INRA

Stochastic closures for real-time fluid applications

Talla M., Caville C., Moneyron A., Lepape G., Jacquet P., Wallian L., **Resseguier V.**, Stabile G.

Context Observer for wind turbine application

Application: Real-time estimation and prediction of 3D turbulent flow using strongly-limited computational resources & few sensors

Scientific problem : Simulation & data assimilation under severe dimensional reduction typically, $10^7 \rightarrow O(10)$ degrees of freedom

> Content

I. State of the art

- Intrusive reduced order model (ROM)
- Large Eddy Simulation (LES) & hyperreduction
- Data assimilation

II. Stochastic closure

- Location uncertainty models (LUM)
- Stochastic ROM for turbulent flows

III. Numerical results

- Test cases
- > Deterministic hyperreduction could be improved
- But data assimilation does the job!

I. State of the art

Intrusive reduced order model (ROM)

LES and hyperreduction

Data assimilation

 \geq

Intrusive reduced order model (ROM)

Combine physical models and learning approaches

• <u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:

Intrusive reduced order model (ROM)

Combine physical models and learning approaches

• <u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:

- Large Eddy Simulation (LES) & hyperreduction How to deal with turbulent unsteady flows ?
 - DNS cannot generate large amount of 3D turbulent flow data
 - Possible with turbulence models > Smagorinsky LES

$$\partial_t v + C(v, v) = -\nabla p + D(v) + F(v)$$
Advection
Pressure
Viscous
term
Smagorinsky
term

with F a non-polynomial differential operator

- Issue for Galerkin projection / ROM
- Solution : Hyperreduction > Discrete Empirical Interpolation Method (DEIM)

$$F(x,t) \approx \widehat{F}(x,t) = \sum_{i=0}^{m} r_i(t)\psi_i(x) = \overline{F}(x) + \sum_{k=1}^{m} \left(\sum_{i=1}^{m} G_{ik}\psi_i(x)\right)F(x_k,t)$$

Chaturantabut & Sorensen et al. (2010). SIAM-ASA J Sc. Comp. 32.5: 2737-2764.

Large Eddy Simulation (LES) & hyperreduction How to deal with turbulent unsteady flows ?

$$F(x,t) \approx \widehat{F}(x,t) = \sum_{i=0}^{m} r_i(t)\psi_i(x) = \overline{F}(x) + \sum_{k=1}^{m} \left(\sum_{i=1}^{m} G_{ik}\psi_i(x)\right)F(x_k,t)$$

Projection error

 $\frac{\mathcal{E}_*(F)}{\|F\|} \le \frac{\|F - \widehat{F}\|}{\|F\|} \le C.\frac{\mathcal{E}_*(F)}{\|F\|}$

• Error decomposition for DEIM

$$\operatorname{Error} = F - \widehat{F} = \left(\prod_{\psi} F - \widehat{F} \right) + \left(I - \prod_{\psi} \right) F$$
$$\underbrace{\underset{\in V_{\psi}}{\overset{}{\overset{}}{\overset{}}}}_{=F' \in V_{\psi}^{\perp}}$$

 $\overline{f} = \frac{1}{T} \int_0^T f$ $\Pi_{\psi} \mathbf{F} = \overline{F} + \sum_{j=1}^m \langle F - \overline{F}, \psi_i \rangle \psi_i$ $V_{\psi} = Span(\psi_i)$

 $\mathcal{E}_*(F) = \left\| \left(I - \Pi_\psi \right) F \right\|$

_	Chaturantab		out & Sorensen et al. (2010). SIAM-ASA J Sc. Comp. 32.5: 2737-2764.	p.
	Carlberg et al. (2011). Int. J Num. Meth. Eng.	, 86(2), 155-181	Rebollo & al. (2017). SIAM-ASA J Num. Analysis. 55.6: 3047-3067.	

> Data assimilation

= Coupling simulations and measurements y

p. 9

II. Stochastic closure

Location uncertainty models (LUM)

Stochastic ROM for turbulent flows

Location uncertainty models (LUM)

Location uncertainty models (LUM) Randomized DNS

v = w + v'

Resolved fields: *w*

Unresolved fields: $v' = \sigma \dot{B}$ (Gaussian, white wrt *t*) Momentum conservation

$$\frac{\mathrm{d}}{\mathrm{dt}}(w(t,X_t)) = F_{(\text{Forces})}$$

Positions of fluid parcels X_t : $\frac{d}{dt}X_t = w(t, X_t) + \sigma(t, X_t) \frac{dB_t}{dt}$ Gaussian
process

white in time

From Ito-Wentzell

with Ito notations

formula (Kunita 1990)

Kunita (1990). *Cambridge Univ. Press* p. 12

Resseguier & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

> Location uncertainty models (LUM) **Randomized DNS**

W

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Kunita (1990). Cambridge Univ. Press p. 13

Resseguier & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

Stochastic ROM for turbulent flows (Red LUM) POD-Galerkin gives SDEs for resolved modes

v = w + v'

Full order : $M \sim 10^7$ Reduced order : $n, m \sim 10$

variant of Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Stochastic ROM for turbulent flows (Red LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n, m \sim 10$

Summary Stochastic ROM + Data assimilation

III. Numerical results

Test cases Deterministic hyperreduction could be improved But data assimilation does the job!

> Deterministic hyperreduction of F

Relative error for the Smagorinsky term F (Re=3900)

- Small $\| . \|_{L^2}$ error
- BUT what about its Galerkin projection Π_{ϕ} F

$$\frac{\left\|\Pi_{\phi}\mathbf{F} - \Pi_{\phi}\hat{F}\right\|}{\left\|\Pi_{\phi}\mathbf{F}\right\|} = \frac{\left\|\Pi_{\phi}\left(\mathbf{F} - \hat{F}\right)\right\|}{\left\|\Pi_{\phi}\mathbf{F}\right\|} \le \frac{\left\|\mathbf{F} - \hat{F}\right\|}{\left\|\Pi_{\phi}\mathbf{F}\right\|} \sim \underbrace{\left(\frac{\left\|\mathbf{F}\right\|}{\left\|\Pi_{\phi}\mathbf{F}\right\|}\right)}_{\sim 100} \underbrace{\left(\frac{\left\|\mathbf{F} - \hat{F}\right\|}{\left\|\mathbf{F}\right\|}\right)}_{\ll 1}$$

Deterministic hyperreduction of F could be improved >

$F - \hat{F} = (\Pi_{\psi}F - \hat{F}) + F'_{\psi}$ $\Pi_{\phi}F - \Pi_{\phi}\hat{F} = \Pi_{\phi}(\Pi_{\psi}F - \hat{F}) + \Pi_{\phi}F'$

p. 21

Relative error for the Smagorinsky term F & its Galerkin projection $\Pi_{\phi} F = \sum_{j=1}^{m} \langle F, \phi_i \rangle \phi_i$ (Re=3900)

Conclusion

> Intrusive ROM : for very fast and robust CFD ($10^7 \rightarrow 4$ degrees of freedom)

- Smagorinsky LES term handled by randomized DEIM
- Closure problems handled by LU-like models
- Efficient estimator for correlated additive & multiplicative noises
- Provide a "generative model" for prior / Model error quantification

> Data assimilation (Bayesian inverse problem) :

to correct the fast simulation on-line

- Unsteady 3D turbulent flow estimation/prediction in the whole spatial domain (large-scale structures)
- From sparse & noisy measurements
- Robust far outside the training set

Next steps

- Better (deterministic & stochastic) hyperreduction
- Non-Markovian closure

- Along-spanwise measurements
- Real measurements

