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To study two-dimensional dispersive waves propagating over turbulent flows, a new and less9
restrictive fast waves approximation is proposed using a multiscale setting. In this ansatz,10
correlation lengths of the random small scale turbulence components can be considered11
negligible in the wave packet propagating frame. Still, the large-scale flow can be relatively12
strong, to significantly impact wavenumbers along the propagating rays. New theoretical13
results, numerical tools and proxies are derived to describe ray and wave action distributions.14
All model parameters can robustly be calibrated from the large-scale flow component only.15
We illustrate our purpose with ocean surface gravity waves propagating in different types16
of surface currents. The multiscale solution is demonstrated to efficiently document wave17
trapping effects by intense jets.18
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1. Introduction21

This paper aims to revisit the ray-path concept for fast waves propagating over heterogeneous22
turbulent flows. Considering ocean surface wave propagation, many authors have already23
discussed the random changes of rays subject to a random current (Voronovich 1991; White24
& Fornberg 1998; Smit & Janssen 2019), and consequences on wave action distributions.25
Closures have been derived in the Eulerian setting (Bal & Chou 2002; Klyatskin & Koshel26
2015; Borcea et al. 2019; Kafiabad et al. 2019; Bôas & Young 2020; Garnier et al. 2020).27
Some of these approaches can be traced back to wave-wave interactions models, e.g.28
McComas & Bretherton (1977) (see also Kafiabad et al. 2019, and reference therein). In29
most cases, the central assumption is either delta-correlated turbulence (Voronovich 1976;30
Klyatskin 2005; Klyatskin & Koshel 2015) and/or fast waves in comparison to fluid flow31
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velocities (White & Fornberg 1998; Dysthe 2001; Bal & Chou 2002; Borcea et al. 2019;32
Kafiabad et al. 2019; Smit & Janssen 2019; Bôas & Young 2020; Garnier et al. 2020; Boury33
et al. 2023; Wang et al. 2023). Medium variations may be slow and delta-correlations are34
hardly justifiable in a fixed frame. Though, attached to a fast propagating wave group, the35
medium may seem to vary rapidly, and the delta-correlation assumption makes more sense.36
Another common assumption is frozen turbulence. In such a case, weak currents also implies37
conservation along ray of intrinsic frequency, wavenumber, and group velocity magnitude in38
two dimension (Boury et al. 2023). Subsequently, most of wave dynamics closures neglect39
variations and diffusion of frequency or wavenumber.40

The diffusion of the wave action at large distance with a multiscale decomposition of the41
current has already been reported Bal & Chou (2002). However, an explicit formulation for42
the diffusivity has solely been derived for a zero large-scale current. More generally, fast43
wave models mostly rely either on zero or constant current components at larger scales. West44
(1978), for instance, discussed acoustic waves in a two-component random media, but no45
velocity was involved.46

Hereafter, the proposed two-scale velocity decomposition falls into the family of stochastic47
transport models (Kunita 1997; Mikulevicius & Rozovskii 2004; Resseguier et al. 2020a;48
Zhen et al. 2023), including dynamics under Location Uncertainty (LU) (Mémin 2014;49
Resseguier et al. 2017a) and Stochastic Advection by Lie Transport (SALT) (Holm 2015).50
Under this framework, resulting conservative stochastic closures build on time delta-51
correlation for the small-scale turbulence component (Cotter et al. 2017). Nonlinear wave52
Hamiltonian dynamics and wave influence on currents (e.g. stokes drift) have then been53
derived (e.g. Crisan & Holm 2018; Bauer et al. 2020; Holm 2021; Holm & Luesink 2021;54
Dinvay & Mémin 2022; Holm et al. 2023). Considering a single-wavevector current, solutions55
for a monochromatic shallow water wave were developed Mémin et al. (2022). In the present56
study, our objective is restricted to the influence of turbulent flows on linear waves.57

After first recalling the principle of ray tracing method, we present the multiscale58
framework for fast waves dynamics, its physical ground and a calibration method for the59
closure. Simplified stochastic equations are then derived for ray dynamics and wave action60
spectrum, in both Lagrangian and Eulerian settings. For illustrative examples, numerical61
tools, analytic models and proxies are applied to ocean surface gravity waves propagating62
through two types of 2D turbulent flows: a typical slow homogeneous turbulence and a jet63
case.64

2. Characteristics of wave-packet rays65

Isolating a single progressive group of quasi-regular wave train, it follows a form66
ℎ(𝒙, 𝑡)𝑒i𝜙 (𝒙,𝑡 ) + c.c., for most properties. If a packet is to be followed, the phase, 𝜙(𝒙, 𝑡),67
must smoothly vary along the propagation, i.e. 𝜙(𝒙, 𝑡) is differentiable. The relative frequency68
is then𝜔 = −𝜕𝑡𝜙(𝒙, 𝑡), and the wave number vector 𝒌 = ∇𝜙(𝒙, 𝑡), with wavenumber 𝑘 = ∥𝒌∥69

and direction given by the normalized wave-vector, 𝒌̃ = 𝒌/𝑘 =

(
cos 𝜃𝑘
sin 𝜃𝑘

)
. To first order, such70

a train of waves is dispersive and the intrinsic frequency reads71

𝜔 − 𝒌 · 𝒗 = 𝜔0 =

{
cst. 1

𝛼
𝑘𝛼, 𝛼 ≠ 0

cst. log(𝑘), 𝛼 = 0
(2.1)72
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and propagates with its group velocity 𝒗𝑔 = ∇𝒌𝜔, constantly modified by the local velocity73
of the currents 𝒗,74

d𝒙𝑟
d𝑡

= 𝒗𝑔 = 𝒗0
𝑔 + 𝒗, (2.2)75

where 𝒙𝑟 is the centroid of a wave group, 𝒗0
𝑔 =

𝜕𝜔0 (𝑘 )
𝜕𝑘

𝒌̃ is the group velocity without76
currents, i.e. solely depending on the wave vector. For 𝛼 = 1, the medium is non-dispersive77

(e.g. acoustic waves). 𝛼 = 1/2 corresponds to gravity waves over deep ocean (𝜔0 =
√︁
𝑔𝑘).78

The dominant wave-vector 𝒌 within the group evolves according to79

d𝒌
d𝑡

= −∇𝒗ᵀ𝒌 . (2.3)80

Equations (2.2)-(2.3) are the Hamilton’ s eikonal equations. Along the propagating ray,81
velocity gradients induce linear variations. Decelerating currents will, for instance, shorten82
waves, and reduce the group velocity. Traveling over fields of random velocities 𝒗, the wave-83
vector 𝒌 will also become randomly distributed. Scattering of ocean surface wave packets84
by random currents can generally be assumed to be weak, with ∥𝒗∥ of order 0.5 m.s−1,85
much smaller than 𝑣0

𝑔 = ∥𝒗0
𝑔∥ of order 10 m.s−1. Yet, cumulative effects of these random86

surface currents can lead to strong convergence or divergence between initially nearby ray87
trajectories.88

To complete the wave field description, the wave action, 𝐴(𝒙, 𝑡) = ℎ2(𝒙, 𝑡)/𝜔0(𝑘 (𝒙, 𝑡)),89
is considered to be an adiabatic invariant in absence of source terms. Wave action is then90
crucial to anticipate wave transformations by currents (White 1999). Unlike wave energy,91
wave action is conserved, in the absence of wave generation or dissipation. This action is92
the integral over wave-vectors of the action spectrum, 𝑁 , also related to the wave energy93
spectrum, 𝐸 :94

𝐴(𝒙, 𝑡) =
∫

d𝒌 𝑁 (𝒙, 𝒌, 𝑡) =
∫

d𝒌
𝐸 (𝒙, 𝒌, 𝑡)
𝜔0(𝑘, 𝑡)

. (2.4)95

Action and energy spectrum quantify action and energy by unit of surface (unit of 𝒙) and by96
unit of wave-vector surface (unit of 𝒌). Consider the (𝒙, 𝒌) variable change between different97
times 𝑡𝑖 and 𝑡 𝑓 integrating the characteristic eikonal equations (2.2)-(2.3)98 (

𝒙𝑟 (𝑡𝑖)
𝒌 (𝑡𝑖)

)
↦→

(
𝒙𝑟 (𝑡 𝑓 )
𝒌 (𝑡 𝑓 )

)
(2.5)99

By the Liouville theorem and since ∇𝒙 · d𝒙𝑟
d𝑡 + ∇𝒌 · d𝒌

d𝑡 = 0, the state-space of the ”packet-100
by-packet” approach (the (𝒙, 𝒌) space) does not contract nor dilates along time. Therefore,101
if wave dissipation is neglected, the wave action spectrum 𝑁 is conserved Lavrenov (2013),102
i.e.103

𝑁 (𝒙𝑟 (𝑡𝑖), 𝒌 (𝑡𝑖), 𝑡𝑖) = 𝑁
(
𝒙𝑟 (𝑡 𝑓 ), 𝒌 (𝑡 𝑓 ), 𝑡 𝑓

)
. (2.6)104

This result is extremely useful because it only involves quantities of the characteristics, i.e.105
each Fourier mode can be modified independently of the others. The wave energy spectrum106
can be computed from the characteristics107

𝐸
(
𝒙𝑟 (𝑡 𝑓 ), 𝒌 (𝑡 𝑓 ), 𝑡 𝑓

)
=
𝜔0(𝒌 (𝑡 𝑓 ))
𝜔0(𝒌 (𝑡𝑖))

𝐸 (𝒙𝑟 (𝑡𝑖), 𝒌 (𝑡𝑖), 𝑡𝑖) . (2.7)108

starting with an initial incoming wave spectrum 𝐸 (𝒙𝑟 (𝑡𝑖), 𝒌 (𝑡𝑖), 𝑡𝑖) for every wave-vectors109
𝒌 (𝑡𝑖), starting from a small set of spatial points 𝒙𝑟 (𝑡𝑖).110
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3. A new fast wave assumption111

Commonly, the Eulerian current 𝒗 is decomposed into a low-frequency large-scale component112
𝒗 and a transient small-scale unresolved component 𝒗′:113

𝒗 = 𝒗 + 𝒗′. (3.1)114

From now, we shall consider divergence-free two-dimensional currents only.115

3.1. The ray Lagrangian correlation time116

To better characterize the wave dynamics in such a random environment, the covariance of the117
fluid velocity can be evaluated in the wave group frame. To take into account the small-scale118
unresolved component 𝒗′, its Eulerian spatio-temporal covariance is considered, assuming119
statistical homogeneity and stationarity for the Eulerian velocity 𝒗′

𝐸
(𝑡, 𝒙) = 𝒗′ (𝑡, 𝒙)120

𝐶
𝑣′
𝐸

𝑖 𝑗
(𝛿𝑡, 𝛿𝒙) = E

(
𝑣′𝑖 (𝑡, 𝒙)𝑣′𝑗 (𝑡 + 𝛿𝑡, 𝒙 + 𝛿𝒙)

)
= E

(
𝑣′𝑖 (𝑡, 𝒙𝑟 (𝑡))𝑣′𝑗 (𝑡 + 𝛿𝑡, 𝒙𝑟 (𝑡) + 𝛿𝒙)

)
,(3.2)121

where 𝒙𝑟 is solution of (2.2) with an arbitrary initial position 𝒙0
𝑟 . Then, we define, 𝑣′

𝑅
(𝑡) =122

𝑣′ (𝑡, 𝒙𝑟 (𝑡)), the Lagrangian velocity along the ray 𝒙𝑟 (𝑡). The temporal covariance of the123
small-scale component 𝒗′ – in the wave group frame – is the covariance of that Lagrangian124
velocity:

𝐶
𝑣′
𝑅

𝑖 𝑗
(𝛿𝑡) = E

(
𝑣′𝑖 (𝑡, 𝒙𝑟 (𝑡))𝑣′𝑗 (𝑡 + 𝛿𝑡, 𝒙𝑟 (𝑡 + 𝛿𝑡))

)
= 𝐶

𝑣′
𝐸

𝑖 𝑗
(𝛿𝑡, 𝒙𝑟 (𝑡 + 𝛿𝑡) − 𝒙𝑟 (𝑡)), (3.3)125

Assume a typical isotropic form for this covariance:126

𝐶𝑣′
𝐸 (𝛿𝑡, 𝛿𝒙) = 𝐶

(
|𝛿𝑡 |
𝜏𝑣′

+ ∥𝛿𝒙∥
𝑙𝑣′

)
, (3.4)127

the covariance can be evaluated in the wave group frame for small time increment 𝛿𝑡:128

𝐶𝑣′
𝑅 (𝛿𝑡) = 𝐶

(
|𝛿𝑡 |
𝜏𝑣′

+ ∥𝒙𝑟 (𝑡′ + 𝑡) − 𝒙𝑟 (𝑡′)∥
𝑙𝑣′

)
= 𝐶

((
1
𝜏𝑣′

+
∥𝒗𝑔∥
𝑙𝑣′

)
|𝛿𝑡 | +𝑂 (𝛿𝑡2)

)
. (3.5)129

Therefore,
(

1
𝜏𝑣′

+ ∥𝒗𝑔 ∥
𝑙𝑣′

)−1
is the correlation time of 𝒗′ (𝑡, 𝒙𝑟 (𝑡)). The same derivation is valid130

for ∇(𝒗′)ᵀ(𝑡, 𝒙𝑟 (𝑡)). For fast waves, the along-ray correlation time of the small-scale velocity131
can be approximated by 𝑙𝑣′/𝑣0

𝑔. The ratio 𝜖 , between this along-ray correlation time and132
the characteristic time of the wave group properties evolution, will then control the time133
decorrelation assumption of 𝒗′:134

𝜖 =
𝑙𝑣′

𝑣0
𝑔

∥∇𝒗ᵀ∥ ∼ 𝑙𝑣′

𝑙𝑣

∥𝒗∥
𝑣0
𝑔

. (3.6)135

Note the Eulerian small-scale velocity 𝒗′ is not necessarily time uncorrelated, as assumed136
in Voronovich (1976); Klyatskin & Koshel (2015). Yet, for small enough 𝜖 , the Lagrangian137
small-scale velocity along the ray can be considered time uncorrelated. From the expression138
of 𝜖 , such a condition depends upon:139
• 𝑣0

𝑔, the fast wave group velocity140

• ∥𝒗∥, often slow but not always negligible compared to the intrinsic wave group, 𝑣0
𝑔.141

• 𝑙𝑣′/𝑙𝑣 , related to the separation between large scales 𝒗 and small scales 𝒗′, e.g. the142
spatial filtering cutoff of the large-scale velocity 𝒗, but also related to its kinetic energy (KE)143
distribution over spatial scales, typically the spectrum slope.144

Focus on Fluids articles must not exceed this page length
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This along-ray partially time-decorrelation assumption is less restrictive than the usual145
fast wave approximation (White & Fornberg 1998; Dysthe 2001; Bal & Chou 2002; Borcea146
et al. 2019; Kafiabad et al. 2019; Smit & Janssen 2019; Bôas & Young 2020; Garnier et al.147

2020; Boury et al. 2023; Wang et al. 2023) – say ∥𝒗 ∥
𝑣0
𝑔

≪ 1 – and than the SALT-LU time-148

decorrelation used for turbulence dynamics (Mémin 2014; Holm 2015; Cotter et al. 2017;149

Resseguier et al. 2020a) – say 𝑙𝑣′
𝑙𝑣

≪ 1. Similarly, this last validity criterion can be obtained150

replacing in (3.2)-(3.6) 𝒙𝑟 by the fluid particle Lagrangian path 𝒙 (solution of d𝒙
d𝑡 = 𝒗)151

and thus 𝒗0
𝑔 by 𝒗 . These asymptotic models often rely on averaging or homogenization152

techniques (Papanicolaou & Kohler 1974; White & Fornberg 1998) to derive Markovian153
dynamics involving various types of diffusivity.154

3.2. Ray absolute diffusivity and turbulence statistics: calibration155

Diffusivity is a natural tool to specify statistics of uncorrelated random media. For waves in156
random media, we shall specify multi-point statistics, and the Fourier space is convenient for157
this purpose. We will first present scalar diffusivity and then distribute it over spatial scales158
to fully calibrate the random velocity 𝒗′.159

The absolute diffusivity (or Kubo-type formula) usually corresponds, in the so-called160

diffusive regime, to the variance per unit of time of a fluid particle Lagrangian path d𝒙(𝑡 )
d𝑡 =161

𝒗𝐿 (𝑡) = 𝒗(𝑡, 𝒙(𝑡)). It is approximately equal to the velocity variance times its correlation time.162
The Eulerian velocity covariance (3.4) will thus induce an absolute diffusivity (Piterbarg &163
Ostrovskii 1997; Klyatskin 2005)164

1
2𝑎

𝐿 =

∫ ∞

0
d𝛿𝑡 𝐶𝑣′

𝐿 (𝛿𝑡) =
∫ ∞

0
d𝛿𝑡 𝐶𝑣′

𝐸 (𝛿𝑡, 𝒙(𝑡 + 𝛿𝑡) − 𝒙(𝑡)) ≈ 1
2𝜏𝑣′ 𝐶 (0). (3.7)165

Along a propagating wave group, a ray absolute diffusivity occurs and slightly differs from166
the usual absolute diffusivity to become167

1
2𝑎

𝑅 =

∫ ∞

0
d𝛿𝑡 𝐶𝑣′

𝑅 (𝛿𝑡) ≈ 1
2

(
1
𝜏𝑣′

+
∥𝒗𝑔∥
𝑙𝑣′

)−1
𝐶 (0) ≈ 1

2
𝑙𝑣′

𝑣0
𝑔

𝐶 (0). (3.8)168

The absolute diffusivity sets the amplitude of the small scale velocity 𝒗′. To calibrate169
its spatial correlations, we may focus on its Fourier transform, 𝒗′ (𝜿, 𝑡), denoting by 𝜿 =170

𝜅

(
cos 𝜃𝜅
sin 𝜃𝜅

)
, the surface current wave-vector. By analogy with the current kinetic energy171

spectra 𝐸𝜅 = 1
2

∮ 2𝜋
0 d𝜃𝜅 𝜅 ∥ 𝒗̂ (𝜿,𝑡 ) ∥2

(2𝜋 )2 , Resseguier et al. (2017b, 2020b) decompose the absolute172

diffusivity scale by scale. Referring it to Absolute Diffusivity Spectral Density (ADSD), they173
defined it by174

1
2 𝐴

𝑅 (𝜅) = 1
2

1/𝜅
𝑣0
𝑔 (𝑘)

𝐸𝑘 (𝜅), (3.9)175

where 𝑘 denotes the wave wavenumber and 𝜅 the current wavenumber. To calibrate an176
equivalent noise, we model 𝒗′ by 𝜎d𝐵𝑡/d𝑡, where d𝐵𝑡/d𝑡 is a spatio-temporal white noise177
and 𝜎 denotes a spatial filtering operator which encodes spatial correlations through 𝐴𝑅

𝑣′ and178
the horizontal incompressibility condition (∇ · 𝜎 = 0). Specifically, we assume an ADSD179
power law, 𝐴𝑅 (𝜅) ≈ 𝐴𝑅

0 𝜅
−𝜇, and we choose a divergence-free isotropic spatial filter ∇⊥𝜓̆𝜎180

such that181

𝒗′ = 𝜎d𝐵𝑡/d𝑡 = ∇
⊥𝜓̆𝜎 ★ d𝐵𝑡/d𝑡, (3.10)182
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Figure 1: KE spectrum (𝑚2.𝑠−2/(rad.𝑚−1)) (left) and ADSD (𝑚2.𝑠−1/(rad.𝑚−1)) (right)
of the resolved high-resolution velocity, 𝐴𝑅 , in brown, low-resolution velocity, 𝐴𝑅

𝑣
, in

blue, and modeled stochastic velocity, 𝐴𝑅
𝑣′ (𝜅) = 𝐴𝑅

0 𝜅−𝜇 − 𝐴𝑅
𝑣
(𝜅), in red. For the ADSD

power law, 𝐴𝑅 (𝜅) ≈ 𝐴𝑅
0 𝜅−𝜇 , we impose the theoretical KE spectrum slope − 5

3 (black
solid line), coherently with homogeneous SQG dynamics (see ”Numerical results”

section). The residual ADSD (red line) is set to extrapolate that power law at small scales.

and 𝜕i𝜅3

(2𝜋 )2 | ̂̆𝜓𝜎 (𝜅) |2 = 1
2

∮ 2𝜋
0 d𝜃𝜅 𝜅 ∥�𝜎d𝐵𝑡 (𝜿) ∥2

(2𝜋 )2d𝑡 = 𝐴𝑅
𝑣′ (𝜅). The power law assumption enables183

automatic closure calibration: 𝐴𝑅
𝑣′ (𝜅) = 𝐴𝑅

0 𝜅
−𝜇 − 𝐴𝑅

𝑣
(𝜅), from instantaneous large-scale184

current statistics 𝐴𝑅
𝑣

only (Resseguier et al. 2020b) as illustrated in figure 1.185

4. Statistical wave dynamics186

In a stochastic framework, the Stratonovich or Itō notations can both be used (Kunita187
1997; Oksendal 1998). Under Stratonovich calculus rules, expressions become similar188
to deterministic ones. Specifically, stochastic versions of linearized dynamical equations189
are obtained by replacing 𝒗 by 𝒗 + 𝜎 ◦ d𝐵𝑡/d𝑡. Then, the stochastic transport of phase,190
d
d𝑡 𝜙 = 𝜔0(∥∇𝜙∥), i.e. – up to that velocity replacement – the Stratonovich dispersion191
relation is exactly (2.1). The method of characteristics also applies. Note, one can switch192
from Stratonovich to Itō notations, where 𝒗′ corresponds to 𝜎d𝐵𝑡/d𝑡. The characteristics193
equations (2.2)-(2.3) also remain unchanged for homogeneous and isotropic 𝒗′:194 {

d𝒙𝑟 = (𝒗0
𝑔 + 𝒗)d𝑡 + 𝜎d𝐵𝑡 ,

d𝒌 = −∇(𝒗d𝑡 + 𝜎d𝐵𝑡 )ᵀ𝒌 .
(4.1)195

4.1. Single-ray stochastic differential equations196

When studying a single ray in an homogeneous and isotropic turbulence (3.10), the wave-197
vector dynamics simplifies. In the local crest-oriented frame, the influence of small scale198
currents can be solely represented by four one-dimensional white noise forcings.199

Notably, dynamics of wave-vectors (2.3) are similar to tracer gradient dynamics (Bühler200
2009; Plougonven & Zhang 2014). Only the coupled ray path dynamics (2.2) differs.201
Accordingly, we follow the notations and derivations of the mixing analysis from Lapeyre202
et al. (1999) and references therein. Without loss of generality, the large-scale velocity can203
be parameterized as204

𝒗 = 𝑣

(
cos 𝜃
sin 𝜃

)
and ∇𝒗ᵀ =

1
2

[
𝜎 sin 2𝜙 𝜔 + 𝜎 cos 2𝜙

−𝜔 + 𝜎 cos 2𝜙 −𝜎 sin 2𝜙

]
. (4.2)205

The influence of the large-scale currents on the ray dynamics (4.1), expressed in the local206

crest-oriented frame ( 𝒌̃, 𝒌̃⊥), is straightforward (Lapeyre et al. 1999). The small-scale207
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currents force the ray dynamics through a stochastic noise. For a single ray (𝒙𝑟 , 𝒌) =208
(𝑥𝑟 , 𝑦𝑟 , 𝑘 cos 𝜃𝑘 , 𝑘 sin 𝜃𝑘), this noise can be rigorously described by four independent one-209

dimensional white noises only (see Appendix), ¤𝐵 (1)
𝑡 , ¤𝐵 (2)

𝑡 , ¤𝐵 (3)
𝑡 , and ¤𝐵 (4)

𝑡 , and:210

d
d𝑡 𝑥𝑟 = 𝑣0

𝑔 cos 𝜃𝑘 + 𝑣 cos 𝜃 + √
𝑎0 ¤𝐵 (1)

𝑡 , (4.3)211

d
d𝑡 𝑦𝑟 = 𝑣0

𝑔 sin 𝜃𝑘 + 𝑣 sin 𝜃 + √
𝑎0 ¤𝐵 (2)

𝑡 , (4.4)212

d
d𝑡 log 𝑘 = −𝜎 sin(𝜁) + 𝛾0 +

√
𝛾0 ¤𝐵 (3)

𝑡 , (4.5)213

d
d𝑡 𝜃𝑘 = 1

2 (𝜔 − 𝜎 cos(𝜁)) +
√︁

3𝛾0 ¤𝐵 (4)
𝑡 , (4.6)214

where 𝜁 = 2(𝜃𝑘 + 𝜙) and215

𝑎0 = 1
2d𝑡E∥𝜎d𝐵𝑡 ∥2 =

∫ +∞

0
𝐴𝑅
𝑣′ (𝑘)d𝑘, (4.7)216

𝛾0 = 1
8d𝑡E∥∇𝒙 (𝜎d𝐵𝑡 )ᵀ∥2 = 1

4

∫ +∞

0
𝑘2𝐴𝑅

𝑣′ (𝑘)d𝑘 (4.8)217

Diffusivity constants depend through (3.9) on both the correlation length and the spectrum218
slope of the small-scale velocity. Contrasting the classical fast wave approximation, the219
wavenumber does vary. This is due to (i) the finite large-scale strain rate, 𝜎, and (ii) the220
small-scale isotropic velocity model (3.10). This isotropy assumption and its implication are221
discussed in Appendix. Note that neither large-scale nor small-scale component is assumed222
to be steady, even though the small-scale time variations are mainly driven by the wave223
speed and not by their Eulerian correlation time. The current unsteadiness can also lead224
to wavenumber variations (Dong et al. 2020; Cox et al. 2023; Boury et al. 2023). Given a225
known wavevector angle, it leads to a wavenumber evolution226

𝑘 (𝑡) = 𝑘 (0) exp
(
−

∫ 𝑡

0
𝜎 sin(2(𝜃𝑘 + 𝜙))

)
exp

(
𝛾0𝑡 +

√
𝛾0𝐵

(3)
𝑡

)
, (4.9)227

and hence the complete wavevector distribution, i.e. the wave spectrum. The second228
exponential factor in (4.9) is a geometric Brownian motion. Its mean diverges in time229
exponentially rapidly. Physically, shear and strain of 𝒗′ tends to shorten the wavelength230
(Voronovich 1991; Boury et al. 2023) leading to this divergence. This factor has a log-normal231
distribution, suggesting possible extreme transient wavenumber events. This generalizes232
previous results Voronovich (1991); Klyatskin & Koshel (2015), obtained with neglecting233
the time-correlated current component, 𝒗.234

For completeness, the action distribution over space and wave vector can be derived. Some235
approaches consider finite-size wave trains either through additional equations (Jonsson236
1990; White & Fornberg 1998) or re-meshing (Hell et al. in preparation). Otherwise,237
each ray transports its action spectrum (2.6) and we need to numerically combine many238
rays (Lavrenov 2013), or rely on analytic approximations. Typically, we solve (4.3)-(4.5)239
exhibiting, 𝑝(𝒙, 𝒌 |𝒙0

𝑟 , 𝒌
0
𝑟 , 𝑡), the distribution of the ray (𝒙, 𝒌) at time 𝑡 given initial conditions240

(𝒙0
𝑟 , 𝒌

0). Then, by analogy with tracers in incompressible turbulence (Piterbarg & Ostrovskii241
1997, equation (1.31)) we can evaluate the wave action spectrum mean – or any point-wise242
statistics – as follows243

E𝑁 (𝒙, 𝒌, 𝑡) =
∬

d𝒙0
𝑟d𝒌0 𝑁0(𝒙0

𝑟 , 𝒌
0
𝑟 )𝑝(𝒙, 𝒌 |𝒙0

𝑟 , 𝒌
0, 𝑡) (4.10)244

where 𝑁0 is the initial wave action spectrum. Integrating this expression over wavevectors,245
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we note that the wave action mean solely depends of group positions distribution246

E𝐴(𝒙, 𝑡) =
∬

d𝒙0
𝑟d𝒌0 𝑁0(𝒙0

𝑟 , 𝒌
0
𝑟 )𝑝(𝒙 |𝒙0

𝑟 , 𝒌
0, 𝑡) (4.11)247

Multi-point action statistics – e.g. focusing E∥∇𝑥𝐴∥2 – rely on multi-ray correlations,248
encoded in the stochastic characteristic equations (4.1), but not the simplified model (4.3)-249
(4.6). Alternatively, Eulerian descriptions of wave action dynamics directly provide action250
distribution over space and wave vector.251

4.2. Eulerian dynamics and action diffusion252

Wave action spectrum is transported along a 4-dimensional volume-preserving stochastic253
flow (4.1). Again by analogy with incompressible turbulence (Resseguier et al. 2017a), the254
stochastic transport of wave action spectrum in Itō notations reads255

𝜕𝑡𝑁 + (𝒗0
𝑔 + 𝒗 + 𝜎

d𝐵𝑡

d𝑡 ) · ∇𝒙𝑁 +
(
−∇𝒙 (𝒗 + 𝜎

d𝐵𝑡

d𝑡 )
ᵀ𝒌

)
· ∇𝒌𝑁256

=

[
∇𝒙

∇𝒌

]
·

(
D

[
∇𝒙

∇𝒌

]
𝑁

)
= 1

2𝑎0Δ𝒙𝑁 + 1
2𝛾0

1
𝑘
𝜕𝑘

(
𝑘3𝜕𝑘𝑁

)
+ 3

2𝛾0𝜕
2
𝜃𝑘
𝑁. (4.12)257

The RHS is reminiscent to Eq. (3.16) in Bôas & Young (2020) and Eq. (36) in Smit &258
Janssen (2019), and more generally to rapid wave models. Nevertheless, equation (4.12) is259
not averaged and explicitly involves large-scale currents and noise terms (terms with factor260
d𝐵𝑡

d𝑡 ). Differences with Smit & Janssen (2019); Bôas & Young (2020) for the diffusivity261
estimates and the detailed computation of the 4 × 4 diffusion matrix D can be found in262
Appendix. Itō notations of (4.12) explicitly separate mean terms (e.g. diffusion terms) and263
zero-mean noise terms. Here, the Eulerian Itō notations reveal that coefficients 1

2𝑎0, 1
2𝛾0, and264

3
2𝛾0 act to diffuse wave action in space, wavenumber and wave-vector angle, respectively.265

5. Numerical experiments266

To illustrate these developments, we consider ocean surface gravity waves propagating over267
a dynamical flow region. Ray tracing through synthetic surface currents will provide a268
benchmark. It will be shown that a broad range of the current scales can be replaced by269
the stochastic parametrization (3.10) without affecting ray scattering and action distribution.270
Theoretical results (4.3)-(4.12) will suggest approximate analytic solutions.271

5.1. Surface current dynamics272

Simplified upper ocean dynamics are considered to follow:273

(𝜕𝑡 + 𝒗 · ∇) Θ = 0 with 𝒗 = −∇⊥(−Δ)−𝜉Θ. (5.1)274

Two extreme cases: the Surface Quasi-Geostrophic dynamics (𝜉 = 1
2 ) (Pierrehumbert275

1994; Lapeyre 2017), abbreviated SQG, and the two-dimensional Euler dynamics (𝜉 = 1),276
abbreviated 2D Euler. SQG is a dynamics with an extreme locality (KE spectrum slope−5/3)277
whereas 2D Euler has an extreme non-locality (KE spectrum slope−3). The objective is to test278
how the proposed closures apply for both dynamics – and possibly beyond validity of rapid279
wave models – to also be useful for any more realistic upper ocean dynamics. Additionally,280
test cases are developed to assess the multiscale stochastic closure in both homogeneous and281
heterogeneous propagating medium. First, surface fast waves travel in a homogeneous and282
isotropic SQG turbulence, then waves propagate in a spatially localized 2D Euler turbulence,283
mimicking an oceanic jet. For both SQG and 2D Euler dynamics, a reference simulation is284
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Figure 2: Current velocity norm of the SQG homogeneous turbulence (left) and of the 2D
Euler jet current at high-resolution (512 × 512).

Figure 3: Swell interacting with a high-resolution (512 × 512) deterministic SQG current
(left), a low-resolution (32 × 32) deterministic SQG current (middle) and a low-resolution

(32 × 32) deterministic SQG current plus (one realization of) the time-uncorrelated
stochastic model (right) – colored by the corresponding wave amplitude (right-hand side

colorbar) – computed by forward advection and superimposed on the current vorticity
𝜔 = ∇⊥ · 𝒗. The red cross indicate where the bidirectional wave spectra of figure 4 are

computed.

obtained at a resolution 512× 512 for a 1000-km squared domain, through a pseudo-spectral285
code (Resseguier et al. 2017b, 2020b). Once initialized, the current velocity 𝒗 is about 0.1286
m.s−1 for the homogeneous turbulence and 1 m.s−1 for the jet (see figure 2).287

5.2. Rays scattering in homogeneous SQG turbulence288

A wave system enters the bottom boundary, propagating to the top. The carrier incident wave289
has an intrinsic wave group velocity of 10 m/s, i.e. wavelength 𝜆 = 250 m. Its envelope290
is Gaussian with an isotropic spatial extension of 30𝜆. The left panels of figures 3 and 4291
illustrates the resulting branched regime, spreading the wavevectors (figure 4) of the incoming292
waves. From bottom to top, spectral diffusion occurs (figure 4), in the direction orthogonal293
(here 𝑘𝑥) to the propagation (here 𝑘𝑦), in line with equation (4.6). This accelerates – along294
the propagation – the wave position spread (figure 3). This acceleration is explained by the295
ray equation (4.3) dominated by the intrinsic wave group velocity.296

To mimic a badly resolved 𝒗 field, 𝒗 is smoothed at a resolution 32×32. Using this coarse-297
scale current, middle panels of figures 3 and 4, the branched regime is strongly depleting,298
i.e. the spectral small-scale turbulence diffusion is missing. A stochastic current 𝒗′ is then299
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Figure 4: Bidirectional wave spectra, computed by backward advection, at 8 locations
along a vertical axis (the mean wave propagation direction) resulting from a swell
interacting with a high-resolution (512 × 512) deterministic SQG current (left), a
low-resolution (32 × 32) deterministic SQG current (middle) and a low-resolution

(32 × 32) deterministic SQG current plus (one realization of) the stochastic model (3.10)
(right). The spatial locations where the spectra are calculated are specified on top of each

image. We point out these locations on figure 3 by the red crosses.

added for ray tracing (4.1). This stochastic component is divergence-free and has a self-300
similar distribution of energy across spatial scales (3.10) (see figure 1). The resulting spatial301
and spectral spreads are now comparable to simulations with high-resolution currents. For302
this setting, the stochastic closure provides satisfying results for a sufficiently well-resolved303

large-scale current. The key decorrelation ratio 𝜖 =
𝑙𝑣′
𝑙𝑣

∥𝒗 ∥
𝑣0
𝑔

indeed depends on the resolution304

through 𝑙𝑣′ . The large-scale current 𝒗 is resolved on a 32×32 grid, i.e. with a resolution305

Rapids articles must not exceed this page length
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𝑙𝑣′ =
∥∇𝒗ᵀ ∥
∥∇𝒗′ᵀ ∥ 𝑙𝑣 = 0.33 𝑙𝑣 . As such 𝜖 = 4.1 × 10−3, computed with 𝑣0

𝑔 ≃ 10 m.s−1 and306

∥𝒗∥ ≃ 0.12 m.s−1, so ∥𝒗 ∥
𝑣0
𝑔

≃ 1.2 × 10−2, which is sufficiently small to make the proposed307

model applicable.308

From the ADSD estimate (equation (3.9) illustrated by figure 1) and (4.7)-(4.8), evaluations309
of the diffusivity coefficients 𝑎0 and 𝛾0 are straightforward. Previously discussed Smit &310
Janssen (2019), the spatial diffusivity is extremely weak: 𝑎0 = 6.4 × 10−1 m2.s−1 (spatial311
variations in ray equations (4.3)-(4.4) of about

√
𝑎0𝑡 = 230 m during 1 day). In contrast, the312

spectral angle diffusivity is large: 3𝛾0 = 3.0 × 10−8 rad2.s−1. Along our 1-day simulation,313
neglecting large-scale velocity influence, (4.6) leads to a Brownian wave vector angle314

variations 𝛿𝜃𝑘 = 𝜃𝑘 − 𝜃𝑘 (0) =
√︁

3𝛾0𝐵
(4)
𝑡 with a standard deviation 𝜎𝛿𝜃𝑘 =

√︁
3𝛾0𝑡 =315

5.2×10−2 rad ≈ 3.0◦, eventually increasing the wave group spectral maximal extension from316

±2𝜎𝑘𝑥 = ±2 2𝜋
30𝜆 = ±1.7 × 10−3 rad.m−1 to ±2𝜎𝑘𝑥 ≈ ±2

√︂(
2𝜋
30𝜆

)2
+

(
𝑘𝜎𝛿𝜃𝑘

)2
= ±3.1 × 10−3317

rad.m−1, confirmed by figure 4. This figure also illustrates the wave action diffusion induced318
by diffusivity 𝛾0, well predicted by the Eulerian wave action model (4.12). In the branched319
regime, the increased angle variability leads, by advection, to a spatial spread. The simplified320

ray equation (4.3) gives 𝛿𝑥 ≈
∫ 𝑡

0 𝑣0
𝑔 cos 𝜃𝑘 ≈ 𝑣0

𝑔

∫ 𝑡

0 𝛿𝜃𝑘 ≈ 𝑣0
𝑔

√︁
3𝛾0

∫ 𝑡

0 𝐵
(4)
𝑡 ′ with maximal321

extension ±2𝜎𝑥 ≈ ±2𝑣0
𝑔

√︁
𝛾0𝑡3 ≈ ±52 km, in agreement with figure 3. Finally, we estimate a322

first-order delay along the propagation 𝛿𝑡 = 𝑡 − (𝑦− 𝑦(0))/𝑣0
𝑔 ≈

∫ 𝑡

0 (1− sin 𝜃𝑘) ≈ 1
2

∫ 𝑡

0 𝛿𝜃2
𝑘
≈323

3
2𝛾0

∫ 𝑡

0 (𝐵 (4)
𝑡 ′ )2, with mean value E𝛿𝑡 = 3

4𝛾0𝑡
2.324

5.3. Wave groups trapped in a 2D Euler turbulent jet325

Tests are now performed for rays traveling in fast and strongly heterogeneous 2D Euler flows.326
Classical fast wave models – assuming flows of weak amplitude and often uniform statistics –327
are expected to fail here. Jets exhibit strong current gradients (e.g. Kudryavtsev et al. 2017)328
creating strong ray focusing and possibly rogue events. Passing through localized spatial329
structures, caustics can appear but solely from unrealistically collimated wave trains (White330
& Fornberg 1998; Heller et al. 2008; Wang et al. 2023). Occurrences strongly reduce for331
finite directional spread (Slunyaev & Shrira 2023). Here, wave groups are trapped in a jet, but332
nonlinear wave interactions are neglected. The high-resolution numerical simulations (see333
figure 5) reveal that even linear wave trains are well trapped in adversarial currents. Freund334
& Fleischman (2002) observed a similar behavior for acoustic waves in a 3D turbulent jet.335
Note that during our simulation, rays cross the domain several times (because of the doubly336
periodic boundary conditions, see appendix for technical details). Top (resp. bottom) of the337
jet, the vorticity and thus – at first order – rays curvatures (Dysthe 2001) are negative (resp.338
positve). Therefore, rays oscillate around the jet. A toy model can explain this behavior.339
Following the multiscale stochastic approach (4.3)-(4.6), wave scattering is also taken into340
account.341

For very-coarsed-grained (4 × 4) current 𝒗, oscillation remains, but most of the scattering342
vanishes, as illustrated by figure 6. Moreover, the curvature of the jet creates artificial wave343
focusing at 𝑡 = 8 and 10 days. Introducing a time-uncorrelated model (3.10) corrects the344
resolution issue on figure 7. Figure 8 plots the current ADSD. The current is strong (∥𝒗∥ ≃ 1.4345

m.s−1), and the usual fast wave approximation cannot be applied ( ∥𝒗 ∥
𝑣0
𝑔

≃ 1.2×10−1). However,346

the proposed modified fast wave model is valid, even at the very coarse 4 × 4 resolution.347
Indeed, 2D Euler spectra are steeper than for SQG dynamics, and the length scale ratio is348
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Figure 5: Rays facing a high-resolution (512 × 512) deterministic 2D Euler jet current –
colored by the corresponding wave amplitude (right-hand side colorbar) – computed by

forward advection and superimposed on the current vorticity 𝜔 = ∇⊥ · 𝒗.

already significant at this resolution, 𝑙𝑣′
𝑙𝑣

= 0.14, and the derived time-decorrelation ratio is349

small: 𝜖 =
𝑙𝑣′
𝑙𝑣

∥𝒗 ∥
𝑣0
𝑔

= 1.6 × 10−2.350

Furthermore, by approximating the under-resolved current 𝑣, an analytic stochastic solution351
can be obtained for a ray traveling against the current. The large-scale pattern of the jet takes352
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Figure 6: Rays facing a low-resolution (4 × 4) deterministic 2D Euler jet current – colored
by the corresponding wave amplitude (right-hand side colorbar) – computed by forward

advection and superimposed on the current vorticity 𝜔 = ∇⊥ · 𝒗.

a quadratic form353

𝑢 ≈ 𝑈0 − 1
2 𝛽

(
𝑦 − 𝐿𝑦

2

)2
and 𝑣 ≈ 0, with 𝑈0, 𝛽 < 0 (5.2)354

Note, the toy model (5.2) simply considers a straight jet, neglecting its curvature. For weak355

subgrid currents and a ray, (𝑥𝑟 , 𝑦′𝑟 +
𝐿𝑦

2 , 𝑘, 𝜃𝑘), propagating mainly to the right, 𝜃𝑘 is small356
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Figure 7: Rays facing a low-resolution (4 × 4) deterministic 2D Euler jet current plus (one
realization of) the time-uncorrelated stochastic model – colored by the corresponding

wave amplitude (right-hand side colorbar) – computed by forward advection and
superimposed on the current vorticity 𝜔 = ∇⊥ · 𝒗.

and the simplified ray equation (4.4) determines the group position with respect to the jet 𝑦′𝑟357

d
d𝑡
𝑦′𝑟 ≈ 𝑣0

𝑔 sin(𝜃𝑘) = 𝑣0
𝑔𝜃𝑘 +𝑂 (𝜃2

𝑘). (5.3)358

For frozen turbulence, the wave-number and hence 𝑣0
𝑔 will not significantly vary. The other359
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Figure 8: ADSD (𝑚2.𝑠−1/(rad.𝑚−1)) of the resolved high-resolution jet velocity in
brown, low-resolution jet velocity in blue, and modeled stochastic velocity, in red. The

theoretical spectrum slope −3 (black solid line) is imposed, consistent with homogeneous
2D Euler dynamics. The residual ADSD (red line) is set to extrapolate that power law at

small scales.

ray equation (4.3) localizes the group along the jet, 𝑥𝑟 ≈ 𝑥𝑟 (0) + (𝑣0
𝑔 − 𝑢)𝑡, dropping the360

𝑂 (𝜃2
𝑘
) from now on. Moreover, 𝒌̃⊥ · ∇𝒗ᵀ 𝒌̃ ≈ −𝜕𝑦𝑢 and the dynamics of wave vector angle361

(4.6) simplifies to a stochastic oscillator equation:362

d2

d𝑡2
𝑦′𝑟 = 𝑣0

𝑔

d
d𝑡
𝜃𝑘 = −𝜕𝑦 (𝑣0

𝑔𝑢) + 𝑣0
𝑔

√︁
3𝛾0 ¤𝐵 (4)

𝑡 = −𝜔2
𝑟 𝑦

′
𝑟 + 𝑣0

𝑔

√︁
3𝛾0 ¤𝐵 (4)

𝑡 . (5.4)363

with 𝜔𝑟 =

√︃
|𝑣0

𝑔𝛽 |. Here 𝑣0
𝑔𝑢 plays the role of a potential, trapping the rays in the jet vicinity,364

whereas the noise accounts for wave scattering. Solution of this linear equation is known365
(e.g. Resseguier et al. 2017a, Eq.(51)-(55)):366

𝑦𝑟 (𝑡) =
𝐿𝑦

2 + 𝑦′𝑟 (0) cos(𝜔𝑟 𝑡) +
𝑣0
𝑔

𝜔𝑟
𝜃𝑘 (0) sin(𝜔𝑟 𝑡)︸                                                ︷︷                                                ︸

=E(𝑦𝑟 (𝑡 ) )

+𝑌𝛾0

√︁
𝜔𝑟

∫ ᵀ

0
sin

(
𝜔𝑟 (𝑡 − 𝑟)

)
d𝐵 (4)

𝑟︸                                     ︷︷                                     ︸
=𝑦′′𝑟 (𝑡 )

, (5.5)367

with 𝑌𝛾0 = 𝑣0
𝑔

√︃
3𝛾0/𝜔3

𝑟 . The wavevector angle solution is similar. The solution ensemble368

mean, E𝑦𝑟 , is a simple coherent deterministic oscillator. This mean solution describes well369
the interaction between the group and the under-resolved current from figure 6. From the370
coarse-scale vorticity shear plotted in figure 9 in the vicinity of the jet, we can estimate371
𝛽 = −2.7 × 10−11m−1.s−1. It yields an oscillation frequency 𝜔𝑟 = 1.3 × 10−5rad.s−1 i.e. a372
period of 2𝜋/𝜔𝑟 = 5.7 days, in agreement with the ray tracing simulations. Note that the373
high-resolution vorticity shear, left panel of figure 9, does not suggest any relevant values to374
explain the ray oscillations. Only the proposed multiscale current decomposition provides a375
quantitative explanation for these oscillations, and by extension for trapping rays inside the376
jet. Added to the mean solution, the random parts, 𝑦′′𝑟 (𝑡), are continuous summations of zero-377
mean incoherent wave fluctuations. At each time 𝑟 , the additive random forcing introduces378
an oscillation. But, the influence of the past excitations is weighed by sine wave due to the379
phase change. The group position and wavevector angle are Gaussian random variables (as380
linear combinations of independent Gaussian variables). Therefore, their finite dimensional381
law (i.e. the multi-time probability density function) are entirely defined by their mean and382
covariance functions. Specifically,383

E
(
𝑦′′𝑟 (𝑡)𝑦′′𝑟 (𝑡 + 𝜏)

)
= 1

4𝑌
2
𝛾0

(
cos(𝜔𝑟𝜏) (2𝜔𝑟 𝑡 − sin(2𝜔𝑟 𝑡)) + sin(𝜔𝑟𝜏) (1 − cos(2𝜔𝑟 𝑡))

)
. (5.6)384
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Figure 9: Vorticity shear 𝜕2
𝑦𝑢 of the deterministic 2D Euler jet current at high-resolution

(512 × 512) (left), at low-resolution (4 × 4) (middle), and the corresponding swell system
period 2𝜋/𝜔𝑟 . Far from the jet (±200 km away), the vorticity shear becomes zero or even

positive, so period larger than 10 days are cropped.

In particular, the variance of the vertical positions reads 𝜎2
𝑦 (𝑡) = 1

4𝑌
2
𝛾0 (2𝜔𝑟 𝑡 − sin(2𝜔𝑟 𝑡)). At385

𝑡 = 2𝜋/𝜔𝑟 , the group has oscillated once around the jet and the maximal position extension386
reaches ±2𝜎𝑦 = ±2

√
𝜋 𝑌𝛾0 = ±42 km, well confirmed by ray simulations. In contrast,387

usual fast wave models (e.g. Smit & Janssen 2019) do not consider the interplay between388
smooth and rough currents, and hence solely predict a classical branched regime with a much389

faster vertical location spreading: ±2𝜎𝑦 = ±2
√︁
(2𝜋)3/3 𝑌𝛾0 = ±217 km. For large time, our390

multiscale approach predicts a scaling in 𝑡, much slower than the usual 𝑡3 scaling of the391
branched regime.392

From the group vertical location and wavevector angle, we can also solve (4.5) analytically393

to estimate the group wavenumber variations. For small wavevector angles, −
∫ 𝑡

0 𝜎 sin(𝜁) ≈394

2
∫ 𝑡

0 𝜔𝜃𝑘 = 2𝛽
∫ 𝑡

0 𝑦′𝑟𝜃𝑘 and (4.9) together with the analytic solutions for 𝑦′𝑟 and 𝜃𝑘395
give a closed stochastic expression for the group wavenumber. Thus, the wavenumber396

factor exp(2𝛽
∫ 𝑡

0 𝑦′𝑟𝜃𝑘) oscillates at frequency 2𝜔𝑟 and the oscillations modulate the wave397

amplitude: ℎ =
√
𝐸 =

√
𝜔0𝑁 = cst.𝑘 1

4 . The modulations are associated with wave-current398
energy exchanges Boury et al. (2023), visible in the colored rays, figures 5, 6 and 7, when399
the groups enter and exit the jet.400

Finally, the conditional ray distribution, 𝑝(𝒙, 𝒌 |𝒙0
𝑟 , 𝒌

0, 𝑡), the action spectrum mean from401
(4.10) and the action mean from (4.11) can all be derived. For a system initially localized402

in (0, 𝐿𝑦

2 ) with action 𝐴0, wavenumber 𝑘0 and a 𝜎0
𝛿𝜃𝑘

-width Gaussian angular spreading,403
propagating to the right, the action mean reads404

E𝐴(𝑥, 𝑦, 𝑡) = 𝐴0𝛿
(
𝑥 − (𝑣0

𝑔 (𝑘0) − 𝑢(𝑦))𝑡
)
N

(
𝑦 − 𝐿𝑦

2
��𝜎̃2

𝑦 (𝑡)
)
, (5.7)405

with N
(
•
��𝜎̃2

𝑦 (𝑡)
)
, a Gaussian function with variance 𝜎̃2

𝑦 (𝑡) = 𝜎2
𝑦 (𝑡) +

(
𝑣0
𝑔

𝜔𝑟
sin(𝜔𝑟 𝑡)𝜎0

𝛿𝜃𝑘

)2
.406

The action is advected in the horizontal direction, and slowly diffuses along the vertical407
direction.408

6. Conclusion409

Developed to generalize the ray-path concept for waves propagating over an heterogeneous410
turbulence, a practical stochastic framework is derived. For fast waves, the smallest scales411
of a turbulent flow decorrelate along the wave propagation. Flows with steeper spectra412



17

decorrelate faster, leading to a broader validity range of fast wave approximations. The413
proposed framework encodes both large-scale refraction and random scattering effects on414
wave statistical properties. The mean wave-action statistics are directly linked to resolved415
strain-rate and vorticity, but also to unresolved KE spectral properties. Both Eulerian and416
Lagrangian views are presented. A convenient calibration method is also proposed for the417
subgrid parametrization.418

Anticipated, random horizontal currents delay wave arrival and augment the initial419
radiative transport equation with a directional diffusive term. These phenomena are illustrated420
with numerical simulations, analytical solutions, and quantitative proxies describing weak421
homogeneous turbulence. Using these proxies, measured delays in ray arrivals, estimated422
wave energy spectral characteristics and decays, and/or varying directional spread shall then423
be used to more quantitatively interpreted the upper the turbulent underlying flow properties.424

The generalized fast wave approximation does takes into account wavenumber variation425
and handles strong heterogeneous flows, like localized jets with strong current gradients. As426
compared to numerical simulations, numerical and theoretical results explain and quantify427
ray trapping effects by jets, unlike usual fast wave approaches.428

Among fast wave literature, isotropic diffusion and, hence, wavenumber diffusion may429
(e.g. Voronovich 1991) or may not (e.g. Bôas & Young 2020) comes into play (see last430
Appendix for details). Future works could adapt our convenient stochastic calculus framework431
to the second models family. Besides, further analytical developments could consider finite-432
size wave groups, their dynamics (Jonsson 1990; White & Fornberg 1998) and statistical433
distributions, or alternatively the Eulerian action dynamics (4.12) with all its multi-point434
stochastic structure. When achieved, this next theoretical development could provide new435
means to analyze wave dynamics with subsequent fast simulations of ensembles. Beside436
comprehension and analysis, our stochastic simulation tools aim at eventually facilitate437
future ensemble-based data assimilation algorithms (Smit et al. 2021).438
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Appendix A. Stochastic forcing covariance449

In this appendix, we will compute the conditionnal covariance of the stochastic forcing of450
our eikonal characteristic equations (4.1), that is:451

2D △
= 1

d𝑡E𝑡

{(
𝜎d𝐵𝑡

d𝜼𝑡

) (
𝜎d𝐵𝑡

d𝜼𝑡

)ᵀ}
=

[
a 𝛴𝜂,𝜎

𝛴 ᵀ
𝜂,𝜎 𝛴𝜂

]
(A 1)452

where, 𝑑𝜼𝑡 = −∇(𝜎d𝐵𝑡 )ᵀ𝒌, denotes the wave-vector stochastic forcing and, 𝛴𝜂d𝑡, its453

covariance, and E𝑡 {•}
△
= E{•|𝒙𝑟 (𝑡), 𝒌 (𝑡)} stands for the conditional expectation evaluated454

with given characteristics (𝒙𝑟 (𝑡), 𝒌 (𝑡)) at the current time 𝑡. Note that in the appendix we455
use Itō notations only.456
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The subgrid velocity, 𝒗′ = 𝜎d𝐵𝑡/d𝑡 is constructed in Fourier space with a divergence-free457
isotropic spatial filter ∇⊥𝜓𝜎 (see (3.10)).458

𝒗′ (𝜿, 𝑡) =
∫

d𝒙 𝒗′ (𝒙, 𝑡)𝑒−i𝜿 ·𝒙 = �𝜎d𝐵𝑡/d𝑡 (𝜿, 𝑡) = i𝜿⊥̂̆𝜓𝜎 (𝜅)d̂𝐵𝑡 (𝜿)/d𝑡, (A 2)459

The computation of the variance tensor a is classical and straightforward from the definition460

of the inverse Fourier transform and the identity E
{
d̂𝐵𝑡 (𝜿1)d̂𝐵𝑡 (𝜿2)

}
= (2𝜋)2𝛿(𝜅1 − 𝜅2)d𝑡.461

We simply need to split the integral of the stochastic forcing spectrum over the current462
wavevector 𝜿 = 𝜅(cos 𝜃𝜅 , sin 𝜃𝜅 ):463

a =
1

(2𝜋)4d𝑡

∬
d𝜿1d𝜿1 E𝑡

{�𝜎d𝐵𝑡 (𝜿1, 𝒌)�𝜎d𝐵𝑡

ᵀ
(𝜿2, 𝒌)

}
𝑒i(𝜿1−𝜿2 ) ·𝒙, (A 3)464

=
1

(2𝜋)2

∫
d𝜿 𝜅2 |̂̆𝜓𝜎 (𝜅) |2

(
− sin 𝜃𝜅
cos 𝜃𝜅

) (
− sin 𝜃𝜅
cos 𝜃𝜅

)ᵀ
, (A 4)465

=
1

(2𝜋)2

∫ ∞

0

∮ 2𝜋

0
d𝜅d𝜃𝜅 𝜅3 |̂̆𝜓𝜎 (𝜅) |2

(
sin2 𝜃𝜅 − sin 𝜃𝜅 cos 𝜃𝜅

− sin 𝜃𝜅 cos 𝜃𝜅 cos2 𝜃𝜅

)
, (A 5)466

=
2

2𝜋
𝑎0

∮ 2𝜋

0
d𝜃𝜅

(
sin2 𝜃𝜅 − sin 𝜃𝜅 cos 𝜃𝜅

− sin 𝜃𝜅 cos 𝜃𝜅 cos2 𝜃𝜅

)
, (A 6)467

= 𝑎0I𝑑 . (A 7)468

Now, the Fourier transform of the wave-vector stochastic forcing is469

d𝜼̂𝑡 = − �∇(𝜎d𝐵𝑡 )ᵀ𝒌 = −i𝜿(i𝜿⊥̂̆𝜓𝜎 d̂𝐵𝑡 ) · 𝒌 = −𝜿(𝒌⊥ · 𝜿)̂̆𝜓𝜎 d̂𝐵𝑡 . (A 8)470

Then, applying the crest-oriented rotation matrix, 𝑴𝑘 =

[
𝒌̃ 𝒌̃

⊥
]
, leads to471

d𝒁̂𝑡 = 𝑴ᵀ
𝑘d𝜼̂𝑡 = −

(
𝒌̃ · 𝜿
𝒌̃
⊥ · 𝜿

)
(𝒌⊥ · 𝜿)̂̆𝜓𝜎 d̂𝐵𝑡 = −

(
cos 𝛿𝜃 sin 𝛿𝜃

sin2 𝛿𝜃

)
𝜅2𝑘 ̂̆𝜓𝜎 d̂𝐵𝑡 , (A 9)472

with 𝛿𝜃 = 𝜃𝜅 − 𝜃𝑘 . From there, we can evaluate the conditional covariance matrix 𝛴𝑍 =473
1
d𝑡E𝑡

{
d𝒁𝑡d𝒁ᵀ

𝑡

}
of d𝒁𝑡 as before:474

𝛴𝑍 =
1

(2𝜋)4d𝑡

∬
d𝜿1d𝜿1 E𝑡

{
d𝒁̂𝑡 (𝜿1, 𝒌)d𝒁̂

ᵀ
𝑡 (𝜿2, 𝒌)

}
𝑒i(𝜿1−𝜿2 ) ·𝒙, (A 10)475

=
1

(2𝜋)2

∫ ∞

0

∮ 2𝜋

0
d𝜅d𝛿𝜃 𝜅5𝑘2 |̂̆𝜓𝜎 (𝜅) |2

(
cos2 𝛿𝜃 sin2 𝛿𝜃 cos 𝛿𝜃 sin3 𝛿𝜃

cos 𝛿𝜃 sin3 𝛿𝜃 sin4 𝛿𝜃

)
,(A 11)476

= 𝛾0𝑘
2
[
1 0
0 3

]
. (A 12)477

Finally, we come back to the canonical frame to get 𝛴𝜂478

𝛴𝜂 = E𝑡
{
d𝜼𝑡d𝜼

ᵀ
𝑡

}
= 𝑴𝑘𝛴𝑍𝑴

ᵀ
𝑘 = 𝛾0𝑘

2
[
𝒌̃ 𝒌̃

ᵀ + 3𝒌̃⊥
(
𝒌̃
⊥)ᵀ]

(A 13)479

For noises cross-correlations, by isotropy, it is also straightforward to show that480

𝛴𝜂,𝜎 = 0. (A 14)481

The stochastic forcings of 𝒙𝑟 and 𝒌 are hence (conditionally) independent from one another.482
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Appendix B. Single ray dynamics483

The Itō noise
(
𝜎d𝐵𝑡

d𝜼𝑡

)
is white in time and conditionally Gaussian. Its conditional single-484

point distribution is fully determined by its zero mean and its local covariance matrix (given485
by equations (A 1), (A 7), (A 13) and (A 14)). In particular, we can replace this noise by486
another zero-mean Gaussian vector with the same covariance without changing the single-487

ray dynamics – typically replacing 𝜎d𝐵𝑡 by √
𝑎0

(
d𝐵 (1)

𝑡

d𝐵 (2)
𝑡

)
and d𝒁𝑡 by −√𝛾0𝑘

(
d𝐵 (3)

𝑡√
3d𝐵 (4)

𝑡

)
. It488

yields the simplified ray equations (4.3)-(4.4).489

Then note that from Itō lemma (Oksendal 1998) d𝒌̃ = d
(
cos 𝜃𝑘
sin 𝜃𝑘

)
= 𝒌̃

⊥d𝜃𝑘 − 1
2 𝒌̃d <490

𝜃𝑘 , 𝜃𝑘 >𝑡 where < •, • >𝑡 denotes the quadratic covariation. Thus,491

d𝒌 = d𝑘 𝒌̃ + 𝑘d𝒌̃ + d < 𝑘, 𝒌̃ >= (d𝑘 − 1
2 𝑘d < 𝜃𝑘 , 𝜃𝑘 >𝑡 ) 𝒌̃ + (𝑘d𝜃𝑘 + d < 𝑘, 𝜃𝑘 >𝑡 ) 𝒌̃

⊥ (B 1)492

Projecting this equation and d𝒌 = −∇𝒗ᵀ𝒌d𝑡 + d𝜼𝑡 on 𝒌̃ and 𝒌̃
⊥, we have493 {

d𝑘 = −𝒌̃ · ∇𝒗ᵀ𝒌d𝑡 + (d𝑍𝑡 )1 + 1
2 𝑘d < 𝜃𝑘 , 𝜃𝑘 >𝑡

𝑘d𝜃𝑘 = −𝒌̃⊥ · ∇𝒗ᵀ𝒌d𝑡 + (d𝑍𝑡 )2 − d < 𝑘, 𝜃𝑘 >𝑡

, (B 2)494 {
d𝑘 = −𝒌̃ · ∇𝒗ᵀ𝒌d𝑡 + (d𝑍𝑡 )1 + 1

2 𝑘
−1d < 𝑍2, 𝑍2 >𝑡

d𝜃𝑘 = −𝒌̃⊥ · ∇𝒗ᵀ 𝒌̃d𝑡 + 𝑘−1(d𝑍𝑡 )2 + 1
2 𝑘

−2d < 𝑍1, 𝑍2 >𝑡

. (B 3)495

The treatment of the large-scale terms 𝒌̃ · ∇𝒗ᵀ 𝒌̃ and 𝒌̃
⊥ · ∇𝒗ᵀ 𝒌̃ is classical. Interested496

readers can refer to Lapeyre et al. (1999) for details. From Ito lemma again, d log 𝑘 =497
d𝑘/𝑘 − 1

2 d < 𝑘, 𝑘 >𝑡/𝑘2 leading to the simplified wave-vector dynamics (4.5)-(4.6).498

Appendix C. Subgrid flow anisotropy and comparison with other works499

Throughout this paper, we have considered an isotropic model for the stochastic subgrid500
velocity (3.10). The isotropic diffusivity matrix a = 𝑎0I𝑑 is a good illustration of this. In501
contrast, many authors (e.g. White & Fornberg 1998; Bôas & Young 2020; Smit & Janssen502
2019) assume isotropic and homogeneous turbulence and obtain anisotropic stochastic503

subgrid models for ∥𝒗 ∥
𝑣0
𝑔

→ 0. In these approaches, the integral over 𝛿𝜃 in diffusivity matrix504

computations (A 4) and (A 12) involve singular integrations over the direction 𝒗0
𝑔 = 𝑣0

𝑔 𝒌̃. It505

makes appear a Dirac delta function, 2𝜋𝛿(𝜿 · 𝒗0
𝑔) = 2𝜋

𝜅𝑣0
𝑔

(𝛿(𝜃𝜅 − 𝜃𝑘 − 𝜋
2 ) + 𝛿(𝜃𝜅 − 𝜃𝑘 + 𝜋

2 ))506

(see Appendix in Bôas & Young 2020). This precision imposes a statistical anisotropy for507
𝝈d𝐵𝑡 (oriented along 𝒌) and 𝑑𝜼𝑡 (oriented along 𝒌⊥), eventually leading to a covariance508

𝛴𝑍 = 𝛾0𝑘
2
[
0 0
0 16

]
(Eq. (3.17) in Bôas & Young (2020) and Eq. (24) in Smit & Janssen509

(2019)), no noise d𝑍1, and no Brownian motion 𝐵
(3)
𝑡 . Moreover, because of scaling510

assumption, Bôas & Young (2020) neglect the spatial diffusivity matrix, a, while Smit511

& Janssen (2019) find a = 4𝑎0

(
I𝑑 + 5

4 𝒌̃ 𝒌̃
ᵀ) (Eq. (22)-(23)). In this anisotropic framework,512

the Stratonovich wavevector equation (2.3), d𝒌 = −∇(𝒗d𝑡 + 𝜎 ◦ d𝐵𝑡 )ᵀ𝒌, would involve an513
additional drift term in Itō notations.514

Further developing this anisotropic stochastic closure is an interesting avenue. Neverthe-515
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less, in the present study, we adopt the isotropic model for 𝜎d𝐵𝑡 , which is much more516
convenient for multi-ray numerical simulations.517

Appendix D. Jet simulation518

Again, currents are simulated at a resolution 512× 512 on a 1000-km-width squared domain519
through the same code. A backward velocity 𝑣Bk forces a leftward jet structure.520

𝜕𝑡𝜔 + 𝒗 · ∇𝜔 = 𝑆𝜔 with 𝒗 = ∇
⊥Δ−1(𝜔 + 𝜔Bk). (D 1)521

𝑆𝜔 encompasses the linear drag and the hyperviscosity, and the background vorticity, 𝜔Bk,522
is a smooth step function with a wavy interface at 𝑦 = 𝑌Bk(𝑥):523

𝜔Bk(𝑥, 𝑦) = 𝛺Bk

(
1
2 − erf

(
𝑦 − 𝑌Bk(𝑥)

𝐿𝜔
𝑦

))
with 𝑌Bk(𝑥) = 𝐿𝑦

(
1
2 + 1

30 cos
(

2𝜋
𝐿𝑥
𝑥

))
(D 2)524

To better highlight the interplay between ray oscillations and scattering, we consider525
very-collimated swells, with a spatial extension of 100𝜆 = 25 km.526

Besides, the curvature of the simulated jet can force an additional faster oscillation around527
the jet for small enough wavevector angle. Indeed, a wave group traveling exactly rightward528
would cross an alternation of positive and negative vorticity regions with a period 𝐿𝑥/(𝑣0

𝑔 −529

𝑈0) ≈ 1 day < 2𝜋/𝜔𝑟 . Here, we set an initial wavevector angle large enough to prevent the530
additional harmonics.531
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