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Whistler-mode waves in the inner magnetosphere cause electron precipitation in the
atmosphere through the physical process of pitch-angle diffusion. The computation of
pitch-angle diffusion relies on quasi-linear theory and becomes time-consuming as soon as it
is performed at high temporal resolution from satellite measurements of ambient wave and
plasma properties. Such an effort is nevertheless required to capture accurately the variability
and complexity of atmospheric electron precipitation, which are involved in various Earth’s
ionosphere-magnetosphere coupled problems. In this work, we build a global machine-
learning model of event-driven pitch-angle diffusion coefficients for storm conditions based
on the data of a variety of storms observed by the NASA Van Allen Probes. We first proceed
step-by-step by testing 8 nonparametric machine learning methods. With them, we derive
machine learning based models of event-driven diffusion coefficients for the storm of March
2013 associated with high-speed streams.We define 3 diagnostics that allow highlighting of
the properties of the selected model and selection of the best method. Three methods are
retained for their accuracy/efficiency: spline interpolation, the radial basis method, and neural
networks (DNN), the latter being selected for the second step of the study. We then use
event-driven diffusion coefficients computed from 32 high-speed stream storms in order to
build for the first time a statistical event-driven diffusion coefficient that is embedded within
the retained DNN model. We achieve a global mean event-driven model in which we
introduce a two-parameter dependence, with both the Kp-index and time kept as in an
epoch analysis following the storm evolution. The DNN model does not entail any issue to
reproduce quite perfectly its target, i.e., averaged diffusion coefficients, with rare exception in
the Landau resonance region. The DNN mean model is then used to analyze how mean
diffusion coefficients behave compared with individual ones. We find a poor performance of
any mean models compared with individual events, with mean diffusion coefficients
computing the general trend at best, due to their large variability. The DNN-based model
allows simple and fast data exploration of pitch-angle diffusion among its multiple variables.
We finally discuss how to conduct uncertainty quantification of Fokker-Planck simulations of
storm conditions for space weather nowcasting and forecasting.
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1 INTRODUCTION

Pitch angle diffusion is one of the major mechanisms that drive
the structure of the Van Allen radiation belts and cause the well-
known two belt structure. Whistler-mode hiss waves are
responsible for the scattering of energetic electrons by wave-
particle interactions and their subsequent precipitation into the
atmosphere, forming a region devoid of electrons in the inner
magnetosphere, known as the slot region, between the two
radiation belts [1]. Observations of the dynamics of the slot
from the NASA Van Allen Probes [2] are, for instance,
presented in Reeves et al. [3]. Radiation dose received by the
electronics of orbiting spacecraft is then reduced in the slot region.
In the atmosphere, Breneman et al. [4] have observed a direct
correlation between the pulsation of the whistler-mode hiss waves
and precipitated electrons at ~100 km observed from a balloon of
the BARREL mission [5]. Linking directly precipitations and wave
activity remains an open research subject of the ionosphere-
magnetosphere system [6]. The recent review in Ripoll et al. [7]
and references therein bringsmore insight on radiation belt physics
and current open questions.

Pitch angle scattering can be computed either from statistical
models derived from years of satellite observations of the hiss
waves properties, e.g., from missions such as CRRES (e.g., [8]),
the Van Allen Probes (e.g., [9]), and combined missions (e.g.,
[10]), or directly from the evolving observations of the ambient
properties for a particular event (e.g., [11,12]). The latter method
is called the event-driven approach (e.g., [13]) and is the focus of
this article. It consists in feeding a quasi-linear Fokker-Planck
model (here, we use the CEVA code developed originally by
Réveillé [14]) with in-situ measurements of wave properties and
the plasma density observations made by the Van Allen Probes in
order to produce pitch angle diffusion coefficients, Dαα(t) at a
high temporal resolution. The high temporal resolution comes
from refreshing the coefficient values from the temporally
updated parameters, with this new evaluation made at best at
every pass of the satellite and properties assumed as constant
between two passes. Results of Watt et al. [15] have shown that
updating the diffusion coefficients at a time rate of less than 9 h
(representing one Van Allen Probes orbit) was producing the best
accuracy. In return, a computational step requires massively
parallel computations in order to calculate bounced-averaged
pitch angle diffusion coefficients at each satellite pass time, t, and
location, L, i.e., Dαα(t, L, E, α) � Dαα(wi(t, L), ne(t, L), E, α),
with the locally measured wave properties denoted here as wi

(t, L) for i = 1, . . . 5, and the plasma density, ne (t, L), for any
electron at time t, L-shell L, of energy E, and equatorial pitch angle
α. The index i = 1, . . . 5 includes the four main wave properties,
which determine the distribution of a given wave both in
frequency and wave normal angle, i.e., the wave mean
frequency, frequency width, wave normal angle, and wave
normal angle width. The fifth parameter is the wave power,
with a quadratic dependence of the diffusion coefficient on
wave power. General and technical explanations about the
computation of the diffusion coefficients are given in the
second section of this article. For further details of this
method the reader is referred to Ripoll et al. [12,16,17].

Once diffusion coefficients are computed for a given event, one
can repeat the procedure for many events of the same kind (here
applied to high speed stream storms) and derive statistical event-
driven diffusion coefficients ~Dαα(wi, ne, L, E, α), with ~D denoting,
for instance, a temporal average. For comparison, the classic
statistical approach, for which the mean of the properties is used,
produces instead Dαα( ~wi, ~ne, L, E, α). In statistical methods, a
binning on the geomagnetic conditions (using the Kp
geomagnetic index [18,19] or sometimes the AE index [8,10])
is commonly introduced in order to reflect at least partially the
dynamics of the wave-particle interaction. Conversely, our
method allows keeping the non-linearity of the functional
form of the diffusion coefficients and the coupling between all
parameters since we compute means of diffusion coefficients ~Dαα

rather than diffusion coefficients of mean properties. We believe
this is required to capture accurately the variability and
complexity of atmospheric electron precipitation, which is
crucial for studying the Earth’s ionosphere-magnetosphere
coupling. Similarly to statistical methods, we will also re-
introduce a binning with respect to the geomagnetic indices
once we generate statistics of event-driven diffusion coefficient
below, i.e., means of diffusion coefficients ~Dαα per geomagnetic
activity bin, with the use of machine learning techniques.

Machine-learning (ML) techniques have been used for
different problems related to ionospheric physics, such as
ionospheric scintillation [20,21], the estimation of maps of
total electron content (TEC) [22–24], the modeling of the foF2
parameter (which is the highest frequency that reflects from the
ionospheric F2-layer) [25], the generation of maps of the
thermosphere density [26], and the forecast of electron
precipitation [27].

For radiation belt physics, neural networks (NN) are among
the most popular machine learning methods. NN have been used
for geomagnetic indices prediction, such as Dst/SYM-H, Kp, AE,
and AL [28–31] (see also review in [32]). Models of
plasmaspheric density have been developed in Zhelavskaya
et al. [12,33,35] and Chu et al. [36,37], using NN in order to
compensate the lack of density data in radiation belt Fokker-
Planck simulations. For instance, Ma et al. [38] computed pitch
angle and energy diffusion coefficients using the NN-based
density model of Chu et al. [36,37], in the dusk sector where
density can be hard to infer, and used them afterward in Fokker-
Planck simulations. Malaspina et al. [39] use the NN-
plasmasphere model of Chu et al. [36] to quantify the
importance of the density for parameterized maps of whistler-
mode hiss waves, and Camporeale et al. [40] provide estimates of
the uncertainty for the predictions of that NN-plasmasphere
model. Other neural network-based models of plasmaspheric
density have been developed in Zhelavskaya et al. [12,33,35]
and then used in radiation belt Fokker-Planck simulations. For
instance, Wang et al. [41] have performed simulations using
plasmapause positions inferred from a combination of empirical
and Zhelavskaya’s NN-based density model and showed the
importance of the plasmapause positions on the dynamics of
relativistic electrons. For a detailed review of machine learning
methods applied to both ionospheric and magnetospheric
problems, the reader is referred to the review in Camporeale [42].
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In this article, we will show that we can construct a ML model
for a single storm based on assimilating the pitch-angle diffusion
coefficient Dαα(t, L, E, α). Ideally, in order to extend that model
to the prediction of any storm, we would need quantities that
describe the electromagnetic waves and the plasma conditions for
each ongoing storm, which does not exist in practice. Here, we
derive the simplest possible global event-driven model
encompassed within a ML model and built on an existing
large database of event-driven diffusion coefficients. This
means that we have to do prediction-error experiments, trying
to model pitch angle diffusion for storms for all their given
variables, evaluate model errors with the reference data, and
modify the type or the number of the used variables to improve
the model at best. A similar problem was addressed in
Zhelavskaya et al. [33] for a different quantity: the prediction
of the cold electron density, training multiple neural networks
with different variables and producing different time-averages.
Time averaging is also at stake when constructing a global model:
the longer the averaging period, the more regularized the model.
With a regularized model, the machine learning model is easier to
obtain, but its predictive ability is degraded considering a sample
event. Yet, regularization should also help in generalizing the
model to out-of-sample events.

As a first step, we construct a specific-event model using data
from one storm (i.e., March 1, 2013). In other words, we build a
regression model for Dαα(L, E, α) in 3 dimensions. We compare
the results of 8 machine learning methods, such as deep neural
networks, functional approximation, and tree-based models, and
we use different sizes of training dataset to test each model.

As a second step, we construct a global event-driven model
Dαα(t, Kp, L, E, α) with a deep neural network using data from
the 32 high-speed streams (HSS) storms. For each storm, we
extract the geomagnetic index Kp evolving in time during the
3 days of the main and recovery phases of the HSS storms [43].
Time will be kept as a main parameter and serve to produce a
superposed epoch analysis of diffusion during the 3 first days of
the HSS storms. This is based on the recognition that each storm
has a time history, considering, for instance, that two storms
having the same geomagnetic activity index at the beginning of
the storm, or at the end, can still give different pitch-angle
diffusion coefficients (as the data show). The deep neural
network is thus used to learn from a giant diffusion coefficient
database and construct the first statistical event-driven model
diffusion coefficient by whistler-mode hiss waves during HSS
events, parameterized by both epoch time and Kp index. The
machine learning model is thus used to replace averages and
interpolations of the database elements, which one would
perform usually by hand, by a numerical expression, which is
afterward extremely easy to call for any epoch time, Kp index,
location, energy, and pitch angle, without notably altering the
accuracy of the initial database. The article is organized as follows.
After the introduction in Section 1, we present in Section 2 the
dataset and the machine learning methods that are used and
tested in this study. In Section 3, we present our results first for all
methods for the March 1, 2013, storm with regularized data and,
then, for the global, i.e., statistical, even-driven model diffusion
coefficient of HSS events made from a database of 32 HSS storms.

In Section 4, we discuss the global DNN pitch angle diffusion
model and its use for exploration of the database. Conclusions are
given in Section 5.

2 MATERIALS AND METHODS

2.1 Description of Datasets
2.1.1 Pitch Angle Diffusion Coefficients
The diffusion coefficient represents the diffusive effect of a given
electromagnetic wave (defined by its wave properties) on an
energetic electron (with energy E and pitch angle α) trapped
on a magnetic field line at a L-shell L in a medium containing cold
electrons of density ne. Eqs 2–8 of Lyons et al. [44] define the
diffusion coefficients as they are used here. A more synthetic and
modern expression of the diffusion coefficients is available
through Eqs (8, 9) in Mourenas and Ripoll [45] using the
notations of Albert [46]. One can see that the coefficient
directly and explicitly depends on wave amplitude, wave
frequency distribution (defined by a mean frequency and a
mean frequency width), a wave normal distribution (defined
by a mean wave normal angle and mean wave-normal-angle),
and plasma density. Diffusion coefficients are computed with the
CEVA code originally developed by [47]. In this code, bounce
averaged diffusion coefficients are computed following the
method and equations of Lyons et al. [44], which account for
a sum over all harmonics (−n . . . , 0, . . . , n), a wave normal
integration, and bounce averaging between the mirror points. The
limit of low frequency (ωmed/ωce < 1) and high-density
(ωmedωce/ω2

pe ≪ 1) are assumed in these computations. (See
also Albert [48] where this model is derived within these
approximations and analyzed). Drift averaging is then
performed in order to produce mean diffusion coefficients
over the full electron drift. Verification by comparison with
diffusion coefficients computed with the codes from the US
AFRL and BAS (e.g., [49–51]) have been performed in Ripoll
and Mourenas [52]. Validation studies of the CEVA code include
[6,11,12,17,53].

Diffusion coefficients are evaluated from observed properties
in a dynamic way so as to generate event-driven pitch angle
diffusion coefficients. Event-driven diffusion coefficients are
computed by temporal bins of 8 h each day (3 bins a day). As
time is frozen within an 8-h bin and corresponds to roughly a full
orbit of the Van Allen Probes, this allows to have frozen
parameters for the whole L-shell range (from apogee to
perigee of the probes) during each temporal bin. This is made
to be able to solve the Fokker-Planck equation over the entire
radiation belt regions through which trapped electrons are
transported during storms and where they can interact with
electromagnetic ambient waves (albeit the wave is present). An
8-h temporal resolution also allows to account for short
timescales causing non-equilibrium diffusion effects
(i.e., solutions far from steady states) (e.g., [6,15,54]). This
means that we evaluate the diffusion coefficients with new
properties each 8 h during the few days the storm lasts. We
use Van Allen Probes observations of wave amplitude, mean
frequency, mean frequency width, mean wave normal angle,

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 7866393

Kluth et al. Machine Learning Pitch Angle Diffusion Model

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


mean wave-normal-angle, and plasma density so that all
parameters are data-driven. Each one of these ambient
properties changes with time and L-shells as the satellite
observes a new value at each pass. In between two passes, we
assume conditions are stable enough so that we can keep all
parameters constant. This assumption is forced by the lack of
available satellite data at higher rates. Eventually, the diffusion
coefficients are specific to particular chosen events and qualified
as “event-driven” or “event-specific.”

All the wave properties, which were listed above as wi (t, L) for
i = 1, . . . 5, have been extracted from data of whistler-mode hiss
waves (0.05–2 kHz; e.g., [55]). These primitive data are taken
from measurements by the Electric and Magnetic Field
Instrument Suite and Integrated Science (EMFISIS) Waves
instrument aboard the Van Allen Probes [56]. As we do, a
Magnetic Local Time (MLT) dependence of the wave
amplitude (i.e., the square root of the power) is taken into
account by rescaling the locally observed wave amplitude by
the MLT-dependence derived statistically from 4 ears of Van
Allen Probes data by Spasojevic et al. [57]. The latter
approximation is required to account for the great variability
of the wave amplitude with MLT (since measurements at all
MLTs do not exist) but may introduce temporal inaccuracies due
to the use of a statistical model. The MLT rescaling produces
diffusion coefficients that apply over the full azimuthal drift of the
electron. Similarly, dependence of the diffusion coefficient with
the cold electron plasma density (ne(t, L)) is accounted for by
using either the density deduced from the upper hybrid line
measured by EMFISIS [58] or the density computed from
spacecraft charging [59] measured by the Electric Field Wave
instrument (EFW) [60] aboard the Van Allen Probes. We note
that the wave properties are taken from past measured events and
that they are unknown for future events so that any model of
diffusion coefficients cannot be made with the wave properties set
as mathematical variable. Wave properties remain mandatory
parameters that one can either take from direct measurements as
here or from statistical models (e.g., [9,18,19,38,41,57,61]).
Prediction can then be made from postulating a temporal
series of one (or more) geomagnetic index for a given period
of time or a known type of event.

Once the diffusion coefficients have been generated from all
the primitive ambient properties, they only remain dependent on
time t, L-shell L, energy, E, and equatorial pitch angle, α. The
original spatial grid of the diffusion coefficients,Dαα(t, L, E, α), is
composed of 43 uniformly distributed bins in L-shell, from L =
1.3 to L = 5.5. The energy grid is composed of 60 logarithmically
distributed bins from E = 50 keV to E = 6 MeV. The pitch angle
grid is composed of 256 uniformly distributed pitch angles, from
the loss cone pitch angle to 90°. This leads to 660480 values per
time of interest.

Due to the large variability of the ambient properties,
geomagnetic conditions, and position, the values of interest
of the pitch-angle diffusion coefficient spread over many
decades (from 10–19 to 10–4 s−1) so that all our machine
learning models will output the logarithm of the diffusion
coefficient. However, all averages will be made directly on the
pitch-angle diffusion coefficient, since averaging instead its

logarithm would have weighted excessively the lowest
diffusion coefficients and biased them.

During the storm evolution, some of the highest L-shells are
located outside the plasmasphere where hiss waves are absent,
which produces at best a null (when there are traces of the wave in
some denser detached regions) or undefined diffusion coefficients
(when the absence of the wave makes the main parameters
missing). In this case, the coefficients need to be kept as a null
pitch-angle diffusion coefficient in the database and in the
statistics. If they were removed from the data, it would result
in the rare events in which the wave are presents wrongly
dominating the statistics.

2.1.2 Original Full Dataset
In this study, we consider either 1 or 32 storms, 1 or 9 time
intervals, 43 positions, 60 energies, and 256 pitch angles. This
corresponds to 190 million data points, which we call the full
dataset, DS1, in Table 1. This original set is too large for the
herein regression in dimension 3 (i.e., L, E, α) or 5 (i.e., t,
geomagnetic index, L, E, α) and the first task is a strategy to
reduce the amount of data.

In this article, we first restrain the dataset by choosing values of
L at a few discrete points L = 2, 3, 4 and 5, which gives around 18
million data. Five L-shells are enough to be representative of the
general behavior of the diffusion coefficients, i.e., the spread of the
cyclotron component over pitch angle, in order to first focus on
the reduction in (E, α) at fixed L. This dataset is called DS2; see
Table 1. The reduction method in (E, α) is then directly extended
to a finer grid in L in the case of the 32 storms global model (cf.
Section 2.1.4).

2.1.3 Dataset for the Storm of March 2013
The dynamics of the electron radiation belts during the month of
March 2013 have been subject to much attention (e.g.,
[3,11,12,16,62,63]). The storm of March 1, 2013, is associated
with a high-speed solar wind stream that created strong erosion of
the plasmasphere and resulted in outer belt flux dropout events.
The storm was followed by enhancements of relativistic electrons
in the slot region and outer belt during the 3 days. An extended
period of quiet solar wind conditions persisted then for the 11
next days, with the plasmasphere expanding outward to L ~ 5.5.
For this event, Ripoll et al. [11] showed the electron depletion in
both the slot region and the outer belt was caused by pitch angle
scattering from whistler mode hiss waves. Ripoll et al. [16]
extended the demonstration to a global analysis of the 3D (L,
E, α) structure of the radiation belts during the quiet times from
March 4–15 and compared the output of event-driven Fokker-
Planck simulations to pitch angle-resolved Van Allen Probes flux
observations with good agreement.

In this section, we focus on the specific storm of March 1,
2013, and we use the event-driven diffusion coefficients database
that was generated for the studies of Ripoll et al. [16]. Specific
parameters of the diffusion coefficients are given there and not
recalled here. These coefficients use the local wave and data
parameters and as such can contain the noise and the
variability of the measurements. But since the expression of
the diffusion coefficients is made of the combination of

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 7866394

Kluth et al. Machine Learning Pitch Angle Diffusion Model

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


tractable mathematical expressions, with some oscillating Bessel
functions, and a series of summation (over the harmonics) and
integration (over both frequency and wave normal angle) (e.g.,
Albert [48]), the database ends up being quite smooth and not too
noisy. This will be a key property of the data for choosing or
developing an adapted machine learning method. In addition, the
diffusion coefficients are also time-averaged from March 1 to
March 5 in order to provide a single diffusion coefficient defined
for L-shell L, energy E, and pitch angle α. This time-averaging
made over 5 days (representing 15 temporal bins of 8-h averaged
together) produces smoothed data, i.e., a regularized dataset,
which may otherwise be more variable over time and less
smooth (e.g., Figure 5 in Ripoll et al. [12]). As we average, we
mix different geomagnetic conditions and create a mean diffusion
coefficient for that 5-days event. The time-averaging is only done
in this section and will not be done in the HSS section in which we
will keep time as another variable. Absence of noise and
regularized data make our problem specific. On the contrary,
in general, data have uncertainties coming either from our
partial knowledge of the variables, or from data variability.
In our case, we can have experimental and simulation
uncertainties. In such cases, machine learning models have to
avoid over-fitting, by not being too close to the data during
training. In this article, regularization of data was such that
over-fitting was not an issue.

For this storm, we use 4 positions, 60 energies, 256 pitch-
angles, i.e., 61440 data points for (L, E, α, Dαα) listed as DS3_M13
in Table 1. We extract a subset of DS3_M13 that is composed of
84 pitch angles and 60 energies bins, thus 20,160 data points,
listed as TRAIN_M13 in Table 2. This dataset is used for training
and calibrating the internal parameters of the various machine
learning models using cross-validation.

To evaluate the ability of the machine learning models that we
trained on the TRAIN_M13 dataset, to generalize on new data,

we consider 2 test datasets; see Table 2. The first dataset
TEST_M13_L contains more values in the L input. The model
was trained with 4 L-values (L = 2, 3, 4, 5), and here we have 37
values from L = 2 to L = 5: thus we test the interpolation between
the discretization used during the training in the case of a very low
resolution. The other test dataset (TEST_M13) has full resolution
in angles and energies, but the same resolution in L. The test
datasets have no intersection with the training dataset. We have
also excluded all extrapolation points (with an exception for Kp in
Section 3.2.3), signifying that we bound the test datasets with the
bounds of the corresponding training datasets, when evaluating
errors.

2.1.4 Dataset for the 32 HSS Storms
In this section, we extend massively the previous problem from 1
storm to 32 storms. We choose storms all among the same family
of storms called high-speed streams (HSS) so that we can
compare them together, characterize the differences, and
compute relevant statistics. By doing so, we try to optimize
our chances to address similar physical processes and their
spatio-temporal timescales. These 32 HSS were each identified
in Turner et al. [43] between September 2012 and December 2016
(listed in Table 3). Each storm is observed at various MLT
positions, changing with the Probes orbit. When Van Allen
Probe B is at its apogee, the corresponding MLT is reported in
the right column of Table 3. This MLT corresponds roughly to
the most observed MLTs from L above ~ 4 up to L ~ 6. The 32
storms are such that we have 10 events observed from the night
side (MLT = 21–3), 11 from the dusk side (MLT = 15–21), 4 from
the day side (MLT = 9–15), and 7 from the dawn side (MLT =
3–9). Some of the differences we found may be attributed to MLT
variations, though keep in mind that the statistical MLT-rescaling
of the wave power makes the coefficients valid and comparable
over all MLTs.

TABLE 1 | List and properties of the various datasets in use.

Name # Of storm Time L E α # Data Comment

DS1 32 9 43 60 256 1.90E8 Raw data
DS2_L 1 37 5 60 1E4 Storm of March 2013, from DS1
DS2 32 9 4 60 256 1.8E7 Filtered in L, from DS1
DS3_M13 1 4 60 256 6.1E4 Storm of March 2013, from DS2
DS3_AVG avg 9 4 60 256 2.3E6 Averaged (from DS2) global data

TABLE 2 | The datasets used for training (2 first rows) and testing (3 last rows). Test data are obtained by subtracting the training and validation datasets from the data, and all
points that are outside the bounds of these training and validation datasets, so as to avoid extrapolation in the test.

Name Obtained from How # Data Comment

TRAIN_M13 DS3_M13 84 chosen α 20,160 all models trained
8 ≤ α ≤ 89

TRAIN_AVG DS3_AVG shuffled sampling 230,000 DNN trained (only)
TEST_M13_L DS2_L shuffled sampling 5,000 High resolution in L

subtraction of TRAIN_M13
TEST_M13 DS3_M13 by subtracting TRAIN_M13 40,000 Test (L, E, α)
TEST_AVG DS3_AVG shuffled sampling 230,000 Test (Kp, t, L, E, α)

subtraction of TRAIN_AVG
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For each observed storm, we extract wave and plasma data
from the Van Allen Probes during 3 days, every 8 h, which gives 9
intervals of 8 h. The timescale of 3 days is representative of the
HSS main and recovery phases seen in Turner et al. [43]. The
measurements are used as inputs in the simulations of the quasi-
linear pitch-angle diffusion coefficients Ripoll et al. [16]
outputted at this rate, producing the full database DS1.

For each storm and for a given time bin, we have a discretized
grid (L, E, α) of the diffusion coefficient. For each temporal bin,
we store the Kp index (itself averaged over the 8 h bin duration).
The Kp-index is the global geomagnetic activity index that is
based on 3-h measurements from ground-based magnetometers
around the world. The Kp-index ranges from 0 (very little
geomagnetic activity) to 9 (extreme geomagnetic storms). The
Kp index is largely used in the radiation belt models as a main
parameter of wave models driving radiation belt simulations (e.g.,
Cervantes et al. [61]; Sicard-Piet et al. [18]; Wang et al. [41]).
Here, it works as a measure of the storm strength at a given time.
We define averages per Kp index and regroup the diffusion
coefficients per Kp. The Kp index then becomes the 5th
variable, which was first meant to replace the time variable, as
any Kp average model, but we will explain later that time was

nevertheless kept. As such, we have 18 million data points in (t,
Kp, L, E, α, Dαα), which gives data set DS2.

We build a first set of averaged diffusion coefficients by
considering all the 32 storms, each defined at 9 temporal bins,
which now define 9 epoch times. For a given temporal bin j = 1‥9,
for a given Kp = 0, . . . 6, we average Dαα(L, E, α) over all the
storms. We obtained this way 2,300 000 data points, listed as
DS3_AVG in Table 1. The model is defined for (t, Kp, L, E, α).
Averages are made at fixed Kp for each tj. (If we were averaging
without binning by the Kp index, we would produce a superposed
epoch model of diffusion coefficients.) Here, the approach
produces a superposed epoch model of the diffusion
coefficient, further binned by Kp. Such an approach allows the
diffusion coefficients to evolve in time, keeping within its origins
ambient properties that are consistent with each other, always
keeping the coupling between the electron plasma density and all
wave properties. This approach is different from making a
superposed epoch model of the wave properties of HSS and
computing afterwards a single diffusion coefficient from them.
The latter approach has low numerical cost but neglects
correlations between all the properties of the ambient domain
and, therefore, introduces some error (e.g., Ripoll et al. [17]).
From a machine learning perspective, the Kp averaging helps
produce smoothed data, acting as a regularization of the solution
that makes the solution less fluctuating, i.e., less noisy from aML-
perspective, similarly to the temporally-averaged data of the
March 2013 storm (as discussed in section 2.1.3). From
DS3_AVG, we train on 10% of the data, listed as
TRAIN_AVG in Table 2. All datasets are described in
Table 1, training and validation datasets in Table 2 (2 first
rows), and test datasets in Table 2 (3 last rows).

2.2 Machine Learning Methods
In this section we briefly describe the several statistical and
machine learning methods that we used to build the various
models of this study. We considered methods based on local
evaluation (k-nearest neighbors and kernel regression), tree-
based methods (regression tree, bagging and random forest),
neural networks, and function approximations (Radial basis and
splines). All are nonparametric so that we make no assumption
about the distribution of the data. A detailed description of all
these machine learning methods can be found in Hastie et al. [64],
and complementary information about neural networks can be
found in Géron [65]and Goodfellow et al. [66].

2.2.1 K-Nearest Neighbors
A key idea in many supervised machine learning methods is to
think that the targets associated to nearby inputs should be close
to each other. Based on this idea, to predict the target of any new
input data points, it is reasonable to look at the target values of
their surrounding neighbors. This is the whole framework of k-
nearest neighbors machine learning method which predicts the
target of new input data by averaging the target values of its k-
nearest neighbors, measured using the Euclidean distance (see,
for example, Fix and Hodges [67]; Altman [68] and Hastie et al.
[64]). The number of nearest neighbors k is the key parameter
and it is very crucial to tune it using cross-validation technique

TABLE 3 | From left to right: number, Date and time, minimum Sym-H index
(i.e., high resolution Dst index) and MLT of the apogee of probe B of the Van
Allen Probes for each of the 32 high speed streams between September 2012 and
December 2016 of this study (reported from the selection of the HSS events of
Turner et al. [2019]).

Event # Minimum date/Time Min. SYM-H MLT

1 2013–01-26/22:19:00.000 −6.2e+01 2.9
2 2013–04-24/18:11:00.000 −5.2e+01 23.1
3 2013–08-05/02:20:00.000 −5.6e+01 15.5
4 2013–08-16/04:29:00.000 −5.4e+01 15.1
5 2013–08-27/21:43:00.000 −6.4e+01 18.8
6 2013–10-15/03:18:00.000 −5.2e+01 17.2
7 2013–12-08/08:30:00.000 −7.2e+01 15.2
8 2014–02-23/22:48:00.000 −6.3e+01 12
9 2014–08-27/18:18:00.000 −9.0e+01 5.5
10 2014–10-14/18:38:00.000 −5.2e+01 3.7
11 2014–10-20/17:10:00.000 −5.7e+01 3.5
12 2014–11-16/07:24:00.000 −5.1e+01 2.5
13 2015–02-17/23:55:00.000 −7.0e+01 23.3
14 2015–02-24/03:36:00.000 −7.6e+01 23
15 2015–04-16/23:29:00.000 −8.8e+01 21.1
16 2015–05-13/06:59:00.000 −9.8e+01 20
17 2015–05-19/02:55:00.000 −6.4e+01 19.7
18 2015–06-08/07:45:00.000 −1.05e+02 18.9
19 2015–07-05/04:52:00.000 −5.8e+01 17.8
20 2015–07-23/07:28:00.000 −8.3e+01 17.1
21 2015–08-23/08:34:00.000 −6.2e+01 15.8
22 2015–10-04/07:33:00.000 −5.2e+01 14.3
23 2015–12-14/19:04:00.000 −6.0e+01 12
24 2016–02-18/00:28:00.000 −6.0e+01 9.5
25 2016–03-16/23:41:00.000 −6.9e+01 8.4
26 2016–04-13/01:09:00.000 −7.0e+01 7.3
27 2016–05-08/08:15:00.000 −1.05e+02 6.3
28 2016–06-06/06:47:00.000 −5.5e+01 5.3
29 2016–08-23/21:13:00.000 −8.3e+01 2.8
30 2016–10-25/22:57:00.000 −8.1e+01 0.4
31 2016–10-29/07:25:00.000 −7.8e+01 0.3
32 2016–11-25/06:38:00.000 −5.3e+01 23.2
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described in the following. On one hand, if k is too large, a large
number of observations, among which not very representative
ones, contribute to the prediction, resulting in too rough
predictions. On the other hand, if k is too small, the
prediction is made relying only on a small number of
neighbors of the query point, resulting in high variance.

2.2.2 Kernel Regression
The k-nearest neighbors procedure may be modified to obtain a
smoother method, which gives more weight to the closest points
and less to the furthest: instead of specifying a number of
neighbors, the neighborhood is defined according to a distance
notion, via a kernel function, that is a function K: Rd → R+, such
that K(x) = L (‖x‖), where x↦L(x) is nonincreasing. More
specifically, a prediction ŷ of a new data point x is obtained
by setting:

ŷ � ∑n
i�1Kh Xi − x( )Yi∑n
i�1Kh Xi − x( ) ,

where the kernel Kh is defined by Kh(x) = K (x/h), with h the
bandwidth of the kernel, and (Xi, Yi), i = 1, 2, . . . , n, denotes the
input-output training data. Here, a Gaussian kernel has been
considered:

K x( ) � exp −‖x‖2/σ2( ),
for some σ > 0. For more about the method see, for example,
Nadaraya [69] and Watson [70].

2.2.3 Regression Tree
Another nonparametric model commonly used in regression
problems is regression tree. It is an iterative partitioning
algorithm aiming at each step to split the input space along
the value of a chosen predictor and threshold, minimizing the
target variance on both parts of the split (see Breiman et al. [71]).
Growing a tree is equivalent to partitioning the input space into
smaller and smaller regions containing lesser and lesser points.
The prediction of a new data point is the average target values of
the points falling into the same region as the query point.
Growing a single deep depth tree on the training data (small
terminal nodes or small region) will most likely lead to over-
fitting. Moreover, a deep depth tree can be very sensitive (high
variance) meaning that a small change in splitting the training
data can result in a very different structure of the tree. It is then
important to tune the depth of the tree, which is the key
parameter. This may be done using cross validation technique.

2.2.4 Bagging
The aim of this method is to reduce the variance of regression
trees by introducing bootstrap samples from the training data. A
regression tree is grown on each bootstrap sample, and the final
prediction is the average of the predictions of all the trees (see
Breiman [72]). This method is shown to be significantly more
accurate in generalization capability. The parameters of the
method are the number and the depth of the trees to be
constructed on the bootstrap samples.

2.2.5 Random Forest
As each tree in Bagging method is constructed using a bootstrap
sample of the training data, the constructed trees are likely to be
quite correlated. Random forests have been proposed to enhance
reduction of the variance. They aim at producing uncorrelated
trees by randomly selecting only a subset of features at each split in
the process of growing the trees. In regression problems, the size of
the set of features to be randomly selected at each split is usually
taken around

��
p

√
, where p is the total number of features (see, for

instance, Ho [73] and Breiman [74]). In addition to the number of
selected features, the parameters of the method are the depth and
the number of trees.

2.2.6 Neural Networks (DNN)
We use feed-forward neural networks as a regression model. A
neuron is the composition of a nonlinear function (here we use
Relu(x) = max (0, x)) and a linear function. All inputs enter the N1
neurons of the first layer. Then each neuron gives an output, and
each output connects to theN2 neurons of the second layer. We do
the same for all the layers (the number of such layers is the depth of
the network), and we end with a layer of one neuron (because we
have one output, the pitch-angle diffusion coefficient), which has
no nonlinear function. It has been shown [75] that any reasonable
function may be approximated by one layer of neurons, but the
practice has shown that it is better to go deep, which means to use a
lot of layers (which entails a lot of composition of nonlinear
functions, that is to say a lot of interactions between the inputs).

The coefficients of the linear functions of all the neurons are
tuned by an optimization algorithm. This phase is called the
training. We use a variant of the stochastic gradient descent
method (the Adam optimizer) to minimize the mean square error
between data and predictions.

Neural networks are accurate for regression problems and
extend well to a huge dataset or to high dimension problems. One
difficulty is that such a model involves a lot of hyperparameters, and
many combinations of these hyperparametersmay give low accuracy
results. For example, we have to choose the architecture (number of
layers and neurons per layer), the initialization of the linear
coefficients, the optimization algorithm, the number of epochs
(iterations of the algorithm) and batches (splitting of the data to
calculate gradients in the stochastic gradient descent). In order to
optimize these choices, an original specificity of our DNN model is
to use a data-driven method for selecting all these hyperparameters
[76,77]. It uses random forest methods (which has a few
hyperparameters, see Section 2.2.5) and a mapping between the
obtained trees and the architecture of an ensemble of neural
networks. We obtain this way accurate neural networks with only
2 hyperparameters, the depth and the number of trees. When we
obtain this accurate network, we may search for higher accuracy by
playing with other hyperparameters that were fixed in the first step.

2.2.7 Thin Plate Spline
Thin plate splines, introduced by [78], may be seen as an
extension of cubic smoothing splines to the multivariate case
[79]. In the one-dimensional case, cubic smoothing splines are
used to construct new points within the boundaries of a set of
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observations. They are fitted using a penalized least squares
criterion, with the penalty based on the second derivative. The
interpolation function consists of several piecewise cubic
polynomials. Fitting low-degree polynomials to small subsets
of values instead of fitting a single high-degree polynomial to
all data allows us to avoid the Runge phenomenon, that is,
oscillation between points occurring with high-degree
polynomials. Cubic smoothing splines are widely used since
they are easy to implement and the resulting curve seems very
smooth. More specifically, if we observe data (X1, Y1), . . ., (Xn,
Yn), the quantity to be minimized is defined by

‖Y − f‖2 + λ∫ f′′ t( )( )2dt,
where Y is the vector of observed outputs Y1, . . . , Yn and f = (f
(X1), . . ., f (Xn)). In the general case, the main part of the criterion
remains the same, but the shape of the penalty is far more
involved, based on several partial derivatives. Thin plate
splines are given as functions f minimizing

‖Y − f‖2 + λpen f( ),
where

pen f( ) � ∫
Rd

∑
]1+/+]d�m

m!

]1! . . . ]d!
zmf

zu]1
1 . . . zu]d

d

( )
2

du,

and the factor λ drives the weight on the penalty. Here, m is such
that 2m − d > 0, and the ]i’s are nonnegative integers such that∑d

i�1]i � m.

2.2.8 Radial Basis Function Interpolation
A Radial Basis Function (RBF) is a function that depends only on
the distance between the input and a predetermined fixed point,
called a node. We can use RBF as a basis for an interpolator in the
form:

f x( ) � ∑N
i�1

hiϕi x( ), (1)

whereN is the number of nodes, hi are unknown coefficients, andϕi(x)
= ‖x − xi‖, with xi the coordinates of the ith node. Here, we use all the
points in the training set as nodes. The training consists in finding the
values of the coefficients hi by imposing that the interpolant passes
exactly through the targets in the training set, that is f (xi) = Y(xi). This
amounts to solve the linear system X �h � �Y for the vector
�h � (h1, . . . , hN)T, where X is the N × N symmetric matrix
containing all the distances between nodes. Once we have the
coefficients hi, the targets in new data points can be evaluated
directly by using the interpolator in Eq. 1. Even though the RBF
could be generalized by introducing hyper-parameters (called in this
context shape parameters), for instance definingϕi(x) = ‖x− xi‖ + ci, in
this work we have not investigated more general choices of RBF and
used only the form in 1.

2.2.9 Cross-Validation
Each method depends on some key smoothness parameters
(usually called hyperparameters) that need to be tuned

properly to get a good performance. This is done via cross-
validation. K-fold cross-validation consists of breaking down the
training data into K folds {Fk: k = 1, 2, . . . , K}, and for a given
candidate parameter, the corresponding model is constructed
using as training set the K − 1 folds where the remaining fold is
treated as a validation dataset. Thus, for a given value of
parameter β, the corresponding model f is trained K times (K
different combination of K − 1 folds choosing from the total K
folds). We then measure the performance of f at the choice of
parameter β using the cross-validation error defined by

CVE β( ) � 1
K

∑K
k�1

∑
xi∈Fk

f xi( ) − yi( )2

In the particular case where each data subset only contains one
single observation, the method is called leave-one-out cross
validation.

Roughly speaking, this provides the average performance of f
associated with the parameter β on K different unseen folds of the
training data. The parameter β̂ minimizing this cross-validation
error would be a suitable one to be used as a global parameter in
predicting the real testing dataset.

For k-nearest neighbors, kernel regression, regression tree,
bagging, and random forest, a 10-fold cross validation was used.
For thin plate splines, the penalty coefficient is estimated through
generalized cross validation, which may be regarded as an
approximation to leave-one-out. For the neural networks, the
training data set was randomly cut in 3 parts: 80% for the training,
10% for checking over-fitting during the training, and 10% for
selecting the final network. After that hyperparameters selection,
all results presented in this article are obtained on a huge
separated test dataset, as showed in Table 2.

2.2.10 Complexity of the Training and Computational
Time
Training phases are very different between all methods: for KNN
there is only a search over the existing space of data. In tree-based
methods the training corresponds to the construction of the trees.
In DNN the training corresponds to the search for the weighting
factors in the interconnections. All training phases agreed in the
choice of the hyperparameters: as data have no uncertainties, and
are somehow regularized, our methods have to fit to the training
data. This means for tree-based methods to grow deep trees (one
point in the final node), to be very localized for the k-nearest
neighbors method (K = 2) and kernel regression, and to go deep
with neural networks, with many epochs. Ensemble methods do
not need to be pushed too far: for tree-based methods, we used
100 trees, and for neural networks, we averaged the outputs of
around 5 networks. Moreover, thin plate splines are specifically
dedicated to interpolation.

Even if the methods depend on the choice of hyperparameters,
we can still say that the cpu-cost of training is about a minute for
both regression tree and k-nearest neighbours, about 10 min for
bagging and random forests, and 2 h for neural networks, with
each method using around 20,000 data. Predictions are fast for all
methods, meaning they take a few seconds maximum for
60,000 data.
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3 RESULTS

3.1 Results for the Storm of March 2013
The numerical results reported in the following tables and figures
present an analysis of the distribution of the errors: ei � yi − ŷi,
for i = 1, 2, . . . , n, for the different investigated methods, where yi

= log (Dαα), ŷi is the prediction of the considered model, and n is
the size of the considered test dataset. We train our models on the
TRAIN_M13 data set, containing 20,160 samples.

The TEST_M13 test data set is detailed in pitch-angles and
energies but contains only 4 discrete L-shells values (L = 2, 3, 4,
5). The TEST_M13_L data set is however detailed in L and
contains L-shell values regularly spaced from L = 1.6 to L = 5.2
by 0.1 step (37 values) and a few angles and energies values.
These datasets are sampled on a grid and there is no
uncertainty on the points. Hence, as already mentioned, all
models are trained until reaching a small error value on the
training data set. We first start by addressing the error with
respect to the (E,α) resolved grids and then on the grid resolved
in L-shell.

3.1.1 Variation With (E, α)
Results in Table 4 show that the Spline, the RBF, and the DNN
models outperform with the lowest mean and maximal absolute
error. We also observe that the Spline and the RBF have very low
medians which show that they are very good on many samples,

TABLE 4 | Performances of all the methods trained on TRAIN_M13 and tested on
TEST_M13. We consider the absolute error |ei| and report the mean error,
standard deviation, first quartile, median error, third quartile, and maximal error.

Mean Std Q1 Med Q3 Max

Tree 0.014 0.026 0.001 0.005 0.014 0.620
Bag 0.012 0.025 0.001 0.004 0.012 0.483
RF 0.012 0.025 0.001 0.004 0.012 0.448
KNN 0.010 0.017 0.002 0.006 0.011 0.420
KerReg 0.005 0.014 0.000 0.001 0.003 0.466
RBF 0.002 0.009 0.000 0.000 0.001 0.349
Spline 0.002 0.009 0.000 0.000 0.001 0.394
DNN 0.003 0.008 0.001 0.002 0.003 0.302

FIGURE 1 | Violinplots of error ei � yi − ŷi evaluated on (top) TEST_M13 and (bottom) TEST_M13_L of all the methods, trained on TRAIN_M13. For each ML-
method, the outside envelop is the smoothed distribution of error, symmetric for visualization consideration, with a box-whiskers plot inside (median with a white circle,
1st and 3rd quartiles are represented by the border of the box).
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but have also many outliers, with big error. The DNN shows a
median error close to the mean.

The violin plots in the top panel of Figure 1 complement well
Table 4 in showing that the underlying statistical distributions of
the errors differ from one method to the other. DNN, Splines, and
RBF have the most concentrated distributions at low errors,
especially both the Splines and RBF methods, with spline with
a mode around the mean and RBF with a mode around the
median. As seen on Table 4 with the maximal error, this hides
more outliers with Splines and RBF than with DNN.

These results start to exhibit two main families of methods: on
one hand the Tree family (Tree, Bag, RF) with KNN and KerReg,
and on the other the RBF, spline, and DNN methods.

In order to get insights on the differences and similarities
between the machine learning models, we now compute the
correlation between the errors provided by a couple of
different models. The correlation errors are given in Figure 2
for TEST_M13, on the left. First, Figure 2 confirms the 3 methods
(Tree, Bag, RF) fall into the same family, with high correlation
(> 0.8). We will see in the next section that KNN and KerReg will
join this same family, but this is not obvious from the correlation
errors of the left part of Figure 2. On the contrary, we see the
specificity of the DNNmethod which errors do not correlate with
any of the other methods. The closest methods to DNN are the
spline and RBF methods. Similarly, the spline and RBF methods
correlate less with the forest tree method family.

Finally, this study was also conducted at low resolution with 13
energies and 14 pitch angle resolution, representing 728 data
points (results not shown). Although some small changes of
behavior either within or among the methods were visible, the
conclusions were similar, for an admissible accuracy of the
diffusion coefficients. Machine learning methods can thus be
used to find an optimum between accuracy and resolution,
reducing this way the high original cost of computation of the
diffusion coefficients.

3.1.2 Variation With L-Shell
In this section, we consider each method for its ability to capture
the L-shell dependence. It should be noticed that all methods have
been trained on a very crude L-shell resolution, containing 5 L-
shells only, and that they are now tested against data fully resolved
in L-shell. This test is therefore very challenging and only made to
gain insight on the properties of the ML methods. If a full model
in (L, E, α) had to be generated (cf. Section 3.2), the approach
would be to train on a higher L-shell resolution and not to
interpolate a low resolution grid.

Table 5 presents the main error global metrics, with errors
much higher than in the previous section due to the initially low
L-shell resolution. The mean error gradually decays from the
Forest tree family to DNN (from top to bottom). However, the
median error remains more similar, still decaying from top to
bottom. Best performances are always obtained from either the
Spline, the RBF, or the DNN method.

Violin plots of the distributions of errors have been generated
(on the bottom of Figure 1). All the distributions are found very
alike in their global shape, with only subtle differences. Some
methods show two or even three modes which appear as peculiar
oscillations on the edge of the distribution.

Figure 2 (on the right) shows the error correlation among the
couples of models for the test with respect to L-shell. The main
families previously mentioned remain, this time with KNN and
KerReg performing similarly to the Forrest tree family. Based on
these results and the one of the previous section, all 5 models (Tree,
Bag, RF, KNN, KerReg) are regrouped into the same family.

We finalize this series of tests by Figure 3, in which we
compare the forest tree family (represented by the RF

FIGURE 2 | Correlations of error ei � yi − ŷi evaluated on (left) TEST_M13 and (right) TEST_M13_L for all methods, trained on TRAIN_M13.

TABLE 5 | Performances of all the methods trained on TRAIN_M13 and tested on
TEST_M13_L. We consider the absolute error |ei| and report the mean error,
standard deviation, first quartile, median error, third quartile, and maximal error.

Mean Std Q1 Med Q3 Max

Tree 0.371 0.419 0.102 0.265 0.521 4.451
Bag 0.372 0.418 0.102 0.269 0.524 4.448
RF 0.372 0.418 0.102 0.267 0.525 4.459
KNN 0.364 0.378 0.108 0.279 0.520 4.374
KerReg 0.363 0.379 0.111 0.280 0.512 4.350
Spline 0.339 0.320 0.099 0.255 0.462 2.332
RBF 0.316 0.297 0.100 0.234 0.440 2.587
DNN 0.315 0.306 0.100 0.237 0.439 3.063
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method), the spline method, and the DNN method for a few
selected (E, α) but resolved in L-shell. The training phase being
done at L = 2, 3, 4, 5 (indicated by vertical bars), we see all models
provide an exact answer at these points. Everything in between
these points is modeled (orange line plots) and compared with the
exact solution (blue crosses). The random forest model plotted in
Figure 3 (left) uses constant approximation around the training
points so that the approximation is made by step functions and is

extremely crude. It is the same for tree-based methods, k-nearest
neighbor, and kernel regression (not shown). The spline method
does much better in Figure 3 (center), but cannot approximate
brutal variations, as for radial basis model (not shown). The DNN
method in Figure 3 (right) seems to us the most capable for this
difficult exercise, which confirms the global metrics of Table 5.

We conclude that without any prior assumption on a physical
phenomenon and on the database, it is difficult to advise the use

FIGURE 3 |Machine learning pitch angle diffusion coefficients (Dαα(L) in s
−1 on the Y-axis) for theMarch 2013 storm plotted in orange color versus L-shell (X-axis) for

various pitch-angles (20° and 40°) and energies (131, 537, 1,018, 2,033 Kev) computed from (top) random forest, (center) thin plate spline, (bottom) neural network. The
blue dots are the reference original diffusion coefficients (points of TEST_M13_L which were not used in the training and testing phase). Vertical lines represent the
location of the training data of TRAIN_M13 (L = 2, 3, 4, 5). These plots were made with methods that were trained on a subset of TRAIN_M13: we used fewer points
in energy and pitch-angles.
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of a particular machine learning model. One main reason is the
data used to train the model have a big influence on the model
performance, which makes it hard to generalize the capabilities of
a given model. Here, we believe the different series of tests and
comparisons are explicit enough to conclude that the DNN
method is a good candidate to perform the rest of the study
and to generate a more global model.

3.2 Results for the Global Model of Pitch
Angle Diffusion During HSS Storms
In this section, we use the data from 32 storms in order to build a
database of statistical event-driven diffusion coefficients that is
embedded within a machine learning model for facilitating its
use. The method relies on constructing first an averaged model
and then using the deep neural network (DNN) previously selected
to learn and output the solution of the averaged model. As in the
previous sections, we will see the machine learning model does not
entail any issue to interpolate and reproduce the averaged model.
Questions arise more about the physical choices we make to build
the averaged model (cf. discussion below and in Section 4.1).
Interestingly, the machine learning model was of great help for
the various investigations we conducted. As the training step was
quite fast (based on the knowledge acquired during the March 2013
storm study), we could test different ways of manipulating and
averaging the data when iterating to choose how to best parametrize
the statistical model. Another strength of the machine learning
approach is the simplicity of performing comparisons with the
model since it delivers continuous maps of the solution with a
simple numerical subroutine able to output a 5 to 6 dimensions
solution. On the contrary, manipulating directly the database and
using discrete points is very constraining. It can also be source of
direct errors or interpretation errors when it is a given plotting
software (e.g., Python subroutines) that carries intrinsic ad-hoc
interpolation with integrated smoothing procedures.

3.2.1 Training the DNN Global Model
The data used to generate the global model is DS3_AVG described
in Section 2.1.4with 2.3e6 data points. We then use TRAIN_AVG

(2.3e5 data points), unless specified differently for training and
validation, and TEST_AVG (2.3e5 data points) for test.

The training of the global model Dαα(Kp, t, L, E, α) was not
harder than the model previously trained for the storm of March
2013 in Section 3.1. The two more dimensions of the input
space entailed a larger neural network. The bigger amount of
data (from 20,000 to 230,000) caused a longer training.
Generating the whole model took a few hours of
computation on a standard computer. For comparison the
simple generation of a mean model, without machine
learning and performing only means throughout the whole
database, took a few days on the same computer. Again for
comparison, computing 19.3M diffusion coefficients for around
10-days event takes around 15,600 h spread over 1,300
processors on a CEA massively parallel supercomputer [17].
This brings another advantage of machine learning methods to
be able to manipulate simply and at low cost a large database,
with the possibility to operate on them basic statistical
operations useful for the understanding of the database.

In Figure 4 (left), we represent the mean average error
(MAE), the mean square error (MSE), and one minus the
explained variance score (EVS) computed when the model is
evaluated against the TEST_AVG test dataset (230,000 data not
used during the training phase performed with the
TRAIN_AVG dataset). Because the dataset contains little
noise, we can train neural networks going deep, with depths
of the network going from 6 to 11 hidden layers on the x-axis.
We see an optimum of low values of the three metrics is found
for a depth of 9.

The same three quantities are plotted in Figure 4 (center)
using different sizes of training dataset (from 1 to 15% of the
TRAIN_AVG dataset), with DNN of depth 8 or 9. From these
results, we selected the neural network of depth 9 trained with
10% of the data. As over-fitting is not an issue here, we could
reach better accuracy by taking a more important capacity for the
model, or just by takingmore epochs as discussed next. This is not
obvious on Figure 4 as with a higher depth, error is growing (after
depth 9), but it is possible to be more accurate by varying all
hyper-parameters. However, we have also seen that the loss of

FIGURE 4 | Errors calculated on the dataset TEST_AVG are plotted for different DNNmodels, with various depth on the left, and various sizes of training dataset on
the middle. On the left, models are trained on 10% of the data, meaning around 230,000 data. On the middle, dot lines with circles are for a model of depth 8, and
continuous lines with crosses for a model of depth 9. In blue, we plot the Mean Average Error, in red the Mean Square Error, and in black one minus the Explained
Variance Score. On the right, the loss function (MSE) is plotted during the training, evaluated on the training dataset, and on the validation dataset. We see at the end
that we make more often evaluations of these errors, and the training stops selecting the more accurate model in the last epochs. Note that this loss may not be
compared with anything in this article, as it is given on scaled data.
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FIGURE 5 | Pitch angle diffusion coefficients for (1–3 rows) storms 8 and (4–6 rows) storm 5. The first 6 panels show historic pitch-angle diffusion coefficient's at
different (L, E, α) values, with (blue crosses and lines) the raw data of event-driven coefficients (red crosses) the averaged data (on the 32 storms at given (Kp, t, L, E, α)),
and (green lines) the DNN model. The average data (in red) and the DNN model (in green) (trained on a subset of the average model) are run from the Kp(t) sequence of
each storm plotted at the bottom panel for each of the 9 temporal bins. The good agreement between red crosses and the green line shows the success of the DNN
model at matching its target. Both capture levels and variations, but are not very accurate compared with the event-driven diffusion reference values in blue, showing the
limits of a mean model.
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accuracy due to the DNN model is less the issue than the loss of
accuracy caused by an averaged statistical approach (cf.
discussion in Section 3.2.2).

Figure 4 (right) represents the loss function during the
training and the validation phases of the model of depth 9
over 10% of the data. The loss function is the minimal MSE
computed over all the data and evolving according to the epoch
number, which represents the number of cycles the data are used
in a training or validation step. After 900 epochs, we evaluate
more often the loss function, because we stop at the best loss value
obtained on the validation dataset.

3.2.2 Accuracy of the DNN Global Model
We present in Figure 5 the obtained deep neural network (DNN)
global model of diffusion coefficients, which is plotted in green for
two of the 32 selected storms. We choose for illustration storm 8
(3 top rows) as event-driven and average diffusion coefficients
agree quite well and storm 5 because the opposite occurs. We also
plot in red the average model, which represents what the DNN
model (in green) has to reproduce. Each storm is decomposed in
9 times with its Kp index history (as shown in the bottom panel of
Figure 5) and the DNNmodel is played for the (t,Kp(t)) sequence
of this storm. Results are presented at L = 3, 4, 5. We omit L = 2

FIGURE 6 | The DNN model of (Dαα) (Log10 of s−1) in the (top) (α, E) plane at fixed (L, Kp, t) and (bottom) (t, Kp) plane at fixed (L, E, α).
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for the sake of brevity since diffusion is limited to high energy (see
discussion in Section 3.2.3 and Figure 6 top row).

As we can see for storm 8, the DNN model is very close to the
averagemodel, as it should be, as soon as the intrinsic interpolation
rules of the model have been learnt well. This is confirmed for
storm 5 in Figure 5, which ends our demonstration that the
restitution of the DNN model is accurate. Figures like Figure 5
(3 top rows) have been generated for each of the 32 HSS storms
(not shown), which allows us to reach an individual view of each of
them and confirm the accuracy of the DNN approach. This occurs
at all L-shells used to derive the DNN model.

We now use the DNN mean model to analyze how mean
coefficients behave compared with individual ones. An important
physical question arising in space weather forecasting is the
ability of an average model (e.g., from the DNN approach or
directly from averaged data) to precisely predict the history of
the diffusion during the storm. We thus compare in Figure 5 the
DNN statistical model (in green) with the event-driven diffusion
coefficients (blue cross). We find the average procedure captures
quite well the global variations of the pitch-angle diffusion
coefficient in general for storm 8 but fails by a significant
factor at various (t,L,E,α). This way we start to enlighten the
difference between an event-driven approach and a mean
approach thanks to the machine learning interface. We see
for instance an interesting strong departure at (L = 3, E =
0.3 MeV, α =60°, t= 1.6 days) for storm 8 between both the
average models (green and red) and the event driven model
(blue). Readers will understand in the next section (based on
Figure 6 top, left) that α =60° falls right at the sharp edge
between significant diffusion of the cyclotron harmonics and
absence of diffusion for E = 0.3 MeV electrons at L = 3. Both
average models capture thus (on average) significant diffusion
while for storm 8 at t = 1.6 days the diffusion is negligible,
causing an error by more than 2 orders of magnitude. Note
that all models agree for the time before (t = 1.3) and after (t =
2.). This is likely due to the particularity of the wave conditions at t
= 1.6. Conversely, Storm 5 (fourth to sixth rows of Figure 5) is an
example of the opposite, with a storm for which the diffusion
coefficient behavior (in blue) is opposite to the mean behavior (red
and green). The error between the average model and the event-
driven coefficient is often large, up to 2 orders of magnitude. We
see the same feature as for storm 8 at L = 3, E = 0.3 MeV, α =60.
Large errors at L = 2 (not shown) for 1MeV electrons are also likely
due to the average model missing the particularity of a local
increase of diffusion close to a strong gradient region. At L = 5,
we see the absence of the event-driven coefficients for that case,
except for the point at the latest time, at t = 3 days. This can be due
to the plasmasphere that has not recovered up to L = 5 during the
first 2.6 days and the absence of hiss waves, to the absence of
measurements for that event, or both. The average model returns
low diffusionmost of the time (below 10–6), except for E = 0.3 MeV
and α = 60.

3.2.3 Exploring the DNN Global Model
We now explore and discuss the main physical characteristics of
the statistical mean model of pitch angle diffusion coefficients for
HSS storms thanks to the DNN encapsulation.

At fixed (t, Kp), we see pitch angle diffusion occurs at lower
energy as L increases in Figure 6 (four top rows). At low L-shell
(L < 3), we see a wide region of negligible diffusion in the (E, α)
plane. This region of no interaction is due to the first cyclotron
harmonic that does not reach pitch angles higher than the loss
cone pitch angle [12]. The DNN model has thus to learn more
very low values at low L-shell. This absence of pitch angle
diffusion explains why electrons are not scattered out by hiss
waves and remain trapped at low L-shell in the inner belt. With
the storms compressing the plasmapause, the model allows us to
see better if there is more effect at low L-shell. Figure 6 shows
diffusion is non negligible above ≃ 700 keV at L = 2 and becomes
stronger for active conditions (Kp = 5 at t = 1, first row and third
column) when hiss power is localized deep inside the
plasmasphere. For Landau diffusion (pitch angle above 80°) of
electron below 300 keV, we notice a transition between significant
Landau diffusion and an absence of diffusion for the highest pitch
angle (above 85°) at Kp = 3 and t = 1 day, which is likely the DNN
model reaching its limit. We will come back on this negative
feature in the next section.

At higher L shell (L ≥ 3) and fixed energy, the minimum pitch
angle diffusion occurs between first cyclotron harmonic and the
Landau (n = 0) harmonic (e.g., between α = 75 at L = 4, E =
200 keV, Kp =3, and t = 1). At fixed L shell, the maximal pitch
angle diffusion from cyclotron harmonics occurs at higher energy
as pitch angle increases. The sharp gradients that occur for given
(L, E, α) values in the region of transition between Landau and
cyclotron resonance reduces as L increases, but it remains a
region of possible errors as commented in the previous section for
L = 3, E = 0.3 MeV, and α =60 in the third row of Figure 5.

One could wonder why the diffusion at L = 4 and Kp = 5 is
negligible at t = 1. This is due to the fact that for such active condition
the center of the plasmasphere where hiss is dominant (e.g.,[39]) is
located at lower L-shell, while L = 4 is in a region of minimal hiss
activity, likely in the vicinity of the plasmapause (if beyond, the wave
would not be defined and the diffusion would be null). Further

FIGURE 7 |Numbers of storms that haveKp and t values. The number of
storms in each (t,Kp) bin is written and colored and represents the number of
elements averaged together per (t,Kp).
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investigation in Section 4.1 and Figure 7 will show that there exists
only once case of storm having Kp = 5 and t = 1 so that the mean
DNNmodel has learnt the solution shown in Figure 6 (two top rows
and third column) from a single storm event. As interesting is the
absence of storms with Kp = 5 at t = 2 days (cf. Figure 7) so that the
model is extrapolating with respect to Kp in Figure 6(two top rows
and fourth column). At t = 2 days, the model statistically predicts
some waves with some power due to the fact that likely the
plasmasphere has often recovered to above L = 4 at that time,
bringing some hiss power. We understand the model could learn
such behavior from the data. But would that be occurring in reality if
Kp was still as high as Kp = 5 on the second day of a HSS storm?We
cannot tell from the current data.

Looking at fixed (L, E, α) values in Figure 6 (two bottom rows),
we see any storm can be represented by its evolving path in the (t,Kp)
space, with possibly great differences from one time to another
although each storm belongs to the same kind. There is a large
variability of pitch angle diffusion coefficients with respect to time
looking at a horizontal line of fixedKp. The diversity of the wave and
plasma conditions leads to decay rates varying by orders of
magnitude and although the Kp indices are the same. This
contributes to explain why storms can be so different from one
event to the other (e.g., [80]). This brings the question of the time
resolution of Kp (here 8 h) and the pertinence of this index when
considered as the only parameter of geomagnetic activity. The MLT
location of all the observations could also explain the differences.
Time plays a crucial role in the solution (cf. the discussion on the
interpretation of time in section 4.1), while diffusion coefficients do
not depend on time in most common space weather simulations
(e.g., [61]) in which onlyKp remains in both thewavemodels and the
diffusion coefficients (sometime even in the absence of the L-shell
dependence (e.g., [81]). The variability of the wave parameters calls
for the use of at least two geomagnetic indices or one geomagnetic
index and another relevant parameter (here, directly time).

For a given (L,E), we see in Figure 6 (two bottom rows) the
pattern and shape in at fixed (E, α) is roughly conserved while
the levels changes. This is true because the solution is presented
at not too low L-shell (L ≤ 3) such that the region of minimal
diffusion at moderately high pitch angle between the Landau
and cyclotron resonance is narrower than at lower L-shell
(Ripoll et al. [12]). Nevertheless, there exist regions in the
(E, α) with shapes and variations that differ from the main
general trend, as, for instance, illustrated in Figure 6 (two top
rows).

Further exploration of pitch angle diffusion during HSS events
is discussed in Ripoll et al. [82] and, in particular, the variability of
diffusion within a same Kp index bin. This exploration of the
DNNmodel leads us to look at which diffusion is predicted by the
model during sustained HSS yet unobserved.

4 DISCUSSION

4.1 Average vs. Event-Driven Models
The number of storms for each activity (Kp, t) is represented in
Figure 7. The specificity of storms (e.g., [80]) appears clearly with
a few or none events for some combinations of (Kp, t). For

instance, there is no HSS storm that has a mean Kp = 0 within the
8 first hours. However, there is one HSS storm (over 32) for which
Kp = 1 occurs within the second period of 8 h of the storm. In
great majority, HSS storms have a mean Kp index of Kp = 4 during
the first 8 h. 2.6 days after the storm 70% of HSS storms (22 over
32) have Kp between 1 and 2, indicative of a quite fast recovery.
We also see that averages are made at fixed Kp on a maximum of
16 storms (over 32) at best for a single (Kp, t). This maximum is
reached at Kp = 4 in the first temporal 8 h bin (t = 0.33). The
second bin with the largest number of data is (t = 2.3 days, Kp = 2)
with 14 storms. The largest spread in Kp is for the second day with
5–9 storms in each of the Kp = 0,1,2,3 bin. We have only 3 HSS
storms reaching Kp = 6, each at 3 different times. One of them has
Kp = 6 within the first 8 h. Figure 7 also shows the most probable
activity history of HSS, which is Kp = 4, 3, 3, 2, 1, 3, 2, 2, 1. This is
quite the activity of storm 12 for which we confirm we have good
agreement between the event-driven diffusion coefficients and
the average models (DNN and data) (not shown but similar to the
results of storm 8 in Figure 5). The most probable activity history
of HSS shows interestingly a main decay followed by a second
milder peak of activity (with a mean Kp reaching Kp = 3 again)
after 48 h. This second peak is then followed by a decay to quiet
times within the next 24 h.

As we see that the error is caused by the use of averages, the
immediate question arising is why averaging when making the
DNN model? This is necessary here because of the way our
problem is defined. If one wanted to learn directly from the
individual diffusion coefficients of the 32 storms, the problem
becomes multi-valued and cannot be treated by any machine
learning method (unless one DNNmodel is done for each storm
at each time, which asks then the question on how to aggregate n
DNNmodels together). For a given (t, L, E, α), or a given (Kp, L,
E, α) we found there exist multiple values of the diffusion
coefficient Dαα. We can solve this issue by two ways: either
by using more input parameters, or by averaging data. The Kp-
only model is too rough and causes too much error as we will
discuss next, and thusDαα(t, Kp, L, E, α) was retained. Here, time
could be interpreted as representing any other geomagnetic
index (or some global measure of them). Similarly, one could
have use 2 (e.g., Dst and Kp) or 3 (or more) geomagnetic indices
and their history (Dst* =max24 h (Dst(t)), Kp* =max24 h (Kp(t)))
or characteristic quantities (such as solar wind velocity, dynamic
pressure, etc.) so that the problem becomes single valued,
without averaging. In principle, one could also use all wave
parameters as entry parameters of the unitary diffusion
coefficients Dαα(t, L, E, α) since they were used for the
generation of the single diffusion coefficients. In that case,
the complexity of merging and coupling correctly various
complex database together becomes an issue. Another is the
knowledge of predicted wave parameters in order to use them in
the model (as they are yet non unknown). Adding parameters,
we reduce the possibility of encountering prohibitive multi-
valued solutions, and we expect it will improve the accuracy of
single events.

There are still in turn 3 drawbacks to increase the data size that
can alter accuracy, in particular if too many parameters were
chosen. First, it increases the problem dimensions, thus the
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numerical cost, which should not be a problem for methods such
as neural networks. Machine learning methods relying on solving
for a linear system (such as the RBF method) become, however,
unusable with too large matrices. Dimensionality is an issue for
methods that require the computation of geometrical distances,
as KNN, and methods that solve for a linear system as RBF. The
DNNmethod does not suffer from this issue and has been used in
problems with hundreds and thousands of different input

features. Second, there will be a larger domain in the
parameter space with sparse data that will cause loss of
accuracy in the region of rare occurrence. Third, increasing
too much the dimension can cause over fitting of the problem,
in the sense that the model loses its ability to be general and
represents new events.

When going to more input variables, there is also a trade-off to
find between the expected model accuracy and the variability we

FIGURE 8 |History of the storms 8 and 5.We plot here the same results as in Figure 5 (blue: raw data, red crosses (Kp, t, L, E, α) averagemodel, green crosses (Kp,
t, L, E, α) DNN model) to which we added circles obtained from averaging in time either the average data (red) or directly the DNN model (green); it produces a Kp-
dependent (only) model. The DNNmodel approaches well its target (the average data) but both have a degraded accuracy compared to the event-driven model (in blue),
particularly visible for storm 5 in which diffusion coefficients depart significantly from the average.
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do not want to keep in themodel, such as the dispersion caused by
some measurements or very specific geophysical parameters that
may be spurious. This trade-off can be quantified by the same
method we use to avoid over-fitting during the training phase
of the machine-learning models. The way is to start by testing
models on storms that have not been seen during the training
phase. When the chosen model has reached enough learning
capacity, its error on these new storms will not improve, and
will even grow, signifying that the learning limit has been
reached.

That is why the approach we present in this article is not
unique. Although we retained an approach parametrized with
two parameters, i.e., (Kp, t), the approach should be repeated for
different various set of other relevant parameters, comparisons
among them performed, and ultimately a choice can be made of
the best parametrization reproducing the variability of the
diffusion coefficients (more generally of the targeted quantity).
That is why the simplest, most efficient, and accurate machine
learning method has to be chosen in the first place since the
method needs to be implemented quickly and replicated multiple
times for different choices until eventually reaching a more
definitive and more robust model.

4.2 On a Kp-Only Model
Before the retained average model presented above, we tried a
simpler model, based only on Kp, i.e., Dαα(Kp, L, E, α), as the
modeling of pitch-angle diffusion is not time-dependent in most
common space weather simulations and follows only the
dynamics of a single index, such as the Kp or AE index.
Interestingly, Dαα(Kp, L, E, α) can be obtained in three
different ways: averaging the whole data DS2 over times and
storms, averaging DS3_AVG over time (cf. Section 2.1.4), or by
averaging the machine learning model over time. The two first
methods require to run through the dataset many times and to
select the right data in order to perform the proper averages.
These operations are prone to errors. On the other hand,
averaging the DNN model is extremely seductive because it is
immediate and simple to perform. It may contain errors due to
the DNN intrinsic errors, but this is compensated by the
simplicity. This gives another example of positive outcome of
machine learning methods.

Figure 8 shows the performance of the Dαα(Kp, L, E, α)
approach for storm 8, with the DNN mean-Kp model plotted
with green circles and the mean-Kp averaged data plotted with red
circles (all plotted on top of the data represented in Figure 5 for
illustrating the departure from the time-varying solution). First
the DNN mean-Kp model and the mean-Kp averaged data agree
well together which shows the success of the data assimilation by
the DNN method. This also confirms a simple way to perform
further global averages is to directly average the DNN model
rather than to further average the data (lowering the risk of errors
and simplifying greatly the task). However, both mean-Kpmodels
gives a very rough approximation of the diffusion for a given
event. They predict almost a flat curve giving only at best the
central tendency. The globally low accuracy is more visible for
storm 5 (which diffusion is further away to the mean diffusion)
than for storm 8 (closer to the mean). This confirms the

deterioration of the accuracy by any form of average; the
bigger the ensemble, the higher the error.

4.3 Model Limitations and Future
Improvements
The data we use were not created specifically for this study and, as
such, the discretization is not best optimized for further
encapsulation by a machine learning method. The original set
is too large for the herein regression in dimension 3 or 5 and the
first task is a necessary strategy to reduce the amount of data.
Moreover, when generating data for the purpose of machine
learning modeling, an adaptive sampling strategy should be
preferred. Such a method consists in optimizing at which
variable in (L, E, α) the diffusion coefficient should be
computed. This task is left for a future improvement of the model.

The present DNN model of HSS storms has been computed
for 5 L-shells with a ΔL = 1. One of the next tasks is to generalize
the method to 50 L-shells covering the whole domain with ΔL =
0.1. One way is to repeat the study but spread the teaching onto
randomly chosen L-shells in order to keep the same resolution or
to increase the sampling size, which remains possible with DNN.

Landau diffusion is the highest diffusion we see for pitch angle
above αL > ~ 80° in Figure 6 (top, left). At lower pitch angle,
Landau diffusion is well defined but negligible (cf Mourenas and
Ripoll [45] for an approximation of αL for a given L-shell and
energy). For very large pitch angle, Landau diffusion is strong
almost everywhere in the (L, E) plane, but this strong diffusion is
surrounded by very weak diffusion outside [αL, 90 − ϵ], which
traps and diffuses the particle within that pitch angle range. Only
coupled energy-pitch angle diffusion effects can then change the
electron pitch angle outside of that range [83]. The region of
Landau diffusion is a region with a distinct behavior that requires
particular attention and can cause the DNN network to make
higher local errors (as discussed previously). There can be various
strategies to avoid that difficulty. One can either choose to
generate two distinct DNN models, one for low and moderate
pitch angles (which has the effect to focus on cyclotron
resonance) and the other for larger ones (above αL > ~ 80°

where Landau generally occurs). This strategy can be tricky
because the exact position of the Landau resonance varies also
with the wave and density properties [45] leading to a dependence
with (t, Kp, L, E). The better and simpler strategy, which our study
brings, is to separate the sum of the n-cyclotron harmonics of the
diffusion coefficient from the Landau harmonic (n = 0) when the
diffusion coefficients are computed and to store both. Then, it is
straightforward and more accurate to build a DNN model for
each of the two components: one for the n-cyclotron and one for
the Landau component. The full model is then made by the sum
of both models. The only drawback is the increase of the memory
storage by a factor 2.

Finally, machine learning models provide a wide and
continuous model in a high dimensional space, which can
produce extrapolation and surprising results (right or wrong)
in particular for rare events and in the various high-dimensional
corners of the model. These solutions always require for
verification to go back to the database and to explore it more
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and more to the point of knowing (or trying to know) the data in
all its aspects. This is often very time consuming, if not practically
impossible, even if facilitated by the machine learning method in
use. These difficulties call for reliable and robust testing methods
and metrics to be able to rely more and more on the machine
learning method with less and less verification of the database. In
this work, even though the DNN model has shown a good
accuracy, we do not think we have yet reached this level as,
for instance, there are some remaining issues due to strong
gradients (e.g., associated to Landau diffusion) or there is no
possibility to verify and validate the behavior of the model for
special configuration (e.g., low Kp in the first time of the HSS
storm). The second point may call for using a given mean model
simultaneously with its variance, which signifies using DNN that
propagate the distribution of the data. A mean answer would be
given with a confidence index based on the variance. The
generation of DNN-based median, quartile, and standard
deviation of the diffusion coefficients is thus a promising next
step to help selecting a given model. A second important
application brought by the knowledge of both the mean and
variance is the ability to perform with them uncertainty analysis
of Fokker Planck simulation (e.g., [40]) and better establish the
variability caused by storms and better rank the best possible
scenarios for given conditions.

5 CONCLUSION

In this work, we consider 8 nonparametric methods of machine
learning based on local evaluation (k-nearest neighbors and
kernel regression), tree-based methods (regression tree, bagging
and random forest), neural networks, and function
approximations (Radial basis and splines). With them, we
derive machine learning based models of event-driven
diffusion coefficients first for the storm of March 2013
associated to high-speed streams. We present an approach
that exhibits some selected properties of the machine
learning models in order to select the best method for our
problem among the 8 methods. The approach is based on 3
diagnostics: compute the main global metrics (including mean,
median, minimum, maximum, standard deviation, and
quartiles errors) at various resolution of the database,
generate violin plots for analyzing the error distribution, and
compute the correlation of each method with the other to
enlighten their differences and exhibit the main families. We
find that neural networks (DNN), radial basis functions, and
splines methods performed the best for this storm, with DNN
retained for the next steps of the study.

We then use the diffusion coefficients computed from 32 high-
speed storms in order to build a statistical event-driven diffusion
coefficient that is embedded within the retained DNNmodel. This
is the first model of that kind for two reasons. First the machine
learning model encapsulates the statistical event-driven diffusion
coefficients. Second, this is the first statistical diffusion coefficients
made from averaging event-driven coefficients. The common
approach is to rather build statistical wave and plasma
properties and to compute single diffusion coefficients from them.

The statistics of the event-driven diffusion coefficients are
based on the mean with a double parametrization in epoch
time and Kp. The double parametrization is chosen to keep
both the strength of the storm and follow its history through
epoch time. In comparison, a Kp-only model is found too
inaccurate compared with specific event-driven diffusion
coefficients (by 1–2 orders of magnitudes depending on the
event). The machine learning model step is made for greatly
facilitating the use of the mean model, for instance, in
providing a continuous solution in a high dimensional
space [e.g., (t, L, E, α, Kp)]. We find the DNN model does
not entail any issue to interpolate the averaged model and
reproduces quite perfectly its target. Some small deviations are
found at very high pitch angle for Landau resonance for which
we propose a future solution to bypass this difficulty. We then
use the DNN mean model to analyze how mean diffusion
coefficients behave compared with individual ones. We find a
poor performance of any mean models compared with
individual events, with mean models computing the general
trend at best. Degradation of the accuracy of mean diffusion
coefficients comes for the large variance of event-driven
diffusion coefficients. Mean models can easily deviate by 2
orders of magnitude. This is shown to occur, for instance, in
region of strong gradients of the diffusion coefficients,
basically delimited by the edge of the first cyclotron
resonance in the (E, α) plane.

The strength of the DNN approach is the simplicity of
performing comparisons since the model delivers a continuous
map of the solution with a simple numerical subroutine for a
problem with 5–6 dimensions here. This is illustrated by model
exploration provided in Section 3.2.3. Plotting diffusion
coefficients in the (t, Kp) plane, for instance, shows a wide
variety of solutions, contributing to explain why storms can be
so different from one event to the other.

Machine learning methods and the easily accessible
numerical procedures that favor their use have a wide
potential for the type of problems we presented, whether it is
for manipulating, interpolating, representing, or for analyzing a
huge database of event-driven diffusion coefficients and, more
generally, database of diffusion coefficients combined with the
main parameters used to compute them, such as plasma density
and wave parameters. An inherent drawback is the human
involvement required to analyze these huge databases in
order to potentially identify regions of model deviance or
model breakthrough.

The DNN method that is proposed here has the advantage
to be extended to more parameters characterizing storms
(including OMNI solar wind and geomagnetic index data),
which should improve the accuracy and predictability of
global models. DNN can similarly be used to derive DNN-
based median, quartile, and standard deviation of the
diffusion coefficients. With them, one can perform
uncertainty analysis of Fokker Planck simulation and
better establish the variability caused by storms and better
rank the best possible scenarios for given conditions. We
expect this approach to take more importance in the
coming years.
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