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Speeding up VSLMS adaptation algorithms using dynamic
adaptation gain: Analysis and Applications *

Ioan Doré Landaua, Dariusz Bismorb, Tudor-Bogdan Airimitoaiec, Bernard Vaud, Gabriel Buchea

Abstract—The paper explores the use of dynamic adaptation
gain/step size (DAG) for improving the adaptation transient
performance of variable step-size LMS (VS-LMS) adaptation
algorithms. A generic form for the implementation of the DAG
within the VS-LMS algorithms is provided. The properties of
the VS-LMS algorithms using dynamic adaptation gain are dis-
cussed in detail. Stability issues in deterministic environment and
convergence properties in stochastic environment are examined.
A transient performance analysis is proposed. Criteria for the
selection of the coefficients of the DAG filter are provided.
The potential of the VS-LMS adaptation algorithms using a
DAG is then illustrated by simulation results (adaptive line
enhancer, filter identification) and experimental results obtained
on a relevant adaptive active noise attenuation system.

I. INTRODUCTION

The modern development of adaptation techniques in au-
tomatic control and signal processing started at the end of
the fifties and beginning of the sixties (20th century). The
paper [30] introduced a gradient-based adaption algorithm in
the discrete-time, later named the least mean squares (LMS).
While the choice of the adaptation gain/step size for assuring
the stability of the system was an open problem, interesting
applications in the field of signal processing have been done.
The paper [29] gives an account of the applications of the
LMS algorithm up to 1975.

In automatic control, the first attempt to synthesize adap-
tation algorithms has been probably the paper [28], where a
continuous-time formulation of a gradient type algorithm has
been proposed. Unfortunately, dealing with feedback control
systems to which a non-linear/time-varying loop (the adapta-
tion loop) is added, raised crucial stability issues. The problem
of the choice of the adaptation gain (step size) assuring the sta-
bility of the full system is fundamental. Therefore, the research
paradigm in control was directed toward synthesis of adaptive
algorithms guaranteeing the stability of the full system for any
(positive) value of the adaptation gain/step size. Discrete time
adaptation algorithms assuring global asymptotic stability for
any values of the adaptation gain were available since 1971 (
[15], [16], [21]). The concepts of ”a priori” and ”a posteriori”
adaptation error emerged as key points for understanding the
stability issues in the discrete-time context. Use of this type
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of algorithms in signal processing have been reported in [12],
[23] among other references. These algorithms, derived from
stability considerations, can be interpreted in the scalar case
as gradient type algorithms trying to minimize a quadratic
criterion in terms of the ”a posteriori” prediction error ( [13],
[14]).

The signal processing community has concentrated its ef-
forts in developing variable step size/adaptation gain algo-
rithms in a scalar context (more exactly using a diagonal
matrix adaptation gain) in order to improve the performance
of the LMS algorithm. An exhaustive account of the various
variable step-size LMS (VS-LMS) algorithms is provided by
[6], where a unified presentation is done as well as an extensive
comparison of the algorithms by applying them to a number of
significant problems. It turns out that the adaptation algorithms
developed in automatic control from a stability point of view
can also be interpreted as ”variable step size” LMS algorithms.

When using adaptive/learning recursive algorithms there
is an important problem to be addressed: the compromise
between alertness (with respect to environment changes –
like plant or disturbance characteristics) and stationary per-
formances when using a constant value for the adaptation
gain/step size. Accelerating the adaptation transient without
augmenting the value of the adaptation gain/step size is a
challenging problem.

Recently, the concept of dynamic adaptation gain (DAG)
has been introduced in [17], [19], [22] as a way to accelerate
significantly the adaptation transients without modifying the
steady state (asymptotic) properties of an algorithm for a given
adaptation gain/step size. The correcting term in the adaptation
algorithm is first filtered before its use for the estimation of
a new parameter value. With an appropriate choice of the
parameters of this filter, which should be characterized by
a strictly positive real (SPR) transfer function, a significant
improvement of the adaptation transient is obtained. The
design of this filter is well understood and design tools are
available.

The main objective of this paper is to show that the
DAG introduced in the context of stability based adaptation
algorithms can be successfully applied to VS-LMS adaptation
algorithms leading to similar significant acceleration of the
adaptation transients. This will be based on a theoretical
analysis and will be illustrated by simulations (adaptive line
enhancer, filter identification) and real-time experiments on an
adaptive feedforward noise attenuator (a silencer).

The paper is organized as follows: Section II will introduce
the concept of dynamic adaptation gain in the context of
VS-LMS adaptation algorithms. Section III will focus on the
analysis and design of the dynamic adaptation gain filter.
Section IV will present simulations results for an adaptive line



enhancer and for filter identification. Section V will present
the experimental results obtained with three algorithms on an
adaptive feedforward noise attenuator.

II. INTRODUCING THE DAG-VS-LMS ALGORITHMS

Fig. 1. Least mean squares (LMS) adaptive filtering problem.

Variable step size least mean squares (VS-LMS) algorithms
are very popular in the field of signal processing and the
field of active vibration and noise control. There is a strong
similarity with some of the algorithms used in the adaptive
control and recursive system identification. The VS-LMS
algorithms (which are improvements of the original LMS
algorithm) will be briefly reviewed in order to add the dynamic
adaptation gain/step size introduced in [17]. The aim of the
LMS parameter adaptation/learning algorithm (PALA) is to
drive the parameters of an adjustable model in order to
minimize a quadratic criterion in terms of the prediction error
(difference between real data and the output of the model used
for prediction).

The basic block diagram illustrating the LMS algorithm’s
operation is shown in Fig. 1. The adaptive filter Ŵ (q−1) is
fed with the input sequence1 d(t). The output of the filter,
ŷ◦(t), is compared with the desired signal, x(t), to compute
the error signal e◦(t). The LMS algorithm adjusts the weights
of the Ŵ (q−1) filter to minimize the error.

Consider that the desired signal can be described by:

x(t) = wT r(t), (1)

where the parameter vector and the measurement vector are
denoted by

wT = [w0, w1, . . . , wnW
] , and (2)

rT (t) = [d(t), d(t− 1), . . . , d(t− nW )] , (3)

respectively. The adjustable prediction model of the adaptive
filter will be described by:

ŷ◦(t) = ŵT (t− 1)r(t), (4)

where ŷ◦(t) is termed the a priori predicted output depending
upon the values of the estimated parameter vector w at instant
t− 1:

ŵT (t− 1) = [ŵ0(t− 1), ŵ1(t− 1), . . . , ŵnW
(t− 1)] . (5)

It is very useful to consider also the a posteriori predicted
output computed on the basis of the new estimated parameter

1Variables in discrete-time are denoted as s(t), where t gives the integer
number of sampling periods and it is related to the continuous-time by τ =
t · Ts, where Ts is the sampling period.

vector at t, ŵ(t), which will be available somewhere between
t and t + 1. The a posteriori predicted output will be given
by:

ŷ(t) = ŵT (t)r(t) (6)

One defines an a priori prediction error as:

e◦(t) = x(t)− ŷ◦(t) = [w − ŵ(t− 1)]T r(t) (7)

and an a posteriori prediction error as:

e(t) = x(t)− ŷ(t) = [w − ŵ(t)]T r(t) (8)

The VS-LMS algorithms update the filter taps according to
the formula (see [6]):

ŵ(t) = ŵ(t− 1) + µ(t)r(t)e◦(t), (9)

where µ(t) is the variable step-size parameter. In the standard
form of the LMS algorithm, the step-size has a constant value
µ(t) = µ. Large values of µ allow for fast adaptation, but
also give large excess mean square error (EMSE, see [6]).
Too large step-sizes may lead to the loss of stability (see
[13] for a discussion). On the other hand, too small step-sizes
give slow convergence, which in many practical applications
is not desirable. A variable step-size µ(t) can provide a
compromise. The first VS-LMS algorithm was the Normalized
LMS (NLMS) algorithm proposed in 1967 independently by
[3], [25], which uses the following equation for the step-size:

µ(t) =
µ

δ + r(t)T r(t)
, (10)

where δ is a very small scalar value used in order to avoid
division by zero (typically of the order of 10−16). 2

In adaptive control, where the stability of the full adaptive
control system is considered as a fundamental issue, VS-
LMS algorithms have been developed from a stability point
of view. However, when scalar type adaptation gain is used
(i.e. diagonal matrix adaptation gain), these algorithms can be
interpreted as gradient type algorithms for the minimization
of a quadratic error in terms of the a posteriori prediction
error defined in (8) - see [13] for details. See also [22] for
a derivation of this type of algorithm and its application to
active noise control. This algorithm will be termed PLMS 3

(to distinguish it with respect to the LMS and the other VS-
LMS that use the a priori prediction error). The algorithm has
the form:

ŵ(t) = ŵ(t− 1) + µr(t)e(t) (11)
= ŵ(t− 1) + µ(t)r(t)e◦(t), (12)

where:

µ(t) =
µ

1 + µr(t)T r(t)
, (13)

e(t) can be computed from e◦(t). One has using Eq. (11):

e(t) = [w − ŵ(t)]T r(t) = e◦(t)− µrT r(t)e(t) (14)

2The case of NLMS using larger values of δ (for example δ = 1) is
discussed in [9].

3In [12] a close algorithm is termed HARF.



yielding:

e(t) =
e◦(t)

1 + µr(t)T r(t)
(15)

When using the dynamic adaptation gain/step size (DAG),
Eq. (9) of the VS-LMS algorithms will take the form:

ŵ(t) = ŵ(t− 1) +
C(q−1)

D′(q−1)
[µ(t)r(t)e◦(t)] (16)

where4 C(q−1)
D′(q−1) is termed the “dynamic adaptation gain/step

size” (DAG) and has the form:

HDAG(q
−1) =

C(q−1)

D′(q−1)
=

1 + c1q
−1 + . . .+ cnC

q−nC

1− d′1q
−1 − . . .− d′nD′ q

−nD′

(17)
The effective implementation of the algorithm given in Eq.
(16) leads to:

ŵ(t) = d1ŵ(n− 1) + d2ŵ(n− 2) + . . .+ dnD
ŵ(n− nD)

+ µ(t)r(t)e◦(t) + c1µ(n− 1)r(n− 1)e◦(n− 1)+

+ . . .+ cnC
µ(n− nC)r(n− nC)e

◦(n− nC) (18)

where (nD = nD′ + 1):

di = (d′i − d′i−1) ; i = 1, ...nD; d′0 = −1, d′nD
= 0 (19)

To implement the algorithm, one needs a computable expres-
sion for e◦(t). This is obtained by computing ŷ◦(t) in (7) as5

ŷ◦(t) = ŵT
0 (t− 1)r(t), (20)

where

ŵT
0 (t−1) = d1ŵ(t−1)+d2ŵ(t−2)+ . . .+dnD

ŵ(t−nD)

+ c1µ(t− 1)r(t− 1)e◦(t− 1)+

+ . . .+ cnC
µ(t− nC)r(t− nC)e

◦(t− nC). (21)

Relations with other algorithms

Many algorithms have been proposed for accelerating the
speed of convergence of the adaptation algorithms derived
using the ”gradient rule”. The algorithm of (16) is termed
ARIMA (Autoregressive with Integrator Moving Average).
As discussed in [19, Section 8], a number of well known
algorithms are particular cases of the ARIMA algorithm. The
various algorithms described in the literature are of MAI
(Moving Average with Integrator) form or ARI (Autoregres-
sive with Integrator) form. The MAI form includes “Integral+
Proportional” algorithm [1], [13] (c1 ̸= 0, ci = 0,∀ i > 1,
d′i = 0,∀ i > 0), “Averaged gradient” (ci, i = 1, 2, ...,
d′i = 0,∀ i > 0) [26], [27]. The ARI form includes “Conjugate
gradient” and “Nesterov” algorithms [8], [24] (ci = 0, i =
1, 2, .., d′1 ̸= 0, d′i = 0, i > 1) as well as the “Momentum
back propagation” algorithm [11] which corresponds to the
conjugate gradient plus a normalization of µ by (1− d′1)

6. A

4The complex variable z−1 will be used for characterizing the system’s
behaviour in the frequency domain and the delay operator q−1 will be used
for describing the system’s behavior in the time domain.

5For low orders nC and nD′ , ŵ0(t− 1) can efficiently be approximated
by ŵ(t− 1).

6There are very few indications how to choose the various coefficients in
the above mentioned algorithms.

particular form of the ARIMA algorithms termed “ARIMA2”
(c1, c2 ̸= 0, ci = 0,∀ i > 2, d′1 ̸= 0, d′i = 0,∀ i > 1) will be
studied subsequently and evaluated experimentally.7

III. ANALYSIS AND DESIGN OF THE DYNAMIC
ADAPTATION GAIN/STEP SIZE

A. Performance issues

The dynamic adaptation gain/learning rate will introduce a
frequency-dependent phase distortion on the gradient. Assume
that the algorithms should operate for all frequencies in the
range: 0 to 0.5fs (fs is the sampling frequency). Assume
that the gradient of the criterion to be minimized contains a
single frequency. In order to minimize the criterion, the phase
distortion introduced by the dynamic adaptation gain/learning
rate should be less than 90◦ at all the frequencies. In other
terms, the transfer function C(z−1)

D′(z−1) should be strictly positive
real (SPR). In order that a transfer function be strictly positive
real, it must first have its zeros and poles inside the unit circle.
One has the following property:

Lemma 3.1: Assume that the polynomials C(z−1) and
D′(z−1) have all their zeros inside the unit circle, then:

I =

∫ π

0

log

(∣∣∣∣ C(e−iω)

D′(e−iω)

∣∣∣∣)dω = 0. (22)

The proof relies on the Cauchy Integral formula (see [19]).
This result allows to conclude that the average gain of a SPR

filter over the frequency range 0 to 0.5fs is 0 dB, i.e. on the
average this filter will not modify the adaptation gain/step size.
It is just a frequency weighting of the adaptation gain/step size.
A it can be seen in Fig. 7, Fig. 11 (Section IV) and in Fig. 16
(Section V), these filters are SPR low band pass filters with
an average gain of 0 dB over the frequency range 0 to 0.5fs.
This means that if the frequency content of the gradient is in
the low frequency range, the effective adaptation gain/learning
rate will be larger than µ, which should have a positive effect
upon the adaptation/learning transient. In particular, the DAG
which has the largest gain in low frequencies should provide
the best performance (This is indeed the case—see Sections
IV and V).

Since we need to have a DAG which is SPR, we will provide
subsequently the tools for design of a SPR DAG. We will
consider the case of the ARIMA2 algorithm introduced in [17].
The DAG in this case will have the form:

HDAG =
C(q−1)

D′(q−1)
=

1 + c1q
−1 + c2q

−2

1− d′1q
−1

(23)

A criterion for the selection of c1, c2 and d′1 in order that the
DAG be SPR [19] is given in Appendix A.

From the conditions of Lemma A.1 (Appendix A), closed
contours in the plane c2 − c1 can be defined for the different
values of d′1 allowing to select c1 and c2 for a given value
of d′1 such that the DAG be SPR. Note that a necessary
condition for the selection of the parameters c1, c2, d

′
1 is that

both the denominator and the numerator of the HDAG should
be asymptotically stable.

7The algorithms mentioned above can be viewed as particular cases of the
ARIMA2 algorithm.



B. Stability issues for unconstrained values of the adaptation
gain µ > 0

If one wants to use VS-LMS algorithms with large values
of the adaptation gain µ, the stability analysis of the resulting
scheme using a dynamic adaptation gain is an important issue.
For the case of the PLMS algorthm, this analysis has been
carried in detail in [19], [22]8. For the convenience of the
reader, we will indicate the main result subsequently.
Equation (16) can be expressed also as:

(1− q−1)ŵ(t+ 1) = +
C(q−1)

D′(q−1)
[µ(t)r(t)e◦(t+ 1)]

leading to:

ŵ(t+ 1) = HPAA(q
−1)[µr(t)e(t+ 1)], (24)

where e(t+ 1) = e◦(t+ 1)(1 + µϕT (t)ϕ(t))−1 and HPAA =
(1 − q−1)−1HDAG is a MIMO diagonal transfer operator
having identical terms. All the diagonal terms are described
by:

Hii
PAA(q

−1) =
1 + c1q

−1 + . . .+ cnC
q−nC

(1− q−1)(1− d′1q
−1 − . . .− d′nD′ q

−n′
D )

=
C(q−1)

(1− q−1)D′(q−1)
=

C(q−1)

D(q−1)
. (25)

The relation between the coefficients of polynomials D and
D′ is given in (19).

One has the following result:
Theorem 3.2: For the system described by Equations (1)

through (8) using the PLMS algorithm of (16) and (17) one
has limt→∞ e(t + 1) = 0 for any positive adaptation gain µ
and any initial conditions ŵ(0), e(0), if Hii

PAA(z
−1) given in

(25) is a positive real (PR) transfer function with a pole at
z = 1.

The proof is given in [19].
For the particular case of the ARIMA2 algorithm, the

coefficients c1, c2 and d′1 should be chosen such that the DAG
is SPR and the Hii

PAA is positive real (PR), i.e.

Hii
PAA =

1 + c1q
−1 + c2q

−2

1− d1q−1 − d2q−2
=

1 + c1q
−1 + c2q

−2

(1− q−1)(1− d′1q
−1)

(26)

should be PR. A criterion for the selection of the coefficients
c1, c2 and d′1 can be found in [19]. Closed contours cans be
defined in the c2 − c1 plane for given values of d′1.

The adaptive/learning system considered in the Theo-
rem 3.2, leads to an equivalent feedback representation where
the equivalent feedforward path is a constant positive gain and
the equivalent feedback path features the HPAA (see [19]).
The feedback path is passive under the condition that Hii

PAA is
positive real and the feedforward pass is strictly passive allow-
ing to conclude upon the stability of the closed loop. However,
in a number of cases (like output error configurations) the
equivalent feedforward path may be a transfer operator. In such
situations in addition to the PR condition upon the HPAA,
there will be an additional SPR condition upon the transfer
operator characterizing the equivalent feedforward path.

8For µ = 1 and δ = 1, PLMS and NLMS are identical

It is interesting to see intersections of the contours ensuring
the SPR of the Hii

DAG with the contours assuring that Hii
PAA

is PR. Such an intersection is shown in Fig.2. From this figure
one can conclude that not all the SPR HDAG will lead to a
PR HPAA. In such cases, the performance is improved for low
adaptation gains, but asymptotic stability cannot be guaranteed
for high adaptation gain values. Fig. 2 shows also that there is
a region where despite that HPAA is PR, HDAG is not SPR.
For such configurations, large adaptation gains can be used but
the adaptation transient is slower than for the basic gradient
algorithm.
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Fig. 2. Intersection in the plane c1 − c2 of the contour HPAA = PR with
the contour HDAG = SPR for d′1 = 0.5.

C. Stability issues for low values of the adaptation gain/step
size µ > 0

For small values of the adaptation gains/learning rates, the
passivity/stability condition can be relaxed using averaging
[4]. Using the results of [20], under the hypothesis of an
input signal spanning all the frequencies up to half of the
sampling frequency, passivity in the average will be assured
if the frequency interval where Hii

PAA is not positive real is
smaller than the frequency interval where Hii

PAA is positive
real. In fact, the most important is that the Hii

PAA is PR in the
frequency region of operation (mainly defined by the spectrum
of the input signals to the systems). However, more specific
results can be obtained using averaging as shown next9.
Defining the parameter error as:

w̃(t) = ŵ(t)−w (27)

from Eq. (24) on gets:

w̃(t+1) = w̃(t)+FHDAG(q
−1)[r(t)e(t+1)]; F = µI (28)

Taking into account that :

e(t+ 1) = rT [w − ŵ(t+ 1)] = −rT w̃(t+ 1) (29)

9The subsequent analysis is valid for most of the VS-LMS algorithms.



Eq. (28) becomes:

w̃(t+ 1) = w̃(t)− FHDAG(q
−1)[r(t)rT w̃(t+ 1)] (30)

We are now interested on the average of the correcting
term r(t)rT w̃(t + 1). To do averaging, one assumes that
the adaptation gain is small enough such that the estimated
parameters evolve slowly. This means that:

1

N + 1

N∑
i=0

(r(t− i)r(t− i)T w̃(t− i+ 1))

≈ 1

N + 1

N∑
i=0

(r(t− i)r(t− i)T )w̃(t) (31)

However, for large enough N :

1

N + 1

N∑
i=0

(r(t− i)r(t− i)T ) ≈ E{r(t)r(t)T } = Er (32)

and the evolution of the parameter error on the average will
be given by:

w̃(t+ 1) = w̃(t)− FHDAG(q
−1)[Erw̃(t+ 1)] (33)

= w̃(t)− FErHDAG(q
−1)[w̃(t+ 1)] (34)

leading to the equivalent feedback representation shown in
Fig.3. If in addition one makes the assumption that r(t) is
a stationary persistently exciting signal:

σ1I <
1

N + 1

N∑
i=0

(r(t− i)r(t− i)T ) < σ2I; σ1, σ2 > 0

(35)
it results that Er > 0 (equivalent to the condition of persistent
excitation, see [13]). As a consequence, the equivalent feed-
back system will be asymptotically stable (i.e. the parameter
error will go to zero as well as the adaptation error) under the
sufficient condition that HDAG(z

−1) is a strictly positive real
(SPR) transfer function (which is indeed the case) since the
feedforward path is passive (an integrator) [13]. Therefore, the
stability conditions are relaxed when working with low values
of the adaptation gain/step size µ > 0.

-

+
+

Fig. 3. Equivalent feedback representation of the averaged dynamic VS-LMS
algorithm.

D. Adaptation transient analysis

Under the assumptions of persistence of excitation and low
adaptation gains (slow adaptation) one can push further the
approximation of the equation describing the behavior of the
averaged adaptation algorithm via linearization. This allows to
understand the effect of the DAG and provides further hints

for its design.
Consider the case of a single parameter to adapt. Linearization
corresponds in Fig. 3 to the replacement of the product FEr

by a constant positive definite matrix, which for dim(w̃) = 1
is a positive scalar denoted g.
The linearized approximation of the algorithm will be de-
scribed by:

w̃(t+ 1) = w̃(t)− gHDAG(q
−1)[w̃(t+ 1)] (36)

which corresponds to a linear feedback system whose output
is w̃(t+1) (in Fig. 3 one replaces FEr by g). The adaptation
transient behavior will be described by the output sensitivity
function of this feedback system. For the particular case of
an ARIMA2 dynamic adaptation gain, the output sensitivity
function will be given by:

S =
1− q−1

1 + gHDAG(q−1)

=
(1− q−1)(1− d′1q

−1)

(1− q−1)(1− d′1q
−1) + g(1 + c1q−1 + c2q−2)

(37)

We are interested in the response of this transfer function with
respect to a step parameter error. Fig.4 shows the step response
for various values of the DAG coefficients and two selected
values of the adaptation gain g.
As it can be observed for g = 0.01 the convergence time
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Fig. 4. Adaptation transient on the linearized system.

for the basic algorithm is approximately 600 s. By adding the
DAG (d′1 = 0.75, c1 = 0.99; c2 = 0) the convergence time is
reduced to approximately 70 s. Note that a similar performance
can be obtained with the basic algorithm by multiplying the
gain g by 10 (i.e. the acceleration obtained with the DAG
without augmenting the adaptation gain is equivalent to using
an adaptation gain 10 times larger on the basic algorithm).

E. Stochastic environment - convergence analysis
We will consider the I/O model given in (1) where the output

is disturbed by a noise n(t+ 1):

x(t+ 1) = wT r(t) + n(t+ 1) (38)

In this equation, n(t) is a zero mean stationary stochastic
disturbance with finite moments. Using Eqs. (13), (15) and
(16), the PLMS algorithm can be expressed as:

ŵ(t+ 1) = ŵ(t) + µHDAG(q
−1)[r(t)e(t+ 1)] (39)



For the analysis of this algorithm in a stochastic context, we
will use the ODE (ordinary differential equation) approach of
Benveniste-Lam [5], [7]. Convergence results will be extracted
from an ODE which approximate the algorithm by using an
average of the correcting term. We will make the following
assumptions: (1) Stationary processes r(t, ŵ) and e(t+1, ŵ)
can be defined for ŵ(t) ≡ ŵ, (2) ŵ(t) generated by the
algorithm belongs infinitely often to the domain (Ds) for
which the stationary processes r(t, ŵ) and n(t + 1), ŵ) can
be defined. For the adaptation algorithm given in Eq. (39) one
has the following result:

Lemma 3.3: Assume that the Benveniste’s smoothness,
boundness and mixing conditions [5] are satisfied.

1) Assume that:

σ2I ≥ E
{
r(t, ŵ)rT (t, ŵ)

}
≥ σ1I; σ1, σ2 > 0 (40)

2) Assume that r(n, ŵ) is such (persistence of excitation):

r(n, ŵ)T (ŵ −w) = 0 ⇒ ŵ = w (41)

3) Assume that either:
• n(t + 1) is a sequence of independent equally

distributed normal random variables (0, σ) or
•

E{r(t, ŵ),n(t+ 1, ŵ} = 0 (42)

4) Assume that HDAG(z
−1) is stricyly positive real

For a sufficiently small µ one has:

P{∥ ŵ([T/µ])−w ∥≥ η + Cζ(µ)} < C ′ζ(µ) (43)

where: ζ(µ) is a positive decreasing function, C,C ′ are
positive constants, w(t) is the average of w(t), T < ∞ is
such that {∥ w(T ) − w ∥} < η and [T/µ] is the closest
integer to T/µ.
The proof of this lemma is given in Appendix B.
The interpretation of this result is as follows: the parametric
error (distance) is bounded in probability and this bound
depends upon the magnitude of µ 10.

F. Convergence rate

For estimating the convergence rate, one can consider the
ODE equation associated with the algorithm and the Lyapunov
function candidate used for stability analysis. The ratio |V̇ |

V is
an estimation of the convergence rate for large t. From Eqs.
(62) and (63) one gets:

|V̇ |
V

=
(ŵ −w)T [Gw +GT

w](ŵ −w)

(ŵ −w)Tµ−1(ŵ −w)
(44)

where Gw = E{HDAG(q
−1)Er}. Assuming that the compo-

nents of the r(t) are in the low frequency range (this is often
the case), then HDAG(q

−1) can be approximated by its static
gain and one has from Eq. (44):

|V̇ |
V

≈
1 +

∑nC

j=1 cj

1−
∑nD′

j=1 d
′
j

(ŵ −w)T [Er +ET
r ](ŵ −w)

(ŵ −w)Tµ−1(ŵ −w)
(45)

10This is a stronger result than convergence on the average only
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Fig. 5. Block diagram of the Adaptive Line Enhancer.

Fig. 6. The spectrogram of the input signal.

where Er = E[r(t, ŵ), r(t, ŵ)T ]. Since HDAG(q
−1) is

strictly positive real, its static gain is positive. Provided that
the steady state gain SSG =

1+
∑nC

j=1 cj

1−
∑n

D′
j=1 d′

j

> 1 an acceleration

with respect to the standard VS-LMS will be obtained and this
will be illustrated in the simulation and experimental sections.

IV. SIMULATION RESULTS

A. Adaptive Line Enhancer

The properties of several different Dynamic Adaptation
Gains (DAGs) were tested in simulations of the Adaptive Line
Enhancer (ALE) – an adaptive filtering system introduced by
Widrow, capable of detecting and removing highly correlated
signals embedded in wide-band signals [29], [10]. The block
diagram of the ALE is presented in Fig. 5. The input signal to
the ALE, x(t), was constructed of a speech recording with
four contaminating sine signals. The speech recording was
one of the Matlab’s Audio Toolbox exemplary files entitled
FemaleSpeech-16-8-mono-3secs.wav (sampling frequency: 8
kHz). A contaminating signal formed by four sines with fre-
quencies of 80, 125, 230 and 400 Hz has been considered. The
signal thus constructed is non-stationary, with the spectrogram
presented in Fig. 6.

The adaptive filter length and the decorrelation delay (∆)
used in the simulations were both 100. The FIR filter was
longer than can be expected, provided that only four sine
signals are to be detected. However, it is known that when
the sines are close to each other, the required filter length



Fig. 7. Bode diagrams of the DAGs used in simulations of the ALE.

to detect and cancel them efficiently is usually higher.11. The
adaptive filter was always started with zero initial conditions.

Both the NLMS and PLMS algorithms, incorporating a
DAG, were tested and compared in the simulations, while the
NLMS and PLMS without the DAG served as a reference for
comparison. The step size for the NLMS was experimentally
selected as 0.02. The step size for the PLMS (5 · 10−4) was
adjusted to achieve the same initial convergence speed for both
the NLMS and PLMS algorithms without the DAG.

The performance of different DAG settings were evaluated
by the means of two quantities. The first was the convergence
speed calculated as time (in samples) after which the mean
squared error (MSE) achieved the level of −40 dB for the first
time. The second was the sum of the MSE during the first 3200
iterations (0.4 s) of the simulation. Please note that excess
MSE could not have been used due to the lack of the Wiener
filter model for this nonstationary input signal, which implies
impossibility to calculate the system noise. Fig. 7 summarizes
the frequency characteristics of the various DAG used. All are
SPR.

Figure 8 presents the results obtained with the NLMS algo-
rithm for the selected set of coefficients of the HDAG(q

−1).
The figure is zoomed to show the MSE during the initial con-
vergence of the ALE filter. The plots clearly show that all the
selected DAGs speed up the initial convergence significantly,
compared to the NLMS without the DAG. This is confirmed
by numerical values of the selected performance indicators,
presented in Table I. In case of the NLMS algorithm, the
fastest convergence has been obtained for set no. 5 (c1 = −0.5,
c2 = 0.4 and d′1 = 0.7). In the same time, the smallest sum of
MSE is obtaned for set no. 6 (c1 = 0.99, c2 = 0, d′1 = 0.8).

Figure 9 presents similar results obtained for the PLMS
algorithm, and the corresponding values of the performance
indicators are presented in Table II. In the case of this
algorithm, set no. 6 provides both the shortest convergence
time and the smallest sum of MSE.

11This effect was confirmed in simulations with shorter filters, which were
not capable of cancelling all the four sines

Fig. 8. The spectrogram of the input signal.

Fig. 9. The spectrogram of the input signal.

TABLE I
RESULTS OF THE ALE EXPERIMENTS AVERAGED OVER 250 RUNS, ALE

LENGTH: 100

No Algorithm / DAG settings Conv.time Sum of
(samples) MSE

1 NLMS 2791 145.2
3 c1 = 0.99, c2 = 0, d′1 = 0 1426 74.4
4 c1 = 0, c2 = 0, d′1 = 0.9 1296 33.7
5 c1 = −0.5, c2 = 0.4, d′1 = 0.7 843 49.8
6 c1 = 0.99, c2 = 0, d′1 = 0.8 916 24.9

TABLE II
RESULTS OF THE ALE EXPERIMENTS AVERAGED OVER 250 RUNS, PLMS

ALGORITHMS.

No Algorithm / DAG settings Conv.time Sum of
(samples) MSE

1 NLMS 2791 145.2
2 PLMS 2796 132.0
3 c1 = 0.99, c2 = 0, d′1 = 0 1429 62.1
4 c1 = 0, c2 = 0, d′1 = 0.9 1286 31.5
5 c1 = −0.5, c2 = 0.4, d′1 = 0.7 914 41.5
6 c1 = 0.99, c2 = 0, d′1 = 0.8 770 20.5



B. Filter identification
Assume that the signal x(t) in Fig. 1 is the output of an IIR

filter whose input is a PRBS (pseudo random binary sequence)
with N = 28−1 = 255 samples. The IIR filter is characterized
by the transfer operator (unknown).

Sys =
q−2 + 0.5q−3

1− 1.5q−1 + 0.7q−2
(46)

The objective was to estimate the parameters of this IIR filter
as well as the parameters of an FIR filter able to approximate
this IIR filter. The PLMS algorithm has been used to illustrate
the properties of the various DAGs.

1) IIR identification: For the adaptation gain/learning rate
µ = 0.02, the performance of the adaptation algorithms
was evaluated with respect to the choice of the coefficients
c1, c2, d

′
1. To assess the performance, the following indicators

were used: (i) the sum of the squared a posteriori prediction
errors: Jϵ(t) =

∑N
t=0 e

2(t+1), (ii) the square of the parametric
distance: D2(t) =

{
[w − ŵ(t)]T [w − ŵ(t)]

}
, and (iii) the

sum of the squared parametric distance: JD(t) =
∑N

t=0 D
2(t).

Table III summarizes the performance of the 2nd order
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Fig. 10. Evolution of the squared parametric distance D2(t) (top) and of the
MSE (bottom)(IIR identification).

ARIMA algorithm (ARIMA 2) and of the various particular
cases. All the DAGs in Table III are SPR. Fig. 10 shows the
evolution of the squared parametric distance (top) and of the
MSE (mean square error)(bottom). Clearly the use of a DAG
provided a significant performance improvement with respect
to the basic PLMS algorithm. The ARIMA 2 DAG gave the
best results.

Fig. 11 gives the Bode diagram for the ARIMA 2 and
I+P algorithms (the gradient algorithm corresponds to the

TABLE III
PERFORMANCE OF 2ND ORDER ARIMA ALGORITHMS.

Algorithm c1 c2 d′1 JD(N) Jϵ(N) JD(N) Jϵ(N)
IIR IIR FIR FIR

Gradient 0 0 0 91.23 81.44 589.1 396.7
Conj.Gr/Nest.. 0 0 0.5 66.95 60.27 350.3 249.6

I+P+D 0 0.99 0 68.86 74.15 351.7 255
I+P 0.9 0 0 69.71 61.66 356.8 247.6

ARIMA 2 0.65 0 0.3 64.45 59.93 340.9 222

0 dB axis). One can notice that the phase lag is less than
90 degrees at all the frequencies. It was verified that the
average gain over the all frequency range was 0 dB. This
means that the improvement in performance is related to the
frequency distribution of the adaptation gain/learning rate.
Now examining the magnitude, one observes that both are
low pass filters amplifying low frequencies. This means that
if the frequency content of the gradient is in the low frequency
range, the effective adaptation gain/learning rate will be larger
than the gradient adaptation gain (0 dB), which should have
a positive effect upon the adaptation/learning transient. In
particular, the DAG which has a larger gain in low frequencies
(ARIMA2) should provide better performance than the (I+P)
DAG (which was indeed the case). This observation is also
coherent with the estimated asymptotic convergence rate.
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Fig. 11. Bode diagram of the dynamic adaptation gain/learning rate HDAG

for ARIMA2, I+P and Gradient algorithms (from Table IV).

2) FIR identification: A FIR filter with 30 parameters
allows to well approximate the IIR filter given in Eq. (46). To
evaluate the adaptation transient for the estimated parameters
an estimation of ”good” parameters was done first. Figure 12
gives the time evolution of the squared parametric distance
(top) and of the MSE (bottom). Performance of the various
DAGs are summarized in Table III (last two columns). The
conclusions drawn for the IIR filter identification hold also
for FIR filter identification.

3) Stochastic case: To the same simulation example, a
white noise was added on the output (signal/noise ratio
(standard deviation): 33 dB). The adaptation gain/step size
µ = 0.01 was used. The input in this case was a PRBS with
N = 211−1 = 20427 samples. Figure 13 shows a zoom of the
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Fig. 12. Evolution of the squared parametric distance D2(t) (top) and of the
MSE (bottom) for the identification of a FIR with 30 parameters.

evolution of the squared parametric distance (average over 100
noise realizations) for IIR filter identification. One gets almost
asymptotic unbiased parameters estimates (initial value of the
squared parametric distance is 4) and the improvement of the
transient performances with respect to the basic algorithm is
obvious12.

Fig. 13. Evolution of the squared parametric distance in the presence of noise
(zoom).

V. EXPERIMENTAL RESULTS

The objective of his section is to show that the dynamic
adaptation gain can be implemented on various VS-LMS

12The transient performance can be related to the asymptotic convergence
rate given in Section III-F.

algorithms and this will lead to a significant acceleration of
the adaptation transient. Specifically, for this paper the LMS,
NLMS and PLMS algorithms were implemented and tested
experimentally on an active noise control test-bench (adaptive
feedforward noise attenuation). Figure 14 shows the view of
the test-bench used for experiments. Detailed description can
be found in [22]. The speakers and the microphones were
connected to a target computer with Simulink Real-Time®. A
second computer is used for development and operation with
Matlab/Simulink. The sampling frequency was fs = 2500 Hz.

Fig. 14. Duct active noise control test-bench.

The various paths are described by models of the form:

X(q−1) = q−dx BX(q−1)
AX(q−1) = q−dx

bX1 q−1+...+bXnBX
q
−nBX

1+aX
1 q−1+...+aX

nAX
q
−nAX

,

with BX = q−1B∗
X for any X ∈ {G,M,D}. Ĝ = q−dG B̂G

ÂG
,

M̂ = q−dM B̂M

ÂM
, and D̂ = q−dD B̂D

ÂD
denote the identified (esti-

mated) models of the secondary (G), reverse (M ), and primary
(D) paths. The system’s order is defined as (the indexes G,
M , and D have been omitted): n = max(nA, nB + d).

The models of the above paths are characterized by the
presence of many pairs of very low damped poles and zeros.
These models were identified experimentally. The orders of
the various identified models were: nG = 33, nM = 27 and
nD = 27.

The objective is to attenuate an incoming unknown broad-
band noise disturbance eventually mixed with several tonal
disturbances. The corresponding block diagram for the adap-
tive feedforward noise compensation using FIR Youla-Kucera
(FIR-YK) parametrization of the feedforward compensator
(introduced in [18] for active vibration control and in [2] for
active noise control) is shown in Figure 15.

The adjustable filter Q̂ has the FIR structure:

Q̂(q−1) = q̂0 + q̂1q
−1 + ...+ q̂nQ

q−nQ (47)

and the parameters q̂i will be adapted in order to minimize
the residual noise.
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Fig. 15. Feedforward ANC with FIR-YK adaptive feedforward compensator.

The algorithm which was used (introduced in [18]) can be
summarized as follows. One defines:

wT = [q0, q1, q2, . . . , qnQ
] (48)

ŵT = [q̂0, q̂1, q̂2, . . . , q̂nQ
] (49)

vT (t) = [v(t+ 1), v(t), . . . , v(t− nQ + 1)] (50)

where:

v(t+1) = BM û(t+1)−AM ŷ(t+1) = B∗
M û(t)−AM ŷ(t+1)

(51)
One defines also the regressor vector (a filtered observation
vector) as:

r(t) = L(q−1)v(t) = [vf (t+ 1), vf (t), . . . , vf (t− nQ + 1)]
(52)

where
vf (t+ 1) = L(q−1)v(t+ 1) (53)

Using R0 = 0 and S0 = 1, the poles of the internal
positive closed loop are defined by AM and they will remain
unchanged. The filter used in (53) becomes L = Ĝ and the as-
sociated linear transfer operator appearing in the feedforward
path of the equivalent feedback system is:

H(q−1) =
G(q−1)

Ĝ(q−1)
(54)

(the algorithm uses an approximate gradient). The transfer
function associated to H(q−1) should be SPR in order to
assure asymptotic stability in the case of perfect matching [18].
This is a very mild condition as long as a good experimental
identification of the models is done.

The VS-LMS algorithms which were used are of the form
given in (9), where e◦(t) is the measured residual noise with
minus sign (ν◦(t) in Fig. 15), ŵ is given by Eq. (49) and r is
given in Eq. (52)13. The adjustable filter Q̂ had 60 parameters.
The values of the adaptation gain µ for the three algorithms
were tuned such that in the absence of the DAG, performance
was close for the three algorithms. A specificity of this applica-
tion is also the low value of the average of r(t)T r(t) (<< 1).
This means that the LMS and PLMS show a very close
behavior for a given µ and that the adaptation gain µ for
the NLMS should be much lower in order to get similar

13In signal processing literature when using a filtering of the observation
vector, the algorithms are termed FU-VSLMS.

performances. The choices of µ were 0.2 for LMS, 0.0003
for NLMS and 0.22 for the PLMS.

TABLE IV
PARAMETERS OF ARIMA2 DYNAMIC ADAPTATION GAIN.

Algorithm HPAA–PR HDAG–SPR c1 c2 d′1
Integral (gradient) Y Y 0 0 0

Conj.Gr/Nest.. N Y 0 0 0.9
I+P+D N Y 1.4 0.5 0

I+P Y Y 0.99 0 0
ARIMA 2 N Y 0.99 0 0.9

Fig. 16. Frequency characteristics of DAGs used in the experiments (see also
Table IV).

A signal consisting of a broad-band disturbance 70–170 Hz
plus two tonal disturbances located at 100 Hz and 140 Hz
was used as an unknown disturbance acting on the system.
The steady state and transient attenuation14 were evaluated
for the various values of the parameters c1, c2 and d′1 given
in Table IV. The frequency characteristics of the various
DAG given in Table IV are shown in Fig. 16. One observes
that all are SPR (Phase lag between 0 and −90 degrees
with a 0 dB average gain). The system was operated in
open-loop during the first 15 s. Figure 17 shows the time
response of the system as well as the evolution of the global
attenuation when using the standard NLMS algorithm (top)
and when the ARIMA 2 DAG is incorporated (bottom) with
c1 = 0.99, c2 = 0, d′1 = 0.9 (last row of Table IV). One
observes a significant acceleration of the adaptation transient.
Figure 18 shows for the same experiments a comparison of
the PSD of the residual noise in the absence of the control
and the PSD of the residual noise at 300 s under the control
effect. One can observes that the ARIMA 2 algorithm has
improved the attenuation in the low frequency range with
respect to the standard NLMS algorithm which is coherent

14The attenuation is defined as the ratio between the variance of the residual
noise in the absence of the control and the variance of the residual noise in the
presence of the adaptive feedforward compensation. The variance is evaluated
over an horizon of 3 seconds.



Fig. 17. Time evolution of the residual noise and of the global attenuation
using the standard NLMS adaptation algorithm (top) and using the NLMS +
ARIMA2 algorithm (bottom), for µ = 0.0003.

with the frequency characteristic of the ARIMA 2 filter shown
in Fig. 16.
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Fig. 18. Comparison of the residual noise PSD in open loop and in closed
loop (t = 300 s) using the standard NLMS algorithm (top) and using the
NLMS+ARIMA 2 algorithm (bottom). Disturbance: 70 - 170 Hz + 2 tonal
disturbances (100 Hz, 140 Hz).

The acceleration obtained is equivalent to that obtained with

an adaptation gain 25 times higher is used in the standard
NLMS algorithms. This is illustrated in Figure 19. Similar
results were obtained for the LMS and the PLMS algorithms.

Fig. 19. Time evolution of the residual noise and global attenutaion using
the standard NLMS adaptation algorithm with µ = 0.0075.

Figures 20, 21, and 22 show the time evolution of the
attenuation for the LMS, NLMS and PLMS algorithms when
using the various DAG given in Table IV. As one can observe,
the effect of the DAG is similar for the three algorithms. The
DAG which has the highest steady state gain (ARIMA 2) gives
the best result and the performance of the various DAGs are
related to the value of their steady state gain (as predicted by
Eq. (45)).
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Fig. 20. Time evolution of the global attenuation for the LMS algorithm with
various DAGs, using µ = 0.2.

Similar results were obtained for broad – band disturbances
with a wider spectrum.

VI. CONCLUSION

The paper emphasizes the potential of the dynamic adap-
tation gain/step size (DAG) for improving the adaptation
transients of VS-LMS adaptation algorithms. The main point
is that the DAG should be characterized by a strictly positive
real (SPR) transfer function for a correct operation over the
full frequency range from 0 to 0.5 of the sampling frequency.
Simulations results on relevant adaptive filtering problems
and experimental results on an adaptive active noise control
system have illustrated the feasibility and the performance
improvement achieved when a DAG is incorporated in VS-
LMS adaptation algorithms.
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Fig. 21. Time evolution of the global attenuation for the NLMS algorithm
with various DAGs, using µ = 0.0003.
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Fig. 22. Time evolution of the global attenuation for the PLMS algorithm
with various DAGs, using µ = 0.22.

APPENDIX A
CRITERION FOR THE SELECTION OF THE COEFFICIENTS OF

THE ARIMA2 DAG

Lemma A.1: The conditions assuring that HDAG(z
−1) =

1+c1z
−1+c2z

−2

1−d
′
1z

−1
is strictly positive real (SPR) are:

• for c2 ≤ 0, c1 must be such that

−1− c2 < c1 < 1 + c2

• for c2 ≥ 0

– if the following condition is satisfied

2(d
′

1 − c2) <
√

2(c2 − c22)(1− d
′2
1 ) < 2(d

′

1 + c2)

the maximum bound on c1 is given by

c1 < d
′

1 − 3d
′

1c2 + 2
√
2(c2 − c22)(1− d

′2
1 )

otherwise the maximum bound on c1 is given by

c1 < 1 + c2

– if the following condition is satisfied

2(d
′

1 − c2) < −
√
2(c2 − c22)(1− d

′2
1 ) < 2(d

′

1 + c2)

the minimum bound on c1 is given by

c1 > d
′

1 − 3d
′

1c2 −
√
2(c2 − c22)(1− d

′2
1 )

otherwise the minimum bound on c1 is given by

c1 > −1− c2

The proof of this result is given in [19].

APPENDIX B
PROOF OF LEMMA 3.3

The verification of the Benveniste smoothness, boundness
and mixing conditions is similar to the verification done in
[7] for the SHARF algorithm and it is omitted. The focus is
on the analysis of the Benveniste’s ODE (ordinary differential
equation) associated to the algorithm. The algorithm of Eq.
(39) can be rewritten as:

ŵ(t+ 1)− ŵ(t) = µHDAG(q
−1)[r(t, ŵ)e(t+ 1, ŵ)] (55)

i.e. one takes into account that r(t) may depend upon ŵ and
that clearly e(t + 1) depends upon ŵ. The associated ODE
equation is:

dŵ

dτ
= µE{HDAG[r(t, ŵ)e(t+ 1, ŵ)]} (56)

But from Eqs. (38) and (8) one gets:

e(t+ 1, ŵ) = rT (w − ŵ) + n(t+ 1) (57)

which leads to:
dŵ

dt
= −µE{HDAG(q

−1)[r(n, ŵ)r(n, ŵ)T ]}(ŵ −w)

+ µE{HDAG(q
−1)[r(n, ŵ)n(t+ 1)]} (58)

Since n(t + 1) is a white noise or is a stochastic process
independent of r(t, ŵ), the second term of the right hand
side of Eq. (58) will be null. Therefore, the properties of the
algorithm for large τ and small µ will be determined by the
stability of:

dŵ

dτ
= −µGw(ŵ −w) (59)

where:

Gw = E{HDAG(q
−1)[r(n, ŵ), r(n, ŵ)T ]} (60)

= HDAG(q
−1)Er (61)

where Er = E[r(n, ŵ), r(n, ŵ)T ]. The asymptotic stability of
the above equation can be assessed using a Lyapunov function
candidate:

V (ŵ) = (ŵ −w)Tµ−1(ŵ −w) (62)

The derivative of the Lyapunov function candidate along the
trajectories of the system has the form:

V̇ (ŵ) = −(ŵ −w)T [Gw +GT
w](ŵ −w) (63)

It remains to show that Gw + GT
w is positive definite. To do

this, we will use the integration on the unit circle. One obtains:

Gw +Gw =
1

2π

∫ π

−π

[HDAG(e
jω)Ψ(ω) (64)

+Ψ(ω)THDAG(e
−jω)]dω (65)

=
1

2π

∫ π

−π

2Re[Hii
DAG(e

ω)]Ψ(ω)dω (66)



taking into account that Ψ(ω), the power spectral density
of r(t,w) is symmetric. Since Hii

DAG is SPR and Ψ(ω) is
positive definite (as a consequence of condition of Eq. (40)),
one concludes that Gw +GT

w is positive definite.
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