareal

With cost 𝐺 10.9 23.7
Without cost 𝐺 12.5 32.2

Efficiency
Multi-step
parareal

Adaptive
parareal

With cost 𝐺 6% 13%
Without cost 𝐺 7% 18%

as the ratio of the above speed up with the number of processors which gives a target of 1 to any parallel solver:

eff(𝜂, [0, 𝑇 ]) :=
𝑆(𝜂, [0, 𝑇 ])

𝑁
·

To compare the speed-up of the multi-step and adaptive parareal algorithms, we use the number of fine and coarse
propagations involved in the numerical solution and the computational cost of the coarse and fine propagations
(communication delays have not been taken into account). For example, in Table 1, the cost of the multi-step
parareal algorithm is equal to the cost of 9 coarse propagations over [0, 𝑇 ] plus 8 fine propagations over [𝑇𝑛, 𝑇𝑛+1]
with a fine time step 𝛿𝑡 = 10−3. In [29], the authors show that the main element affecting the performance of
the adaptive parareal method is no longer the cost of the fine solver but the cost of the coarse solver. Hence,
we compare the speed-up and efficiency when we count or do not count the cost of the coarse solver in Table 2.
Obviously, when we do not count the cost of the coarse solver, the performance of both algorithms improves.

5. Conclusion

We have built a new variant of the parareal algorithm allowing to overcome the issue of initialising the fine
and the coarse solvers when they are based on a multi-step time scheme [1, 2]. The convergence properties of
the multi-step parareal are very close to that of the classical parareal algorithm in the case of two-step time
schemes. An extension of our approach to generic multi-step time schemes is proposed and validated numerically
on a three-step time scheme. In addition, the accuracy of the multi-step parareal algorithm is illustrated on
the numerical solution of stiff ODEs such as the Brusselator system and the Van der Pol oscillator. Finally, we
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address the question of the parallel efficiency of our strategy by coupling it with the adaptive parareal algorithm
proposed in [29]. The new adaptive formulation of the parareal algorithm opens the door to improve significantly
the parallel efficiency of the method provided that the cost of the coarse solver is moderate.

Appendix A. Proof of Proposition 3.2

The proof is in the spirit of existing results from the literature [7,21,28,29] with similar techniques based on
the use of generating functions (A.4).

The sequence (𝑒𝑛
𝑘 )𝑛≥0,𝑘≥0 is defined recursively as follows. For 𝑘 = 0:

𝑒𝑛
0 =

{︃
0, if 𝑛 = 0,

𝛽𝑒𝑛−1
0 + 𝛾𝐺, if 𝑛 ≥ 1.

(A.1)

For 𝑘 = 1:

𝑒𝑛
1 =

{︃
0, if 𝑛 = 0, 1,

𝛽𝑒𝑛−1
1 + 𝛼̃𝑒𝑛−1

0 + 𝛾𝐹 , if 𝑛 ≥ 2.
(A.2)

For 𝑘 ≥ 2:

𝑒𝑛
𝑘 =

{︃
0, if 𝑛 = 0, 1, 2,

𝛽𝑒𝑛−1
𝑘 + 𝛼̃𝑒𝑛−1

𝑘−1 + 𝐶2𝛿𝑡𝑒𝑛−2
𝑘−2 , if 𝑛 ≥ 3.

(A.3)

We analyse the behavior of (𝑒𝑛
𝑘 ) to derive a bound for the sequence. For this, we consider the generating function:

𝜌𝑘(𝜉) =
∑︁
𝑛≥0

𝑒𝑛
𝑘𝜉𝑛.

From (A.1)–(A.3) we get: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌0(𝜉) = 𝛾𝐺𝜉

(1−𝛽𝜉)(1−𝜉) ,

𝜌1(𝜉) = 𝛼̃𝜉
1−𝛽𝜉 𝜌0(𝜉) + 𝛾𝐹 𝜉

(1−𝛽𝜉)(1−𝜉) ,

𝜌𝑘(𝜉) = 𝛼̃𝜉
1−𝛽𝜉 𝜌𝑘−1(𝜉) + 𝐶2𝛿𝑡𝜉2

1−𝛽𝜉 𝜌𝑘−2(𝜉), 𝑘 ≥ 2.

(A.4)

In the convergence analysis of the classical parareal algorithm, the generating function 𝜌𝑘(𝜉) satisfies a recurrence
relation involving only two steps of the sequence 𝜌𝑘 and 𝜌𝑘−1. In the convergence analysis of the multi-step
parareal algorithm, the error perturbation 𝑒𝑛

𝑘 , hence the generating function 𝜌𝑘, verifies a recurrence relation
involving the steps 𝑘, 𝑘 − 1 and 𝑘 − 2. We could use the general theory of multi-step recurrence sequences but
the resulting expression of 𝜌𝑘 does not lead to a workable formula. Writing the first terms of the sequence 𝜌𝑘

yields to the alternative expression for 𝑘 ≥ 1 that is proven by induction on odd and even 𝑘:

𝜌𝑘(𝜉) = 𝛾𝐺𝛼̃𝑘 𝜉𝑘+1

(1− 𝜉)

[𝑘/2]∑︁
𝑗=0

(𝐶2𝛿𝑡)𝑗

𝛼̃2𝑗

(︂
𝑘 − 𝑗

𝑗

)︂
1

(1− 𝛽𝜉)𝑘+1−𝑗

+ 𝛾𝐹 𝛼̃𝑘−1 𝜉𝑘

(1− 𝜉)

[𝑘−1/2]∑︁
𝑗=0

(𝐶2𝛿𝑡)𝑗

𝛼̃2𝑗

(︂
𝑘 − 1− 𝑗

𝑗

)︂
1

(1− 𝛽𝜉)𝑘−𝑗
· (A.5)

For 𝑘 = 0, we have:

𝜌0(𝜉) = 𝛾𝐺𝜉

⎛⎝∑︁
𝑝≥0

𝜉𝑝

⎞⎠⎛⎝∑︁
𝑝≥0

𝛽𝑝𝜉𝑝

⎞⎠ = 𝛾𝐺

∑︁
𝑝≥0

(︃
𝑝∑︁

𝑙=0

𝛽𝑙

)︃
𝜉𝑝+1.
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By identification of terms, we obtain after a change of variable 𝑝 = 𝑛− 1:

𝑒𝑛
0 = 𝛾𝐺

(︃
𝑛−1∑︁
𝑙=0

𝛽𝑙

)︃
≤ 𝛾𝐺

𝐶𝑇
𝑁𝑒𝐶𝑛Δ𝑇 , 𝑛 ≥ 1.

For 𝑘 ≥ 1, using the binomial expansion in (A.5):

1
(1− 𝛽𝜉)𝑘+1−𝑗

=
∑︁
𝑝≥0

(︂
𝑘 − 𝑗 + 𝑝

𝑝

)︂
𝛽𝑝𝜉𝑝,

and by a change of variable, we obtain:∑︁
𝑛≥0

𝑒𝑛
𝑘𝜉𝑛 = 𝛾𝐺𝛼̃𝑘

∑︁
𝑛≥𝑘+1

𝐾𝑛−𝑘−1𝜉
𝑛 + 𝛾𝐹 𝛼̃𝑘−1

∑︁
𝑛≥𝑘

𝐾 ′
𝑛−𝑘𝜉𝑛,

where 𝐾𝑝 and 𝐾 ′
𝑝 are given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐾𝑝 =
∑︀𝑝

𝑙=0

∑︀[𝑘/2]
𝑗=0

(𝐶2𝛿𝑡)𝑗

(𝛼 + 3𝜇 + 𝐶𝛿𝑡)2𝑗

(︂
𝑘 − 𝑗

𝑗

)︂(︂
𝑘 − 𝑗 + 𝑙

𝑙

)︂
𝛽𝑙,

𝐾 ′
𝑝 =

∑︀𝑝
𝑙=0

∑︀[𝑘−1/2]
𝑗=0

(𝐶2𝛿𝑡)𝑗

𝛼̃2𝑗

(︂
𝑘 − 1− 𝑗

𝑗

)︂(︂
𝑘 − 1− 𝑗 + 𝑙

𝑙

)︂
𝛽𝑙.

(A.6)

Identifying the term 𝜉𝑘 in the expansion yields to:

𝑒𝑘
𝑘 = 𝛾𝐹 𝛼̃𝑘−1𝐾 ′

0.

This gives an upper bound for the error terms 𝑒𝑘
𝑘, 𝑘 ≥ 1. We do not use this estimate since the parareal algorithm

ensures 𝑢𝑛
𝑘 = 𝐹 (𝑇 0, 𝑇𝑛 − 𝑇 0, 𝑢0) for 𝑘 ≥ 𝑛, which yields:

‖𝐸𝑘
𝑘‖ = 𝒪(𝜀𝐹 ), 𝑘 ≥ 1.

In what follows, we identify the terms 𝜉𝑛 for 𝑛 ≥ 𝑘 + 1 in the expansion:

𝑒𝑛
𝑘 = 𝛾𝐺𝛼̃𝑘𝐾𝑛−𝑘−1 + 𝛾𝐹 𝛼̃𝑘−1𝐾 ′

𝑛−𝑘.

We now compute the terms 𝐾𝑝 and 𝐾 ′
𝑝. From Assumption (30), we have:

𝐶2𝛿𝑡

(𝛼 + 3𝜇 + 𝐶𝛿𝑡)2
≤ 1.

Using:
(︀
𝑘−𝑗+𝑙

𝑙

)︀
≤
(︀
𝑘+𝑙

𝑙

)︀
for 𝑗 = 0, . . . , [𝑘−1

2 ], we obtain:

𝐾𝑝 ≤
𝑝∑︁

𝑙=0

(︂
𝑘 + 𝑙

𝑙

)︂
𝛽𝑙

[𝑘/2]∑︁
𝑗=0

(︂
𝑘 − 𝑗

𝑗

)︂
, 𝐾 ′

𝑝 ≤
𝑝∑︁

𝑙=0

(︂
𝑘 − 1 + 𝑙

𝑙

)︂
𝛽𝑙

[𝑘−1/2]∑︁
𝑗=0

(︂
𝑘 − 1− 𝑗

𝑗

)︂
.

We recognize here the general term 𝑓𝑘 of the Fibonacci sequence:

𝑓𝑘 =
[𝑘/2]∑︁
𝑗=0

(︂
𝑘 − 𝑗

𝑗

)︂
=

(1 +
√

5)𝑘+1 − (1−
√

5)𝑘+1

2𝑘+1
√

5
·
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Using
∑︀𝑝

𝑙=0

(︂
𝑘 + 𝑙

𝑙

)︂
=
(︂

𝑘 + 1 + 𝑝
𝑝

)︂
and 𝛽 > 1, we obtain:

𝐾𝑝 ≤ 𝑓𝑘

(︂
𝑘 + 1 + 𝑝

𝑝

)︂
𝛽𝑝, 𝐾 ′

𝑝 ≤ 𝑓𝑘−1

(︂
𝑘 + 𝑝

𝑝

)︂
𝛽𝑝.

Hence, we derive the bound:

𝑒𝑛
0 ≤

𝛾𝐺

𝐶𝑇
𝑁𝑒𝐶𝑛Δ𝑇 , 𝑛 ≥ 1,

𝑒𝑛
𝑘 ≤ 𝛾𝐺𝛼̃𝑘𝑓𝑘

(︂
𝑛

𝑘 + 1

)︂
𝛽𝑛−𝑘−1 + 𝛾𝐹 𝛼̃𝑘−1𝑓𝑘−1

(︂
𝑛

𝑘

)︂
𝛽𝑛−𝑘, 𝑛 ≥ 𝑘 + 1, 𝑘 ≥ 1,

𝑒𝑛
𝑘 ≤ 𝛾𝐺

𝛼̃𝑘𝑓𝑘𝛽𝑛−𝑘−1

(𝑘 + 1)!

𝑘∏︁
𝑗=0

(𝑛− 𝑗) + 𝛾𝐹
𝛼̃𝑘−1𝑓𝑘−1𝛽

𝑛−𝑘

𝑘!

𝑘−1∏︁
𝑗=0

(𝑛− 𝑗), 𝑛 ≥ 𝑘 + 1, 𝑘 ≥ 1, (A.7)

which ends the proof of Proposition 3.2.

Acknowledgements

This work was supported by the ANR project CINE-PARA under grant ANR-15-CE23-0019 and from the European High Perfor-

mance Computing Joint Undertaking (EuroHPC JU) under the European Union’s Horizon 2020 research and innovation program

(grant agreement No. 955701 – project TIME-X).

References

[1] K. Ait-Ameur, Y. Maday and M. Tajchman, Multi-step variant of the parareal algorithm, in Domain Decomposition Methods
in Science and Engineering XXV, edited by R. Haynes, S. MacLachlan, X.-C. Cai, L. Halpern, H.H. Kim, A. Klawonn and
O. Widlund. Springer International Publishing, Cham (2020) 393–400.

[2] K. Ait-Ameur, Y. Maday and M. Tajchman, Time-parallel algorithm for two phase flows simulation, in Numerical Simulation
in Physics and Engineering: Trends and Applications; Lecture Notes of the XVIII ‘Jacques-Louis Lions’ Spanish-French School,
edited by D. Greiner, M. Asensio and R. Montenegro (2021) 169–178.

[3] J. Astic, A. Bihain and M. Jerosolimski, The mixed Adams-BDF variable step size algorithm to simulate transient and long
term phenomena in power systems. IEEE Trans. Power Syst. 9 (1994) 929–935.

[4] C. Audouze, M. Massot and S. Volz, Symplectic multi-time step parareal algorithms applied to molecular dynamics. https:
//hal.science/hal-00358459 (2009).

[5] F. Bashforth and J.C. Adams, Theories of Capillary Action. Cambridge University Press, Cambridge (1883).

[6] D.Q. Bui, C. Japhet, Y. Maday and P. Omnes, Coupling parareal with optimized Schwarz waveform relaxation for parabolic
problems. SIAM J. Numer. Anal. 60 (2022) 913–939.

[7] B. Carrel, M. Gander and B. Vandereycken, Low-rank parareal: a low-rank parallel-in-time integrator. BIT Numer. Math. 63
(2023).

[8] A.J. Christlieb, C.B. Macdonald and B.W. Ong, Parallel high-order integrators. SIAM J. Sci. Comput. 32 (2010) 818–835.

[9] G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4 (1956)
33–53.

[10] G. Dahlquist, Stability and error bounds in the numerical integration of ordinary differential equations. Trans. of the Royal
Inst. of Techn., Nr. 130 (1959) 87.

[11] X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic systems. SIAM J. Sci. Comput.
35 (2013) A52–A78.

[12] X. Dai, C. Le Bris, F. Legoll and Y. Maday, Symmetric parareal algorithms for hamiltonian systems. ESAIM: M2AN 47
(2013) 717–742.

[13] J.R. Dormand and P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6 (1980) 19–26.

[14] M. Emmett and M.L. Minion, Toward an efficient parallel in time method for partial differential equations. Commun. Appl.
Math. Comput. Sci. 7 (2012) 105–132.

[15] R.D. Falgout, S. Friedhoff, T.V. Kolev, S.P. MacLachlan and J.B. Schroder, Parallel time integration with multigrid. SIAM J.
Sci. Comput. 36 (2014) C635–C661.

[16] R. Falgout, S. Friedhoff, T. Kolev, S. MacLachlan, J. Schroder and S. Vandewalle, Multigrid methods with space–time con-
currency. Comput. Vis. Sci. 18 (2017) 1–21.

https://hal.science/hal-00358459
https://hal.science/hal-00358459


694 K. AIT-AMEUR AND Y. MADAY

[17] R.D. Falgout, M. Lecouvez and C.S. Woodward, A parallel-in-time algorithm for variable step multistep methods. J. Comput.
Sci. 37 (2019) 101029.

[18] C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure,
and fluid-structure applications. Int. J. Numer. Methods Eng. 58 (2003) 1397–1434.

[19] M.J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition Methods,
edited by T. Carraro, M. Geiger, S. Körkel and R. Rannacher. Springer International Publishing, Cham (2015) 69–113.
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