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ABSTRACT
In this paper, we develop discrete models of Tuberculosis (TB). This
includes SEI endogenous and exogenousmodels without treatment.
Thesemodels are then extended to a SEIT model with treatment. We
develop two types of net reproduction numbers, one is the tradi-
tionalR0 which is based on the disease-free equilibrium, and a new
net reproductionnumberR0(E∗)basedon theendemic equilibrium.
It is shown that the disease-free equilibrium is globally asymptoti-
cally stable ifR0 ≤ 1 andunstable ifR0 > 1.Moreover, the endemic
equilibrium is locally asymptotically stable ifR0(E∗) < 1 < R0.
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1. Introduction

Tuberculosis (TB) remains a formidable global health challenge, affecting millions of indi-
viduals across the globe. The disease’s complex transmission dynamics and its ability to
persist in various populations have spurred the need for a comprehensive understanding of
TB and effective controlmeasures.Mathematicalmodelling has emerged as a powerful tool
to gain insights into the intricate dynamics of TB transmission and evaluate potential inter-
ventions. The foundations ofmathematical epidemiology based on compartmentalmodels
are due to Sir Ronald Ross, who gave the first mathematical model of malaria transmission
in 1911 [1].

In this research paper, we embark on a thorough exploration of the global dynamics of
discrete mathematical models of Tuberculosis.

We investigate both SEI (Susceptible-Exposed-Infectious) and SEIT (Susceptible-
Exposed-Infectious-Treated) models with endogenous and exogenous components to
elucidate the complexities of TB transmission and its implications for global public health.

Once someone is exposed, TB bacteria can live in the human or animal body for years
if not decades without any symptoms, called latent TB infection. In fact, many people who
have latent TB never develop the infectious disease, but they still test positive, though not
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infectious, meaning they cannot spread TB bacteria to others. To elaborate the progression
fromexposed to infected, TB bacteria enter the lungs, then as blood circulates, transporting
them–of course, because the lungs oxygenate blood and/or cells–to other parts of the body,
they infect a kidney, the spine or brain, which are generally not transmissible. TB bacteria
turns into an active infection if the immune system cannot stem the growth rate. Common
symptoms of tuberculosis are chest pain, weight loss, fever, a persistent cough that may
contain blood, etc.

Nevertheless, active TB infection can be treated by prolonged use of antibiotics. In 1943,
Selman Waksman, Elizabeth Bugie, and Albert Schatz developed streptomycin, the first
antibiotic, whereas rest and sunlight were prescribed in sanatoriums to alleviate TB. It
was later abandoned because it induces permanent hearing loss, tinnitus, dizziness, and
vertigo [2].

Now, four drugs are used in therapy: isoniazid (1951), pyrazinamide (1952), ethambutol
(1961), and rifampin (1966) [3]. They remain the most common treatment for TB (CDC).

With that said, another difficulty is that many strains of TB are drug-resistant. We con-
clude the SEIT model is sufficient to describe the transmission pattern of tuberculosis.
However, the reality is that while models assume we have access to complete data on TB
cases, every active infection is not reported. Moreover, since latent TB carriers exhibit
no symptoms, their exact number is far more difficult to estimate, and treatment often
goes half-done because of its length or duration [4]. Above all, tuberculosis is a disease of
poverty, which is not difficult to predict given that nations with higher living standards
report fewer cases of TB.

For decades it has been assumed that postprimary tuberculosis is usually caused by the
reactivation of endogenous infection rather than by a new, exogenous infection. However,
Exogenous reinfection appears to be a major cause of postprimary tuberculosis after a pre-
vious cure in an area with a high incidence of this disease. This finding emphasizes the
importance of achieving cures and of preventing anyone with infectious tuberculosis from
exposing others to the disease.

TB has plagued humanity for millennia, shaping historical narratives and leaving a pro-
found impact on societies worldwide. Known as ”consumption” and ”phthisis” in different
periods, TB was associated with suffering and mortality, and its impact can be traced
through historical artifacts, art, and literature. The 19th century witnessed a devastat-
ing rise in TB-related deaths in Europe and North America, leading to the establishment
of specialized sanatoriums and hospitals to combat the disease. In 1882, Robert Koch’s
groundbreaking discovery of Mycobacterium tuberculosis, the causative agent of TB,
marked a pivotal moment in the understanding and diagnosis of the disease. This came
at a time when 1/7 of people in the United States and Europe were killed by TB.

Medical advancements in the 20th century, particularly the discovery of antibiotics like
streptomycin and isoniazid, provided hope for TB control. TB incidence declined in many
developed countries, fostering optimism for the possibility of eradicating TB altogether.
However, the emergence of drug-resistant strains and the co-epidemic of HIV/AIDS in
the latter half of the century rekindled the urgency to combat TB globally, particularly in
resource-limited settings.

Mathematical models have played an indispensable role in shaping our understanding
of TB transmission dynamics. Early deterministic SEI models, introduced in the mid-
20th century, captured the basic interactions between susceptible, exposed, and infectious
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individuals. These models provided valuable insights into the importance of latent
infections in TB spread and the potential impact of public health interventions.

To validate and refine mathematical models, empirical data from diverse populations
and countries have been instrumental. Epidemiological studies have provided crucial
insights into the prevalence, incidence, and transmission patterns of TB in various regions
[5–7].

High-burden countries, such as India, China, and SouthAfrica, have contributed critical
data to understand the impact of TB in densely populated regions with varying healthcare
infrastructures. These countries have faced challenges in controlling the disease due to
factors such as limited access to healthcare, poverty, and crowded living conditions [8,9].

Low-burden countries, including the United States, Canada, and several European
nations, have contributed data showcasing successful TB control strategies. These success
stories emphasize the importance of well-established healthcare systems, effective contact
tracing, and widespread access to treatment in curbing TB transmission [10].

Furthermore, cross-country data comparisons have revealed differences and similarities
in TB transmission dynamics across different settings. The World Health Organization
(WHO) compiles global TB data, providing valuable insights into the burden of the disease
and the effectiveness of control efforts in different regions [11].

In Section 2, an SEI compartmentalmodel without treatment is presented in two formu-
lations: endogenous and exogenous. In Section 3,we focus on theDisease-Free Equilibrium
(DFE), calculating the net reproduction number, R0, and exploring both its local and
global stability dynamics. Section 4 delves into the fundamentals of the Endemic Equi-
librium (EE), examining its existence, uniqueness, and the associated net reproduction
number. The local stability of the EE is rigorously proved in Section 5. Sections 6 through 8
are dedicated to the exogenous SEI model. Specifically, in Section 6, we discuss the net
reproduction number and assess the local and global stability of the DFE. Section 7 turns
our attention to the existence and uniqueness of the EE, further elucidating its related
reproduction number. Section 8 reaffirms the local stability of the EE within the exoge-
nous context. In Section 9, we pivot to the SEI compartmental model with treatment, the
SEIT, following a structure similar to Section 3. Section 10 parallels the discussions in
Section 5, but within the SEIT framework, proving the local stability of its EE. Section 11
presents open challenges and theoretical conjectures, posing intriguing questions for future
investigations. Finally, Section 12 offers concluding remarks, summarizing our key findings
and insights.

2. The SEI compartmental model (with no treatment)

In this section, we define both endogenous (non-exogenous) and exogenous SEI compart-
mental models.

The host population is divided into the following epidemiological classes or subgroups:
susceptibles (S), exposed (E, infected but not infectious), and infectious (I).N(t) = S(t) +
E(t) + I(t) denotes the total population.

Let � be the recruitment rate of the population, d be the natural death rate, γ be the
death rate caused by the disease, and the mean exposed period is 1

α where α > 0 is the
rate of loss of latency. In nearly 5–10 % of susceptible people, latent TB may be activated
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Figure 1. Flowchart of both SEI Compartment Models (with no treatment) The chart flow of the
endogenous (non-exogenous) model is obtained by deleting the arrow whose interior is coloured in
orange.

due to immune evasion by Mtb from intracellular phagosome within the macrophage,
perpetrating TB [12]. Naturally, it is assumed that 0 ≤ α < 1, 0 ≤ γ < 1, 0 ≤ d < 1 [13].

Assuming there is exogenous reinfection, the disease dynamics may be represented by
the following system of difference equations (see the Flowchart Figure 1).

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)ϕ1(I(t)/N(t))S(t) + r1(1 − d)E(t)

+ r2(1 − d)I(t)

E(t + 1) = μ1(1 − d)(1 − ϕ1(I(t)/N(t)))S(t) + μ2(1 − d)ϕ2(I(t)/N(t))E(t)

+ (1 − d)(1 − α − r1 − μ2)E(t)

I(t + 1) = (1 − d)αE(t) + μ2(1 − d)(1 − ϕ2(I(t)/N(t)))E(t) + (1 − d)(1 − γ − r2)I(t)
(1)

where r1 and r2 are the rates of recovering people from Exposed and Infectious, 0 ≤ r1,
r2 < 1.

The fraction of susceptibles that escape the infection at time t is (1 − d)μ1ϕ1(I(t)/N)

where ϕ1(I/N) is the escape function, and μ1, 0 ≤ μ1 < 1 is the level of infection. It is
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known that even after heavy exposure to TB, some individuals do not developM. tubercu-
losis infection and innate immunity probably account for this natural protection or early
clearance of M. tuberculosis. BCG vaccination also appears to play a significant role [14].
Therefore, asymptotically, this fraction is bounded below by (1 − d)(1 − μ1). Hence in
the same time interval, the fraction of susceptibles that did not escape from the infection
is (1 − d)μ1(1 − ϕ(I/N)) (see the Flowchart Figure 1).

The term μ2(1 − d)ϕ2(I(t)/N(t)) models the exogenous reinfection rates with μ2 rep-
resenting the level of reinfection, 0 ≤ μ2 ≤ 1. About 5–10 % of infected people, Mtb can
be reactivated and propagated to transmit TB [14]. When there is no exogenous infection,
we have μ2 = 0, and the system reduces to

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)ϕ1(I(t)/N(t))S(t) + r1(1 − d)E(t)

+ r2(1 − d)I(t)

E(t + 1) = μ1(1 − d)(1 − ϕ1(I(t)/N(t)))S(t) + (1 − d)(1 − α − r1)E(t)

I(t + 1) = (1 − d)αE(t) + (1 − d)(1 − γ − r2)I(t)
(2)

The flowchart of both models is displayed in Figure 1.
NowN(t + 1) = � + (1 − d)N(t) − γ (1 − d)I. Then 0 < N(t) ≤ �

d and if we assume
that γ = 0, then N(t) → �

d as t → ∞.
We now make the following two assumptions:

A1 : 0 < α + r1 + μ2 < 1, 0 ≤ μ1 < 1, 0 < γ + r2 < 1, 0 ≤ d < 1
A2: We assume that the functions ϕi(I/N) satisfies the following assumptions:

(i) ϕi(I(t)/N(t)) is continuously differentiable for I(t) ≥ 0.
(ii) 0 ≤ ϕi ≤ 1, for I(t) ≥ 0.
(iii) ϕi(0) = 1, ϕ′

i(I(t)/N(t)) < 0 for I(t) ≥ 0.

In [15], the contact between susceptibles and infected individuals is assumed to be a Pois-
son process given by ϕi(I(t)/N) = e−βiI(t)/N(t), βi > 0, i = 1, 2, where βi is called the
transmission coefficient which will be used here.

Let us recall that the threshold parameter R0 is called the net reproduction number
(or basic reproduction number or ratio) and is defined as the expected number of infec-
tions produced by a single infectious individual introduced into a susceptible population.
Consequently, when R0 < 1, it is expected to imply that the number of infections will
decrease over time and the diseasewill eventually die out.However, whenR0 > 1, a disease
outbreak will occur.

3. Endogenous (non-exogenous) SEI compartmental model (with no
treatment)

3.1. Net reproduction numberR0

To compute the traditional reproduction number R0 we are going to use the next-
generation matrix approach [15]. We remind that in the non-exogenous case μ2 = 0.
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Let X0 = (E, I)T , X1 = ST , X = (X0,X1) ∈ R3+. Hence system (2) may be written as

X0(t + 1) = G0(X(t))

X1(t + 1) = G1(X(t))
(3)

where G0(X(t)) =
(
E(t+1)
I(t+1)

)
= F(t) + T (t), and G1(X(t)) = S(t + 1), where

F(t) =
(

μ1(1 − d)(1 − ϕ1(I(t)/N(t))S(t)
0

)
=

(
F1(t)
F2(t)

)

is the vector of new infections that survive in the time interval [0, t], and

T (t) =
(

(1 − d)(1 − α − r1)E(t)
α(1 − d)E(t) + (1 − d)(1 − γ − r2)I(t)

)
=

(
T1(t)
T2(t)

)

is the vector of all other transitions.
Next, we compute the Jacobian matrix of T (t) andF(t) at the disease-free equilibrium

(DFE) E0 = (0, 0, S∗) = (0, 0,N∗)

F(t)|(0,0,S∗) =
⎛
⎜⎝

∂F1(t)
∂E

∂F1(t)
∂I

∂F2(t)
∂E

∂F2(t)
∂I

⎞
⎟⎠ =

(
0 μ1β1(1 − d)
0 0

)

T(t)|(0,0,S∗) =
⎛
⎜⎝

∂T1(t)
∂E

∂T1(t)
∂I

∂T2(t)
∂E

∂T2(t)
δI

⎞
⎟⎠ =

(
1 − d)(1 − α − r1) 0

α(1 − d) (1 − d)(1 − γ − r2)

)
.

Now the basic reproduction number is given by R0(E0) = ρ((F(I − T))−1), where ρ

denotes the spectral radius of a matrix [15–17].

F(I − T)−1 =
⎛
⎝ μ1αβ1(1 − d)

(1 − (1 − d)(1 − α − r1))(1 − (1 − d)(1 − γ − r2))
0

μ1β1(1 − d)
1 − (1 − d)(1 − γ − r2)

0

⎞
⎠ .

Hence

R0(E0) = μ1αβ1(1 − d)
(1 − (1 − d)(1 − α − r1))(1 − (1 − d)(1 − γ − r2))

. (4)

3.2. Local stability of DFE of the endogenousmodel

Theorem 3.1: The DFE (E0) of system (2) is locally asymptotically stable ifR0(E0) < 1 and
a saddle ifR0(E0) > 1.
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Proof: Jacobian matrix of system (2) at E0 represented by J(E0) is given by

J(E0) =
⎛
⎝1 − d r1(1 − d) r2(1 − d) − μ1β1

0 (1 − d)(1 − α − r1) μ1β1(1 − d)
0 α(1 − d) (1 − d)(1 − γ − r2)

⎞
⎠ (5)

The first eigenvalue of the Jacobian matrix is λ1 = 1 − d < 1. The remaining two eigen-
values are the eigenvalues of the matrix

A =
(

(1 − d)(1 − α − r1) μ1β1(1 − d)
α(1 − d) (1 − d)(1 − γ − r2)

)
, (6)

We now use the determinant-trace criteria to show that the two eigenvalues of this matrix
lie inside the unit disk [18,19].

Now determinant det(A) = (1 − d)2(1 − α − r1)(1 − γ − r2) − μ1αβ1(1 − d)2, and
trace tr(A) = (1 − d)(1 − α − r1) + (1 − d)(1 − γ − r2)

SinceR0(E0) < 1, it follows that det(A) < 1.
Moreover, det(A) > tr(A) − 1. Since tr(A) > 0, det(A) > |tr(A)| − 1.
Hence, all the eigenvalues of the Jacobian matrix are inside the unit disk; thus, the DFE

is locally asymptotically stable.
Next, we consider the case when R0 = 1. In this case, the first eigenvalue is λ1 = 1 −

d < 1. Now det(A) = tr(A) − 1. By Theorem (4.5) in [19], the remaining two eigenval-
ues are λ2 = 1 and λ3 = det(A) = tr(A) − 1 = (1 − d)(1 − (α + r1) + 1 − (γ + r2)) −
1. Hence |λ3| < 1. Thus atR0 = 1, the system would go through transcritical bifurcation
or exchange of stability.

If R0 > 1, then one may show that det(A) < tr(A) − 1, and det(A) > −tr(A) − 1.
Hence, the DFE is unstable. More precisely, the DFE is a saddle since λ1 = 1 − d < 1,
λ2 > 1, and 0 < λ3 < 1. �

3.3. Global stability of DFE of the endogenous system via Liapunov functions

In this section, we are going to use the LaSalle invariance theorem [18,20] stated below.

Theorem 3.2 (LaSalle Invariance Principle): Consider the difference equation

x(t + 1) = F(x(t)) (7)

where F : R
n+ → R

n+ is continuous on a subset G ofRn+. Suppose there is a Liapunov function
V : G → R such that V is continuous on the closure G of G. Let E = {x : �V(x(t)) = 0} and
M be the largest positively invariant subset of E. Assume that for every point x ∈ G, its orbit
O(x) is bounded and is a subset of G. Then there exists c ∈ R such that for every x ∈ G,
ω(x) ⊂ M ∩ V−1(c).
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Consider the equation X1(t + 1) = G1(0, x1(t)) = � + (1 − d)S(t) The equilibrium
point X∗

1 = �
d is globally asymptotically stable since

limt→∞ S(t) = limt→∞(1 − d)t
(
S0 − �

d
) + �

d = �
d Consider the matrix

B = (I − T)−1F

Then λ = αβ1μ1
(1−(1−d)(1−α−r1))(1−(1−d)(1−γ−r2)) is an eigenvalue of B. The corresponding

eigenvector of B is given byW = (1, α(1−d)
1−(1−d)(1−γ−r2) )

T . Define a Liapunov function as

V(X0,X1) = WT(I − T)−1X0

with X0 ∈ R2+|{0}.
Now let f(X0,X1) = (F + T)X0 − G0(X0,X1). Then X0(t + 1) = (F + T)X0(t) −

f(X0(t),X1(t)) since G0(0,X∗
1 ) = 0, f(0,X∗

1 ) = 0.

Theorem 3.3: Assume thatR0 ≤ 1. Then the disease-free equilibrium X∗ = (0,X∗
1 ) of the

endogenous system (2) is globally asymptotically stable.

Proof: Now

�V(X0,X1) = V(G0(X0,X1),G1(X0,X1)) − V(X0,X1)

= WT(I − T)−1X0(t + 1) − WT(I − T)−1X0(t)

= WT(I − T)−1(F + t)X0(t) − WT(I − T)−1f(X0(t),X1(t))

− WT(I − T)−1X0(t)

= WT(I − T)−1(T − I + F + I)X0(t) − WT(I − T)−1f(X0(t),X1(t))

− WT(I − T)−1X0(t)

= WT(−1 + R0)X0(t) − WT(I − T)−1f(X0(t),X1(t))

sinceR0 ≤ 1 andWT(I − T)−1f (X0(t),X1(t)) ≥ 0. It follows that �V(X0,X1) ≤ 0.
By the LaSalle Invariance Principle, X(t) =

(
X0(t)
X1(t)

)
approaches the largest positively

invariant subsetM of the set E = {X ∈ R
3+ |�V(X) = 0}, whereM = {(0,X1) |X1 ∈ R

2+}.
Hence the only invariant set M is the disease-free equilibrium (0,X∗

1 )
T . Therefore the

disease-free equilibrium is globally asymptotically stable. Hence the only invariant set inM
is the disease-free equilibrium (0,X∗

1 )
T . Therefore the disease-free equilibrium is globally

asymptotically stable. �

Remark 3.4: It should be noted that global stability whenR0 < 1 was proved in [21].
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4. Existence and uniqueness of the endemic equilibrium of the endogenous
model

4.1. case γ = 0, r1 = r2 = 0

4.1.1. Existence
In this section, we investigate the dynamics of the endogenous model (2) with γ = 0. In
this case lim

t→∞N(t) = N∗ = �/d. Then System (2) becomes

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)ϕ1(I(t)/N(t))S(t) + r1(1 − d)E(t)

+ r2(1 − d)I(t)

E(t + 1) = μ1(1 − d)(1 − ϕ1(I(t)/N(t)))S(t) + (1 − d)(1 − α − r1)E(t)

I(t + 1) = (1 − d)αE(t) + (1 − d)(1 − r2)I(t)
(8)

This system is asymptotic to the following system, where N(t) is replaced by N∗.

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)ϕ1(I(t)/N∗)S(t) + r1(1 − d)E(t)

+ r2(1 − d)I(t)

E(t + 1) = μ1(1 − d)(1 − ϕ1(I(t)/N∗)S(t) + (1 − d)(1 − α − r1)E(t)

I(t + 1) = (1 − d)αE(t) + (1 − d)(1 − r2)I(t)
(9)

We will now focus our attention on the analysis of System (9)

Proposition 4.1: Assume that r1 = r2 = 0, and γ = 0. Then every equilibrium point E∗ =
(S∗,E∗, I∗) of model (9) is of the form E∗ =

(
S∗, �−dS∗

(d+α−αd) ,
(1−d)α(�−dS∗)
d(d+α−αd)

)
with S∗ solution

of

d(d + α − αd)N∗ ln
[

(1 − d)μ1S∗

(μ1 + d − μ1d)S∗ − �

]
+ (1 − d)αβ1dS∗ = (1 − d)αβ1�,

(10)
This equation can also be written as

d(d + α − αd)N∗[(1 − d) ln(S∗) − ln
[
(μ1 + d − μ1d)S∗ − �

] ] + (1 − d)αβ1dS∗

= (1 − d)αβ1� − d(d + α + αd)N∗ ln((1 − d)μ1), (11)

Proof: Consider

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)e−β1(I(t)/N∗)S(t)

when S(t + 1) = S(t),
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one has:

(1 − d)μ1e−β1
I∗
N∗ S∗ = −� + (μ1 + d − μ1d)S∗ (12)

then if μ1 > 0, β1 > 0 and S∗ > 0

e−β1
I∗
N∗ = −� + (μ1 + d − μ1d)S∗

(1 − d)μ1S∗

or

ln
[
e−β1

I∗
N∗

]
= ln

[−� + (μ1 + d − μ1d)S∗

(1 − d)μ1S∗

]

− β1
I∗

N∗ = ln
[−� + (μ1 + d − μ1d)S∗

(1 − d)μ1S∗

]

I∗ = −N∗

β1
ln

[−� + (μ1 + d − μ1d)S∗

(1 − d)μ1S∗

]
(13)

Consider now

E(t + 1) = (1 − d)μ1(1 − e−β1(I(t)/N∗))S(t) + (1 − d)(1 − α)E(t)

when E(t + 1) = E(t), one has:

0 = μ1(1 − d)(1 − e−β1
I∗
N∗ )S∗ − (d + α − αd)E∗

From (12) it comes:

0 = μ1S∗ + � − μ1S∗ − dS∗ − (d + α − αd)E∗

(d + α − αd)E∗ = � − dS∗

E∗ = � − dS∗

(d + α − αd)
(14)

Consider now

I(t + 1) = (1 − d)αE(t) + (1 − d)I(t)

when I(t + 1) = I(t), one has:

0 = (1 − d)αE∗ − dI∗

I∗ = (1 − d)αE∗

d

I∗ = (1 − d)α(� − dS∗)
d(d + α − αd)

(15)

Equaling (15) to (13) it comes

d(d + α − αd)N∗ ln
[

(1 − d)μ1S∗

(μ1 + d − μ1d)S∗ − �

]
+ (1 − d)αβ1dS∗ = (1 − d)αβ1�,

�
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4.1.2. Uniqueness
Theorem 4.2: Assume that r1 = r2 = 0, γ = 0 and R0 > 1. Then there exists a unique
endemic equilibrium point E∗ = (S∗,E∗, I∗) of System (9)

Proof: Consider the function

f (x) = d(d + α − αd)N∗ ln
[

(1 − d)μ1x
(μ1 + d − μ1d)x − �

]
+ (1 − d)αβ1 dx, (16)

which is only defined for x > �
μ1+d−μ1d .

Its derivative is:

f ′(x) = − d(d + α − αd)N∗�
x [(μ1 + d − μ1d)x − �]

+ (1 − d)αβ1d, (17)

and its second derivative is:

f ′′(x) = d(d + α − αd)N∗� [2(μ1 + d − μ1d)x − �]
x2 [(μ1 + d − μ1d)x − �]2

, (18)

which is always positive because from (11) (μ1 + d − μ1d)S∗ − � > 0, i.e. (μ1 + d −
μ1d)x − � > 0, hence � < (μ1 + d − μ1d)x < 2(μ1 + d − μ1d)x In addition 0 ≤ α <

1 and 0 ≤ d < 1 implies that αd < d hence d + α − αd > 0. Therefore f (x) is convex and
f ′(x) is always increasing.

The equation

f (x) = (1 − d)αβ1�, (19)

which represents the intersection of a convex curve with and horizontal straight line, and
can have either zero, one, or two solutions. Clearly, x = N∗ satisfies equation (19), which
gives us the disease equilibrium point (S∗, 0, 0). Therefore this equation can have only one
or two solutions. Moreover, ifR0 = 1, and since N∗ = �/d, it follows that

f ′(N∗) = −d(d + α − αd)d�
μ1�

+ d
d(d + α − αd)

μ1
= 0, (20)

Therefore the tangent to the convex curve is horizontal, and, consequently, there is only
one point of intersection between the horizontal line and the curve which is the DFE.

It is easy to verify that if R0 > 1 or αβ > d(d+α)
μ , then f ′(N∗) > 0 and, consequently,

there is an equilibrium point on the left-hand side intersection between the convex curve
and the horizontal straight line, with S∗ < N∗. This proves the existence and uniqueness
of the endemic equilibrium point ifR0 > 1. �
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4.2. Reproduction number computed using the DFE or the endemic equilibrium

We consider the endogenous model with γ = 0 and ϕ1(I(t)/N∗) = e−β1I(t)/N∗
,

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)e−βiI(t)/N∗
S(t) + r1(1 − d)E(t)

+ r2(1 − d)I(t)

E(t + 1) = μ1(1 − d)(1 − e−βiI(t)/N∗
)S(t) + (1 − d)(1 − α − r1)E(t)

I(t + 1) = α(1 − d)E(t) + (1 − d)(1 − r2)I(t)
(21)

We are going to use the next-generation matrix approach [15]. Let X0 = (E, I)T , X1 = ST ,
X = (X0,X1) ∈ R3+. Hence system (21) may be written as

X0(t + 1) = G0(X(t))

X1(t + 1) = G1(X(t))
(22)

whereG0(X(t)) =
(
E(t+1)
I(t+1)

)
= F(t) + T (t), andG1(X(t)) = S(t + 1), where is the vector

of all other transitions.

F(t) =
(

μ1(1 − d)((1 − e−βiI(t)/N∗S(t)
0

)
=

(
F1(t)
F2(t)

)

is the vector of new infections that survive in the time interval [0, t], and

T (t) =
(

(1 − d)(1 − r1 − α)E(t)
α(1 − d)E(t) + (1 − d)(1 − r2)I(t)

)
=

(
T1(t)
T2(t)

)

Let T(t) and F(t) be the Jacobian matrices of T (t) and F(t), respectively, at the endemic
equilibrium E∗ = (E∗, I∗, S∗). Then

F(I − T)−1 =
⎛
⎝0

(1 − d)μ1β1e−β1I∗/N∗S∗

N∗
0 0

⎞
⎠

×
⎛
⎜⎝

1
(1 − (1 − d)(1 − α − r1))

α

(1 − (1 − d)(1 − α − r1))(1 − (1 − d)(1 − r2))

0
1

1 − (1 − d)(1 − γ − r2)

⎞
⎠

=
⎛
⎜⎝

μ1αβ1(1 − d)e−β1I∗/N∗S∗

N∗(1 − (1 − d)(1 − α − r1))(1 − (1 − d)(1 − r2)))
0

(1 − d)μ1αβ1e−β1I∗/N∗S∗

N∗(1 − (1 − d)(1 − r2))
0

⎞
⎟⎠
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R0(E∗) = (1 − d)μ1αβ1e−β1I∗/N∗

N∗(1 − (1 − d)(1 − α − r1))(1 − (1 − d)(1 − r2))
S∗. (23)

Using (12) it is equivalent to

R0(E∗) = αβ1 [(μ1 + d + r1)S ∗ −�]
N∗(d + α + r1)(d + γ + r2)

(24)

Remark 4.3: At the DFE E0 = (0, 0, S∗), one has S∗ = N∗, I∗ = 0, then R0(E0) =
(1−d)μ1αβ1

(1−(1−d)(1−α−r1))(1−(1−d)(1−γ−r2)) as computed in Section 3.

4.3. Existence and uniqueness in the case γ = 0, r1 �= 0, r2 �= 0

Next, we are going to use the implicit function theorem for systems to show the existence
of the endemic equilibrium in the case r1 �= 0, r2 �= 0, and γ = 0. But before stating the
theorem we introduce a few notations and a definition.

Definition 4.4: LetU be an open set inRm+n and suppose that F;U → Rn is a vector func-
tion F(x, y), F = (F1, F2, . . . Fn), where x = (x1, x2 . . . xn), y = (x1, x2 . . . ym). We define
the n × m and the n × nmatrices �xF and �yF by the formulas

�xF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F1
∂x1

∂F1
∂x2

. . .
∂F1
∂xm

∂F2
∂x1

∂F2
∂x2

. . .
∂F2
∂xm

...
∂Fn
∂x1

∂Fn
∂x2

. . .
∂Fn
∂xm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Theorem 4.5 (Implicit Function Theorem [22]): Let G be an open set in Rm+n containing
the point (a, b). Suppose that F : U → Rn is continuous and has first partial derivatives in
G such that F(a, b) = 0 and det�yF(a, b) �= 0. Then there exist δ > 0 and η > 0 such that
for every x ∈ B(a, δ) there exists a unique y ∈ B(b, η) with F(x, y) = 0.

5. Local stability of the endemic equilibrium of the endogenous system

Assume that γ = 0. Then

lim
t→∞N(t) = N∗ = �/d

In this case, the endogenous system (2) is asymptotic to the system

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)ϕ1(I(t)/N∗)S(t) + r1(1 − d)E(t)

+ r2(1 − d)I(t)

E(t + 1) = μ1(1 − d)(1 − ϕ1(I(t)/N∗))S(t) + (1 − d)(1 − α − r1)E(t)

I(t + 1) = α(1 − d)E(t) + (1 − d)(1 − r2)I(t)
(25)
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Theorem 5.1: Assume that γ = 0 and R0(E∗) < 1 < R0(E0). Then for sufficiently small
r1 and r2 the endemic equilibrium of the endogenous system (25) is locally asymptotically
stable.

Proof: The Jacobian matrix of system (2) at E∗ is given by

B = JF(E∗) =
⎛
⎜⎝

(1 − μ1)(1 − d) + μ1(1 − d)e−β1
I∗
N∗ r1(1 − d)

μ1(1 − d)(1 − e−β1
I∗
N∗ ) (1 − d)(1 − α − r1)

0 α(1 − d)

r2(1 − d) − μ1(1 − d)β1S∗

N∗ e−β1
I∗
N∗

μ1(1 − d)β1S∗

N∗ e−β1
I∗
N∗

(1 − d)(1 − r2)

⎞
⎟⎟⎟⎠ . (26)

Tofind the eigenvalues ofB = JF(E∗), we solve the characteristic equation det(B − λI) = 0
∣∣∣∣∣∣∣
(1 − μ1)(1 − d) + μ1(1 − d)e−β1

I∗
N∗ − λ r1(1 − d)

μ1(1 − d)(1 − e−β1
I∗
N∗ ) (1 − d)(1 − α − r1) − λ

0 α(1 − d)

r2(1 − d) − μ1(1 − d)β1S∗

N∗ e−β1
I∗
N∗

μ1(1 − d)β1S∗

N∗ e−β1
I∗
N∗

(1 − d)(1 − r2) − λ

∣∣∣∣∣∣∣∣∣
= 0

Now adding the first row and the third row to the second row we get∣∣∣∣∣∣∣
(1 − μ1)(1 − d) + μ1(1 − d)e−β1

I∗
N∗ − λ r1(1 − d)

1 − d − λ 1 − d − λ

0 α(1 − d)

r2(1 − d) − μ1(1 − d)β1S∗

N∗ e−β1
I∗
N∗

1 − d − λ

(1 − d)(1 − r2) − λ

∣∣∣∣∣∣∣
= 0

Factoring out 1 − d − λ, we see that the first eigenvalue is λ1 = 1 − d < 1. The remaining
eigenvalues are solutions to the characteristic equation∣∣∣∣∣∣∣

(1 − μ1)(1 − d) + μ1(1 − d)e−β1
I∗
N∗ − λ r1(1 − d)

1 1
0 α(1 − d)

r2(1 − d) − μ1(1 − d)β1S∗

N∗ e−β1
I∗
N∗

1
(1 − d)(1 − r2) − λ

∣∣∣∣∣∣∣
= 0
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The characteristic equation may be written as

p(λ) = λ2 + a1λ + a0,

where We now apply the Jury test to show that the remaining two eigenvalues are inside
the unit disk.

Using the assumptionR0(E∗) < 1 < R0(E0), onemay show that p(1) > 0, p(−1) > 0,
and a0 < 1. Therefore, the endemic equilibrium is locally asymptotically stable. �

In the case γ �= 0, we need the following perturbation theorem [23]

Theorem5.2: Consider the system x(t + 1) = F(x(t), η) = Fη, whereη = {η1, η2, . . . , ηm},
where F : U × G → U is continuous, U ⊂ R

n, G ⊂ R
�. Let x0∗ be the interior equilibrium

point of F0(x). Assume that the spectral radius ρ(JF(x∗
0)) < 1. Then there exists δ > 0 and a

unique x∗(η) ∈ U for η ∈ B(η0, δ) such that F(x∗, η)) = x∗ and Ft(z) → x∗(η)) as t → ∞
for all z ∈ U.

The final step in our analysis is to use the theory of the limiting equation. LetRn+ denote
the cone of nonnegative vectors in R

n and let int( R
n+) and ∂(Rn+) denote the interior and

the boundary of R
n+, respectively. Let F, Ft : R

n+ −→ R
n+ to be continuous functions for

all t ∈ Z+. Assume that
A1 : Ft converges uniformly to F as t → ∞.
Then x(0) ∈ R

n+ implies that the solutions of the nonautonomous difference equation

x(t + 1) = Ft(x(t)), (27)

satisfies x(t) ∈ R
n+, for all t ∈ Z+ where x = (x1, x2, . . . , xn) ∈ R

n+.
The same is true for solutions of the limiting equation

x(t + 1) = F(x(t)), (28)

where we assume
A2 : ft : int(Rn+) −→ int(Rn+).
Here, it is always true that x(0) ∈ int(Rn+) implies that the solutions of the nonau-

tonomous difference Equation (27) satisfies x(t) ∈ int(Rn+), for all t ∈ Z+.

Theorem 5.3 ([24,25]): Assume A1 and A2 and the limiting equation has an equilibrium
point x∗ ∈ R

n+. Then

(i) if x∗ ∈ int(Rn+), and if it is locally asymptotically stable as an equilibrium point of the
limiting equation, then x∗ is locally asymptotically fixed point of the nonautonomous
Equation (27).

Based on this asymptotic theory we have the following final result on the local asymp-
totic stability of the system (2)

Theorem 5.4: Assume that R0(E∗) < 1 < R0(E0). Then for sufficiently small r1, r2, and
γ , the endemic equilibrium of the system (2) is locally asymptotically stable.
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5.1. Net reproduction numberR0 of the exogenousmodel

We are going to use the next-generation matrix approach [15,26]. Let X0 = (E, I)T , X1 =
ST , X = (X0,X1) ∈ R3+. Hence system (2) may be written as

X0(t + 1) = G0(X(t))

X1(t + 1) = G1(X(t))
(29)

where G0(X(t)) =
(
E(t+1)
I(t+1)

)
= F(t) + T (t), and G1(X(t)) = S(t + 1), where

F(t) =
(

μ1(1 − d)(1 − ϕ1(I(t)/N(t)))S(t) + μ2(1 − d)ϕ2(I(t)/N)E(t)
0

)
=

(
F1(t)
F2(t)

)

is the vector of new infections that survive in the time interval [0, t], and

T (t) =
(

(1 − d)(1 − α − r1 − μ2)E(t)
α(1 − d)E(t) + μ2(1 − d)(1 − ϕ2(I(t)/N∗))E(t) + (1 − d)(1 − γ − r2)I(t)

)

=
(
T1(t)
T2(t)

)

is the vector of all other transitions.
Next, we compute the Jacobian matrix of T (t) andF(t) at the disease-free equilibrium

(DFE) E0 = (0, 0, S∗)

F(t)|(0,0,S∗) =
⎛
⎜⎝

∂F1(t)
∂E

∂F1(t)
∂I

∂F2(t)
∂E

∂F2(t)
∂I

⎞
⎟⎠ =

⎛
⎝μ2(1 − d) μ1(1 − d)β1

S∗

N∗
0 0

⎞
⎠

=
(

μ2(1 − d) μ1(1 − d)β1
0 0

)

T(t)|(0,0,S∗) =
⎛
⎜⎝

∂T1(t)
∂E

∂T1(t)
∂I

∂T2(t)
∂E

∂T2(t)
δI

⎞
⎟⎠

=
(

(1 − d)(1 − α − r1 − μ2) 0
α(1 − d) (1 − d)(1 − γ − r2)

)
.

Now the basic reproduction number is given by R0(E0) = ρ(F(I − T))−1), where ρ

denotes the spectral radius of a matrix [15–17].

R0(E0) = μ2(1 − d)
1 − (1 − d)(1 − α − r1 − μ2))

+ μ1(1 − d)2αβ1

(1 − α − r1 − μ2)(1 − (1 − d)(1 − α − r1 − μ2))
. (30)

Lemma 5.5: The basic reproduction number of the endogenous model is less (greater) than
1 if and only if the basic reproduction number of the exogenous model is less (greater) than 1.
Moreover, they are equal if one of them is equal to 1.
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Proof: The proof is straightforward and will be omitted. �

5.2. Local stability of DFE of the exogenous system

Theorem 5.6: The DFE (E0) of System (1) is locally asymptotically stable ifR0(E0) < 1 and
a saddle ifR0(E0) > 1

Proof: The Jacobian matrix of system (1) at E0 represented by J(E0) is given by

J(E0) =
⎛
⎝(1 − d) r1(1 − d) r2(1 − d) − μ1(1 − d)β1

0 (1 − d)(1 − α − r1 − μ2) μ1(1 − d)β1
0 α(1 − d) (1 − d)(1 − γ − r2)

⎞
⎠

The first eigenvalue of the Jacobian matrix is λ1 = 1 − d < 1. The remaining two eigen-
values are the eigenvalues of the matrix

A =
(

(1 − d)(1 − α − r1 − μ2) μ1(1 − d)β1
α(1 − d) (1 − d)(1 − γ − r2)

)
,

The proof that the DFE is locally asymptotically stable if R0(E0) < 1, and unstable if
R0(E0) > 1, is similar to the proof of Theorem (3.1) and will be omitted. Moreover if
R0(E0) = 1, one may show that det(A) = |tr(A)| − 1. Consequently, the eigenvalues of A
are given by λ2 = 1 and λ3 = tr(A) = (1 − d)(2 − α − r1 − r2 − γ − μ2. By assumption
A1, it follows that 0 < λ3 < 1. Assume now that R0(E0) > 1. Then det(A) < tr(A) − 1
and det(A) > tr(A) − 1. Hence, the DFE is unstable. More precisely, the DFE is a saddle
since λ1 = 1 − d < 1, λ2 > 1, and 0 < λ3 < 1. �

5.3. Global stability of DFE of the exogenous system via Liapunov functions

Theorem 5.7: Assume thatR0 ≤ 1. Then the disease-free equilibrium X∗ = (0,X∗
1 ) of the

exogenous system (1) is globally asymptotically stable.

The proof is similar to the proof of Theorem 3.3 and will be omitted

6. Local stability of the endemic equilibrium of the exogenous system

Theorem 6.1: Assume that R0(E∗) < 1 < R0(E0). Then for sufficiently small r1, r2, μ2
and γ , the endemic equilibrium of the system (1) is locally asymptotically stable.

The proof is similar to the proof of Theorem 5.4 and will be omitted.

7. The SEIT compartmental model (with treatment)

After one unit of time, a susceptible individual can be infected through contact with the
infectious and enter the latent or exposed class, still be in the susceptible class, or die.
A latent individual may become infectious and enter the infectious class, get tested and,
subsequently, be treated, pass into the treated class, stay in the latent class, or die. An
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infected can be treated and enter the treated or recovered class, stay in the infectious class,
or die. According to [17], an infected may also revert to exposed status. A treated indi-
vidual can recover by effective treatment or regress back to the exposed class, stay in the
treated/recovered class, or die. Many researchers have expounded that certain features of
TB dynamics, such as slow transmission and complicated parameter estimation, require
updated methods. The ambiguity of the SEIT model derives from people in the infectious
compartment getting treatment. Some proportion q move to the recovered class, while a
proportion p does not complete treatment and relapse to the latent class, which causes an
influx of exposed individuals that may be interpreted as new infections. Consequently, we
have two options: (1) view the relapse term pr2I as new infections or (2) view the relapse
term as existing infections [4]. The data presented in [4] chronicles the re-emergence of
tuberculosis during the 1980s, coinciding with the HIV/AIDS epidemic. TB rates began
to rise from a low of 22,201 cases in 1985, accelerating in the early 1990s and peaking
at 26,673 in 1992. Rates of latent TB have always been high among injecting drug users,
and NIDA (National Institute on Drug Abuse) [27] studies demonstrate that HIV infec-
tion, which is also prevalent among intravenous drug users, can activate latent TB. Lack of
access to TB therapy or failure to complete a full course of treatment due to costs addition-
ally contributes to active TB development and transmission. A 2018 report by Ma et al. [4]
states that TB incidence in San Francisco peaked between 1991 and 1993 because of the
TB/HIV co-epidemic, which produced a high estimated reproductive number of around
2.1. As may be seen in the chart flow Figure 2, the SEIT model is given below.

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)ϕ1(I(t)/N(t))S(t)

E(t + 1) = μ1(1 − d)(1 − ϕ1(I(t)/N(t))S(t) + μ2(1 − d)ϕ2(I(t)/N(t))E(t)

+ μ3(1 − d)(1 − ϕ3(I(t)/N(t))T(t) + (1 − d)(1 − α − r1 − μ2)E(t)

+ p(1 − d)r2I(t)

I(t + 1) = α(1 − d)E(t) + μ2(1 − d)(1 − ϕ2(I(t)/N(t))E(t) + (1 − d)(1 − r2 − γ )I(t)

T(t + 1) = r1(1 − d)E(t) + q(1 − d)r2I(t) + μ3)(1 − d)ϕ3(I(t)/N(t))T(t)

+ (1 − μ3)(1 − d)T(t) (31)

where ϕi(I/N) = e−βiI/N , i=1,2,3, and p+ q = 1)
Assuming γ = 0, then N(t + 1) = � + (1 − d)N(t) and thus the equilibrium N(t) →

�/d = N∗ Hence, we may study the above system with N(t) replaced by N∗ and we have
the limiting equation

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)ϕ1(I(t)/N∗)S(t)
E(t + 1) = μ1(1 − d)(1 − ϕ1(I(t)/N∗)S(t) + μ2(1 − d)ϕ2(I(t)/N∗)E(t)

+ μ3(1 − d)(1 − ϕ3(I(t)/N∗)T(t)

+ (1 − d)(1 − α − r1 − μ2)E(t) + p(1 − d)r2I(t)

I(t + 1) = α(1 − d)E(t) + μ2(1 − d)(1 − ϕ2(I(t)/N∗)E(t) + (1 − d)(1 − r2)I(t)

T(t + 1) = r1(1 − d)E(t) + q(1 − d)r2I(t) + μ3(1 − d)ϕ3(I(t)/N∗)T(t)

+ (1 − μ3)(1 − d)T(t) (32)
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Figure 2. Chartflow of the exogenous model with treatment.

7.1. The computation ofR0(E0)
We are going to use the next-generation matrix approach [15]. Let X0 = (E, I)T , X1 =
(S,T)T , X = (X0,X1) ∈ R4+. Hence system (34) may be written as

X0(t + 1) = G0(X(t))

X1(t + 1) = G1(X(t))
(33)



20 S. ELAYDI AND RENÉ LOZI

where G0(X(t)) =
(
E(t+1)
I(t+1)

)
= F(t) + T (t), and G1(X(t)) =

(
S(t+1)
T(t+1)

)
, where

F(t) =
(

μ1(1 − d)(1 − ϕ1(I(t)/N∗)S(t) + μ3(1 − d)(1 − ϕ3(I(t)/N∗))T(t) + pr2I(t)
μ2(1 − ϕ2(I(t)/N∗)E(t)

)

=
(
F1(t)
F2(t)

)

is the vector of new infections that survive in the time interval [0, t], and

T (t) =
(

(1 − d − α − r1)E(t) + μ2ϕ2(I(t)/N∗)E(t)
αE(t) + (1 − d − r2 − γ )I(t)

)
=

(
T1(t)
T2(t)

)

is the vector of all other transitions.
Next, we compute the Jacobian matrix of T (t) andF(t) at the disease-free equilibrium

(DFE) E0 = (0, 0, 0, S∗)

F(t)|(0,0,S∗,0) =
⎛
⎜⎝

∂F1(t)
∂E

∂F1(t)
∂I

∂F2(t)
∂E

∂F2(t)
∂E

⎞
⎟⎠ =

(
0 pr2(1 − d) + μ1(1 − d)β1
0 0

)

T(t)|(0,0,S∗,0) =
⎛
⎜⎝

∂T1(t)
∂E

∂T1(t)
∂I

∂T2(t)
∂E

∂T2(t)
δI

⎞
⎟⎠

=
(

(1 − d)(1 − α − r1) − μ2(1 − d) 0
α(1 − d) (1 − d)(1 − γ − r2)

)
.

Now the basic reproduction number is given by R0 = ρ(F(I − T)−1), where ρ denotes
the spectral radius of a matrix [15–17].

Hence R0 = α(1−d)2(μ1β1+pr2)
(1−(1−d)(1−α−r1)−μ2(1−d))(1−(1−d)(1−γ−r2)) . The expression gives the

number of secondary infections that one infected will produce in an entirely susceptible
population during its lifespan.

The statement in blue below needs to be revised
As it happens, β1S + β2T is the number of secondary infections that one infected

individual will produce in a unit of time. If the population is entirely susceptible, then
T = 0. The lifespan of an infectious individual is 1/(d + γ + r2). However, only a fraction
α/(d + α + r1) survives the exposed period and moves to infected status. The fraction
(αpr2)/(d + α + r1)(d + γ + r2) gives the infected individuals who relapse, survive the
exposed period, and become infectious again.

7.2. Local stability of DFE of the SEITmodel

Theorem 7.1: The DFE (E0) of system (31) is locally asymptotically stable if R0(E0) < 1
and unstable ifR0(E0) > 1.
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Proof: The Jacobian matrix of system (34) at E0 represented by J(E0) is given by

J(E0) =

⎛
⎜⎜⎝

−d + 1 0 −μ1β1 0
0 1 − d − α − r1 − μ2 pr2 + μ1β1 0
0 α 1 − d − γ − r2 0
0 r1 qr2 1 − d

⎞
⎟⎟⎠

The first eigenvalue of the Jacobian matrix is λ1 = λ4 = 1 − d < 1. The remaining two
eigenvalues are the eigenvalues of the matrix

A =
(
1 − d − α − r1 − μ2 pr2 + μ1β1

α 1 − d − γ − r2

)
,

We now use the determinant-trace criteria to show that the two eigenvalues of this matrix
lie inside the unit disk [18,19]. One may show that the eigenvalues of A are inside the
unit disk ifR0 < 1 and unstable ifR0 > 1 Now ifR0 = 1, then det(A) = tr(A) − 1. This
implies that λ2 = 1 and |λ3| < 1 and the system goes through transcritcal bifurcation. �

Next, we state the global stability result of DFE.

Theorem 7.2: Assume thatR0 ≤ 1. Then the DFE of (31) is globally asymptotically stable.

Proof: The proof is similar to the proof of Theorem 3.1 and will be omitted �

7.3. Reproduction number computed using the endemic equilibrium

Assuming γ = 0, then N(t + 1) = � + (1 − d)N(t) and thus the equilibrium N(t) →
�/d = N∗. We also assume thatμ2 = 0. Hence, we may study the above system withN(t)
replaced by N∗ and we have the limiting equation

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)ϕ1(I(t)/N∗)S(t)
E(t + 1) = μ1(1 − d)(1 − ϕ1(I(t)/N∗)S(t) + μ3(1 − d)(1 − ϕ3(I(t)/N∗)T(t)

+ (1 − d)(1 − α − r1)E(t) + p(1 − d)r2I(t)

I(t + 1) = α(1 − d)E(t) + (1 − d)(1 − r2)I(t)

T(t + 1) = r1(1 − d)E(t) + q(1 − d)r2I(t) + μ3(1 − d)ϕ3(I(t)/N∗)T(t)

+ (1 − μ3)(1 − d)T(t) (34)

Let X0 = (E, I)T , X1 = (S,T)T , X = (X0,X1) ∈ R4+. Hence system (34) may be written as

X0(t + 1) = G0(X(t))

X1(t + 1) = G1(X(t))
(35)
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where G0(X(t)) =
(
E(t+1)
I(t+1)

)
= F(t) + T (t), and G1(X(t)) =

(
S(t+1)
T(t+1)

)
, where

F(t) =
⎛
⎝μ1(1 − d)(1 − ϕ1(I(t)/N∗)S(t) + μ3((1 − d)1 − ϕ3(I(t)/N∗)T(t)

+pr2(1 − d)I(t)
0

⎞
⎠

=
(
F1(t)
F2(t)

)

is the vector of new infections that survive in the time interval [0, t], and

T (t) =
(

(1 − d)(1 − α − r1)E(t)
α(1 − d)E(t) + (1 − d)(1 − r2)I(t)

)
=

(
T1(t)
T2(t)

)

is the vector of all other transitions.
Next, we compute the Jacobian matrix of T (t) and F(t) at the endemic equilibrium

(EE) E0 = (E∗, I∗, S∗,T∗)

F(t)|(E∗,I∗,S∗,T∗) =
⎛
⎜⎝

∂F1(t)
∂E

∂F1(t)
∂I

∂F2(t)
∂E

∂F2(t)
∂E

⎞
⎟⎠

=
(
0 (1 − d)(pr2 + μ1β1ϕ1(I∗/N∗)S∗/N∗ + μ3β1ϕ3(I∗/N∗)T∗/N∗)
0 0

)

T(t)|(E∗,I∗,S∗,T∗) =
⎛
⎜⎝

∂T1(t)
∂E

∂T1(t)
∂I

∂T2(t)
∂E

∂T2(t)
δI

⎞
⎟⎠

=
(

(1 − d)(1 − α − r1 − μ2) 0
α(1 − d) (1 − d)(1 − r2)

)
.

Now the basic reproduction number is given by R0(E∗) = ρ(F(I − T))−1), where ρ

denotes the spectral radius of a matrix [15–17]. Hence R0(E∗) =
α(1−d)2(pr2+μ1β1ϕ1(I∗/N∗)S∗/N∗+μ3β1ϕ3(I∗/N∗)T∗/N∗))

(d+α+r1+μ2)(d+r2+γ )+αμ2β2ϕ2(I∗/N∗)T∗/N∗ . The expression gives the number of
secondary infections that one infected will produce in an entirely susceptible population
during its lifespan. This expression reduces to the net reproduction number based on the
disease-free equilibrium.

8. Existence of the endemic equilibrium of the SEIT compartmental model
(with treatment)

8.1. case γ �= 0,μ1 �= 0, r1 �= 0, r2 �= 0,μ2 = 0,μ3 = 0

Proposition 8.1: Assume that γ �= 0, μ1 �= 0, r1 �= 0, r2 �= 0, μ2 = 0 and μ3 = 0. Then
every equilibrium point E∗ = (S∗,E∗, I∗,T∗) of model (34) is of the form

E∗ =
(
S∗, (d + r2 − dr2)(� − dS∗)

L1
,
α(1 − d)(� − dS∗)

L1
,
L2(� − dS∗)

L1

)
(36)
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with S∗ solution of

L1N∗ ln
[

μ1(1 − d)S∗

(μ1 + d − μ1d)S∗ − �

]
+ αβ1(1 − d) dS∗ = (1 − d)αβ1�, (37)

with L1 =
[
[(1 − d)(α + r1) + d] (d + r2 − dr2) − α(1 − d)2pr2

]
, and L2 =[

r1(d + r2 − dr2) + (1 − d)qr2α
]
.

This equation can also be written as

L1N∗ [
ln(S∗) − ln

[
(μ1 + d)S∗ − �

]] + αβ1 dS∗ = αβ1� − L1N∗ ln(μ1), (38)

Proof: Consider

S(t + 1) = � + (1 − μ1)(1 − d)S(t) + μ1(1 − d)e−β1(I(t)/N∗)S(t)

when S(t + 1) = S(t),
one has:

(1 − d)μ1e−β1
I∗
N∗ S∗ = −� + (μ1 + d − μ1d)S∗ (39)

then if μ1 > 0, β1 > 0 and S∗ > 0

e−β1
I∗
N∗ = −� + (μ1 + d − μ1d)S∗

(1 − d)μ1S∗

or

ln
[
e−β1

I∗
N∗

]
= ln

[−� + (μ1 + d − μ1d)S∗

(1 − d)μ1S∗

]

− β1
I∗

N∗ = ln
[−� + (μ1 + d − μ1d)S∗

(1 − d)μ1S∗

]

I∗ = −N∗

β1
ln

[−� + (μ1 + d − μ1d)S∗

(1 − d)μ1S∗

]
(40)

Consider now

E(t + 1) = (1 − d)μ1(1 − e−β1(I(t)/N∗))S(t) + (1 − d)(1 − α − r1)E(t) + (1 − d)pr2I(t)

when E(t + 1) = E(t), one has:

0 = μ1(1 − d)(1 − e−β1
I∗
N∗ )S∗ − [(1 − d)(α + r1) + d]E∗ + (1 − d)pr2I(t)

From (39) it comes:

0 = μ1(1 − d)S∗ + � − (μ1 + dμ1d) − S∗ − [(1 − d)(α + r1) + d]E∗ + (1 − d)pr2I(t)

[(1 − d)(α + r1) + d]E∗ + (1 − d)pr2I(t) = � − dS∗ (41)

Consider now

I(t + 1) = α(1 − d)E(t) + (1 − d)(1 − r2)I(t)
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when I(t + 1) = I(t), one has:

0 = α(1 − d)E∗ − (d + r2 − dr2)I∗

E∗ = (d + r2 − dr2)I∗

α(1 − d)
(42)

inserting (42) in (41) we obtain:

[(1 − d)(α + r1) + d] (d + r2 − dr2)I∗

(1 − d)α
− (1 − d)pr2I∗ = � − dS∗ (43)

or [
[(1 − d)(α + r1) + d] (d + r2 − dr2) − α(1 − d)2pr2

]
I∗

(1 − d)α
= � − dS∗ (44)

thus, as L1 = [
[(1 − d)(α + r1) + d] (d + r2 − dr2) − α(1 − d)2pr2

]

I∗ = α(1 − d)(� − dS∗)
L1

(45)

Equaling (40) to (45) it comes

α((� − dS∗)
L1

= −N∗

β1
ln

[−� + (μ1 + d − μ1d)S∗

(1 − d)μ1S∗

]
− d) (46)

or

L1N∗ ln
[

(1 − d)μ1S∗

(μ1 + d − μ1d)S∗ − �

]
+ (1 − d)αβ1dS∗ = (1 − d)αβ1� (47)

Considering now the fourth equation of (34)

T(t + 1) = (1 − d)r1E(t) + (1 − d)qr2I(t) + (1 − d)T(t) (48)

when T(t + 1) = T(t),
It comes

T ∗ = (1 − d)(r1E∗ + qr2I∗)
d

(49)

or

T ∗ =
[
r1(d + r2 − dr2) + (1 − d)qr2α

]
I∗

d(1 − d)α
(50)

or

T ∗ =
[
r1(d + r2 − dr2) + (1 − d)qr2α

]
(� − dS∗)

L1
(51)

or, as L2 = [
r1(d + r2 − dr2) + (1 − d)qr2α

]

T ∗ = L2(� − dS∗)
L1

(52)

�
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8.2. Existence and uniqueness of the endemic equilibrium

Theorem 8.2: Assume that γ �= 0, μ1 �= 0, r1 �= 0, r2 �= 0, μ2 = 0, μ3 = 0 and R0 > 1.
Then there exists a unique endemic equilibrium point E∗ = (S∗ > 0, E∗ ≥ 0, I∗ ≥ 0, T ∗ ≥
0) of system (34)

Proof: Consider the function

f (x) = L1N∗ ln
[

(1 − d)μ1x
(μ1 + d − μ1d)x − �

]
+ (1 − d)αβ1dx, (53)

which is only defined for x > �
μ1+d .

Its derivative is:

f ′(x) = − L1N�

x [(μ1 + d − μ1d)x − �]
+ (1 − d)αβ1d, (54)

and its second derivative is:

f ′′(x) = L1N� [2(μ1 + d − μ1d)x − �]
x2 [(μ1 + d − μ1d)x − �]2

, (55)

which is always positive because from (11) (μ1 + d − μ1d)S∗ − � > 0, i.e. (μ1 + d −
μ1d)x − � > 0,

hence � < (μ1 + d − μ1d)x < 2(μ1 + d − μ1d)x and L1 > 0 because L1 =[
[(1 − d)(α + r1) + d] (d + r2 − dr2) − α(1 − d)2pr2

]
it is known that 0 < r2 < 1, the

other parameters being positive, L1 must be > 0.
Therefore f (x) is convex and f ′(x) is always increasing.
The equation

f (x) = (1 − d)αβ1�, (56)

which represents the intersection of a convex curve with and horizontal straight line, and
can have either zero, one, or two solutions.

Clearly, x = N∗ satisfies Equation (56), which gives us the disease equilibrium point
(S∗, 0, 0, 0). Therefore this equation can have only one or two solutions. Moreover, ifR0 =
1, and since N∗ = �/d, it follows that

f ′(N∗) = − (d + γ )(d + α)d�
μ1�

+ d
(d + γ )(d + α)

μ1
= 0, (57)

Therefore the tangent to the convex curve is horizontal, and, consequently, there is only
one point of intersection between the horizontal line and the curve which is the DFE.

It is easy to verify that ifR0 > 1 or αβ1 > d(d+α)
μ , then 1 f ′(N∗) > 0 and, consequently,

there is an equilibrium point on the left-hand side intersection between the convex curve
and the horizontal straight line, with S∗ < N∗. This proves the existence and uniqueness
of the endemic equilibrium point ifR0 > 1. �
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9. Local stability of the endemic equilibrium of the SEIT compartmental
model (with treatment)

Assume that μ2 = r1 = r2 = γ = 0. This implies that limt→∞ T(t) = limt→∞(ϕ3(I(t)/
N∗) + 1 − μ3 − d)tT(0) = 0 In this case, the system (34) is equivalent to the SEI model

S(t + 1) = � + (1 − μ1 − d)S(t) + μ1ϕ1(I(t)/N∗)S(t)
E(t + 1) = μ1(1 − ϕ1(I(t)/N∗)S(t) + (1 − d − α)E(t)

I(t + 1) = αE(t) + (1 − d)I(t)

(58)

Theorem 9.1: Assume that μ2 = μ3 = r1 = r2 = 0. and R0(E∗) < 1 < R0(E0). Then
for sufficiently small r1, r2, and μ2, the endemic equilibrium of the system (34) is locally
asymptotically stable.

Proof: The Jacobian matrix of system (2) at E∗ is given by

B = JF(E∗) =

⎛
⎜⎜⎜⎝
1 − (μ1 + d) + μ1e−β1

I∗
N∗ r1 r2 − μ1β1S∗

N∗ e−β1
I∗
N∗

μ1(1 − e−β1
I∗
N∗ ) 1 − d − α − r1

μ1β1S∗

N
e−β1

I∗
N∗

0 α 1 − d − r2

⎞
⎟⎟⎟⎠ .

(59)

Tofind the eigenvalues ofB = JF(E∗), we solve the characteristic equation det(B − λI) = 0
∣∣∣∣∣∣∣∣
1 − (μ1 + d) + μ1e−β1

I∗
N∗ − λ 0 −μ1β1S∗

N∗ e−β1
I∗
N∗

μ1(1 − e−β1
I∗
N∗ ) 1 − d − α − λ 0

0 α 1 − d − λ

∣∣∣∣∣∣∣∣
= 0

Now adding the first row and the third row to the second row we get
∣∣∣∣∣∣∣
1 − (μ1 + d) + μ1e−β1

I∗
N∗ − λ 0 −μ1β1S∗

N∗ e−β1
I∗
N∗

1 − d − λ 1 − d − λ 1 − d − λ

0 α 1 − d − λ

∣∣∣∣∣∣∣
= 0

Factoring out 1 − d − λ, we see that the first eigenvalue is λ1 = 1 − d < 1. The remaining
eigenvalues are solutions of the characteristic equation

∣∣∣∣∣∣∣
1 − (μ1 + d) + μ1e−β1

I∗
N∗ − λ 0 −μ1β1S∗

N∗ e−β1
I∗
N∗

1 1 1
0 α 1 − d − λ

∣∣∣∣∣∣∣
= 0

The characteristic equation may be written as

p(λ) = λ2 + a1λ + a0

We now apply the Jury test to show that the remaining two eigenvalues are inside the unit
disk. Since R0(E∗) < 1 it is easy to show that p(1) > 0 and p(−1) > 0. One may show
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that the constant term a0 < 1. Therefore, the endemic equilibrium is locally asymptotically
stable. �

The final general result now follows.

Theorem 9.2: Assume that μ2 �= 0, r1 �= 0, r2 �= 0, andγ �= 0, and R0(E∗) < 1 <

R0(E0). Then for sufficiently small r1, r2, γ , and μ2, the endemic equilibrium of the
system (31) is locally asymptotically stable.

Proof: Using Theorems 5.3 and 5.2 theorems, one may mimic the proof of Theorem 5.4.
�

10. Numerical simulation

10.1. Numerical simulationala

The population of India is 1,426,086,000 and the growth rate d = 0.0081. What is approx-
imately sure: the number of exposed 40% of the population = 570,434,000.

Case I: SEI converges toward EE, SEIT converges toward DFE. From Table 1, we have:
SEI Exogenous model
N = 1, 426, 086, 000 in 2023 (1.426086 × 109) (population of India)
� = 11, 551, 297, d = 0.0081, α = 0.00081, β1 = β2 = 1.5, μ1 = 0.05, μ2 = 0.042,

γ = 0.0002, r1 = 0.0016, r2 = 0.0048
SEIT model
Same values +β3 = 1.5, μ3 = 0.08, p = 0.8, q = 1−p = 0.2
Case II: SEI and SEIT converge toward EE. From Table 2, we have:
SEI Exogenous model
N = 1, 426, 086, 000 in 2023 (1.426086 × 109) (population of India)
� = 11, 551, 297, d = 0.0081,α = 0.00081,β1 = β2 = 2.5,μ1 = 0.05,μ2 = 0.04, γ =

0.0002
r1 = 0.0025, r2 = 0.002

Table 1. Shows that, with the given values of the parameters, the SEI is epidemic, while the SEIT model
is disease-free.

SEI Exogenous SEIT

S0 1221086000 S∗ 493190200 S0 1221086000 S∗ 1426086000
E0 500000000 E∗ 373328700 E0 500000000 E∗ 0
I0 5000000 I∗ 546083900 I0 5000000 I∗ 0

T0 0 T∗ 0
N0 1426086000 N∗ 1412603000 N0 1426086000 N∗ 1426086000

Table 2. shows that, with the given values of the parameters, both the SEI and SEIT are endemic.

SEI Exogenous SEIT

S0 1221086000 S∗ 298833700 S0 1221086000 S∗ 258974600
E0 500000000 E∗ 272408700 E0 500000000 E∗ 310962900
I0 5000000 I∗ 834245000 I0 5000000 I∗ 680948900

T0 0 T∗ 135872500
N0 1426086000 N∗ 1405487000 N0 1426086000 N∗ 1396758000
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SEIT model
Same values +β3 = 0.1, μ3 = 0.008, p = 0.8, q = 1−p = 0.2

11. Conclusion and open problems

From Table 1, one can see that if a population’s treatment level is sufficiently high, the
disease dies out, while with no treatment, the disease becomes endemic.

From Table 2, one can see that if a population’s treatment level is low, the disease
becomes endemic with and without treatment. However, it should be noted that the num-
ber of infections in the SEIT model is 153 million less than in the SEI model. Finally, we
state a couple of open problems that will be addressed in the future.

• We conjecture that local asymptotic stability of the endemic equilibrium for both SEI
and SEIT models implies global asymptotic stability.

• The investigation of the bifurcation whenR0(E∗) = 1 is still an open problem.
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