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A B S T R A C T   

The hydrogenation of levulinates, derivatives from cellulose hydrolysis, leads to the platform molecule 
γ-valerolactone (GVL). While prior investigations indicate the propensity for thermal runaways in this reaction, a 
comprehensive sensitivity analysis has been conspicuously absent in the existing literature. This study endeavors 
to scrutinize the influence of input parameters on both thermal risks and the production rate during GVL syn
thesis. Distinguished by its dual focus on sensitivity analyses, this manuscript also contrasts the implications of 
aleatory and epistemic uncertainties on thermal risk and production metrics. Aleatory uncertainties arise from 
the inherent variability of initial conditions, while epistemic uncertainties emanate from incomplete knowledge 
of the kinetic model. Employing Sobol global sensitivity analysis on the kinetic model, we delineate the hier
archical importance of various parameters. This analysis incorporates a quantification of uncertainty, and 
algorithmic approaches are proffered. The findings reveal that the initial temperature, the initial mass of the Ru/ 
C catalyst, and hydrogen pressure are pivotal factors that are directly proportional to thermal risk and production 
efficiency. The implications of uncertainty on these variables are also discussed.   

1. Introduction 

Biomass is a renewable resource, and its valorization can contribute 
to the sustainable development of a region, reduce greenhouse gas 
emissions, and support a circular economy (Amjith and Bavanish, 2022; 
Tursi, 2019). Using biomass raw materials, which are not competing 
with the food sector, is vital. For that reason, lignocellulosic biomass 
(LCB), such as agricultural waste or short rotation coppice, should be 
favored. The valorization of lignocellulosic biomass is essential due to its 
sustainability, versatility, and economic benefits. It holds promise as a 
key component in the transition towards a more sustainable, circular, 
and bio-based economy. 

LCB consists of polymers of sugars (cellulose and hemicellulose) and 
aromatic compounds (lignin) in different ratios according to the plant’s 
nature, season, etc. The valorization of sugar fraction is well-developed 
in academia, and there are some processes at an industrial scale. The 
strategy favors the production of platform molecules such as levulinic 
acid (LA) and its levulinate, ethanol or butanol, 2,5-Furandicarboxylic 
acid, etc (Ashokkumar et al., 2022). Among these platform molecules, 

γ-valerolactone (GVL) (González and Area, 2021; Dutta et al., 2019; Lê 
et al., 2018), produced from the hydrogenation of levulinic acid or alkyl 
levulinate, is considered as a promising molecule to be used as a solvent, 
starting material for polymers or biofuels (Yan et al., 2015; Alonso et al., 
2013; Horváth et al., 2008). One of the most efficient ways of production 
is the hydrogenation of levulinic acid or alkyl levulinate by molecular 
hydrogen over Ru/C (Wang et al., 2019). The kinetic model developed 
by Delgado et al. (2022) was used in this study. This model described the 
kinetics of levulinic acid (LA) and butyl levulinate (BL) hydrogenation 
into GVL over Ru/C (Delgado et al., 2023). The kinetic and thermody
namic constants obtained from Delgado et al. were used in this study. 

However, this GVL production is quite exothermic (Wang et al., 
2020). If the heat generated from these reactions is not properly 
managed, it can lead to a thermal runaway situation (Dakkoune et al., 
2019). Thermal runaway is a phenomenon that occurs when a chemical 
reaction generates heat faster than it can be absorbed by the environ
ment, causing the temperature to rise uncontrollably. This can lead to 
secondary reactions and reactor explosion due to fast pressure increase. 
Several studies have investigated thermal runaway in chemical 
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processes (Kummer and Varga, 2021; Dakkoune et al., 2020; Leveneur 
et al., 2016). Moreover, recent research showed that 25% of major 
chemical plant accidents resulted from thermal runaways in France 
(Dakkoune et al., 2018). There are three causes: technical and physical, 
human and organizational, and natural causes. The human and orga
nizational are the main causes of thermal runaway, principally operator 
errors. The operator errors include wrong chemical or catalyst loadings, 
initial temperature, feeding rates, and pressures. Hence, it is vital to 
determine the effect of the different input parameters on the risk of 
thermal runaway to implement adequate safety barriers. Generally, 
related research can be categorized into two main areas: uncertainty 
propagation and sensitivity analysis. 

On the one hand, the uncertainty propagation holds a significant 
position in the study of chemical processes. Abdi et al., 2023a, 2023b 
applied error-in-variables model (EVM) methods for output estimation 
with the uncertain input variables. Lyagoubi et al. (2022) imposed 
random variations on the input parameters of a chemical reactor and 
studied the impact on the system reliability. Ali et al. (2018) and Duong 
et al. (2016) used Monte Carlo (MC) and Halton-based quasi-MC (QMC) 
methods to give an in-depth understanding of uncertainty propagation 
in the chemical process. However, these studies have solely focused on 
the uncertainty of initial condition parameters. 

In fact, the uncertainties mainly fall into two categories (Shi et al., 
2023): aleatory and epistemic uncertainty. Aleatory uncertainty arises 
from variability in input parameters due to natural fluctuations, such as 
physical limitations, measurement errors, or inherent random-ness in 
the process variables. While, epistemic uncertainty is related to the lack 
of knowledge or the incompleteness of information. It arises from the 
knowledge of reaction mechanisms and uncertainties from kinetic 
parameter estimations. To deal with both aleatory and epistemic un
certainty, several methods have been developed including probabilistic 
methods (such as Monte Carlo simulations (Mohammadi and Cremaschi, 
2022), approximations methods (Nannapaneni and Mahadevan, 2016)) 
and non-probabilistic methods (such as interval analysis (Li et al., 2016), 
evidence theory (Tang et al., 2017), and so on). For example, Zhang 
et al. (2018) focused on the hybrid reliability analysis with both random 
and interval variables. Liu et al. (2017) employed P-box models, 
combining distribution and interval analysis, to deal with the 
uncertain-but-bounded variables. Building upon previous research, 
credible intervals are implied to represent epistemic uncertainty due to 
its expressiveness and computational simplicity in this study. 

On the other hand, sensitivity analysis, especially global sensitivity 
analysis, serves as an outstanding tool for parameters importance 
assessment. For instance, Garcia-Hernandez et al. (2022) conducted a 
global sensitivity analysis on four thermal risk and optimization pa
rameters using a vegetable oil epoxidation kinetic model. Martinez et al. 
(2022) used Sobol method to identify the main parameters in the 
anaerobic digester process. Nevertheless, most developed kinetic models 
use deterministic operating conditions, i.e., fixed initial temperature, 
initial concentrations, etc. These studies are carried out based on kinetic 
models. These kinetic models are usually obtained from experiments 
performed at different operating conditions. The estimated kinetic 
constants used in the modeling are obtained within credible intervals. 
The drawback of this approach is that the propagation of uncertain
ty/error should be included in the sensitivity analysis. 

In this study, a global sensitivity analysis for GVL production with BL 
and LA was evaluated with considering the parameters uncertainty. A 
sensitivity-uncertainty analysis procedure is proposed to assess the in
fluence of the eight initial inputs on two key output parameters: risk 
indicator and production rate. To the best of our knowledge, the un
certainties are not included in the sensitivity analysis. The current paper 
focuses majorly on: (1) An uncertainty propagation analysis considering 
mixed aleatory and epistemic uncertainty. (2) A Sobol sensitivity anal
ysis with parameters’ mixed uncertainty. (3) Implement of this Sobol- 
uncertainty sensitivity analysis on the GVL production reaction that 
evaluate the effect of the initial condition parameters. 

The paper is organized as follows: Section 2 gives the GVL synthesis 
process and kinetic model and introduces inputs and outputs. Section 3 
proposes a mixed uncertainty, which is calculated based on epistemic 
uncertainty described by interval analysis and aleatory uncertainty 
described by probabilistic distribution. For sensitivity analysis, the 
standard procedure and solution with uncertainty of Sobol method are 
presented in Section 4. The results of uncertainty propagation and Sobol 
analysis with uncertainty are shown and interpreted in Section 5. 
Finally, a brief conclusion and future work are given in Section 6. 

2. Kinetic model and thermal risk 

2.1. Chemical materials and methods 

The chemical production process in this study is the production of 
GVL by hydrogenation of levulinic acid (LA) and butyl levulinate (BL) 
with the catalyst Ru/C and Amberlite IR-120 (Amb). It is a two-step 
reaction shown in Fig. 1. The first step is hydrogenating LA and BL to 
the intermediate (HPA and BHP). The second step is the cyclization of 
the intermediate to GVL. For a detailed introduction to the kinetic model 
of this production process, one could refer to the research by Delgado 
et al. (2022). 

As the previous studies of our group (Delgado et al., 2022; Wang 
et al., 2020), this system is a two-step reaction comprising a hydroge
nation and cyclization step, while the hydrogenation is an exothermic 
step (Garcia-Hernandez et al., 2019) and governs the reaction 
temperature. 

Under normal processes, the reaction is conducted under isothermal 
conditions with an appropriate and efficient cooling system. In the case 
of cooling failure, the system can go from isothermal to adiabatic con
ditions (Salcedo et al., 2023). For that reason, thermal risk assessment is 
done in adiabatic and batch conditions, which are the most conserva
tive, so thermal risk assessment is done in such a mode. 

2.2. Kinetic model and parameters characterization 

In order to analyze the GVL production process, we have identified 
eight input parameters that listed in Table 1. These parameters control 
the initial conditions for the process, and were varied in models devel
oped by Delgado et al. (2022). 

In Table 1, the input parameters are represented as 
X = [X1,X2,⋯Xi,⋯,XI](I = 8). Concerning the inputs in Table 1, we 
have restricted our study to input parameters whose value in the range 
of lower value and higher value. In this study, aleatory uncertainty due 
to measurement errors or variations in parameters is represented by 
these parameters with normal distributions. Firstly, this assumption is 
grounded in empirical data obtained from previous experiments. The 
observed values from these experiments exhibit characteristics consis
tent with a normal distribution, suggesting its appropriateness for 
modeling. Secondly, the rationale for adopting a normal distribution is 
supported by literature references (Abdi et al., 2023a, 2023b; Duong 
et al., 2016). This reference provides theoretical and empirical justifi
cations for the prevalence of normal distributions in similar contexts, 
reinforcing the validity of this assumption in our study. 

In this model, 43 parameters can be divided into two parts. One part, 
listed as M = [M1,M2,⋯Mi,⋯,MI](I= 18) in Table 2, these parameters 
are not known precisely, but are known to fall within certain ranges. 
They are described as an interval with a center, a lower and an upper 
bound. In this study, these intervals provide epistemic uncertainty. 

The other part, listed as Mf = [Mf1,Mf2,⋯Mfi,⋯,MfI](I= 25) in 
Table 3, is the constant parameters in this model. These parameters are 
considered deterministic. 

As indicated by Delgado et al. (2022), the more reliable kinetic 
model is the non-competitive Langmuir-Hinshelwood kinetic model 
with hydrogen dissociation, where levulinate (BL and LA) and hydrogen 
are adsorbed on different sites. The main differential equations based on 
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Fig. 1. Reaction steps of LA and BL to GVL over Ru/C and Amberlite IR-120.  

Table 1 
Variation and uncertainty of the input parameters.  

No. Parameters lower value higher value 3*Standard deviation Distribution Definition Unit 

X1 Tj0 90 140 1 Normal Initial temperature of the jacket K 
X2 PH2 20 50 2 Normal Initial pressure of H2 bar 
X3 UA 80 120 5 Normal Heat transfer coefficient W\/K 
X4 mLA0 0.09 0.11 0.01 Normal Initial mass of LA kg 
X5 mBL0 0.19 0.21 0.01 Normal Initial mass of BL kg 
X6 mGVL0 0.09 0.11 0.01 Normal Initial mass of GVL kg 
X7 mRu 0.001 0.003 0.0003 Normal Initial mass of Ru kg 
X8 mAmb 0.005 0.02 0.002 Normal Initial mass of Amb kg  

Table 2 
Kinetic model parameters with interval value.  

NO. Parameter Center Lower bound Upper bound Unit 

M1 kBL hyd(TRef ) 3.02E-06 2.68E-06 3.36E-06 m3.mol− 1
.s− 1.kg.dryRuC− 1 

M2 EaBL hyd 3.62E+04 3.35E+04 3.89E+04 J.mol− 1 

M3 k′
BHP cat Amb(TRef ) 4.36E-05 2.25E-05 6.47E-05 s− 1.kg.dryAmb− 1 

M4 kBHP noncat(TRef ) 5.93E-05 4.13E-05 7.73E-05 s− 1 

M5 EaBHP noncat 7.78E+04 4.99E+04 1.06E+05 J.mol− 1 

M6 kLA hyd(TRef ) 7.75E-06 7.04E-06 8.46E-06 m3.mol− 1
.s− 1.kg.dryRuC− 1 

M7 EaLA hyd 4.61E+04 4.31E+04 4.91E+04 J.mol− 1 

M8 KLÂ 1.69E-03 1.42E-03 1.96E-03 m3.mol− 1 

M9 k′
HPA cat Amb(TRef ) 4.79E-04 2.43E-04 7.15E-04 s− 1.kg.dryAmb− 1 

M10 kHPA noncat(TRef ) 1.25E-06 0.00E+00 2.50E-06 s− 1 

M11 EaHPA noncat 4.15E+05 3.15E+05 5.15E+05 J.mol− 1 

M12 kBHP RuC(TRef ) 2.41E-05 1.99E-05 2.83E-05 s− 1.kg.dryRuC− 1 

M13 kHPA RuC(TRef ) 5.74E-05 5.30E-05 6.18E-05 s− 1.kg.dryRuC− 1 

M14 Kc 1.59E-04 1.19E-04 1.99E-04 m3.mol− 1 

M15 kBHP diss(TRef ) 1.69E-06 1.42E-06 1.96E-06 m3.mol− 1
.s− 1 

M16 EaBHP diss 1.09E+05 9.50E+04 1.23E+05 J.mol− 1 

M17 kHPA diss(TRef ) 4.73E-06 4.41E-06 5.05E-06 m3.mol− 1
.s− 1 

M18 EaHPA diss 6.70E+04 6.16E+04 7.24E+04 J.mol− 1  

L. Shi et al.                                                                                                                                                                                                                                       



Journal of Loss Prevention in the Process Industries 89 (2024) 105317

4

the material and energy balances in batch reactor regarding time t and 
energy balance can be expressed as Eq. (1).   

All parameters in the right of Eq. (1) are obtained by the parameters 
in Table 1, Tables 2 and 3. The ODEs for the mass and energy balances 
were solved out by using the solver “solve_ ivp” based on Backward 
Differentiation Formulas (BDF) (Virtanen et al., 2020). For the sake of 
simplicity, the kinetic model with differential equations can be 
expressed as: 

U(t) = f (X,M,Mf, t)

X = [X1,X2,⋯,Xi,⋯,XI ] (I = 8)

M = [M1,M2,⋯,Mi,⋯,MI ](I = 18)

Mf = [Mf1,Mf2,⋯,Mfi,⋯,MfI
]
(I = 25)

U = [U1,U2,⋯,Ui,⋯,XI ] (I = 8)

(2)  

where X, M and Mf consist of initial parameters (as shown in Table 1), 
model variable parameters (as shown in Table 2) and model fixed pa
rameters (as shown in Table 3), respectively. U(t) are responses 
regarding to time t. The elements of U are listed in Table 4. 

2.3. Two outputs from the model: risk indicator and production rate 

It is essential for all chemical processes to reduce the thermal 
runaway risk and improve the production rate of GVL. Hence, two 
outputs, including risk indicator Ri and production rate Pr are proposed 
in this study. 

2.3.1. Risk indicator 
For the thermal risk assessment of this exothermic process, it should 

avoid high reaction temperatures that could trigger secondary reactions 
and avoid the fact that the reaction temperature reached its maximum 
value too fast. According to Table 4, U9 represents the temperature 
regarding time. Hence, two parameters for the thermal runaway risk 
assessment are defined: temperature increment (ΔT) and time to the 
maximum temperature rate (TMR). The thermal risk parameter ΔT was 

Table 3 
Kinetic model parameters with fixed value.  

No Parameter Value Unit 

Mf1 Tref 392.72 K 
Mf2 KH2 0 m3 .mol− 1 

Mf3 KBL̂ 0 m3 .mol− 1 

Mf4 Ea′
BHP cat Amb 

0 J.mol− 1 

Mf5 Ea′
HPA cat Amb 

0 J.mol− 1 

Mf6 EaBHP RuC 0 J.mol− 1 

Mf7 EaHPA RuC 0 J.mol− 1 

Mf8 KBHP− SO3H 0 m3 .mol− 1 

Mf9 KHPÂ 0 m3 .mol− 1 

Mf10 Kc2 0 m3 .mol− 1 

Mf11 KLA modified 2.22E-06 s− 1 

Mf12 R 8.314 J.mol− 1
.K− 1 

Mf13 He(373K) 1.86 mol.m− 3.bar− 1 

Mf14 ΔHsol 5936.8 J.mol− 1 

Mf15 ΔHr1,BL − 3.56E+04 J.mol− 1 

Mf16 ΔHr2,BL 6.40E+03 J.mol− 1 

Mf17 ΔHr1,LA − 4.97E+04 J.mol− 1 

Mf18 ΔHr2,LA 9.00E+03 J.mol− 1 

Mf19 M(BL) 1.72E-01 kg.mol− 1 

Mf20 M(BHP) 1.74E-01 kg.mol− 1 

Mf21 M(GVL) 1.00E-01 kg.mol− 1 

Mf22 M(ROH) 7.41E-02 kg.mol− 1 

Mf23 M(LA) 1.16E-01 kg.mol− 1 

Mf24 M(HPA) 1.18E-01 kg.mol− 1 

Mf25 M(W) 1.80E-02 kg.mol− 1  

Table 4 
The responses of the kinetic model.  

No Parameter 

U1 cBL 
U2 cLA 
U3 cBHP 
U4 cHPA 
U5 cGVL 
U6 cROH 
U7 cH2 
U8 cWater 
U9 T  

dCBL

dt
= − RBL hyd

d[H2]liq

dt
= k∗la

(
[H2]

∗

liq − [H2]liq

)
− RBL hyd − RLA hyd

dCBHP

dt
= RBL hyd − RBHP noncat− RBHP RuC − RBHP SO3H − RBHP diss

dCBuOH

dt
= RBHP noncat+RBHP RuC + RBHP SO3H + RBHP diss

dCLA

dt
= − RLA hyd

dCHPA

dt
= RLA hyd − RHPA noncat− RHPA RuC − RHPA SO3H − RHPA diss

dCwater

dt
= RBL hyd − RHPA noncat+RHPA RuC + RHPA SO3H + RHPA diss

dCGVL

dt
= RBHP noncat + RBHP RuC + RBHP SO3H + RBHP diss + RHPA noncat+RHPA RuC + RHPA SO3H + RHPA diss

dTR

dt
=

(
− RHydrogenation • ΔHR,Hydrogenation • V − RCyclization • ΔHR,Cyclization • V

)
+

UA •
(
Tj − TR

)

mR • CPR+minsert • Cpinsert+mcatalyst • Cpcatalyst

(1)   
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determined by using the developed kinetic model under adiabatic con
ditions in this study. The parameter ΔT is the difference between the 
maximum and initial reaction temperature and characterizes the 
severity of the risk. Moreover, TMR defines the time to reach the 
maximum temperature ratio and characterizes the probability of the 
thermal runaway risk. 

From the literature (Stoessel, 2020; Pan et al., 2023), a risk matrix is 
built by ΔT and TMR as shown in Fig. 2. 

The ΔT and TMR are divided by different ranges and have corre
sponding factors. The risk matrix’s indicators are obtained by multi
plying the two factors. Then, the risk indicators are divided into a non- 
acceptable risk zone (red), a moderate risk zone (blue), and an accept
able risk zone (green). 

A drawback in this classical risk matrix is that the risk indicator can 
only take specific values and is not continuous. This risk matrix effec
tively assesses the thermal runaway risk in practice, but it may lead to 
numerical errors when using some statistical methods for numerical 
simulation. To avoid this problem, this paper applies a power function to 
fit the relationship between risk indicator and ΔT , TMR values. 

Ri =
(
0.2449 × (ΔT)0.4372)

×
(
− 01.4772 × (TMR)0.2894

+ 7.2398
)

(3) 

In Eq. (3), two factors follow a power-law relationship with ΔT and 
TMR values separately. This fit derived from the risk matrix, which 
shows an exponential function passing through the origin more accu
rately conforms to physical laws and the trend of increasing risk. 
Consequently, we have defined the exponential function and the pa
rameters are fitted using nonlinear least squares (Fig. 2). 

Moreover, the final risk indicator Ri is also obtained by multiplying 
the two factors, but the values are continuous. The comparison of risk 
indicators between the classical risk matrix and fitted method are shown 
in Fig. 3. 

Within the same range of values, the risk indicators in Fig. 3(b) are 
smoother compared to those in Fig. 3(a), without any abrupt changes. 
The blue lines in both figures correspond to Ri = 5, the boundary for the 
acceptable and moderate risk zones. Similarly, the red lines correspond 
to Ri = 10, which is the boundary for a moderate and non-acceptable 
risk zone. 

Fig. 2. Classical risk matrix for thermal runaway.  

Fig. 3. Comparison of risk indicator between (a) classical risk matrix and (b) fitted method.  

Fig. 4. Input parameters and output parameters for the GVL synthesis process.  
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The newly fitted risk indicator (in Eq. (3)) remains the same con
siderations and boundaries of risk assessment in chemical engineering 
processes. However, it provides more reasonable numerical values for 
more complex numerical analyses. It is preferable to have a low Ri, 
which can be achieved by minimizing ΔT and maximizing TMR. 

2.3.2. Production rate 
Another important point for a chemical process is economic attrac

tiveness. According to Table 4, U5 represents the concentration of GVL 
regarding time. The production rate Pr is defined as the ratio of the 
production of GVL to the time to finish the reaction. A high yield dif
ference and short t GVLfinal is advantageous. 

Pr =
c GVLfinal − c GVL0

t GVLfinal
(4) 

In summary, these two outputs are derived from kinetic model so
lutions U. A mathematical mapping between inputs X and outputs Y is 
constructed as Eq. (5) and illustrated as Fig. 4. 

Y = g(X,M,Mf, t) (5) 

In Fig. 4, eight inputs represent the initial conditions of the process, 
and two outputs characterize the safety and performance of the process. 
The sensitivity analysis in this study is based on these parameters. 

3. Mixed uncertainty propagation method 

In fact, this process has two different sources of uncertainties, as 
Fig. 5 shows: aleatory un-certainty arises from initial condition param
eters, and epistemic uncertainty arises from the knowledge of kinetic 
parameter estimations. 

Considering the uncertainty, the output parameters Y should be a 
random value because of variability (aleatory uncertainty) and lack of 
information (epistemic uncertainty). Therefore, a mixed uncertainty 
propagation is proposed in this study as illustrated in Fig. 6. 

As Fig. 6 shows, the mixed uncertainty includes aleatory uncertainty 
and epistemic uncertainty. Here, X = [X1,X2,⋯Xi,⋯,XI] denotes I = 8 
independent input parameters, and a normal distribution can describe 
the aleatory uncertainty. Similarly, M = [M1,M2,⋯Mi,⋯,MJ] denotes J 
= 18 kinetic model parameters which are described by interval number. 
Then the aleatory uncertainty of X and epistemic uncertainty of M lead 
to variable solutions Y by differential equations Eq. 1. Finally, these 
uncertainties can affect the thermal risk and production rate. 

Firstly, only aleatory uncertainty is taken into account. The normal 
distribution is sampled by the Latin Hypercube Sampling (LHS) simu
lations method. 8 parameters in Table 1, used as initial conditions to the 
kinetic model, are represented as X = [X1,X2,⋯Xi,⋯,XI] (I = 8).The 
parameters of Table 2 are fixed to the center of the interval. The sam
pling number of simulations is set to K in this study. The sampled data 
are: 

X = [X1,X2,⋯Xi,⋯,XI ]

Xi =
[
x(1), x(2),⋯, x(k),⋯x(K)

]T (6) 

Secondly, our analysis is confined to epistemic uncertainty. The in
terval analysis is used to carry out the epistemic uncertainty. Table 3 
shows 18 variable parameters in the kinetic model, which are repre
sented as M = [M1,M2,⋯Mi,⋯,MJ](j = 18). In this study, the interval 
(Mi) could be discretized by equal width to K values to explore the range 
of plausible values due to lack of knowledge, aiming to narrow that 
range. Interval discrete is often appropriate, as we do not know any 
value within the interval to be more likely than any other. In this case, 
the parameters of Table 1 are fixed to the mean value of the normal 
distributions. 

M = [M1,M2,⋯Mi,⋯,MJ ]

Mi =
[
m(1), m(2),⋯,m(k),⋯m(K)

]T (7) 

Thirdly, both aleatory and epistemic uncertainties are considered. 
The bootstrap sampling method is used for the mixed uncertainty. The 
sampled points of initial conditions (aleatory uncertainty) and the in
terval values of the model parameters (epistemic uncertainty) are 
combined into the mixed uncertainty. Bootstrap sampling generates 
data to avoid repetition of the aleatory and epistemic uncertainty. 

Bootstrap sampling is a statistical technique usually used to estimate 
the statistics of a population by sampling a dataset with replacement. 
Randomly pick one sample from each element in X and M, the re- 
sampled data are shown as: 

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X(1)

⋮
X(k)

⋮
X(K)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(1)1

⋮
⋯ x(1)i

⋮
⋯ x(1)I

⋮

x(k)1 ⋯ x(k)i ⋯ x(k)I

⋮
x(K)

1
⋯

⋮
x(K)

i

⋮
⋯ x(K)

I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)  

Fig. 5. Uncertainty propagation from aleatory and epistemic uncertainty.  

Fig. 6. Illustration of the uncertainty study method.  
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M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M(1)

⋮
M(k)

⋮
M(K)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m(1)
1

⋮
⋯ m(1)

j

⋮
⋯ m(1)

J

⋮

m(k)
1 ⋯ m(k)

j ⋯ m(k)
J

⋮
m(K)

1
⋯

⋮
m(K)

j

⋮
⋯ m(K)

J

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)  

where X and M is bootstrap sampled data. The subscript i, j are the 
ordinal number for initial parameters and model parameters, and the 
superscript k donates kth sampling by bootstrap sampling for mixed 
uncertainty calculation. 

The last part in Fig. 6 is evaluate the model and obtain the outputs 
(risk indicator and production rate) as Y: 

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y (1)

⋮

Y (k)

⋮

Y (K)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ri(1) Pr(1)

⋮

Ri(k) Pr(k)

⋮

Ri(K) Pr(K)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10) 

In this study, we choose the number of bootstrap samplings is K =

10000, and the final sampled data are taken into Eq. (5). The uncer
tainty propagation including mixed uncertainty is analyzed and the re
sults are presented in Section 5.1. 

4. Sensitivity analysis with mixed uncertainty propagation 
method 

To assess safety and efficiency in the GVL synthesis process, it is 
essential to conduct sensitivity analyses, considering the uncertainty 
associated with the parameters. Sensitivity analysis provides an under
standing of how input variables affect the output variance. 

The Sobol method is a global sensitivity analysis method used to 
decompose the variance of the output of a model into variances caused 
by its inputs. This method aims to understand the importance and 
impact of different reaction initial condition parameters and their 
interactions. 

The statistical analysis and simulation in this section are based on 
inputs X and the outputs Y as listed in Fig. 1. From the kinetic model in 
Section 2.2, X = [X1,X2,⋯Xi,⋯,XI] contains a number of I input pa
rameters and each parameter has a finite range as listed in Table 1. Y =

[Y1,Y2] = [Ri,Pr] is the output that is sensitive to the input parameters. 
Due to the same procedures for Ri and Pr, we focus on a single output Y 
to simplify the method description in this section. 

4.1. Sobol global sensitivity analysis 

In order to investigate the influence of different inputs for Ri and Pr, 
the classical Sobol method procedure is introduced in this section. Its 
implementation is briefly given as follows: 

Step 1. Model sampling and evaluation 

The first step is generating sample matrices using the Quasi-Monte 
Carlo (QMC) method (Tsvetkova and Ouarda, 2021). For each 
sampled set of inputs, compute the model to obtain the corresponding 
output values. Let L donate sampling number, there are input matrix 
with size L × I and corresponding one output Y with size L. 

Based on this kinetic model, the input can be sampled by Sobol 
method as matrix XL×I and obtain the output YL×1: 

XL×I =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X(1)

⋮
X(l)

⋮
X(L)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(1)1

⋮
⋯ x(1)i

⋮
⋯ x(1)I

⋮

x(l)1 ⋯ x(l)i ⋯ x(l)I

⋮
x(L)1

⋯
⋮

x(L)i

⋮
⋯ x(L)I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)  

YL×2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y (1)

⋮

Y (l)

⋮

Y(L)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)  

Fig. 7. Illustration of the Sobol study with uncertainty method.  
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where XL×I and YL×2 donate matrix from Sobol sampling that contains 
sampled values x and corresponding results Y. The subscript i is the 
ordinal number of input parameters, and the superscript l donates lth 

sampling by Sobol method. This study selects the total sample size as L =

4608 (Iwanaga et al., 2022). 

Step 2. Model decomposition 

The key step of the Sobol method is to decompose the model g(X) as a 
sum of functions of its input parameters X. For each output Y, the model 
can be expressed as: 

Y = g(X) = g0 +
∑I

i=1
gi(Xi) +

∑I

i<j
gij
(
Xi, Xj

)
+ ⋯ + g1,2,⋯,I(X1,X2,⋯,XI)

g0 = E[Y]

gi = E[Y|Xi] − g0

gij = E
[
Y|Xi, Xj

]
− g0 − gi − gj

(13)  

where E(Y) and E(Y|Xi) are expectation and condition expectation 
respectively. Here, j is the same as i as an ordinal number and i is 
restricted to be less than j to avoid redundant computations. 

The Sobol method’s main idea is to quantify how much of the vari
ance in the model’s output is due to each of these terms. Subsequently, 
the variance of one output V(Y) can be expressed as: 

V(Y) =
∑I

i=1
Vi +

∑I

i<j
Vij + ⋯ + V1,2,⋯,I

Vi = V[gi(Xi)] = V[E(Y|Xi)]

Vij = V
[
gij
(
Xi,Xj

)]
= V

[
E
(
Y|Xi,Xj

)]
− Vi − Vj

(14)  

where Vi is the variance due to the ith input alone and Vij is the variance 
due to the interaction of the ith and jth inputs. 

Step 3. Sobol index 

The decomposition allows for the separation of the contributions of 
individual parameters and their interactions with the total output vari
ance. Two kinds of Sobol index are used to the first-order sensitivity 
index Si, which represents the proportion of the total output variance 
that is due to the ith parameter alone: 

Si =
V(E(Y|Xi))

V(Y)
=

Vi

V(Y)
(15) 

Furthermore, the total sensitivity index STi captures the combined 
effect of the ith parameter and its interactions with all other parameters: 

STi =
V(E(Y|X∼i))

V(Y)
=

Vi

V(Y)
(16)  

where X∼i donate all elements in X except Xi. 
The first-order index quantifies the proportion of the variance in the 

output due to the variance in a single input parameter, ignoring all in
teractions with other input parameters. In comparison, the total index 
quantifies the proportion of the variance in the output caused by a 
specific input parameter, including its first-order effects and all in
teractions with other parameters. 

4.2. Sobol method with uncertainty 

Based on the standard Sobol method (in Section 4.1) and uncertainty 
propagation method (in Section 3), a sensitivity analysis with mixed 
uncertainty is proposed in this study as illustrated in Fig. 7. 

Firstly, the input parameters X = [X1,X2,⋯Xi,⋯,XI] can be sampled 
by Sobol method as matrix XL×I in Eq. (11). Again, X(L) donates lth Sobol 
sampling for X. 

Secondly, the sampled input parameter X(l) and kinetic model 
parameter M are put into uncertainty analysis. As the mixed uncertainty 
procedure in Section 3, the input and model parameters are re-sampled 
as Eq. (8) and Eq. (9). 

Thirdly, the number of samples in uncertainty analysis can be 
defined as K, and the corresponding ordinal number is k. It generates a 
random number n between 1 and K. Retrieve the nth row from X(l) as lth 

row to create a new “Sobol sampled” X(k)
L×I. Repeat the above steps with 

the ordinal number l until l = L. 
Fourthly, the Sobol index with respect to input parameters is calcu

lated. For kth calculation, we have a corresponding Sobol index S(k) and 
S(k)

T . Repeat the blow steps with the ordinal number k. Repeat the blow 
steps with the ordinal number k until k = K. In the end, a total number of 
K Sobol index is obtained that contains uncertainty information. 

To sum up, the peuso-code for the Sobol method with uncertainty 
can be listed as Algorithm 1.   

Data 

k )

Results 
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5. Results and discussions 

As introduced in Section 2, the reactions occur in a reactor at the 
given initial conditions, and the given model is for simulating this GVL 

reaction process. The simulation results of uncertainty and sensitivity 
analysis are presented in this section. 

In this section, the results are simulated and compared in adiabatic 
conditions (the cooling system does not work at the beginning) and 

Fig. 8. Uncertainty range of (a) temperature and (b) concentration of GVL during the process.  

Fig. 9. PDF of (a) risk indicator and (b) production rate from uncertainty.  

Table 5 
Distribution parameters from uncertainty analysis.  

Cases Adiabatic Isothermal 

Outputs Risk indicator Production rate Risk indicator Production rate 

Distribution μ σ CV μ σ CV μ σ CV μ σ CV 

Aleatory uncertainty 9.68 1.13E-1 1.17E-2 7.28E-1 6.45E-2 8.89E-2 5.07E-1 3.02E-2 5.96E-2 4.59E-1 3.09E-2 6.73E-2 
Epistemic uncertainty 9.69 0.68E-1 0.70E-2 7.20E-1 5.32E-2 7.39E-2 5.10E-1 1.47E-2 2.88E-2 4.61E-1 1.55E-2 3.35E-2 
Mixed uncertainty 9.68 1.30E-1 1.34E-2 7.25E-1 8.18E-2 11.28E-2 5.08E-1 3.35E-2 6.6E-2 4.58E-2 3.42E-2 7.46E-2 

μ: Mean, σ: Standard deviation, CV: Coefficient of Variation. 

Fig. 10. Sensitivity analysis for (a) risk indicator (b) production rate under adiabatic conditions.  
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isothermal conditions (the reaction works with an additional cooling 
system). 

5.1. Uncertainty propagation results 

As introduced in Section 3, the uncertainty propagation is simulated 
for this GVL synthesis process under adiabatic conditions. The different 
equations calculate the reactor’s temperature over time, as well as the 
concentrations of different compounds and other results. Two important 
parameters, temperature and the concentration of GVL over time, are 
listed in Fig. 8(a) and (b), respectively. 

In Fig. 8, the red line presents the evolution of the temperature 
regarding time without consideration of the parameters’ uncertainty. 
The deterministic analysis considers only the initial parameters are set to 
their mean values, while the model parameters are chosen to be at their 
center values. The center value of the interval numbers of the parame
ters in Table 2 and the mean values of the parameters of Table 1. 

The aleatory, epistemic, and mixed uncertainty simulation results 
are presented in orange, blue, and green areas, respectively. The blue 
area is surrounded by the orange area, which means the epistemic un
certainty has a smaller dispersion than the aleatory uncertainty in our 
case. The green area, which is the largest one, represents mixed uncer
tainty. As we can see from these two figures, aleatory uncertainty oc
cupies a dominant sensitivity for the two risk parameters. 

According to the evolution of temperature and concentration of GVL, 
the probability density function (PDF) of the model outputs risk indi
cator and production rate are presented in Fig. 9. 

In Fig. 9(a), the PDF of the risk indicator has less dispersion when 
only epistemic uncertain-ties are considered. In comparison, its PDF is 
scattered for aleatory and mixed uncertainty. That is, the PDFs are very 
close for mixed and aleatory uncertainty. These results show that the 
initial operating conditions parameters are more sensitive for the kinetic 
model for risk assessment. Moreover, Fig. 9(a) contains a moderate zone 
(blue background) and a non-acceptable zone (red background). The 
distributions of the risk indicators are mainly in the moderate zone, but 
in terms of the overall value, they are already nearing the non- 
acceptable zone. This adiabatic case shows that the production of GVL 
is very risky when the cooling system is stopped or fails. 

In Fig. 9(b), different uncertainties lead to different PDFs for pro
duction rate. As we move from the blue and orange curve to the green 
curve, there is a noticeable increase in the spread of the distributions. 
That is, the PDF comes from mixed uncertainty is the most spread out, 
illustrating the highest variance among the three. These results show 
that both initial operating conditions and model parameters are sensi
tive to the production rate. 

In addition, this study is also simulated under isothermal conditions. 
In order to compare the effect of the uncertainty, the mean values (μ), 
the standard deviation (σ), and the coefficient of variation of the dis
tributions from two conditions are listed in Table 5. 

Under adiabatic conditions, each output has almost the same mean 
value. Nevertheless, the standard deviation from epistemic uncertainty 
is much lower than others for risk indicators. In contrast, the standard 
deviation from aleatory uncertainty is lower than mixed uncertainty by 
a small difference. It is enough only to consider variations in the initial 
conditions (aleatory uncertainty) for the thermal risk assessment. 

However, the σ value indicates that aleatory and epistemic uncer
tainty have similar effects on production rate. It can be seen that the CV 
values of the production rate are larger than that of the risk indicator, 
which means the parameter uncertainty has a greater impact on the 
production rate than thermal risk generally. If we see the isothermal 
condition, the risk indicators are very low, which is reasonable because 
if the cooling system is functioning properly, thermal runaway failure 
will not occur. Compared to the adiabatic, the production rate under 
isothermal conditions has lower μ, σ, and CV values. The low tempera
ture decreases the production rate as well as the effect of uncertainty. 

To sum up, it is necessary to consider uncertainties from both initial 
conditions and kinetic model parameters in assessing the thermal risk 
and production rate. 

5.2. Sensitivity analysis with uncertainty 

Following the study method in Section 4.2, the evaluation of risk 
indicator and production rate with respect to each input can be 
obtained. 

The Sobol index concerning two outputs (Ri and Pr) under adiabatic 
and isothermal conditions are depicted in Figs. 10 and 11 respectively. 
Sobol index S and ST with a number of k are shown by boxplots, k is the 
number of uncertainty sampling. In each boxplot, that is each input 
parameter, the 95th, 75th, 50th, 25th, 5th percentile values are listed. 

In Figs. 10 and 11, the y-axis is the Sobol index including S (orange 
color) and ST (blue color), the x-axis is eight input parameters. The 
deterministic Sobol indexes are represented as circles, while the Sobol 
indexes with uncertainty are represented as boxplots. 

Figs. 10 and 11 present first-order sensitivity index and total sensi
tivity index. According to the total indexes, the first three most impor
tant inputs, as listed in Table 6 are initial temperature (Tj0), the initial 
concentration of catalyst Ru/C (mRu) and the initial pressure of 
hydrogen (PH2). 

Generally, the Sobol index observed in the case without uncertainty 
and the case with uncertainty follow a consistent trend. Three parame
ters, Tj0, mRu and PH2, have the greatest effect on the outputs Ri and Pr. 

Fig. 11. Sensitivity analysis for (a) risk indicator (b) production rate under isothermal conditions.  

Table 6 
The responses of the kinetic model.  

Outputs Importance 

Ri Tj0 mRu PH2 

Pr Tj0 mRu PH2  
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This is consistent across all scenarios considered, with and without un
certainty, under both adiabatic and isothermal conditions. The param
eters with high Sobol index significantly influence outputs, and their 
distribution information should be known accurately. In contrast, pa
rameters with low Sobol index can be assumed to be deterministic 
variables since their contributions to the overall output are insignificant. 

However, the main difference between total order Sobol index with 
and without uncertainty lies in the other parameters, including UA, 
mLA0, mBL0, mGVL0, mAmb. This disparity is particularly pronounced in 
terms of the production rate. As can be seen from Figs. 10(b) and Fig. 11 
(b), when considering uncertainty, the total order Sobol index is not no 
longer zero, and the discrepancy is substantial. It also suggests that the 
influence of parameter uncertainties is more heavily on production rate 
than thermal risk. 

By comparing the results with (boxplots) and without uncertainty 
(circles) in Figs. 10 and 11, the total-order Sobol indices (ST) is greater 
than 1 when taking into account the uncertainty. It typically indicates 
that the input parameters interact in a way that collectively impacts the 
output, especially for the production rate. In this situation, changing one 
parameter not only directly affects the output but also changes how 
other parameters affect the output. 

This could be an indicator that the model of GVL production is 
complex, with interconnected parameters that do not have simple, ad
ditive effects on the output. It suggests that to fully understand the 
model’s behavior and to look beyond the individual contributions of 
each parameter in practice. 

Lastly, this sensitivity procedure includes generating a sampling 
matrix by the Monte-Carlo method. We ran the proposed approach 5 
times with varying seed quantities to mitigate the potential influence of 
the number of seeds. All 5 runs converge to the same result, indicating 
the effectiveness of the proposed method and that the results are inde
pendent of the random sampling. 

6. Conclusions 

The valorization of lignocellulosic biomass is rising, and exothermic 
hydrogenation reactions play a pivotal role in this context. Focusing on 
the production of γ-valerolactone (GVL) via hydrogenation of levulinic 
acid (LA) and butyric acid (BL) over Ru/C and Amberlite IR- 120 cata
lysts, this study demonstrates the influence of inputs considering the 
propagation of uncertainty in kinetic model responses as risk indicator 
and production rate. 

Based on Delgado et al.’ study (Delgado et al., 2022), a numerical 
model comprising differential equations derived from mass and energy 
balances is introduced. The model incorporates eight input parameters 
that govern the initial conditions for this chemical process. In order to 
measure thermal risk, an improved risk indicator is developed as one of 
the model outputs. 

The primary objective is to examine how these initial parameters 
influence thermal risk and production rate output variables in GVL 
synthesis. To achieve this, the study conducts a sensitivity analysis of 
thermal runaway risk and production rate in the GVL production process 
while accounting for uncertainty propagation. Initially, interval analysis 
is employed to model epistemic uncertainty, and a normal probability 
distribution is used for aleatory uncertainty. Monte Carlo simulations 
and bootstrap sampling techniques are applied for these uncertain-ties. 
The findings indicate that aleatory uncertainty predominates in influ
encing thermal risk, whereas both aleatory and epistemic uncertainties 
significantly affect the production rate. 

Subsequently, a global sensitivity analysis was used to find explicit 
relationships between eight input parameters and two output parame
ters. The Sobol method is implemented within a kinetic model that 
considers mixed uncertainties. Simulations under both adiabatic and 
isothermal conditions reveal that initial temperature, initial concentra
tion of the Ru/C catalyst, and initial hydrogen pressure are the most 
influential parameters on both thermal risk and production rate. 

Furthermore, the results indicate complex interactions between the 
input parameters with uncertainty. 

In summary, this study contributes a sensitivity methodology for risk 
analysis for lignocellulosic biomass valorization, ensuring safer and 
more efficient processes. It offers valuable insights into the sensitivity of 
input parameters on thermal risk and production rate while considering 
mixed uncertainties. This assessment could serve as a guideline for 
prioritizing the safety barriers in GVL production processes. 

The impact of these two uncertainties is significant from the pro
duction and thermal risk standpoint. A further step can be to consider 
the whole process, including pretreatment and separation steps, to 
evaluate their impact on the cost, risk and environmental assessment. 
This stage is fundamental to finding the optimal operating conditions. 

Nomenclature  

Mf Fixed parameters in kinetic model 
M Variable parameters in kinetic model 
U Solutions for kinetic equations 
X Input parameters 
Y Output parameters 
E( ⋅) Expectation 
V( ⋅) Variance 
c Concentration 
Pr Production rate 
Ri Risk indicator 
S First order of Sobol index 
ST Total order of Sobol index 
T Temperature 
t Time (s) 
Subscript 
i, j Ordinal number of parameters 
Superscript 
(l) Ordinal number of sampling in uncertainty analysis 
(k) Ordinal number of sampling in sensitivity analysis 
Glossary 
Amb Amberlite IR-120 
BHP Butyl 4-hydroxypentanoate 
BL Butyl levulinate 
GVL γ-valerolactone 
HPA 4-hydroxypentanoic acid 
LA Levulinic acid 
LCB Lignocellulosic biomass 
ODE Ordinary differential equation 
PDF Probability distribution function 
Ru/C Ruthenium on activated carbon  
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