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Abstract

Bladed disks are critical parts of aeronautic turbojet engines requiring numerous dynamic analysis tests
to fully achieve their design process. This work presents subspace state-space identification techniques for
estimation of modal parameters of bladed disks using realistic although numerically generated test case
data. Indeed, modal testing of bladed disks can exhibit high modal density leading to modal estimation
issues. This study focuses on subspace state-space identification framework as it is an efficient way to process
vector-valued time series and thus to estimate modal parameters in a context of high modal density. In order
to evaluate the techniques of interest, a versatile modal model has been specifically implemented to simulate
data representative of full-scale rotating aeronautic fan modal tests. This model is easily adjustable allowing
to evaluate the identification methods in a more or less severe estimation context. The performance of the
investigated methods are discussed and compared with the prescribed parameters of the model. Moreover,
different techniques to estimate the order of the associated state-space model are reviewed and tested over
several simulated configurations. Finally, a method to evaluate the uncertainties over the modal parameters
using covariance of estimator results and pseudospectrum computation is proposed and discussed over the
investigated test cases.

Keywords: modal testing, subspace identification, state-space representation, bladed disks, aeronautic
turbojet engines, uncertainties estimation.

Introduction

Comprehension of energy dissipation phenomena is a crucial challenge in rotor dynamics. As these
phenomena are very wide and complex, experimental studies play an important role to quantify damping. A
recent publication has proposed a method to estimate modal parameters without requiring resonance crossing
using time-frequency representation [1]. This technique has been applied on steam turbine and tackles several
challenges, among which the identification of closed-space modes requiring high frequency resolution not
often possible in operational conditions. Closed-space modes estimation issue has also been put forward for
composite aeronautic fan, this time using piezoelectric induced stepped sine excitations and frequency domain
identification methods [2]. Among the time estimation methods [3], subspace state-space identification
techniques are particularly attractive to meet high modal density identification challenges as they propose to
identify minimal statistics of multivariate time series. This article focuses on comparing different subspace
state-space identification methods. First section presents general concepts for time identification and describes
two subspace state-space methods. Second section briefly addresses the problem of order determination.
Third section focuses on estimation of uncertainties in state-space representation and how to propagate
these uncertainties to modal parameters. Last section deals with application by means of a versatile yet
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representative model of a bladed disk allowing to evaluate the performances of the presented identification
methods. Useful symbols and abbreviations have been summed up at the end of this article.

1. Subspace identification methods

1.1. Time series identification
This section briefly presents prediction theory framework and state-space representation, two concepts

useful for subspace state-space identification methods.
The prediction theory framework [4] formalizes the identification of system dynamics from experimental

observations. It relies on the principle that to identify a causal system is equivalent to predict the future
dynamics knowing its past dynamics. The following of the study considers system dynamics observed through
no discrete time signals. In this context, the prediction theory framework proposes to predict the more
likely realization of the future of the observations yt+τ ∈ Rno at time t with τ > 0 among the possible linear
combinations of yt components. The restriction of the solution to this vector space, denoted St, is particularly
pertinent for linear systems (cf. [4]).

St =

{
ζt =

nζ∑
k=0

Gkyt−k

∣∣∣∣ Gk ∈ Rno×no , nζ ∈ N

}

The synthesized observations ζt are the vector elements and the coefficients Gij,k are the coordinates in
the canonical basis. Mathematical notation Gij,k denotes coefficient of row i and column j of matrix Gk.
Assuming observations are weakly stationary stochastic processes of order two, one can build a scalar product
from the bilinear operator over column vectors (a, b) 7→ E[aT b]. In explicit terms, consider ζt, ηt in St having
respectively coordinates Gij,k, Eij,k in the canonical basis.

⟨ηt, ζt⟩ =
nζ ,nη∑
k,l=0

E
[
yTt−lE

T
l Gkyt−k

]
=

nζ ,nη∑
k,l=0

trace
(
GkΓyy(k−l)E

T
l

)
(1a)

∥ζt∥ =
√
⟨ζt, ζt⟩ (1b)

The autocorrelation function of the weakly stationary observations Γyy(k−l) = E
[
yt−ky

T
t−l

]
has been introduced

in the above equations. Using the norm in equation (1b), the vector space of linear combinations of yt can be
completed to a Hilbert space, denoted H. The restriction to the subspace generated by the past observations
is denoted Yt.

H =

{
ζt =

+∞∑
k=−∞

Gkyt−k

∣∣∣∣ Gk ∈ Rno×no ,

+∞∑
k=−∞

∥Gk∥2F < +∞

}

Yt =

{
ζt =

+∞∑
k=0

Gkyt−k

∣∣∣∣ Gk ∈ Rno×no ,

+∞∑
k=0

∥Gk∥2F < +∞

}

Where ∥.∥F is the Frobenius norm. The prediction theory framework consists in finding, at time t, ŷt+τ the
element of Yt closest to yt+τ . In prediction theory, the identification criterion often requires minimizing the
variance of the error. This is equivalent to choose as estimate the closest element in the sense of the norm
defined in equation (1b). This is why, in prediction theory, the minimum variance estimate is often presented
as the orthogonal projection of the future observations onto the subspace generated by the past observations.
For random variable of L2, the minimum variance estimate coincides with the conditional expectation.

State-space representations are useful to process multivariate time series as they provide compact models
for system dynamics. The presented identification techniques assume linear time invariant systems with
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finite order n. State-space representations can be expressed in "Process" form using the state-space matrices,
the states xt, and the zero-mean perturbation processes wt and vt.

xt+1 = Axt +But + wt

yt = Cxt +Dut + Swt + vt
(2)

with E
[
wtw

T
s

]
=Qδts, E

[
vtv

T
s

]
=Rδts and E

[
wtv

T
s

]
=0

Where yt ∈ Rno is the observation vector at a given time t, and ut ∈ Rni is the excitation vector. The
matrices A,B,C,D are respectively the transition, control, observation and feed-forward matrices. The states
vector xt ∈ Rn gives minimal statistics to describe the system dynamics. The perturbation process on states
transition, w, represents the error over states vector estimate while the perturbation on system observation,
v, depicts the observation error. The two perturbation processes w and v are assumed independent one to
another, uncorrelated in time, Gaussian, and have covariance matrices Q and R respectively. Also, wt and vt
are assumed to be independent of xt and ut. The matrix S models the contribution of the system noise in
the observation equation. To identify subspace using prediction theory framework the system equation (2) is
considered over finite time recursion h, called "horizon", leading to the following stacked vector equation.

yt|h = Ohxt + Ψhut|h +𭟋hwt|h + vt|h (3)

with, Oh =


C
CA
...

CAh−1

 mt|h =


mt

mt+1
...

mt+h−1

 for m = y, u, w, v

Ψh =

[
D 0 ... 0
CB D ... 0
...

...
...

...
CAh−2B CAh−3B ... D

]
𭟋h =

[
S 0 ... 0
C S ... 0
...

...
...

...
CAh−2 CAh−3 ... S

]

Where Oh represents the extended observability matrix. In control theory, a system of order n is described
as observable when the observability matrix On is of rank n, formalizing the concept that all the states can
be observed by means of the measured data.

1.2. Minimum variance criterion
A natural choice to estimate the system dynamics consists in minimizing the error between predicted

and measured dynamics. Using the norm presented in the above section, this choice leads to minimizing the
covariance error matrix.

The Multi-Output Error State space (MOESP) identification technique was proposed in 1991 [5]. It
tackles identification of multivariate finite order systems with error in the output signals using a state-
space representation. The main advantage is to propose a compact and efficient identification algorithm
consisting in a pre-processing of signals into "data matrices", a LQ decomposition followed by a singular
value decomposition and finally the resolution of an overdetermined matrix equation. Series of identification
techniques relying on this algorithmic structure have then been proposed to improve this identification
framework. Several variants with and without the use of instrumental variable method has been proposed
"elementary MOESP", "ordinary MOESP", "MOESP-PI", "MOESP-RS" [6–8] and "MOESP-PO" [9].

Numerical algorithms for Subspace State Space System Identification (N4SID), proposed by P. Van
Overschee and B. de Moor [10–12], extends the MOESP techniques to a more general and efficient framework.
N4SID framework proposes two algorithms to estimate the state-space matrices, one using observability
estimation, the other using states estimation. Moreover, this framework has been extended to cover other
identification strategies including the canonical variate analysis [13]. For the numerical tests we have retained
only one of the identification techniques with a criterion based on minimum variance: N4SID with MOESP
weighting. This algorithm is equivalent to MOESP with instrumental variable "PO" (cf. [9]).

The first step of all N4SID algorithms consists in pre-processing the experiment data yt and ut to build
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structured matrices. These matrices are organized as follows:

Mt|h,N =


mt mt+1 . . . mt+N−1

mt+1 mt+2 . . . mt+N
...

...
. . .

...
mt+h−1 mt+h . . . mt+h+N−2

 ∈ Rdim(m)h×N

with m = y, u, w, v.

The triplet (t, h,N) determines the signal samples stored in Mt|h,N as well as the dimension of these matrices.
The orders of time shift h and N are respectively the horizon and the number of temporal samples used to
estimate the statistical expectation empirically. Indeed, using the ergodicity assumption, the estimate of the
expectation of a product comes down to a row matrix multiplication scaled by N :

E
[
ρTt mt

]
=

1

N

N−1∑
k=0

ρTt+kmt+k +O(ϵN )

=
1

N
trace

(
℘t|1,N

TMt|1,N
)
+O(ϵN )

with Mt|1,N =
[
mt mt+1 . . . mt+N−1

]
,

℘t|1,N =
[
ρt ρt+1 . . . ρt+N−1

]
,

and limN→∞ϵN = 0.

Ergodicity assumption gives O(ϵN )≈ 0. The dimension N can be taken such as verifying dim(m)·h≪N , in
such cases data matrix Mt|h,N is said to be wide rectangular. In the prediction theory framework, the row
vector Yt|1,N interprets a finite sampling of the signal yt and the combination of rows of the matrix Yt|h,N
interprets the subspace generated by the sampled signal over a horizon h. The stacked vector equation (3)
gives the following equation for the data matrices:

Yt|h,N = OhXt|1,N + ΨhUt|h,N +𭟋hWt|h,N + Vt|h,N . (4)

N4SID proposes to split the system dynamics in two, a "past" and "future" dynamics, and to identify the
subspace of future states using input information data and past observations. In order to make better use of
past and future concepts, we introduce Mp = Mt|h,N for past data matrix and Mf = Mt+h|h,N for future
data matrix. Then the following matrix equations hold:

Xf = AhXp + C′
hUp + F ′

hWp (5a)
Yf = OhXf + ΨhUf +𭟋hWf + Vf (5b)

with C′
h = [Ah−1B . . . AB B] F ′

h = [Ah−1 . . . A I].

Where the reversed extended reachability matrix has been introduced C′
h. Equation (5a) describes states

transition between the past and future states matrices and equation (5b) corresponds to the observation
equation for future data matrices. As vt and wt are assumed independent of xt and ut equation (5b) can be
written as follows:

Yf = OhXf + ΨhUf + V ′
f (6)

with V ′
f = 𭟋hWf + Vf , 1

NXfV
′T
f = 0 and 1

NUfV
′T
f = 0.

The above formulation will be useful to identify OhXf from known matrices Yf and Uf .
The next step consists in performing the LQ decomposition of the full data matrix H (cf. equation 7).

The LQ decomposition provides an efficient data compression along with a useful decomposition for subspace
identification. This decomposition corresponds to the Gram-Schmidt orthogonalization process for a matrix
interpreted as a stack of row vectors.

H =


Uf

Up

Yp

Yf

 =

Uf

Zp

Yf

 =

L11 0 0
L21 L22 0
L31 L32 L33

Q1

Q2

Q3

 (7)
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In eq. (7), Lij are lower triangular matrices and Qi are rectangular semi-orthogonal matrices with dimension
N along rows. The past data matrix is defined as Zp = [UT

p Y T
p ]T . The LQ decomposition step gives an

efficient decomposition for identification of terms in equation (6).
To further identify the system, N4SID algorithms uses fundamental assumptions. These assumptions

formalize sufficiently pertinent experiments to be able to identify state-space subspaces.

Hypotheses.

rank (Xp) = n (H1)
rank (Up) = rank (Uf ) = hni where hni ≥ n (H2)
span′(Xp) ∩ span′(Up) = span′(Xf ) ∩ span′(Uf ) = {0} (H3)

In the above, span′(M) denotes the vector space obtained from linear combinations of rows of M . Assumption
(H1) follows from having all the n states of system excited in the past data batch. The excitation is assumed
to be persistent exciting of order superior to n meaning the excitation matrices Up and Uf are full row rank
with number of rows exceeding n, leading to assumption (H2). For further details over persistent exciting
condition see references [3]. The last assumption (H3) means that excitations are assumed independent of
the state dynamics. In linear algebra, span′(Xf ) and span′(Uf ) are said to be in direct sum. The direct sum
between spaces is defined by having uniqueness of any decomposition of vectors belonging to these spaces.
This is equivalent to have their intersection reduced to the null vector. The hypothesis (H3) can be verified
by taking a row vector as sum of span′(Xf ) and span′(Uf ) element, it can be shown that the decomposition
is unique using the scalar product induced by E[aT b].

Data compression through LQ decomposition and the above assumptions lead to a decomposition of Yf

over matrices Uf , Zp and Q3. Indeed, assumption (H2) gives that L11 is invertible leading to equation (8),
and matrix Q2 can be deduced using the generalized inverse formula for R22 leading to equation (9).

Q1 = L−1
11 Uf (8)

L32Q2 = L32

[
L+
22 (Zp − L21Q1) +

(
I − L+

22L22

)
Ξ
]

= L32L
+
22

(
Zp − L21L

−1
11 Uf

) (9)

The arbitrary matrix Ξ has been introduced to set up the multiple solutions obtained by general inverse. It
can be shown that ker(L22) ⊂ ker(L32) (see [4] or appendix A) which makes the term L32

(
I − L+

22L22

)
Ξ

vanish as L32 is applied on I − L+
22L22, the projection over ker(L22). Then, a decomposition of Yf follows

from equations (7-9):

Yf = L32L
+
22Zp +

(
L31 − L32L

+
22L21

)
L−1
11 Uf + L33Q3 (10)

with 1
NZpQ

T
3 = 0 and 1

NUfQ
T
3 = 0.

Comparing orthogonality properties below equation (10) and (6), the purely stochastic part of Yf can be
identified V ′

f =L33Q3. Furthermore, it is possible to filter out all the terms with right factor Uf using the
orthogonal projection matrix Π⊥

Uf
= I − U+

f Uf . Then, using ζ to denote OhXf , the identity relation given
by the two decompositions of Yf (equations 6 and 10) yields:

ζΠ⊥
Uf

= OhXfΠ
⊥
Uf

(a)
= L32L

+
22ZpΠ

⊥
Uf

(b)
= L32L

+
22L22 = L32 (11)

"Projected" optimal prediction (N4SID.MOESP).

In the above series of equality, the second equality marked (a) is deduced from the identity relation over Yf

(eq. 10) along with the projection property UfΠ
⊥
Uf

=0. The third equality marked (b) is obtained by using
the LQ decomposition Zp =L21Q1 +L22Q2 with Q1 =L−1

11 Uf (eq. 8) and Q2U
T
f =0. Note that it is possible

to identify directly ζ without the projection Π⊥
Uf

. Appendix B gives further details concerning this more
general result.
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After predicting the optimal states’ trajectory N4SID framework proposes to estimate a realization of the
product OhXf using the compact singular value decomposition of the right-hand side of equation (11):

L32 = UΣV T ≈ UnΣnV
T
n (12)

Complexity reduction (N4SID.MOESP).

where U ∈ Rhno×r and V ∈ RN×r are semi-orthogonal matrices, i.e. UTU = V TV = Ir. The matrix of
singular values Σ ∈ Rr×r is diagonal with positive coefficients. As there is noise over the system dynamics
the rank verifies r= min(hno, N), usually r=hno. To filter out states coming from the noise process a
truncation step is performed consisting in reducing r to n, the assumed number of states of the system. Some
techniques to determine this order n are presented in section 2. The matrices Un ∈ Rhno×n, Σn ∈ Rn×n

and Vn ∈ RN×n in equation (12) denote the truncated singular value decomposition. Any realization of
UnΣnV

T
n in a two-factor product can be used as estimate of Oh and Xf . Equation (13) combines the optimal

projection and the complexity reduction to propose a balanced realization leading to the following estimates
of the observability and states matrices.

OhXfΠ
⊥
Uf

≈
(
UnΣ

1/2
n

)(
Σ

1/2
n V T

n

)
(13)

Ôh = UnΣ
1/2
n (13a)

X̂fΠ⊥
Uf

= Σ
1/2
n V T

n (13b)

From equations (13a,b) two techniques to estimate the state-space matrices are possible. The first technique
estimates A,C from the extended observability matrix estimate (eq. 13a). Indeed, the structure of equation
(3) gives the following estimates.

Ĉ = Ôh(1:no, :) (14a)

Â =
(
Ô(0)

h

)+
Ô(1)

h (14b)

with Ô(0)
h = Ôh(1:end−no, :) Ô(1)

h = Ôh(no:end, :)

In the above, "end" denotes the last index and the symbol ":" alone denotes all the index along the dimension.
For the estimation of state-space matrices B, D as well as the estimation of matrix Ψh see reference [4,
p. 158]. The second technique estimates the states Xf from the right part of the singular value decomposition
of the complexity reduction step, more details over this technique are given in references (cf. [10, 13]). The
computation process involving left part of the singular value decomposition is usually lighter than the one
using the right part, as Un has size hno × n while V T

n has size n×N .

1.3. Maximum correlation criterion
Canonical variate analysis extends the criterion used for optimal estimation by generalizing the least

square principle. This technique was proposed by W. Larimore in 1990 [13] in the continuity of the work
of H. Akaike investigating canonical correlation analysis for system identification [14–16]. It tackles the
identification problem by building canonical variables obtained from an extended prediction criterion. This
criterion can be interpreted as the minimum error variance principle transformed under an arbitrary quadratic
weighting matrix Λ+, taken as the pseudoinverse of a positive semidefinite symmetric matrix Λ. In addition
to this change of prediction criterion, a constraint is added to force the rank of the linear regression to be
equal to the order of the system.

pt = col(yt−1, yt−2, ..., ut−1, ut−1, ut−2, ...)

ft = col(yt, yt+1, yt+2, ...)

min
f̂t=Jnpt

rank(Jn)=n

E
[
∥f̂t − ft∥2Λ+

]
(15)
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In eq. (15), "col" is the operator for stacking column vectors and Jn is a linear transformation to build the
estimate of future observations f̂t from past data pt. Equation (15) is to be interpreted as a constrained
optimization problem for Jn. The notation ∥.∥Λ+ denotes the norm induced by Λ+. For column vector m, this
norm is defined as ∥m∥2Λ+ = mT Λ+m. The resolution of problem (15) can be drawn from a generalization of
the singular value decomposition which uses weighting matrices (cf. [13]). Choosing the matrix which defines
the quadratic weighting as Λ = Σff = ftf

T
t leads to define optimal prediction from a principle of maximum

coefficient of correlation.

corr[a, b] =
cov[a, b]

(var[a] var[b])1/2

The above equation defines the coefficient of correlation between two random variables a and b.
The unified framework N4SID has been shown to include the above-mentioned identification method

making its implementation a variant of the method describes in previous section 1.2 (cf. [12]). To this end,
the above identification procedure has been regrouped into two steps an optimal prediction followed by a
complexity reduction. This implementation is further called N4SID Canonical Variate Analysis (N4SID.CVA).
The optimal prediction principle consists in estimating the best combinations of the past observations and
future excitations to predict accurately the future using all available information. The optimality of the
prediction step is evaluated by means of the Frobenius norm. In consequence, N4SID.MOESP and N4SID.CVA
use the same procedure for "optimal prediction", i.e. perform the LQ decomposition and use the fundamental
hypotheses to obtain the contribution of states in the measurements.

"Projected" optimal prediction (N4SID.CVA)

ζΠ⊥
Uf

= L32 (16)

Where the contribution of states ζ has been defined earlier, ζ := OhXf . The complexity reduction principle
moderates the prediction capacity of the model by imposing the order of the system, i.e. the maximum
amount of past information to use for prediction. Comparing to the explanation of N4SID.MOESP (cf. 1.2), the
complexity reduction step of the full N4SID framework is more elaborated. The singular value decomposition
of states contribution ζ is performed with weighting matrices W1 and W2. The weighting matrix W2 is taken
as Π⊥

Uf
in order to be compliant with the projected optimal prediction step. As mentioned in the beginning

of this section, choosing the weighting matrix Λ (eq. 15) to tackle maximum correlation coefficient will lead
to put the second moment of future observations as weighting matrix. The reference article presenting the
unified framework of N4SID (cf. [12]) has discussed the exact weighting matrix W1 needed to have equivalence
with the CVA technique.

Complexity reduction (N4SID.CVA)

W1ζW2 = UΣV T ≈ UnΣnV
T
n

with, W1 = (YfΠ
⊥
Uf

Y T
f )−1/2

W2 = Π⊥
Uf

The determination of the extended observability matrix followed by the estimation of state-space matrices
A,C is identical to section 1.2.

The N4SID framework makes possible to switch from minimum variance criterion to maximum correlation
criterion by changing the weighting matrix W1. It is interesting to note that the principle of maximum
of correlation coefficient can be extended by the concept of maximum of mutual information between two
random variables. The mutual information analyzes the distance between two probability laws through the
following quantity.

I(L,M) =

∫
l∈L

∫
m∈M

pL,M (l,m) log

(
pL,M (l,m)

pL(l)pM (m)

)
dldm

The mutual information measures the divergence between probability laws given by p(L,M) and p(L)p(M) the
same way entropy measures the amount of information of a random variable [17]. For normally distributed
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variables L and M , the mutual information becomes I(L,M) = −(1− (corr[L,M ])
2
)/2. Then, maximizing the

mutual information between L and M is equivalent to maximizing their coefficient of correlation.

2. Order determination techniques

During the presentation of identification techniques in previous section, the order of the state-space
representation has been processed as a known parameter. However, the number of modes participating in the
identification experiment is unknown in modal tests. Furthermore, taking a wrong system order can lead to
modeling errors in the identification results as the identification algorithm will fit purely noise processes using
system dynamics. To this end, strategies to determine model order have been proposed to give indications
over the optimal order for identification. This section briefly describes two strategies building indicators for
the determination of the optimal order.

The first indicator is a variant of the original Akaike’s information criterion (AIC) [18], the normalized
AIC. This indicator proposes to scale the AIC criterion by the number of temporal samples used for computing
empirically the statistical expectation.

nAIC = log (V) + 2np

N
(17)

In the above, np is the number of unknown parameters in A,B,C matrices, np = n2 + (no + ni)n, and V is
the least square cost function between predicted and observed dynamics. The optimal order is taken as the
order minimizing the nAIC indicator. This minimization can be interpreted as minimizing an estimation
cost function with a penalty over the number of parameters in the system.

The second indicator proposes to observe the evolution of the fitting error with respect to the order of
the state-space model. The fitting error is measured as the relative mean square error between the estimated
and the measured frequency response to a stepped sine excitation. This frequency response is obtained by
computing the forced response over a finite duration at the end of each frequency step, for more details over
the measurement of the frequency response function we refer to a previous study [2].

rRMSEν =

(∑nsteps
i=1 |F̂RF (ωi) − FRF (ωi)|2∑nsteps

i=1 |FRF (ωi)|2

)1/2

(18)

In the above, FRF (ωi) denotes the frequency response function at step with pulsation ωi , and .̂ denotes the
estimated corresponding quantity. This strategy selects the optimal order as the order after which the gain
in fitting error is no longer significant.

3. Uncertainties propagation

This section proposes a technique to use the estimation of covariance matrices of the stochastic processes
in the modal analysis. First, the innovation formulation of state-space models is presented. Then, the
concept of pseudospectrum of a matrix is presented in a general way. The third subsection details the use of
uncertainties estimate and pseudospectrum for the evaluation of modal uncertainties.

3.1. Uncertainties of state-space estimation
The information of the uncertainties of the state-space estimation are carried out by the covariance

matrices, i.e. Q,R, S for state-space models in process form (eq. 2) and by the Kalman gain and the
innovation vector for "Innovation" form. The "Innovation" form of a state-space representation describes the
dynamics of the system with optimal states in the sense of minimum variance of the prediction error. These
states are called Kalman states from the work of R. E. Kalman [19, 20]. The innovation form is presented in
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the equation below with x̂(t|t−1) the Kalman states estimate at time step t using information at time step
t− 1.

x̂(t+1|t) = Ax̂(t|t−1) +But +Ket
ŷt = Cx̂(t|t−1) +Dut

et = yt − ŷt

(19)

Where the innovation process et characterizes the error between the predicted observation ŷt and the actual
observations yt. The Kalman gain K models the effect of noise in the estimated states transition equation.
The optimality condition over the Kalman states can be used to translate state-space representation in
process form into innovation form. Indeed, this condition gives a relation for Kt depending on state matrices
and covariance matrices of state-space model in equation (2) as well as Pt the error covariance matrix of the
"true" states vector xt.

Kt = (APtC + S)
(
CPtC

T +R
)−1

(20)

with, Pt = E
[
(x̂t − xt)(x̂t − xt)

T
]

The estimate of the covariance matrix Pt is obtained by solving a discrete algebraic Riccati equation drawn
from stationary assumption Pt+1 = Pt further denoted P .

P = APAT −
(
APCT + S

) (
CPCT +R

)−1 (
APCT + S

)T
+Q (21)

Equation (21) can be solved numerically for the unknown matrix P using state-space matrices estimate
Â, Ĉ and covariance matrices estimates Q̂, R̂, Ŝ. To estimate these matrices for N4SID.MOESP and N4SID.CVA
one possibility consists in estimating the states X̂f = X̂t+h|h,N from the optimal prediction by using the
pseudoinverse of the estimated matrix Ôh.

X̂f =
(
Ôh

)+
ζ

Having the estimates of state-space matrices Â, B̂, Ĉ, D̂ and states coordinates X̂f , one can deduce the
residues, ρw and ρv, of the one step state-space relation.

[
X̂1

Y0

]
=

[
Â B̂

Ĉ D̂

] [
X̂0

U0

]
+

[
ρw
ρv

]
with


M0 = Mt+h|1,N−1

for M = Ŷ , Û or X̂

X̂1 = X̂t+h+1|1,N−1

The residues can be used to estimate the covariance matrices.[
Q̂ Ŝ

ŜT R̂

]
=

1

N

[
ρwρ

T
w ρwρ

T
v

ρvρ
T
w ρvρ

T
v

]
Having an estimation of the covariance matrices, the Kalman gain can be estimated in turn (cf. 20, 21). The
Kalman gain K and the innovation process et will be used in the following to propagate the uncertainties of
state-space estimation to modal parameter estimation.

3.2. Pseudospectrum as uncertainty propagator
The discrete time state-space representation in equation (19) can be converted into continuous time using

a zero-order hold interpolation and by integrating the continuous state-space model between each time step.
The continuous state-space matrices Ac, Bc,Kc are then given as solutions of the following matrix equation
system where the sampling period is denoted Te.

A = exp (AcTe)
B = A−1

c (exp (AcTe)− I)Bc

K = A−1
c (exp (AcTe)− I)Kc

9



The estimation of the state-space matrices Ac and Bc can be transformed to a modal form using the solution
of the eigenproblem of the continuous state transition matrix. This solution is further denoted Λ for the
diagonal matrix of eigenvalues and Φ for eigenvectors matrix.

q̇(t) = Λq(t) +B′
cu(t) +K ′

ce(t)
y(t) = C ′

cq(t) +Du(t) + e(t)

with, Λ = Φ−1AcΦ B′
c = Φ−1Bc

C ′
c = CcΦ K ′

c = Φ−1Kc

In the above equations, the modal coordinates q(t) = Φ−1x(t) have been introduced.
The ε-pseudospectrum can provide the modal analysis with evaluation of the uncertainties in the state

transition equation. This mathematical concept consists in evaluating the locus of the complex values which
"almost solve" the eigenproblem. Three equivalent definitions can be used to define the ε-pseudospectrum of
a matrix A, further denoted σε(A).

i. The set of solution of the perturbed eigenproblem.

σε(A) = {z ∈ C | ∃E ∈ Rn×n, ∥E∥ < ε and z ∈ λ(A+ E)} (i)

ii. The set of values reaching a sufficiently low residual norm for the eigenproblem.

σε(A) = {z ∈ C | ∃u ∈ Cn, ∥u∥ = 1 and ∥(A− zI)u∥ < ε} (ii)

iii. The set of values making the resolvent reach sufficiently large norm.

σε(A) = {z ∈ C | ∥(A− zI)
−1∥ > 1/ε} (iii)

For more details concerning ε-pseudospectrum concept we refer to references [21] and [22]. Taking into
account uncertainties in the modal analysis leads to consider the perturbed homogeneous equation of states
transition.

σφ = Acφ+Kce

(Ac − σI)φ = −Kce (22)

Equation (22) is obtained by keeping only the stochastic process Kce in the right-hand side. As the stochastic
process −Kce verifies E[Kce] = 0 and is normally distributed, it is possible to use var[Kce] to compute
confidence intervals around zero for equation (22). Evaluating the norm of the above equation one can
recognize the definition (ii) of ε-pseudospectrum of Ac.

∥(Ac − σI)φ∥ < ε (23)

with, ε = α (∥var[Kce]∥2)1/2

In inequality (23), the bound ε has been parametrized using the maximum standard deviation of the
multivariate process −Kce, considering all the possible directions, and the parameter α. In this article, we
have chosen to compute ε-pseudospectra with α=3. This choice corresponds to a 99.7% confidence interval
for one dimension perturbation processes.

3.3. Evaluation of modal uncertainties
The procedure to evaluate modal uncertainties in this study uses ε-pseudospectrum computation. This

computation makes use of the ε-pseudospectrum defined using resolvent sufficiently large condition (cf. iii).
To this end, the Euclidian norm of the resolvent is computed over polar grids of the complex plane centered

10



Figure 1: Illustration of functional z 7→ smin[Ac − zI] around one mode for ε-pseudospectrum computation.
Eigenvalue ; initialization ; ε-pseudospectrum inner , outer , border ; functional inner values
and outer values .

around each eigenvalue. Choosing the Euclidian norm makes the computation of ε-pseudospectrum equivalent
to computing the minimal singular value of the inverse of the resolvent which is Ac − zI for z ∈ C.

smin[Ac − zI] (24)

Where smin denotes the minimal singular value. This pseudospectrum computation technique has been
tested using svd function of numpy [23].

Another strategy computes the required functional more efficiently by using the Schur decomposition of
the matrix Ac as well as inverse Lanczos iterations. The use of the inverse Lanczos iterations is inspired
from observation that this computation is equivalent to finding the minimum positive eigenvalue of a larger
hermitian matrix:

min eig+
[

0 Ac − zI
A∗

c − z∗I 0

]
(25)

where eig+ denotes the positive eigenvalues. Then, the computation can benefit from efficient iterative
methods to compute the largest eigenvalue of a hermitian matrix, like Lanczos iterations. This pseudospectrum
computation technique, known as "inverse Lanczos" strategy, has been tested using eigsh of scipy.sparse
applied on the sparse linear operator associated with the inverse of the matrix in equation (25). For more
details over the iterative method used to compute the eigenvalues we refer to Implicitly Restarted Arnoldi
Method [24]. Although the algorithm based on the inverse Lanczos procedure have less complexity, the
computational costs of the two implementations to compute the ε-pseudospectrum of an estimated matrix Ac

have shown to be equivalent. It is important to stress that this comparison holds for the estimated matrices
which have size n× n which is relatively small, especially compared to matrices coming from finite element
modeling.

The technique to compute ε-pseudospectra for the following of this article uses the "SVD strategy" (24).
The grid selection procedure solves few perturbed eigenproblems defined in equation (i). Then, a polar
grid around each eigenvalue is selected which includes the further perturbed eigenvalue and which have a
radial and angular pace sufficiently low to describe accurately the border of the pseudospectrum. Figure 1
illustrates this pseudospectrum computation. The computed functional is plotted with a meshed surface over
the selected grid. The plane z= ε splits the plotted surface into an inner locus, namely the pseudospectrum,

11
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Figure 2: Reference eigenvalues of the modal model.
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Figure 3: Discrete spatial Fourier transform of mode shapes for modes tagged ±1D,±2D,±3D. Left:
amplitude, right: phase [ rd ].

and an outer locus. The pseudospectrum border is plotted onto the complex plane. This border has a circular
shape for sufficiently small covariance matrices estimate as it is illustrated in figure 1 and has been observed
in results of section 4.2.

Finally, the inner locus of the ε-pseudospectrum gives all the complex values which are compliant with
a certain confidence interval for each eigenvalue. To process these eigenvalues uncertainties into natural
frequencies and damping ratios uncertainties, this article proposes to take the maximum and minimum of
the natural frequencies and damping ratios of this set of complex values. This process leads to error bars
around the modal parameters has shown in the next section.

4. Comparison of estimation results

A versatile model to evaluate the presented identification methods is presented in a first subsection.
Second subsection gives comparison results obtained with this model.
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4.1. Simulated test case
A modal model of a bladed disk have been created to generate representative simulated signals making

possible to evaluate the performances of estimation methods in conditions similar to experiments. This modal
model is defined using previous experimental studies performing modal analysis of a full-scale aeronautic fan
with 18 sectors [2]. Figure 2 shows the natural frequencies and damping ratios of modes included in the model
with respect to their diameter mode tag. The modal parameters for tagged modes ±1D,±2D,±3D,±4D
have been chosen from modal tests, while the others parameters have been chosen arbitrarily as follows. The
eigenvalues of modes tagged 5D, 6D, ..., 8D have been chosen with natural frequency and damping ratios
close to the mode 4D, the eigenvalues associated with opposite tags have been chosen close to mode −4D,
and the eigenvalue of mode 9D has been chosen close to the average of natural frequency and damping ratio
of modes ±4D. All the mode shapes have been taken as the mode shapes of the associated conservative
system with cyclic symmetry locally perturbed by side components in spatial Fourier space. The perturbation
is chosen normally distributed with a standard deviation close to 0.5. This choice leads to modes shapes
composed of few traveling waves all close to the main diameter component, see figure 3. The phase of the
traveling wave components perturbing the conservative cyclic symmetric mode shapes are drawn from a
uniform distribution on [−0.1π, 0.1π] with a reference of phase given by the main component. To evaluate
the identification methods in similar conditions comparing to previous experimental modal analysis, the
modal model is excited through a purely traveling wave with stepped in frequency. The simulations are
performed by numerical integration of the continuous real modal form.

ṡ(t) = ΛRs(t) +B′
c
R
u(t) + w(t)

y(t) = C ′
c
R
s(t) + v(t)

with, ΛR= PHΛP B′
c
R
= PHB′

c P = diag
(
P (1), ..., P (1)

)
C ′

c
R
= C ′

cP s = PHq P (1)=
1

2

[
1− j 1 + j
1 + j 1− j

]
The perturbation processes w and v have been taken as white noise normally distributed with diagonal
covariance matrices and overall noise over signal ratio at NSRw =0.03 and NSRv =0.05. The integration is
performed with an explicit Runge-Kutta 45 method with zero initial conditions. The time step parameter
has been checked by means of analytical solution. Excitation and response signals are shown for a forward
traveling wave with three nodal diameters on figure 4. Normalized units U.T and U.F =1/U.T are used in
this article. The frequency steps of the excitation signal can be observed on the envelope of the response
signals (fig. 4a). The temporal signal exhibits two particular events, at ∼ 0.35 U.T an aliasing artifact where
the sampling frequency is a multiple of the excitation frequency step, and before 0.05 U.T where the transient
effect induced by taking initial conditions at zero generates a small artifact in the response signal. The
Gaussian windowed Fourier transform used for time-frequency representation (fig. 4b) is well presented in
reference articles [25, 26]. Using this representation the frequency steps depict vertical fringes around the
average sweeping rate.

4.2. Estimations of modal parameters
The investigated subspace identification methods N4SID.MOESP and N4SID.CVA have been evaluated over

the simulated signals. The identification experiments are performed using the complete time signal of all the
generated responses and the excitation signal of one reference sector. The identification methods are applied
with a chosen order n=6. This order determination is expected as only three modes have traveling wave
component d=3 different from zero. Figure 5 illustrates the results of the two order indicators described in
section 2 for this test case. On this simulated data the two strategies would find the appropriate order for
the identification method. The first strategy would lead to n=6, as it minimizes the nAIC, and the second
strategy also, as no significant decrease of rRMSEν is observed after n=6.

The default identification procedure of the N4SID implementation proposed by Matlab in n4sid.m proposes
to choose a horizon hf =9 for the future data matrices and a horizon hp =23 for the past data matrices. In
section 1.2, the past and future horizons have been taken identical to simplify explanations. However, the
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(b) Time-frequency space.
Up: excitation, down: response.

Figure 4: Excitation and response signals for a 3D stepped sine excitation : time signals for three consecutive
blades (a) and Gaussian windowed Fourier transforms of one blade (b).

same identification procedures can be applied with different past and future horizons. The computational
costs for one estimation was inferior to 15 minutes on a supercomputer using 45 processors and 30 GB of
RAM. Such computational costs are required because the complete signals have large dimensions in order to
be able to investigate the stationary state of the system at each frequency step and keep variance information
of signals.

The estimated modes are sorted using a Modal Assurance Criterion (MAC) to compare modal estimation
with the reference parameters. Figures 6 and 7 show estimation results over signals generated with excitation
as a forward traveling wave with three nodal diameters. Figure 6 compares the three estimated mode shapes
with the only three reference mode shapes which can respond to the used excitation pattern. The amplitude
and phase of the discrete spatial Fourier transform of the estimated mode shapes closely match the reference
mode shapes. Figure 7a shows eigenvalues estimation over 29 simulations. All simulations use the same
model, excitation and noise over signal ratio parameters. The only difference comes from different noise
realizations of perturbation processes w and v. The evaluation of modal uncertainties described in section
3.3 has been performed for each of the estimation results. On this test case, both methods give equivalent
estimates for natural frequency and damping ratio. Natural frequency estimates have less deviation from
the reference values along the different repetitions of the identification experiments compared with damping
ratio estimates. The estimates of natural frequency and damping ratio of mode tagged "3D" are closer to
the reference than modes tagged "2D" and "4D". This behavior can be explained by a higher participation
of mode tagged "3D" in the system response, and so a better ratio between mode dynamics and noise level.
For both methods the modal uncertainties over damping ratio estimates are higher than natural frequency,
of the order of δξ/ξ∼ 5·10−2 compared with δω/ω∼ 5·10−4. Although MOESP and CVA weightings lead to
eigenvalues estimates which are identical, the uncertainty propagation procedure leads to significant different
confidence intervals. Estimates from MOESP weighting have smaller modal uncertainties compared with CVA
weighting, see damping ratio estimates of figure 7b. The propagated confidence intervals for damping ratios
of the targeted mode (tagged "3D") do not always contain the reference value for MOESP weighting whereas it
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Figure 6: Spatial Fourier transform of estimated mode shapes paired with the reference mode shapes according
the MAC criterion. Left: amplitude, right: phase [ rd ]. MOESP ; CVA .

is verified for CVA weighting (see diameter mode tag 3D(1), 3D(4), 3D(6) and 3D(9) on damping ratio figure 7b).
Observing estimated modes 4D and 2D the uncertainty bars do not always include the reference. This can
be explained by a more detrimental ratio between the dynamics of these modes and the level of noise as the
excitation targets only diameter index d=3. Simulations with lower overall noise level or more appropriate
excitations have shown to bring better estimate for these two modes as well as the other modes of the system.
In summary, CVA weighting seems to provide more accurate uncertainty estimates than MOESP weighting for
simulated identification experiments of one targeted mode.

Conclusion

In this article, two state-space subspace identification methods have been reviewed. The first one,
N4SID.MOESP, relies on minimum of variance of prediction error criterion, while the second one, N4SID.CVA,
relies on maximum of correlation coefficient criterion. Both techniques give estimates of state-space matrices
with the covariance matrices of the perturbation processes. This article presents a technique to propagate
covariance estimates to modal estimates by means of ε-pseudospectrum computation. The ε-pseudospectrum
gives the complex values which are nearly eigenvalues of a matrix. The modal uncertainties have been
evaluated by computing the ε-pseudospectrum of the state transition matrix choosing ε based on the
estimation of the state transition covariance matrix. A modal model of a bladed disk has been proposed to
assess the modal estimation performances under realistic conditions as well as to test the proposed propagation
process of state-space uncertainties to modal parameters. While the methods yield quite similar modal
estimates, the confidence intervals deduced from uncertainties propagation for the N4SID.CVA technique better
match the reference results compared with N4SID.MOESP. This study may indicate that the natural choice of
minimizing the prediction error may not always be the best choice for identification method, especially when
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(b) Focus on the most excited mode for the 10 first simulations. Mode tagged 3D is the most excited as the excitations
have 3 nodal diameters.

Figure 7: Eigenvalues estimations over simulations using excitation pattern with 3 nodal diameters and
different noise realizations. Figure (b) magnifies parts of figure (a). Estimation results are arbitrary shifted
to the right using the simulation number.
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analyzing the uncertainties of estimation results. The simulated test case has shown that maximization of
the coefficient of correlation may lead to better estimates of the modal uncertainties.

This study has focused on the comparison of modal estimation performances when the determination of
the identification order and the identification itself are made easy by few modes responding to an appropriate
excitation. It would be interesting to pursue the study in a context of more difficult identification and model
order determination.
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Nomenclature

MOESP Multi Output Error State space

CVA Canonical Variate Analysis

nAIC normalized Akaike Information Criterion

rRMSEν relative Root Mean Square Error in frequency

U.T, U.F normalized unit of time and frequency

U.DR normalized unit of damping ratio

pA(a) density probability of "variable A takes value a"

E[a] statistical expectation of random variable a

cov[a, b] covariance of a and b : cov[a, b] = (a− E[a])(b− E[b])T

var[a] variance of random variable a : var[a] = cov[a, a],

L2 square integrable function space

Γyy(τ) autocorrelation of signal y : Γyy(τ) = E
[
yty

T
t+τ

]
j imaginary unit : j2 = −1

I identity matrix

MH hermitian conjugate of matrix M

M+ pseudo-inverse of matrix M

span′(M) vector space spanned by rows of matrix M

∥.∥F Frobenius norm

∥.∥Λ+ norm induced by Λ+

δts delta Kronecker function

no number of observations

ni number of excitations

n order of the system

17



References

[1] L. Carassale, R. Guida, M. Marrè-Brunenghi, Modal Identification of Bladed Disks by Time–Frequency Analysis of the
Nonsynchronous Response, Journal of Engineering for Gas Turbines and Power 145 (2) (2022) 021020. doi:10.1115/1.
4055684.

[2] C. Jorajuria, C. Gibert, F. Thouverez, C. Esteves, Experimental modal analysis of a full-scale rotating fan, in: Turbo Expo:
Power for Land, Sea, and Air, Vol. 86076, American Society of Mechanical Engineers, American Society of Mechanical
Engineers, 2022. doi:10.1115/gt2022-82540.

[3] L. Ljung, System Identification: Theory for the User, Prentice Hall PTR, Upper Saddle River, 1999.
[4] T. Katayama, Subspace Methods for System Identification, Communications and Control Engineering, Springer London,

2005. doi:10.1007/1-84628-158-x.
[5] M. Verhaegen, A novel non-iterative MIMO state space model identification technique, IFAC Proceedings Volumes 24 (3)

(1991) 749–754. doi:10.1016/s1474-6670(17)52439-8.
[6] M. Verhaegen, P. Dewilde, Subspace model identification, part 1. The ouput-error state-space model identification class of

algorithms, Int. J. Control 56 (5) (1992) 1211–1241. doi:10.1080/00207179208934363.
[7] M. Verhaegen, P. Dewilde, Subspace model identification, part 2. Analysis of the elementary output-error state-space model

identification algorithm, Int. J. Control 56 (5) (1992) 1211–1241. doi:10.1080/00207179208934364.
[8] M. Verhaegen, Subspace model identification, part 3. Analysis of the ordinary output-error state-space model identification

algorithm, Int. J. Control 58 (3) (1993) 555–586. doi:10.1080/00207179308923017.
[9] M. Verhaegen, Identification of the deterministic part of MIMO state space models given in innovations form from

input-output data, Automatica 30 (1) (1994) 61–74. doi:10.1016/0005-1098(94)90229-1.
[10] P. Van Overschee, B. de Moor, N4SID: Numerical algorithms for state space subspace system identification, IFAC

Proceedings Volumes 26 (2) (1993) 55–58. doi:10.1016/S1474-6670(17)48221-8.
[11] P. Van Overschee, B. De Moor, N4SID: Subspace algorithms for the identification of combined deterministic-stochastic

systems, Automatica 30 (1) (1994) 75–93. doi:10.1016/0005-1098(94)90230-5.
[12] P. Van Overschee, B. De Moor, A unifying theorem for three subspace system identification algorithms, Automatica 31 (12)

(1995) 1853–1864. doi:10.1016/0005-1098(95)00072-0.
[13] W. E. Larimore, Canonical variate analysis in identification, filtering, and adaptive control, in: 29th IEEE Conference on

Decision and control, IEEE, IEEE, 1990, pp. 596–604. doi:10.1109/cdc.1990.203665.
[14] H. Akaike, Stochastic theory of minimal realization, IEEE Transactions on Automatic Control 19 (6) (1974) 667–674.

doi:10.1109/tac.1974.1100707.
[15] H. Akaike, Markovian representation of stochastic processes by canonical variables, SIAM journal on control 13 (1) (1975)

162–173. doi:10.1137/0313010.
[16] H. Akaike, Canonical correlation analysis of time series and the use of an information criterion, Mathematics in science and

engineering 126 (1976) 27–96. doi:10.1016/s0076-5392(08)60869-3.
[17] W. E. Larimore, Predictive inference, sufficiency, entropy and an asymptotic likelihood principle, Biometrika 70 (1) (1983)

175–181. doi:10.1093/biomet/70.1.175.
[18] H. Akaike, Information theory and an extension of the maximum likelihood principle, in: Second International Symposium

on Information Theory, Akademia Kiadom, 1973, pp. 267–281. doi:10.1007/978-1-4612-0919-5_38.
[19] R. E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng. 82 (1) (1960) 35–45. doi:

10.1115/1.3662552.
[20] R. E. Kalman, R. S. Bucy, New results in linear filtering and prediction theory, J. Basic Eng. 83 (1) (1961) 95–108.

doi:10.1115/1.3658902.
[21] L. N. Trefethen, Pseudospectra of matrices, in: Numerical Analysis 1991, Griffiths and Watson, Longman Scientific &

Technical, Harlow, Essex UK, 1992, 1991, pp. 234–266.
[22] M. Embree, L. N. Trefethen, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton

University Press, Princeton, 2005. doi:10.1515/9780691213101.
[23] C. Harris, et al., Array programming with NumPy, Nature 585 (7825) (2020) 357–362. doi:10.1038/s41586-020-2649-2.
[24] R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly

restarted Arnoldi methods, SIAM, 1998. doi:10.1137/1.9780898719628.
[25] L. Carassale, M. Marrè-Brunenghi, S. Patrone, Wavelet-based identification of rotor blades in passage-through-resonance

tests, Mechanical Systems and Signal Processing 98 (2018) 124–138. doi:10.1016/j.ymssp.2017.04.023.
[26] S. Mallat, A wavelet tour of signal processing, Elsevier, Boston, 1999.

18

https://doi.org/10.1115/1.4055684
https://doi.org/10.1115/1.4055684
https://doi.org/10.1115/gt2022-82540
https://doi.org/10.1007/1-84628-158-x
https://doi.org/10.1016/s1474-6670(17)52439-8
https://doi.org/10.1080/00207179208934363
https://doi.org/10.1080/00207179208934364
https://doi.org/10.1080/00207179308923017
https://doi.org/10.1016/0005-1098(94)90229-1
https://doi.org/10.1016/S1474-6670(17)48221-8
https://doi.org/10.1016/0005-1098(94)90230-5
https://doi.org/10.1016/0005-1098(95)00072-0
https://doi.org/10.1109/cdc.1990.203665
https://doi.org/10.1109/tac.1974.1100707
https://doi.org/10.1137/0313010
https://doi.org/10.1016/s0076-5392(08)60869-3
https://doi.org/10.1093/biomet/70.1.175
https://doi.org/10.1007/978-1-4612-0919-5_38
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3658902
https://doi.org/10.1515/9780691213101
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1137/1.9780898719628
https://doi.org/10.1016/j.ymssp.2017.04.023


Appendix A. Proof of ker(L22) ⊂ ker(L32)

A summary of the proof of ker(L22) ⊂ ker(L32) in [4, p. 164] is proposed here. Let ν column vector such
as L22ν=0. Then, right multiplying by the appropriate vector, equation (7) leads to the equations below.Uf

Zp

Yf

 [QT
1 QT

2 QT
3

] 0ν
0

 =

L11 0 0
L21 L22 0
L31 L32 L33

0ν
0


Uf

Zp

Yf

QT
2 ν =

 0
L22ν
L32ν


As ν is taken such as L22ν = 0, the vector L32ν is part of an input/output pair having past states null
and future excitations null which implies, using the causality principle, all future observations are null, i.e.
L32ν=0.

Appendix B. Optimal prediction

Equations (11) and (16) have been presented as the "projected" optimal prediction because they propose
estimation for the optimal prediction ζ submitted to the projection operator Π⊥

Uf
. N4SID framework also

proposes to estimate the optimal prediction ζ directly. Indeed, it is possible to have term to term identification
in the identity relation given by equations (6) and (10).

V ′
f = L33Q3 (B1a)

ΨhUf =
(
L31 − L32L

+
22L21

)
L−1
11 Uf (B1b)

ζ := OhXf = L32L
+
22Zp (B1c)

Optimal prediction (N4SID)

The detailed demonstration of the above results uses assumptions (H1-3) and is available in references articles
[11] and [4, p. 161].
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