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To study two-dimensional dispersive waves propagating through turbulent flows, a new and9
less restrictive fast waves approximation is proposed using a multiscale setting. In this ansatz,10
large scale and small scale of the turbulence are treated differently. Correlation lengths of11
the random small scale turbulence components can be considered negligible in the wave12
packet propagating frame. Still, the large-scale flow can be relatively strong, to significantly13
impact wavenumbers along the propagating rays. New theoretical results, numerical tools and14
proxies are derived to describe ray and wave action distributions. All model parameters can15
robustly be calibrated from the large-scale flow component only. We illustrate our purpose16
with ocean surface gravity waves propagating in different types of surface currents. The17
multiscale solution is demonstrated to efficiently document wave trapping effects by intense18
jets.19
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1. Introduction22

This paper aims to revisit the ray-path concept for fast waves propagating over heterogeneous23
turbulent flows. Considering ocean surface wave propagation, many authors have already24
discussed the random changes of rays subject to a random current (Voronovich 1991; White25
& Fornberg 1998; Smit & Janssen 2019), and consequences on wave action distributions.26
Closures have been derived in the Eulerian setting (Bal & Chou 2002; Klyatskin & Koshel27
2015; Borcea et al. 2019; Kafiabad et al. 2019; Bôas & Young 2020; Garnier et al.28
2020). Some of these approaches can be traced back to wave-wave interactions models, e.g.29
McComas & Bretherton (1977) (see also Kafiabad et al. 2019, and reference therein). In most30
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cases, the central assumption is either time-delta-correlated turbulent velocity (Voronovich31
1991; Klyatskin 2005; Klyatskin & Koshel 2015) and/or fast waves in comparison to fluid32
flow velocities (White & Fornberg 1998; Dysthe 2001; Bal & Chou 2002; Borcea et al. 2019;33
Kafiabad et al. 2019; Smit & Janssen 2019; Bôas & Young 2020; Garnier et al. 2020; Boury34
et al. 2023; Wang et al. 2023). Medium variations may be slow and delta-correlations are35
hardly justifiable in a fixed frame. Though, attached to a fast propagating wave group, the36
medium may seem to vary rapidly, and the delta-correlation assumption makes more sense.37
Another common assumption is frozen turbulence. In such a case, weak currents also implies38
conservation along ray of intrinsic frequency, wavenumber, and group velocity magnitude39
in two dimension (Boury et al. 2023). Subsequently, most of wave dynamics models neglect40
variations and diffusion of frequency or wavenumber.41

The diffusion of the wave action at large distance with a multiscale decomposition of the42
current has already been reported (Bal & Chou 2002). However, an explicit formulation for43
the diffusivity has solely been derived for a zero large-scale current. More generally, fast44
wave models mostly rely either on zero or constant current components at larger scales. West45
(1978), for instance, discussed acoustic waves in a two-component random media, but no46
velocity was involved.47

Hereafter, the proposed two-scale velocity decomposition falls into the family of stochastic48
transport models (Kunita 1997; Mikulevicius & Rozovskii 2004; Resseguier et al. 2020a;49
Zhen et al. 2023), including dynamics under Location Uncertainty (LU) (Mémin 2014;50
Resseguier et al. 2017a) and Stochastic Advection by Lie Transport (SALT) (Holm 2015).51
Under this framework, the small-scale velocity component is delta-correlated in time (Cotter52
et al. 2017). Up to usual source terms, fluid dynamics quantities (temperature, momentum,53
etc) are transported by both the large-scale revolved component and that random unresolved54
turbulence component. The stochastic closures obtained are conservative. Nonlinear wave55
Hamiltonian dynamics and wave influence on currents (e.g. stokes drift) have then been56
derived by (e.g. Crisan & Holm 2018; Bauer et al. 2020; Holm 2021; Holm & Luesink57
2021; Dinvay & Mémin 2022; Holm et al. 2023). Considering a single-wavevector current,58
solutions for a monochromatic shallow water wave were developed by Mémin et al. (2022).59
In the present study, our objective is restricted to the influence of turbulent flows on linear60
waves.61

After first recalling the principles of the ray tracing method, we present the multiscale62
framework for fast wave dynamics, its physical grounds and a calibration method for the63
closure. Simplified stochastic equations are then derived for the ray dynamics and the64
wave action spectrum, in both Lagrangian and Eulerian settings. For illustrative examples,65
numerical tools, analytic models and proxies are applied to ocean surface gravity waves66
propagating through two types of 2D turbulent flows: a typical slow homogeneous turbulence67
and a jet case.68

2. Characteristics of wave-packet rays69

Isolating a single progressive group of quasi-regular wave train, it follows a form70
ℎ(𝒙, 𝑡)𝑒i𝜙 (𝒙,𝑡 ) + c.c., for most properties. Typically, ℎ would be the local wave height with71
meters units. If a packet is to be followed, the phase, 𝜙(𝒙, 𝑡), must smoothly vary along the72
propagation, i.e. 𝜙(𝒙, 𝑡) is differentiable. The relative frequency is then 𝜔 = −𝜕𝑡𝜙(𝒙, 𝑡), and73
the wave number vector 𝒌 = ∇𝜙(𝒙, 𝑡), with wavenumber 𝑘 = ∥𝒌∥ and direction given by74

the normalized wave-vector, �̃� = 𝒌/𝑘 =

(
cos 𝜃𝑘
sin 𝜃𝑘

)
. To first order, such a train of waves is75
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dispersive and the intrinsic frequency reads76

𝜔 − 𝒌 · 𝒗 = 𝜔0 =

{
cst. 1

𝛼
𝑘𝛼, 𝛼 ≠ 0

cst. log(𝑘), 𝛼 = 0
(2.1)77

and propagates with its group velocity 𝒗𝑔 = ∇𝒌𝜔, constantly modified by the local velocity78
of the currents 𝒗,79

d𝒙𝑟
d𝑡

= 𝒗𝑔 = 𝒗0
𝑔 + 𝒗, (2.2)80

where 𝒙𝑟 is the centroid of a wave group, 𝒗0
𝑔 =

𝜕𝜔0 (𝑘 )
𝜕𝑘

�̃� is the group velocity without81
currents, i.e. solely depending on the wave vector. For 𝛼 = 1, the medium is non-dispersive82

(e.g. acoustic waves). 𝛼 = 1/2 corresponds to gravity waves over deep ocean (𝜔0 =
√︁
𝑔𝑘).83

The dominant wave-vector 𝒌 within the group evolves according to84

d𝒌
d𝑡

= −∇𝒗ᵀ𝒌 . (2.3)85

Equations (2.2)-(2.3) are the Hamilton’s eikonal equations. Along the propagating ray,86
velocity gradients induce linear variations. Decelerating currents will, for instance, shorten87
waves, and reduce the group velocity. Traveling over fields of random velocities 𝒗, the wave-88
vector 𝒌 will also become randomly distributed. Scattering of ocean surface wave packets89
by random currents can generally be assumed to be weak, with ∥𝒗∥ of order 0.5 m.s−1,90
much smaller than 𝑣0

𝑔 = ∥𝒗0
𝑔∥ of order 10 m.s−1. Yet, cumulative effects of these random91

surface currents can lead to strong convergence or divergence between initially nearby ray92
trajectories.93

To complete the wave field description, 𝐸 (𝒙, 𝑡) = 1
2 𝜌𝑔ℎ

2(𝒙, 𝑡) and 𝐴(𝒙, 𝑡) =94
𝐸 (𝒙, 𝑡)/𝜔0(𝑘 (𝒙, 𝑡)) denote energy and action by unit of surface. 𝐸 is expressed in95
𝐽/𝑚2 and 𝐴 in 𝐽.𝑠−1/𝑚2. To avoid spurious notations, we set the multiplicative constant96
1
2 𝜌𝑔 to unity. The wave action is considered to be an adiabatic invariant in absence of source97
terms. Wave action is then crucial to anticipate wave transformations by currents (White98
1999). Unlike wave energy, wave action is conserved, in the absence of wave generation or99
dissipation. This action is the integral over wave-vectors of the action spectrum, 𝑁 , also100
related to the wave energy spectrum, 𝐸 :101

𝐴(𝒙, 𝑡) =
∫

d𝒌 𝑁 (𝒙, 𝒌, 𝑡) =
∫

d𝒌
𝐸 (𝒙, 𝒌, 𝑡)
𝜔0(k, 𝑡)

. (2.4)102

Action and energy spectrum quantify action and energy by unit of surface (unit of 𝒙) and by103
unit of wave-vector surface (unit of 𝒌). Consider the (𝒙, 𝒌) variable change between different104
times 𝑡𝑖 and 𝑡 𝑓 integrating the characteristic eikonal equations (2.2)-(2.3)105 (

𝒙𝑟 (𝑡𝑖)
𝒌 (𝑡𝑖)

)
↦→

(
𝒙𝑟 (𝑡 𝑓 )
𝒌 (𝑡 𝑓 )

)
. (2.5)106

According to the Liouville theorem for Hamiltonian mechanics (Landau & Lifshits 1960,107
§46), the state-space of the ”packet-by-packet” approach (the (𝒙, 𝒌) space) does not contract108
nor dilates along time. Readers not familiar with Hamiltonian dynamics may see the109
divergence free of the 4-dimensional flow (2.5) – i.e. ∇𝒙 · d𝒙𝑟

d𝑡 + ∇𝒌 · d𝒌
d𝑡 = 0 – as the110

divergence free of incompressible flow velocities, leading naturally to volume-preserving111
dynamics. Therefore, if wave dissipation is neglected, the wave action spectrum 𝑁 is112
conserved (Lavrenov (2013)), i.e.113

𝑁 (𝒙𝑟 (𝑡𝑖), 𝒌 (𝑡𝑖), 𝑡𝑖) = 𝑁
(
𝒙𝑟 (𝑡 𝑓 ), 𝒌 (𝑡 𝑓 ), 𝑡 𝑓

)
. (2.6)114
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This result is extremely useful because it only involves quantities of the characteristics, i.e.115
each Fourier mode can be modified independently of the others. The wave energy spectrum116
can be computed from the characteristics117

𝐸
(
𝒙𝑟 (𝑡 𝑓 ), 𝒌 (𝑡 𝑓 ), 𝑡 𝑓

)
=
𝜔0(𝒌 (𝑡 𝑓 ))
𝜔0(𝒌 (𝑡𝑖))

𝐸 (𝒙𝑟 (𝑡𝑖), 𝒌 (𝑡𝑖), 𝑡𝑖) . (2.7)118

starting with an initial incoming wave spectrum 𝐸 (𝒙𝑟 (𝑡𝑖), 𝒌 (𝑡𝑖), 𝑡𝑖) for every wave-vectors119
𝒌 (𝑡𝑖), starting from a small set of spatial points 𝒙𝑟 (𝑡𝑖).120

3. A new fast wave assumption121

Eikonal equations (2.2)-(2.3) are driven by currents and their gradients. Commonly, the122
Eulerian current 𝒗 is decomposed into a low-frequency large-scale component 𝒗 and a123
transient small-scale unresolved component 𝒗′:124

𝒗 = 𝒗 + 𝒗′. (3.1)125

Current gradients naturally follow the same scale separation. From now on, we shall consider126
divergence-free two-dimensional currents only.127

3.1. The ray Lagrangian correlation time128

To better characterize the wave dynamics in such a random environment, the covariance of the129
fluid velocity can be evaluated in the wave group frame. To take into account the small-scale130
unresolved component 𝒗′, its Eulerian spatio-temporal covariance is considered, assuming131
statistical homogeneity and stationarity for the Eulerian velocity 𝒗′

𝐸
(𝑡, 𝒙) = 𝒗′ (𝑡, 𝒙)132

𝐶
𝑣′
𝐸

𝑖 𝑗
(𝛿𝑡, 𝛿𝒙) = E

(
𝑣′𝑖 (𝑡, 𝒙)𝑣′𝑗 (𝑡 + 𝛿𝑡, 𝒙 + 𝛿𝒙)

)
= E

(
𝑣′𝑖 (𝑡, 𝒙𝑟 (𝑡))𝑣′𝑗 (𝑡 + 𝛿𝑡, 𝒙𝑟 (𝑡) + 𝛿𝒙)

)
,(3.2)133

where 𝒙𝑟 is solution of (2.2) with an arbitrary initial position 𝒙0
𝑟 . Then, we define, 𝑣′

𝑅
(𝑡) =134

𝑣′ (𝑡, 𝒙𝑟 (𝑡)), the Lagrangian velocity along the ray 𝒙𝑟 (𝑡). The temporal covariance of the135
small-scale component 𝒗′ – in the wave group frame – is the covariance of that Lagrangian136
velocity:

𝐶
𝑣′
𝑅

𝑖 𝑗
(𝛿𝑡) = E

(
𝑣′𝑖 (𝑡, 𝒙𝑟 (𝑡))𝑣′𝑗 (𝑡 + 𝛿𝑡, 𝒙𝑟 (𝑡 + 𝛿𝑡))

)
= 𝐶

𝑣′
𝐸

𝑖 𝑗
(𝛿𝑡, 𝒙𝑟 (𝑡 + 𝛿𝑡) − 𝒙𝑟 (𝑡)), (3.3)137

Assume for example a typical isotropic form for the Eulerian covariance:138

𝐶𝑣′
𝐸 (𝛿𝑡, 𝛿𝒙) = 𝐶

(
|𝛿𝑡 |
𝜏𝑣′

+ ∥𝛿𝒙∥
𝑙𝑣′

)
, (3.4)139

the covariance can be evaluated in the wave group frame for small time increment 𝛿𝑡:140

𝐶𝑣′
𝑅 (𝛿𝑡) = 𝐶

(
|𝛿𝑡 |
𝜏𝑣′

+ ∥𝒙𝑟 (𝑡′ + 𝑡) − 𝒙𝑟 (𝑡′)∥
𝑙𝑣′

)
= 𝐶

((
1
𝜏𝑣′

+
∥𝒗𝑔∥
𝑙𝑣′

)
|𝛿𝑡 | +𝑂 (𝛿𝑡2)

)
, (3.5)141

since 𝒙𝑟 (𝑡′ + 𝑡) − 𝒙𝑟 (𝑡′) = 𝒗𝑔𝛿𝑡 + 𝑂 (𝛿𝑡2). Therefore,
(

1
𝜏𝑣′

+ ∥𝒗𝑔 ∥
𝑙𝑣′

)−1
is the correlation time142

of 𝒗′ (𝑡, 𝒙𝑟 (𝑡)). For fast waves, the along-ray correlation time of the small-scale velocity can143
be approximated by 𝑙𝑣′/𝑣0

𝑔. Note that eikonal equations (2.2)-(2.3) involve both velocity and144
velocity gradients. The above derivation is also valid for the small-scale velocity gradients145
(∇𝒗ᵀ)′ (𝑡, 𝒙𝑟 (𝑡)). The ratio 𝜖 , between that along-ray correlation time and the characteristic146
time of the wave group properties evolution, will then control the time decorrelation147

Focus on Fluids articles must not exceed this page length
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assumption of 𝒗′:148

𝜖 =
𝑙𝑣′

𝑣0
𝑔

∥∇𝒗ᵀ∥ ∼ 𝑙𝑣′

𝑙𝑣

∥𝒗∥
𝑣0
𝑔

. (3.6)149

This time scale estimation can be obtained from spatio-temporal covariances more general150
than (3.4) (not shown) even though the derivation is more technical. Note the Eulerian small-151
scale velocity 𝒗′ is not necessarily time uncorrelated, as assumed in Voronovich (1991);152
Klyatskin & Koshel (2015). Yet, for small enough 𝜖 , the Lagrangian small-scale velocity153
along the ray can be considered time uncorrelated. From the expression of 𝜖 , such a condition154
depends upon:155
• 𝑣0

𝑔, the fast wave group velocity156

• ∥𝒗∥, often slow but not always negligible compared to the intrinsic wave group, 𝑣0
𝑔.157

• 𝑙𝑣′/𝑙𝑣 , related to the separation between large scales 𝒗 and small scales 𝒗′, e.g. the158
spatial filtering cutoff of the large-scale velocity 𝒗, but also related to its kinetic energy (KE)159
distribution over spatial scales, typically the spectrum slope.160

This along-ray partial time-decorrelation assumption is less restrictive than the usual fast161
wave approximation (White & Fornberg 1998; Dysthe 2001; Bal & Chou 2002; Borcea162
et al. 2019; Kafiabad et al. 2019; Smit & Janssen 2019; Bôas & Young 2020; Garnier et al.163

2020; Boury et al. 2023; Wang et al. 2023) – say ∥𝒗 ∥
𝑣0
𝑔

≪ 1 – and than the SALT-LU time-164

decorrelation used for turbulence dynamics (Mémin 2014; Holm 2015; Cotter et al. 2017;165

Resseguier et al. 2020a) – say 𝑙𝑣′
𝑙𝑣

≪ 1. Similarly, this last validity criterion can be obtained166

replacing in (3.2)-(3.6) 𝒙𝑟 by the fluid particle Lagrangian path 𝒙 (solution of d𝒙
d𝑡 = 𝒗)167

and thus 𝒗0
𝑔 by 𝒗 . These asymptotic models often rely on averaging or homogenization168

techniques (Papanicolaou & Kohler 1974; White & Fornberg 1998) to derive Markovian169
dynamics involving various types of diffusivity.170

3.2. Ray absolute diffusivity and turbulence statistics: calibration171

Diffusivity is a natural tool to specify statistics of uncorrelated random media. For waves in172
random media, we shall specify multi-point statistics, and the Fourier space is convenient for173
this purpose. We will first present scalar diffusivity and then distribute it over spatial scales to174
fully calibrate the random velocity 𝒗′, i.e. choose some parameter values to set the statistics175
of that velocity field. As such, we will obtain a closed model to derive analytic results and176
generate samples for simulations.177

The absolute diffusivity (or Kubo-type formula) usually corresponds, in the so-called178

diffusive regime, to the variance per unit of time of a fluid particle Lagrangian path d𝒙(𝑡 )
d𝑡 =179

𝒗𝐿 (𝑡) = 𝒗(𝑡, 𝒙(𝑡)). It is approximately equal to the velocity variance times its correlation time.180
The Eulerian velocity covariance (3.4) will thus induce an absolute diffusivity (Piterbarg &181
Ostrovskii 1997; Klyatskin 2005)182

1
2𝑎

𝐿 =

∫ +∞

0
d𝛿𝑡 𝐶𝑣′

𝐿 (𝛿𝑡) =
∫ +∞

0
d𝛿𝑡 𝐶𝑣′

𝐸 (𝛿𝑡, 𝒙(𝑡 + 𝛿𝑡) − 𝒙(𝑡)) ≈ 1
2𝜏𝑣′ 𝐶 (0). (3.7)183

This diffusivity well describes effects of fast-varying eddies but is not appropriate in our case.184

Indeed, along a propagating wave group, d𝒙𝑟 (𝑡 )
d𝑡 = 𝒗0

𝑔 (𝑡) + 𝒗𝑅 (𝑡), a ray absolute diffusivity185
occurs and slightly differs from the usual absolute diffusivity to become186

1
2𝑎

𝑅 =

∫ +∞

0
d𝛿𝑡 𝐶𝑣′

𝑅 (𝛿𝑡) ≈ 1
2

(
1
𝜏𝑣′

+
∥𝒗𝑔∥
𝑙𝑣′

)−1
𝐶 (0) ≈ 1

2
𝑙𝑣′

𝑣0
𝑔

𝐶 (0). (3.8)187

The absolute diffusivity sets the amplitude of the small scale velocity 𝒗′. Indeed, since the188
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kinetic energy of a time-continuous white noise is infinite, it has no physical meaning. It is189
more relevant to deal with absolute diffusivity rather than kinetic energy in order to describe190
the statistics of the time-uncorrelated velocity. To calibrate its spatial correlations, we may191

focus on its Fourier transform, 𝒗′ (𝜿, 𝑡), denoting by 𝜿 = 𝜅

(
cos 𝜃𝜅
sin 𝜃𝜅

)
, the surface current192

wave-vector. By analogy with the current kinetic energy spectra 𝐸𝜅 = 1
2

∮ 2𝜋
0 d𝜃𝜅 𝜅 ∥ �̂� (𝜿,𝑡 ) ∥2

(2𝜋 )2 ,193

Resseguier et al. (2017b, 2020b) decompose the absolute diffusivity scale by scale:194

𝑎𝑅 =

∫ +∞

0
𝐴𝑅
𝑣′ (𝜅)d𝜅. (3.9)195

Referring it to Absolute Diffusivity Spectral Density (ADSD), it is defined as the kinetic196
energy spectra multiplied by the correlation time at each scale, 𝜏(𝜅). Unlike Resseguier et al.197
(2017b, 2020b), that correlation time is here imposed by the wave dynamics. Therefore, by198

analogy with (3.8) we choose a correlation time 𝜏𝑅 (𝜅) = 1/𝜅
𝑣0
𝑔 (𝑘 )

and then199

1
2 𝐴

𝑅 (𝜅) = 1
2𝜏

𝑅 (𝜅) 𝐸𝜅 (𝜅) = 1
2

1/𝜅
𝑣0
𝑔 (𝑘)

𝐸𝜅 (𝜅), (3.10)200

where 𝑘 denotes the wave wavenumber and 𝜅 the current wavenumber.201
To calibrate an equivalent noise, we model 𝒗′ by 𝜎d𝐵𝑡/d𝑡, where d𝐵𝑡/d𝑡 is a spatio-202

temporal white noise and 𝜎 denotes a spatial filtering operator which encodes spatial203
correlations through its ADSD, 𝐴𝑅

𝑣′ and the horizontal incompressibility condition (∇·𝜎 = 0).204
For incompressibility, we work with the curl of a streamfunction. To generate a homogeneous205
and isotropic streamfunction, we can filter a one-dimensional white noise ¤𝐵 with a filter �̆�𝜎206
(Resseguier et al. 2017b), that is �̆�𝜎 ★ ¤𝐵 where★ denotes a spatial convolution. The velocity207
field is hence :208

𝒗′ = 𝜎d𝐵𝑡/d𝑡 = ∇
⊥�̆�𝜎 ★ d𝐵𝑡/d𝑡, (3.11)209

with ∇⊥ the two-dimensional curl. That formula is easily written and implementable210
in Fourier space (see equation (A 2)). To define the streamfunction filter, we note that211
𝜋𝜅3

(2𝜋 )2 | ̂̆𝜓𝜎 (𝜅) |2 = 1
2

∮ 2𝜋
0 d𝜃𝜅 𝜅 ∥�𝜎d𝐵𝑡 (𝜿) ∥2

(2𝜋 )2d𝑡 = 𝐴𝑅
𝑣′ (𝜅), i.e. the filter can be fully defined by the212

small-scale ADSD, 𝐴𝑅
𝑣′ . To close our model, we assume an ADSD power law:213

𝐴𝑅 (𝜅) ≈ 𝐴𝑅
0 𝜅

−𝜇 . (3.12)214

It enables automatic closure calibration: 𝐴𝑅
𝑣′ (𝜅) = 𝐴𝑅

0 𝜅
−𝜇 − 𝐴𝑅

𝑣
(𝜅), from instantaneous215

large-scale current statistics 𝐴𝑅
𝑣

only (Resseguier et al. 2020b) as illustrated in figure 1.216

4. Statistical wave dynamics217

In a stochastic framework, the Stratonovich or Itō notations can both be used (Kunita218
1997; Oksendal 1998). Under Stratonovich calculus rules, expressions become similar219
to deterministic ones. Specifically, stochastic versions of linearized dynamical equations220
are obtained by replacing 𝒗 by 𝒗 + 𝜎 ◦ d𝐵𝑡/d𝑡. Then, the stochastic transport of phase,221
d
d𝑡 𝜙 = 𝜔0(∥∇𝜙∥), i.e. – up to that velocity replacement – the Stratonovich dispersion222
relation is exactly (2.1). The method of characteristics also applies. Note, one can switch223
from Stratonovich to Itō notations, where 𝒗′ corresponds to 𝜎d𝐵𝑡/d𝑡. The characteristics224
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Figure 1: KE spectrum (𝑚2.𝑠−2/(rad.𝑚−1)) (left) and ADSD (𝑚2.𝑠−1/(rad.𝑚−1)) (right)
of the resolved high-resolution velocity, 𝐴𝑅 , in red, low-resolution velocity, 𝐴𝑅

𝑣
, in blue,

and modeled stochastic velocity, 𝐴𝑅
𝑣′ (𝜅) = 𝐴𝑅

0 𝜅−𝜇 − 𝐴𝑅
𝑣
(𝜅), in green. For the ADSD

power law, 𝐴𝑅 (𝜅) ≈ 𝐴𝑅
0 𝜅−𝜇 , we impose the theoretical KE spectrum slope − 5

3 (black
solid line), coherently with homogeneous SQG dynamics (see ”Numerical results”

section). The residual ADSD (green line) is set to extrapolate that power law at small
scales.

equations (2.2)-(2.3) also remain unchanged for homogeneous and isotropic 𝒗′:225 {
d𝒙𝑟 = (𝒗0

𝑔 + 𝒗)d𝑡 + 𝜎d𝐵𝑡 ,

d𝒌 = −∇(𝒗d𝑡 + 𝜎d𝐵𝑡 )ᵀ𝒌 .
(4.1)226

4.1. Single-ray stochastic differential equations227

When studying a single ray in an homogeneous and isotropic turbulence (3.11), the wave-228
vector dynamics simplifies. In the local crest-oriented frame, the influence of small scale229
currents can be solely represented by four one-dimensional white noise forcings.230

Notably, dynamics of wave-vectors (2.3) are similar to tracer gradient dynamics (Bühler231
2009; Plougonven & Zhang 2014). Only the coupled ray path dynamics (2.2) differs.232
Accordingly, we follow the notations and derivations of the mixing analysis from Lapeyre233
et al. (1999) and references therein. Without loss of generality, the large-scale velocity can234
be parameterized as235

𝒗 = 𝑣

(
cos 𝜃
sin 𝜃

)
and ∇𝒗ᵀ =

1
2

[
𝜎 sin 2𝜙 𝜔 + 𝜎 cos 2𝜙

−𝜔 + 𝜎 cos 2𝜙 −𝜎 sin 2𝜙

]
. (4.2)236

Figure 2 provides a synthetic view of angles involved. The dynamics wave group centroid 𝒙𝑟 is237
directly driven by the large current wave group velocity, 𝒗0

𝑔+𝒗. The influence of the large-scale238
currents gradients on the wavevector dynamics (4.1), expressed in the local crest-oriented239

frame ( �̃�, �̃�⊥), is straightforward (Lapeyre et al. 1999). The small-scale currents force the ray240
dynamics through a stochastic noise. For a single ray (𝒙𝑟 , 𝒌) = (𝑥𝑟 , 𝑦𝑟 , 𝑘 cos 𝜃𝑘 , 𝑘 sin 𝜃𝑘),241
this noise can be rigorously described by four independent one-dimensional white noises242

only (see Appendix A), ¤𝐵 (1)
𝑡 , ¤𝐵 (2)

𝑡 , ¤𝐵 (3)
𝑡 , and ¤𝐵 (4)

𝑡 , and:243

d
d𝑡 𝑥𝑟 = 𝑣0

𝑔 cos 𝜃𝑘 + 𝑣 cos 𝜃 + √
𝑎0 ¤𝐵 (1)

𝑡 , (4.3)244

d
d𝑡 𝑦𝑟 = 𝑣0

𝑔 sin 𝜃𝑘 + 𝑣 sin 𝜃 + √
𝑎0 ¤𝐵 (2)

𝑡 , (4.4)245

d
d𝑡 log 𝑘 = −𝜎 sin(𝜁) + 𝛾0 +

√
𝛾0 ¤𝐵 (3)

𝑡 , (4.5)246

d
d𝑡 𝜃𝑘 = 1

2 (𝜔 − 𝜎 cos(𝜁)) +
√︁

3𝛾0 ¤𝐵 (4)
𝑡 , (4.6)247
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Figure 2: Schematic view of vectors and angles involved in single-ray dynamics. 𝑺− and
𝑺+ are respectively compression and dilatation axes associated with the large-scale

velocity gradient ∇𝒗ᵀ.

where 𝜁 = 2(𝜃𝑘 + 𝜙) and248

𝑎0 = 1
2d𝑡E∥𝜎d𝐵𝑡 ∥2 =

∫ +∞

0
𝐴𝑅
𝑣′ (𝜅)d𝜅, (4.7)249

𝛾0 = 1
8d𝑡E∥∇𝒙 (𝜎d𝐵𝑡 )ᵀ∥2 = 1

4

∫ +∞

0
𝑘2𝐴𝑅

𝑣′ (𝜅)d𝜅. (4.8)250

Diffusivity constants depend through (3.10) on both the correlation length and the spectrum251
slope of the small-scale velocity. In contrast to the classical fast wave approximation, the252
wavenumber does vary. This is due to (i) the finite large-scale strain rate, 𝜎, and (ii) the253
small-scale isotropic velocity model (3.11). This isotropy assumption and its implication are254
discussed in Appendix C. Note that neither large-scale nor small-scale component is assumed255
to be steady, even though that Eulerian velocity unsteadiness is only a secondary process in256
the wave dynamics. The fast temporal variations seen by the wave are mainly driven by the257
large wave speed and not by the Eulerian velocity unsteadiness. The current unsteadiness can258
also lead to wavenumber variations (Dong et al. 2020; Cox et al. 2023; Boury et al. 2023).259
Given a known wavevector angle, it leads to a wavenumber evolution260

𝑘 (𝑡) = 𝑘 (0) exp
(
−

∫ 𝑡

0
𝜎 sin(2(𝜃𝑘 + 𝜙))𝑑𝑡′

)
exp

(
𝛾0𝑡 +

√
𝛾0𝐵

(3)
𝑡

)
, (4.9)261

and hence to the complete wavevector distribution, i.e. the wave spectrum. The second262
exponential factor in (4.9) is a geometric Brownian motion. Its mean diverges in time263
exponentially rapidly. Physically, shear and strain of 𝒗′ tends to shorten the wavelength264
((Voronovich 1991; Boury et al. 2023)) leading to this exponential divergence. This factor265
has a log-normal distribution, suggesting possible extreme transient wavenumber events.266
This generalizes previous results Voronovich (1991); Klyatskin & Koshel (2015), obtained267
with neglecting the time-correlated current component, 𝒗.268

For completeness, the action distribution over space and wave vector can be derived. Some269
approaches consider finite-size wave trains either through additional equations (Jonsson270
1990; White & Fornberg 1998) or re-meshing (Hell et al. in preparation). Otherwise,271
each ray transports its action spectrum (2.6) and we need to numerically combine many272
rays (Lavrenov 2013), or rely on analytic approximations. Typically, we solve (4.3)-(4.5)273
exhibiting, 𝑝(𝒙, 𝒌 |𝒙0

𝑟 , 𝒌
0
𝑟 , 𝑡), the distribution of the ray (𝒙, 𝒌) at time 𝑡 given initial conditions274
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(𝒙0
𝑟 , 𝒌

0). Then, by analogy with tracers in incompressible turbulence (Piterbarg & Ostrovskii275
1997, equation (1.31), see also Appendix D) we can evaluate the wave action spectrum mean276
– or any point-wise statistics – as follows277

E𝑁 (𝒙, 𝒌, 𝑡) =
∬

d𝒙0
𝑟d𝒌0 𝑁0(𝒙0

𝑟 , 𝒌
0
𝑟 )𝑝(𝒙, 𝒌 |𝒙0

𝑟 , 𝒌
0, 𝑡), (4.10)278

where 𝑁0 is the initial wave action spectrum. Integrating this expression over wavevectors,279
we note that the distribution inside the integrals changes280

E𝐴(𝒙, 𝑡) =
∬

d𝒙0
𝑟d𝒌0 𝑁0(𝒙0

𝑟 , 𝒌
0
𝑟 )𝑝(𝒙 |𝒙0

𝑟 , 𝒌
0, 𝑡). (4.11)281

The wave action mean solely depends of group positions distribution. Multi-point action282
statistics – e.g. focusing E∥∇𝑥𝐴∥2 – rely on multi-ray correlations, encoded in the stochastic283
characteristic equations (4.1), but not the simplified model (4.3)-(4.6). Alternatively, Eulerian284
descriptions of wave action dynamics directly provide action distribution over space and wave285
vector.286

4.2. Eulerian dynamics and action diffusion287

Wave action spectrum is transported along a 4-dimensional volume-preserving stochastic288
flow (4.1). Again by analogy with incompressible turbulence (Resseguier et al. 2017a), the289
stochastic transport of wave action spectrum in Itō notations reads290

𝜕𝑡𝑁 + (𝒗0
𝑔 + 𝒗 + 𝜎

d𝐵𝑡

d𝑡 ) · ∇𝒙𝑁 +
(
−∇𝒙 (𝒗 + 𝜎

d𝐵𝑡

d𝑡 )
ᵀ𝒌

)
· ∇𝒌𝑁291

=

[
∇𝒙

∇𝒌

]
·

(
D

[
∇𝒙

∇𝒌

]
𝑁

)
= 1

2𝑎0Δ𝒙𝑁 + 1
2𝛾0

1
𝑘
𝜕𝑘

(
𝑘3𝜕𝑘𝑁

)
+ 3

2𝛾0𝜕
2
𝜃𝑘
𝑁. (4.12)292

The RHS is reminiscent to Eq. (3.16) in Bôas & Young (2020) and Eq. (36) in Smit &293
Janssen (2019), and more generally to rapid wave models. Nevertheless, equation (4.12) is294
not averaged and explicitly involves large-scale currents and noise terms (terms with factor295
d𝐵𝑡

d𝑡 ). Differences with Smit & Janssen (2019); Bôas & Young (2020) for the diffusivity296
estimates and the detailed computation of the 4 × 4 diffusion matrix D can be found in297
Appendix A. Itō notations of (4.12) explicitly separate mean terms (e.g. diffusion terms) and298
zero-mean noise terms. Here, the Eulerian Itō notations reveal that coefficients 1

2𝑎0, 1
2𝛾0, and299

3
2𝛾0 act to diffuse wave action in space, wavenumber and wave-vector angle, respectively.300

5. Numerical experiments301

To illustrate these developments, we consider ocean surface gravity waves propagating over302
a dynamical flow region. Ray tracing through synthetic surface currents will provide a303
benchmark. It will be shown that a broad range of the current scales can be replaced by304
the stochastic parametrization (3.11) without affecting ray scattering and action distribution.305
Theoretical results (4.3)-(4.12) will suggest approximate analytic solutions.306

5.1. Surface current dynamics307

Simplified upper ocean dynamics are considered to follow:308

(𝜕𝑡 + 𝒗 · ∇) Θ = 0 with 𝒗 = −∇⊥(−Δ)−𝜉Θ, (5.1)309

where Θ stands for the buoyancy, ∇⊥ the curl and Δ the Laplacian. Two extreme cases: the310
Surface Quasi-Geostrophic dynamics (𝜉 = 1

2 ) (Held et al. 1995; Lapeyre 2017), abbreviated311
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Figure 3: Current velocity norm of the SQG homogeneous turbulence (left) and of the 2D
Euler jet current at high-resolution (512 × 512).

SQG, and the two-dimensional Euler dynamics (𝜉 = 1), abbreviated 2D Euler. SQG is a312
dynamics with an extreme locality (KE spectrum slope −5/3) whereas 2D Euler has an313
extreme non-locality (KE spectrum slope −3). The objective is to test how the proposed314
closures apply to both dynamics to be equally useful for any more realistic upper ocean315
dynamics. Additionally, test cases are developed to assess the multiscale stochastic closure316
in both homogeneous and heterogeneous propagating medium. Moreover, we would like to317
challenge our closure beyond the validity of rapid wave models. In our first test case, surface318
fast waves travel in a homogeneous and isotropic SQG turbulence. Then, we simulate waves319
propagating in a spatially heterogeneous 2D Euler turbulence, mimicking an oceanic jet. For320
both SQG and 2D Euler dynamics, a reference simulation is obtained at a resolution 512×512321
for a 1000-km squared domain, with the help of a pseudo-spectral code (Resseguier et al.322
2017b, 2020b). Once initialized, the current velocity 𝒗 is about 0.1 m.s−1 for the homogeneous323
turbulence and 1 m.s−1 for the jet (see figure 3).324

5.2. Rays scattering in homogeneous SQG turbulence325

A wave system enters the bottom boundary, propagating to the top. The carrier incident wave326
has an intrinsic wave group velocity of 10 m/s, i.e. wavelength 𝜆 = 250 m. Its envelope327
is Gaussian with an isotropic spatial extension of 30𝜆. The left panels of figures 4 and328
5 illustrates the resulting dynamics, spreading the wavevectors (figure 5) of the incoming329
waves. From bottom to top, spectral diffusion occurs (figure 5), in the direction orthogonal330
(here 𝑘𝑥) to the propagation (here 𝑘𝑦), in line with the additive noise appearing in equation331
(4.6). This scattering accelerates – along the propagation – the wave position spread (figure332
4). This acceleration is explained by the ray equation (4.3) dominated by the intrinsic wave333
group velocity.334

To mimic a badly resolved 𝒗 field, 𝒗 is smoothed at a resolution 32 × 32. Using this335
coarse-scale current, middle panels of figures 4 and 5, the scattering – described in the336
previous paragraph – is strongly depleting in comparison to ray tracing in fully-resolved337
turbulence. The spectral diffusion induced by small-scale turbulence is missing. Thus, the338
spatial spreading also is narrower compared to high-resolution simulations. A stochastic339
current 𝒗′ is then added for ray tracing (4.1). This stochastic component is divergence-free340
and has a self-similar distribution of energy across spatial scales (3.11) (see figure 1). The341
resulting spatial and spectral spreads are now comparable to simulations with high-resolution342

Rapids articles must not exceed this page length
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Figure 4: Swell (wavelength 𝜆 = 250 m) interacting with a high-resolution (512 × 512)
deterministic SQG current (left), a low-resolution (32 × 32) deterministic SQG current
(middle) and a low-resolution (32 × 32) deterministic SQG current plus (one realization
of) the time-uncorrelated stochastic model (right) – colored by the corresponding wave

amplitude, ℎ(𝑡) =
√︁
𝜔0 (𝑘 (𝑡))𝑁 (𝑡 = 0) (right-hand side colorbar) – computed by forward

advection and superimposed on the current vorticity 𝜔 = ∇⊥ · 𝒗. The red cross indicate
where the bidirectional wave spectra of figure 5 are computed.

currents. For this setting, the stochastic closure provides satisfying results for a sufficiently343

well-resolved large-scale current. The key decorrelation ratio 𝜖 =
𝑙𝑣′
𝑙𝑣

∥𝒗 ∥
𝑣0
𝑔

indeed depends on344

the resolution through 𝑙𝑣′ . The large-scale current 𝒗 is resolved on a 32×32 grid, i.e. with a345

resolution 𝑙𝑣′ =
∥∇𝒗ᵀ ∥
∥∇𝒗′ᵀ ∥ 𝑙𝑣 = 0.33 𝑙𝑣 . As such 𝜖 = 4.1 × 10−3, computed with 𝑣0

𝑔 ≃ 10 m.s−1346

and ∥𝒗∥ ≃ 0.12 m.s−1, so ∥𝒗 ∥
𝑣0
𝑔

≃ 1.2× 10−2, which is sufficiently small to make the proposed347

model applicable.348

From the ADSD estimate (equation (3.10) illustrated by figure 1) and (4.7)-(4.8), eval-349
uations of the diffusivity coefficients 𝑎0 and 𝛾0 are straightforward. Previously discussed350
Smit & Janssen (2019), the spatial diffusivity is extremely weak: 𝑎0 = 6.4 × 10−1 m2.s−1351
(spatial variations in ray equations (4.3)-(4.4) of about

√
𝑎0𝑡 = 230 m during 1 day). In352

contrast, the spectral angle diffusivity is large: 3𝛾0 = 3.0 × 10−8 rad2.s−1. Along our 1-day353
simulation, neglecting large-scale velocity influence, (4.6) leads to a Brownian wave vector354

angle variations 𝛿𝜃𝑘 = 𝜃𝑘 − 𝜃𝑘 (0) =
√︁

3𝛾0𝐵
(4)
𝑡 with a standard deviation 𝜎𝛿𝜃𝑘 =

√︁
3𝛾0𝑡 =355

5.2×10−2 rad ≈ 3.0◦, eventually increasing the wave group spectral maximal extension from356

±2𝜎𝑘𝑥 = ±2 2𝜋
30𝜆 = ±1.7 × 10−3 rad.m−1 to ±2𝜎𝑘𝑥 ≈ ±2

√︂(
2𝜋
30𝜆

)2
+

(
𝑘𝜎𝛿𝜃𝑘

)2
= ±3.1 × 10−3357

rad.m−1, confirmed by figure 5. This figure also illustrates the wave action diffusion induced358
by diffusivity 𝛾0, well predicted by the Eulerian wave action model (4.12). In this scattering359
regime, the increased angle variability leads, by advection, to a spatial spread. The simplified360

ray equation (4.3) gives 𝛿𝑥 ≈
∫ 𝑡

0 𝑣0
𝑔 cos 𝜃𝑘𝑑𝑡′ ≈ 𝑣0

𝑔

∫ 𝑡

0 𝛿𝜃𝑘𝑑𝑡
′ ≈ 𝑣0

𝑔

√︁
3𝛾0

∫ 𝑡

0 𝐵
(4)
𝑡 ′ 𝑑𝑡′ with361

maximal extension ±2𝜎𝑥 ≈ ±2𝑣0
𝑔

√︁
𝛾0𝑡3 ≈ ±52 km, in agreement with figure 4. Finally, we362

estimate a first-order delay along the propagation 𝛿𝑡 = 𝑡−(𝑦−𝑦(0))/𝑣0
𝑔 ≈

∫ 𝑡

0 (1−sin 𝜃𝑘)𝑑𝑡′ ≈363
1
2

∫ 𝑡

0 𝛿𝜃2
𝑘
𝑑𝑡′ ≈ 3

2𝛾0
∫ 𝑡

0 (𝐵 (4)
𝑡 ′ )2𝑑𝑡′, with mean value E𝛿𝑡 = 3

4𝛾0𝑡
2.364
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Figure 5: Bidirectional wave spectra, computed by backward advection, at 8 locations
along a vertical axis (the mean wave propagation direction) resulting from a swell

interacting with a high-resolution (512 × 512) deterministic SQG current (panel (a)), a
low-resolution (32 × 32) deterministic SQG current (panel (b)) and a low-resolution

(32 × 32) deterministic SQG current plus (one realization of) the stochastic model (3.11)
(panel (c)). The spatial locations where the spectra are calculated are highlighted on figure

4 by the red crosses.

5.3. Wave groups trapped in a 2D Euler turbulent jet365

Tests are now performed for rays traveling in fast and strongly heterogeneous 2D Euler flows.366
Classical fast wave models – assuming flows of weak amplitude and often uniform statistics –367
are expected to fail here. Jets exhibit strong current gradients (e.g. Kudryavtsev et al. 2017)368
creating strong ray focusing and possibly rogue events. Passing through localized spatial369
structures, caustics can appear but solely from unrealistically collimated wave trains (White370
& Fornberg 1998; Heller et al. 2008; Wang et al. 2023). Occurrences strongly reduce for371
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finite directional spread (Slunyaev & Shrira 2023). Here, wave groups are trapped in a jet, but372
nonlinear wave interactions are neglected. The high-resolution numerical simulations (see373
figure 6) reveal that even linear wave trains are well trapped in adversarial currents. Freund374
& Fleischman (2002) observed a similar behavior for acoustic waves in a 3D turbulent jet.375
Note that during our simulation, rays cross the domain several times (because of the doubly376
periodic boundary conditions, see Appendix E for technical details). Top (resp. bottom) of377
the jet, the vorticity and thus – at first order – rays curvatures (Dysthe 2001) are negative378
(resp. positve). Therefore, rays oscillate around the jet. A toy model can explain this behavior.379
Following the multiscale stochastic approach (4.3)-(4.6), wave scattering is also taken into380
account.381

For very-coarsed-grained (4 × 4) current 𝒗, oscillation remains, but most of the scattering382
vanishes, as illustrated by figure 7. Moreover, the curvature of the jet creates artificial wave383
focusing at 𝑡 = 8 and 10 days. Introducing a time-uncorrelated model (3.11) corrects the384
resolution issue on figure 8. Figure 9 plots the current ADSD. The current is strong (∥𝒗∥ ≃ 1.4385

m.s−1), and the usual fast wave approximation cannot be applied ( ∥𝒗 ∥
𝑣0
𝑔

≃ 1.2×10−1). However,386

the proposed modified fast wave model is valid, even at the very coarse 4×4 resolution. [VR:(à387
discuter)] Indeed, 2D Euler spectra are steeper than for SQG dynamics, and the length scale388

ratio is already significant at this resolution, 𝑙𝑣′
𝑙𝑣

= 0.14, and the derived time-decorrelation389

ratio is small: 𝜖 =
𝑙𝑣′
𝑙𝑣

∥𝒗 ∥
𝑣0
𝑔

= 1.6 × 10−2.390

Furthermore, by approximating the under-resolved current 𝑣, an analytic stochastic solution391
can be obtained for a ray traveling against the current. The large-scale pattern of the jet takes392
a quadratic form393

𝑢 ≈ 𝑈0 − 1
2 𝛽

(
𝑦 − 𝐿𝑦

2

)2
and 𝑣 ≈ 0, with 𝑈0, 𝛽 < 0. (5.2)394

Note, the toy model (5.2) simply considers a straight jet, neglecting its curvature. For weak395

subgrid currents and a ray, (𝑥𝑟 , 𝑦′𝑟 +
𝐿𝑦

2 , 𝑘, 𝜃𝑘), propagating mainly to the right, 𝜃𝑘 is small396
and the simplified ray equation (4.4) determines the group position with respect to the jet 𝑦′𝑟397

d
d𝑡
𝑦′𝑟 ≈ 𝑣0

𝑔 sin(𝜃𝑘) = 𝑣0
𝑔𝜃𝑘 +𝑂 (𝜃2

𝑘). (5.3)398

For frozen turbulence, the wave-number and hence 𝑣0
𝑔 will not significantly vary. The other399

ray equation (4.3) localizes the group along the jet, 𝑥𝑟 ≈ 𝑥𝑟 (0) + (𝑣0
𝑔 − 𝑢)𝑡, dropping the400

𝑂 (𝜃2
𝑘
) from now on. Moreover, �̃�⊥ · ∇𝒗ᵀ �̃� ≈ −𝜕𝑦𝑢 and the dynamics of wave vector angle401

(4.6) simplifies to a stochastic oscillator equation:402

d2

d𝑡2
𝑦′𝑟 = 𝑣0

𝑔

d
d𝑡
𝜃𝑘 = −𝜕𝑦 (𝑣0

𝑔𝑢) + 𝑣0
𝑔

√︁
3𝛾0 ¤𝐵 (4)

𝑡 = −𝜔2
𝑟 𝑦

′
𝑟 + 𝑣0

𝑔

√︁
3𝛾0 ¤𝐵 (4)

𝑡 . (5.4)403

with 𝜔𝑟 =

√︃
|𝑣0

𝑔𝛽 |. Here 𝑣0
𝑔𝑢 plays the role of a potential, trapping the rays in the jet vicinity,404

whereas the noise accounts for wave scattering. Solution of this linear equation is known405
(e.g. Resseguier et al. 2017a, Eq.(51)-(55)):406

𝑦𝑟 (𝑡) =
𝐿𝑦

2 + 𝑦′𝑟 (0) cos(𝜔𝑟 𝑡) +
𝑣0
𝑔

𝜔𝑟
𝜃𝑘 (0) sin(𝜔𝑟 𝑡)︸                                                ︷︷                                                ︸

=E(𝑦𝑟 (𝑡 ) )

+𝑌𝛾0

√︁
𝜔𝑟

∫ 𝑡

0
sin

(
𝜔𝑟 (𝑡 − 𝑟)

)
d𝐵 (4)

𝑟︸                                     ︷︷                                     ︸
=𝑦′′𝑟 (𝑡 )

, (5.5)407

with 𝑌𝛾0 = 𝑣0
𝑔

√︃
3𝛾0/𝜔3

𝑟 . The wavevector angle solution is similar. The solution ensemble408
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Figure 6: Rays facing a high-resolution (512 × 512) deterministic 2D Euler jet current –
colored by the corresponding wave amplitude, ℎ(𝑡) =

√︁
𝜔0 (𝑘 (𝑡))𝑁 (𝑡 = 0) (right-hand

side colorbar) – computed by forward advection and superimposed on the current vorticity
𝜔 = ∇⊥ · 𝒗 (top colorbar).
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Figure 7: Rays facing a low-resolution (4 × 4) deterministic 2D Euler jet current – colored
by the corresponding wave amplitude, ℎ(𝑡) =

√︁
𝜔0 (𝑘 (𝑡))𝑁 (𝑡 = 0) (right-hand side

colorbar) – computed by forward advection and superimposed on the current vorticity
𝜔 = ∇⊥ · 𝒗 (top colorbar).
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Figure 8: Rays facing a low-resolution (4 × 4) deterministic 2D Euler jet current plus (one
realization of) the time-uncorrelated stochastic model – colored by the corresponding
wave amplitude, ℎ(𝑡) =

√︁
𝜔0 (𝑘 (𝑡))𝑁 (𝑡 = 0) (right-hand side colorbar) – computed by

forward advection and superimposed on the low-resolution current vorticity 𝜔 = ∇⊥ · 𝒗
(top colorbar).
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Figure 9: ADSD (𝑚2.𝑠−1/(rad.𝑚−1)) of the resolved high-resolution jet velocity in red,
low-resolution jet velocity in blue, and modeled stochastic velocity, in green. The

theoretical spectrum slope −3 (black solid line) is imposed, consistent with homogeneous
2D Euler dynamics. The residual ADSD (green line) is set to extrapolate that power law at

small scales.

Figure 10: Vorticity shear 𝜕2
𝑦𝑢 of the deterministic 2D Euler jet current at high-resolution

(512 × 512) (left), at low-resolution (4 × 4) (middle), and the corresponding swell system
period 2𝜋/𝜔𝑟 . Far from the jet (±200 km away), the vorticity shear becomes zero or even

positive, so period larger than 10 days are cropped.

mean, E𝑦𝑟 , is a simple coherent deterministic oscillator. This mean solution describes well409
the interaction between the group and the under-resolved current from figure 7. From the410
coarse-scale vorticity shear plotted in figure 10 in the vicinity of the jet, we can estimate411
𝛽 = −2.7 × 10−11m−1.s−1. It yields an oscillation frequency 𝜔𝑟 = 1.3 × 10−5rad.s−1 i.e. a412
period of 2𝜋/𝜔𝑟 = 5.7 days, in agreement with the ray tracing simulations. Note that the413
high-resolution vorticity shear, left panel of figure 10, does not suggest any relevant values414
to explain the ray oscillations. Only the proposed multiscale current decomposition provides415
a quantitative explanation for these oscillations, and by extension for trapping rays inside the416
jet. Added to the mean solution, the random parts, 𝑦′′𝑟 (𝑡), are continuous summations of zero-417
mean incoherent wave fluctuations. At each time 𝑟 , the additive random forcing introduces418
an oscillation. But, the influence of the past excitations is weighed by sine wave due to the419
phase change. The group position and wavevector angle are Gaussian random variables (as420
linear combinations of independent Gaussian variables). Therefore, their finite dimensional421
law (i.e. the multi-time probability density function) are entirely defined by their mean and422
covariance functions. Specifically,423

E
(
𝑦′′𝑟 (𝑡)𝑦′′𝑟 (𝑡 + 𝜏)

)
= 1

4𝑌
2
𝛾0

(
cos(𝜔𝑟𝜏) (2𝜔𝑟 𝑡 − sin(2𝜔𝑟 𝑡)) + sin(𝜔𝑟𝜏) (1 − cos(2𝜔𝑟 𝑡))

)
. (5.6)424

In particular, the variance of the vertical positions reads 𝜎2
𝑦 (𝑡) = 1

4𝑌
2
𝛾0 (2𝜔𝑟 𝑡 − sin(2𝜔𝑟 𝑡)). At425
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𝑡 = 2𝜋/𝜔𝑟 , the group has oscillated once around the jet and the maximal position extension426
reaches ±2𝜎𝑦 = ±2

√
𝜋 𝑌𝛾0 = ±42 km, well confirmed by ray simulations. In contrast, usual427

fast wave models (e.g. Smit & Janssen 2019) do not consider the interplay between smooth428
and rough currents, and hence solely predict a classical scattering with a much faster vertical429

location spreading: ±2𝜎𝑦 = ±2
√︁
(2𝜋)3/3 𝑌𝛾0 = ±217 km. For large time, our multiscale430

approach predicts a scaling in 𝑡, much slower than the usual scattering 𝑡3 scaling.431
From the group vertical location and wavevector angle, we can also solve (4.5) an-432

alytically to estimate the group wavenumber variations. For small wavevector angles,433

−
∫ 𝑡

0 𝜎 sin(𝜁)𝑑𝑡′ ≈ 2
∫ 𝑡

0 𝜔𝜃𝑘𝑑𝑡
′ = 2𝛽

∫ 𝑡

0 𝑦′𝑟𝜃𝑘𝑑𝑡
′ and (4.9) together with the analytic434

solutions for 𝑦′𝑟 and 𝜃𝑘 give a closed stochastic expression for the group wavenumber. Thus,435

the wavenumber factor exp(2𝛽
∫ 𝑡

0 𝑦′𝑟𝜃𝑘𝑑𝑡
′) oscillates at frequency 2𝜔𝑟 and the oscillations436

modulate the wave amplitude: ℎ =
√
𝐸 =

√
𝜔0𝑁 = cst.𝑘 1

4 . The modulations are associated437
with wave-current energy exchanges Boury et al. (2023), visible in the colored rays, figures438
6, 7 and 8, when the groups enter and exit the jet.439

Finally, the conditional ray distribution, 𝑝(𝒙, 𝒌 |𝒙0
𝑟 , 𝒌

0, 𝑡), the action spectrum mean from440
(4.10) and the action mean from (4.11) can all be derived. For a system initially localized441

in (0, 𝐿𝑦

2 ) with action 𝐴0, wavenumber 𝑘0 and a 𝜎0
𝛿𝜃𝑘

-width Gaussian angular spreading,442
propagating to the right, the action mean reads443

E𝐴(𝑥, 𝑦, 𝑡) = 𝐴0𝛿
(
𝑥 − (𝑣0

𝑔 (𝑘0) − 𝑢(𝑦))𝑡
)
N

(
𝑦 − 𝐿𝑦

2
���̃�2

𝑦 (𝑡)
)
, (5.7)444

with N
(
•
���̃�2

𝑦 (𝑡)
)
, a Gaussian function with variance �̃�2

𝑦 (𝑡) = 𝜎2
𝑦 (𝑡) +

(
𝑣0
𝑔

𝜔𝑟
sin(𝜔𝑟 𝑡)𝜎0

𝛿𝜃𝑘

)2
.445

The action is advected in the horizontal direction, and slowly diffuses along the vertical446
direction.447

6. Conclusion448

Developed to generalize the ray-path concept for waves propagating over an heterogeneous449
turbulence, a practical stochastic framework is derived. For fast waves, the smallest scales450
of a turbulent flow decorrelate along the wave propagation. Flows with steeper spectra451
decorrelate faster, leading to a broader validity range of fast wave approximations. The452
proposed framework encodes both large-scale refraction and random scattering effects on453
wave statistical properties. The mean wave-action statistics are directly linked to resolved454
strain-rate and vorticity, but also to unresolved KE spectral properties. Both Eulerian and455
Lagrangian views are presented. A convenient calibration method is also proposed for the456
subgrid parametrization.457

As anticipated, random horizontal currents delay wave arrival and augment the initial458
radiative transport equation with a directional diffusive term. These phenomena are illustrated459
with numerical simulations, analytical solutions, and quantitative proxies describing weak460
homogeneous turbulence. Using these proxies, measured delays in ray arrivals, estimated461
wave energy spectral characteristics and decays, and/or varying directional spread shall then462
be used to more quantitatively interpreted the upper the turbulent underlying flow properties.463

The generalized fast wave approximation does takes into account wavenumber variation464
and handles strong heterogeneous flows, like localized jets with strong current gradients. As465
compared to numerical simulations, numerical and theoretical results explain and quantify466
ray trapping effects by jets, unlike usual fast wave approaches.467

Among fast wave literature, isotropic diffusion and, hence, wavenumber diffusion may (e.g.468
Voronovich 1991) or may not (e.g. Bôas & Young 2020) comes into play (see Appendix469
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C for details). Future works could adapt our convenient stochastic calculus framework to470
the second models family. Besides, further analytical developments could consider finite-471
size wave groups, their dynamics (Jonsson 1990; White & Fornberg 1998) and statistical472
distributions, or alternatively the Eulerian action dynamics (4.12) with all its multi-point473
stochastic structure. When achieved, this next theoretical development could provide new474
means to analyze wave dynamics with subsequent fast simulations of ensembles. Beside475
comprehension and analysis, our stochastic simulation tools aim at eventually facilitate476
future ensemble-based data assimilation algorithms (Smit et al. 2021).477

Funding. This work is supported by the R&T CNES R-S19/OT-0003-084, the ERC project 856408-STUOD,478
the European Space Agency World Ocean Current project (ESA Contract No. 4000130730/20/I-NB), and479
SCALIAN DS.480

Declaration of interests. The authors report no conflict of interest.481

Data availability statement. SCALIAN DS owns a portion of the developed code intellectual property.482
For commercial reasons, that code will remains private.483

Author ORCIDs. V. Resseguier, https://orcid.org/0000-0002-9301-9493; E. Hascoët https://orcid.org/0009-484
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Appendix A. Stochastic forcing covariance488

In this appendix, we will compute the conditionnal covariance of the stochastic forcing of489
our eikonal characteristic equations (4.1), that is:490

2D △
= 1

d𝑡E𝑡

{(
𝜎d𝐵𝑡

d𝜼𝑡

) (
𝜎d𝐵𝑡

d𝜼𝑡

)ᵀ}
=

[
a 𝛴𝜂,𝜎

𝛴 ᵀ
𝜂,𝜎 𝛴𝜂

]
(A 1)491

. where, 𝑑𝜼𝑡 = −∇(𝜎d𝐵𝑡 )ᵀ𝒌, denotes the wave-vector stochastic forcing and, 𝛴𝜂d𝑡, its492

covariance, and E𝑡 {•}
△
= E{•|𝒙𝑟 (𝑡), 𝒌 (𝑡)} stands for the conditional expectation evaluated493

with given characteristics (𝒙𝑟 (𝑡), 𝒌 (𝑡)) at the current time 𝑡. Note that in the appendix we494
use Itō notations only.495

The subgrid velocity, 𝒗′ = 𝜎d𝐵𝑡/d𝑡 is constructed in Fourier space with a divergence-free496
isotropic spatial filter ∇⊥�̆�𝜎 (see (3.11)).497

𝒗′ (𝜿, 𝑡) =
∫

d𝒙 𝒗′ (𝒙, 𝑡)𝑒−i𝜿 ·𝒙 = �𝜎d𝐵𝑡/d𝑡 (𝜿, 𝑡) = i𝜿⊥̂̆𝜓𝜎 (𝜅)d̂𝐵𝑡 (𝜿)/d𝑡, (A 2)498

where 𝜅⊥ is the vector directly orthogonal to 𝜅. The computation of the variance tensor a499
is classical and straightforward from the definition of the inverse Fourier transform and the500

identity E
{
d̂𝐵𝑡 (𝜿1)d̂𝐵𝑡

∗
(𝜿2)

}
= (2𝜋)2𝛿(𝜅1 − 𝜅2)d𝑡, where ∗ denotes complex conjugate. We501

simply need to split the integral of the stochastic forcing spectrum over the current wavevector502
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𝜿 = 𝜅(cos 𝜃𝜅 , sin 𝜃𝜅 ):503

a =
1

(2𝜋)4d𝑡

∬
d𝜿1d𝜿2 E𝑡

{
(�𝜎d𝐵𝑡 ) (𝜿1, 𝒌) (�𝜎d𝐵𝑡

ᵀ
)
∗
(𝜿2, 𝒌)

}
𝑒i(𝜿1−𝜿2 ) ·𝒙, (A 3)504

=
1

(2𝜋)2

∫
d𝜿 𝜅2 |̂̆𝜓𝜎 (𝜅) |2

(
− sin 𝜃𝜅
cos 𝜃𝜅

) (
− sin 𝜃𝜅
cos 𝜃𝜅

)ᵀ
, (A 4)505

=
1

(2𝜋)2

∫ +∞

0

∮ 2𝜋

0
d𝜅d𝜃𝜅 𝜅3 |̂̆𝜓𝜎 (𝜅) |2

(
sin2 𝜃𝜅 − sin 𝜃𝜅 cos 𝜃𝜅

− sin 𝜃𝜅 cos 𝜃𝜅 cos2 𝜃𝜅

)
, (A 5)506

=
2

2𝜋
𝑎0

∮ 2𝜋

0
d𝜃𝜅

(
sin2 𝜃𝜅 − sin 𝜃𝜅 cos 𝜃𝜅

− sin 𝜃𝜅 cos 𝜃𝜅 cos2 𝜃𝜅

)
, (A 6)507

= 𝑎0I𝑑 , (A 7)508

where 𝑎0 is defined by (4.7).509
Now, the Fourier transform of the wave-vector stochastic forcing is510

d�̂�𝑡 = − �∇(𝜎d𝐵𝑡 )ᵀ𝒌 = −i𝜿(i𝜿⊥̂̆𝜓𝜎 d̂𝐵𝑡 ) · 𝒌 = 𝜿(𝜿⊥ · 𝒌)̂̆𝜓𝜎 d̂𝐵𝑡 . = −𝜿(𝒌⊥ · 𝜿)̂̆𝜓𝜎 d̂𝐵𝑡 . (A 8)511

Then, applying the crest-oriented rotation matrix, 𝑴𝑘 =

[
�̃� �̃�

⊥
]
, leads to512

d�̂�𝑡 = 𝑴ᵀ
𝑘d�̂�𝑡 = −

(
�̃� · 𝜿
�̃�
⊥ · 𝜿

)
(𝒌⊥ · 𝜿)̂̆𝜓𝜎 d̂𝐵𝑡 = −

(
cos 𝛿𝜃 sin 𝛿𝜃

sin2 𝛿𝜃

)
𝜅2𝑘 ̂̆𝜓𝜎 d̂𝐵𝑡 , (A 9)513

with 𝛿𝜃 = 𝜃𝜅 − 𝜃𝑘 . From there, we can evaluate the conditional covariance matrix 𝛴𝑍 =514
1
d𝑡E𝑡

{
d𝒁𝑡d𝒁ᵀ

𝑡

}
of d𝒁𝑡 as before:515

𝛴𝑍 =
1

(2𝜋)4d𝑡

∬
d𝜿1d𝜿2 E𝑡

{
(d�̂�𝑡 ) (𝜿1, 𝒌) (d�̂�

ᵀ
𝑡 )∗(𝜿2, 𝒌)

}
𝑒i(𝜿1−𝜿2 ) ·𝒙, (A 10)516

=
1

(2𝜋)2

∫ +∞

0

∮ 2𝜋

0
d𝜅d𝛿𝜃 𝜅5𝑘2 |̂̆𝜓𝜎 (𝜅) |2

(
cos2 𝛿𝜃 sin2 𝛿𝜃 cos 𝛿𝜃 sin3 𝛿𝜃

cos 𝛿𝜃 sin3 𝛿𝜃 sin4 𝛿𝜃

)
,(A 11)517

= 𝛾0𝑘
2
[
1 0
0 3

]
. (A 12)518

Finally, we come back to the canonical frame to get 𝛴𝜂519

𝛴𝜂 = E𝑡
{
d𝜼𝑡d𝜼

ᵀ
𝑡

}
= 𝑴𝑘𝛴𝑍𝑴

ᵀ
𝑘 = 𝛾0𝑘

2
[
�̃� �̃�

ᵀ + 3�̃�⊥
(
�̃�
⊥)ᵀ]

. (A 13)520

For noises cross-correlations, by isotropy, it is also straightforward to show that521

𝛴𝜂,𝜎 = 0. (A 14)522

The stochastic forcings of 𝒙𝑟 and 𝒌 are hence (conditionally) independent from one another.523

Appendix B. Single ray dynamics524

The Itō noise
(
𝜎d𝐵𝑡

d𝜼𝑡

)
is white in time and conditionally Gaussian. Its conditional single-525

point distribution is fully determined by its zero mean and its local covariance matrix (given526
by equations (A 1), (A 7), (A 13) and (A 14)). In particular, we can replace this noise by527
another zero-mean Gaussian vector with the same covariance without changing the single-528
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ray dynamics – typically replacing 𝜎d𝐵𝑡 by √
𝑎0

(
d𝐵 (1)

𝑡

d𝐵 (2)
𝑡

)
and d𝒁𝑡 by −√𝛾0𝑘

(
d𝐵 (3)

𝑡√
3d𝐵 (4)

𝑡

)
. It529

yields the simplified ray equations (4.3)-(4.4).530

Then note that from Itō lemma (Oksendal 1998) d�̃� = d
(
cos 𝜃𝑘
sin 𝜃𝑘

)
= �̃�

⊥d𝜃𝑘 − 1
2 �̃�d <531

𝜃𝑘 , 𝜃𝑘 >𝑡 where < •, • >𝑡 denotes the quadratic covariation. Thus,532

d𝒌 = d𝑘 �̃� + 𝑘d�̃� + d < 𝑘, �̃� >= (d𝑘 − 1
2 𝑘d < 𝜃𝑘 , 𝜃𝑘 >𝑡 ) �̃� + (𝑘d𝜃𝑘 + d < 𝑘, 𝜃𝑘 >𝑡 ) �̃�

⊥ (B 1)533

Projecting this equation and d𝒌 = −∇𝒗ᵀ𝒌d𝑡 + d𝜼𝑡 on �̃� and �̃�
⊥, we have534 {

d𝑘 = −�̃� · ∇𝒗ᵀ𝒌d𝑡 + (d𝑍𝑡 )1 + 1
2 𝑘d < 𝜃𝑘 , 𝜃𝑘 >𝑡

𝑘d𝜃𝑘 = −�̃�⊥ · ∇𝒗ᵀ𝒌d𝑡 + (d𝑍𝑡 )2 − d < 𝑘, 𝜃𝑘 >𝑡

, (B 2)535 {
d𝑘 = −�̃� · ∇𝒗ᵀ𝒌d𝑡 + (d𝑍𝑡 )1 + 1

2 𝑘
−1d < 𝑍2, 𝑍2 >𝑡

d𝜃𝑘 = −�̃�⊥ · ∇𝒗ᵀ �̃�d𝑡 + 𝑘−1(d𝑍𝑡 )2 + 1
2 𝑘

−2d < 𝑍1, 𝑍2 >𝑡

. (B 3)536

The treatment of the large-scale terms �̃� · ∇𝒗ᵀ �̃� and �̃�
⊥ · ∇𝒗ᵀ �̃� is classical. Interested537

readers can refer to Lapeyre et al. (1999) for details. From Ito lemma again, d log 𝑘 =538
d𝑘/𝑘 − 1

2 d < 𝑘, 𝑘 >𝑡/𝑘2 leading to the simplified wave-vector dynamics (4.5)-(4.6).539

Appendix C. Subgrid flow anisotropy and comparison with other works540

Throughout this paper, we have considered an isotropic model for the stochastic subgrid541
velocity (3.11). The isotropic diffusivity matrix a = 𝑎0I𝑑 is a good illustration of this. In542
contrast, many authors (e.g. White & Fornberg 1998; Bôas & Young 2020; Smit & Janssen543
2019) assume isotropic and homogeneous turbulence and obtain anisotropic stochastic544

subgrid models for ∥𝒗 ∥
𝑣0
𝑔

→ 0. In these approaches, the integral over 𝛿𝜃 in diffusivity matrix545

computations (A 4) and (A 12) involve singular integrations over the direction 𝒗0
𝑔 = 𝑣0

𝑔 �̃�. It546

makes appear a Dirac delta function, 2𝜋𝛿(𝜿 · 𝒗0
𝑔) = 2𝜋

𝜅𝑣0
𝑔

(𝛿(𝜃𝜅 − 𝜃𝑘 − 𝜋
2 ) + 𝛿(𝜃𝜅 − 𝜃𝑘 + 𝜋

2 ))547

(see Appendix in Bôas & Young 2020). This precision imposes a statistical anisotropy for548
𝝈d𝐵𝑡 (oriented along 𝒌) and 𝑑𝜼𝑡 (oriented along 𝒌⊥), eventually leading to a covariance549

𝛴𝑍 = 𝛾0𝑘
2
[
0 0
0 16

]
(Eq. (3.17) in Bôas & Young (2020) and Eq. (24) in Smit & Janssen550

(2019)), no noise d𝑍1, and no Brownian motion 𝐵
(3)
𝑡 . Moreover, because of scaling551

assumption, Bôas & Young (2020) neglect the spatial diffusivity matrix, a, while Smit552

& Janssen (2019) find a = 4𝑎0

(
I𝑑 + 5

4 �̃� �̃�
ᵀ) (Eq. (22)-(23)). In this anisotropic framework,553

the Stratonovich wavevector equation (2.3), d𝒌 = −∇(𝒗d𝑡 + 𝜎 ◦ d𝐵𝑡 )ᵀ𝒌, would involve an554
additional drift term in Itō notations.555

Further developing this anisotropic stochastic closure is an interesting avenue. A multiscale556
anisotropic stochastic closure would involve wavenumber variations but no wavenumber557
diffusion. Nevertheless, in the present study, we adopt the isotropic model for 𝜎d𝐵𝑡 , which558
is much more convenient for multi-ray numerical simulations.559

Appendix D. Action spectra and ray distribution560

Here we highlight the link between mean action spectral density and the ray distribution.561
We denote by 𝑁0 the initial wave action spectrum. We first use the definition of the Dirac562
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measure then we perform a variable change corresponding to the characteristic (2.5) from563
𝑡 = 𝑡𝑖 to 𝑡 = 𝑡 𝑓 :564

E𝑁 (𝒙, 𝒌, 𝑡) = E
∬

d𝒙𝑟d𝒌𝑟 𝑁 (𝒙𝑟 , 𝒌𝑟 , 𝑡)𝛿((𝒙𝑟 , 𝒌𝑟 ) − (𝒙, 𝒌)), (D 1)565

= E

∬
d𝒙0

𝑟d𝒌0
𝑟 𝑁 (𝒙0

𝑟 , 𝒌
0
𝑟 , 0)𝛿((𝒙𝑟 , 𝒌𝑟 ) (𝒙0

𝑟 , 𝒌
0
𝑟 , 𝑡) − (𝒙, 𝒌)), (D 2)566

=

∬
d𝒙0

𝑟d𝒌0 𝑁0(𝒙0
𝑟 , 𝒌

0
𝑟 )𝑝(𝒙, 𝒌 |𝒙0

𝑟 , 𝒌
0, 𝑡), (D 3)567

where the standard relation between the Dirac measure and the probability distribution568
function has been used.569

Appendix E. Jet simulation570

Again, currents are simulated at a resolution 512× 512 on a 1000-km-width squared domain571
[0, 𝐿𝑥] × [0, 𝐿𝑦] through the same code. A backward velocity 𝑣Bk forces a leftward jet572
structure.573

𝜕𝑡𝜔 + 𝒗 · ∇𝜔 = 𝑆𝜔 with 𝒗 = ∇
⊥Δ−1(𝜔 + 𝜔Bk). (E 1)574

𝑆𝜔 encompasses the linear drag and the hyperviscosity with coefficient 1/𝜏𝐹 = 3.22×10−8𝑠−1575
and 𝜈HV/𝑑𝑥8 = 3.33× 10−9𝑠−1 respectively. The background vorticity, 𝜔Bk, is a smooth step576
function with a wavy interface at 𝑦 = 𝑌Bk(𝑥):577

𝜔Bk(𝑥, 𝑦) = 𝛺Bk

(
1
2 − erf

(
𝑦 − 𝑌Bk(𝑥)

𝐿𝜔
𝑦

))
with 𝑌Bk(𝑥) = 𝐿𝑦

(
1
2 + 1

30 cos
(

2𝜋
𝐿𝑥
𝑥

))
. (E 2)578

To better highlight the interplay between ray oscillations and scattering, we consider579
very-collimated swells, with a spatial extension of 100𝜆 = 25 km.580

Besides, the curvature of the simulated jet can force an additional faster oscillation around581
the jet for small enough wavevector angle. Indeed, a wave group traveling exactly rightward582
would cross an alternation of positive and negative vorticity regions with a period 𝐿𝑥/(𝑣0

𝑔 −583

𝑈0) ≈ 1 day < 2𝜋/𝜔𝑟 . Here, we set an initial wavevector angle large enough to prevent the584
additional harmonics.585
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Mémin, E. 2014 Fluid flow dynamics under location uncertainty. Geophysical & Astrophysical Fluid649

Dynamics 108 (2), 119–146.650
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