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A practical global existence and uniqueness result for stochastic

differential equations on Riemannian manifolds of bounded

geometry.

Matthias Rakotomalala

Abstract

In this paper, we establish a result for existence and uniqueness of stochastic differential equa-
tions on Riemannian manifolds, for regular inhomogeneous tensor coefficients with stochastic drift,
under geometrical-only hypothesis on the manifold, so-called manifolds of bounded geometry, this
hypothesis is consistent with the maximal regularity result for parabolic equations obtained by
Herbert Amann. Furthermore, we provide a stochastic flow estimate for the solutions.
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1 Introduction

In this paper, we establish an existence and uniqueness result of stochastic differential equations
on Riemannian manifolds, for regular inhomogeneous tensor coefficients with stochastic drift, under
the hypothesis that the manifold is of bounded geometry, the definition is given in Section 2. There
is a vast literature on this class of manifold since it seems to be a reasonable setting when studying
function spaces on (possibly) non-compact manifolds (any compact manifold is of bounded geometry,
and a large class of model Riemannian manifolds are elements of this family). This hypothesis allows
one to construct an atlas associated with a regular partitioning of unity. The main theorem proved
here is consistent with the maximal regularity result for parabolic equations obtained in [1], since it
has been proven in [2] that the uniformly regular manifolds hypothesis used in the former is equivalent
to the definition of manifold of bounded geometry, the definition of uniformly regular manifolds is
also given in Section 2. This result is mainly motivated from a modelization point of view; when a
geometrical structure on the state space is of great interest, one wants a ready-to-use theorem for the
well-posedness of the model under geometrical hypothesis.

From the pioneering work of K. Ito [3], there has been a wide development of the literature on
stochastic differential equations on manifolds. Hsu [4] proved an existence result, for the process as-
sociated to the Laplace-Beltrami operator, up to an explosion time controlled by the curvature of the
underlying manifold. For a general deterministic homogeneous operator, under the hypothesis that
the manifold is compact, we have the existence and uniqueness result in e.g [5]. As highlighted by
Elworthy in [6], there is a conceptual difficulty when introducing stochastic differential equations on
manifold; it can be tackled with orthonormal frame bundle and Stratonovich calculus leading to the
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definition of rolling without slipping of moving frame solutions, introduced by Eells and Elworthy in
[7], we will explicit this conceptual difficulty and introduce the tools needed in the next subsection.
We also refer to [8], [9] for the study of semimartingale valued on a manifold.

Notations : In this paper, we use the following notations, | · | is the absolute value, ∥ · ∥ is the
Euclidean norm. If ϕ is a local chart, we set ϕ−1 = ψ, so that ψα is the inverse of ϕα, where α
is the index of the chart. We use capital letters for tensors, lowercases for their associated coeffi-
cients in local charts and the Einstein summation convention. The symbol =̇ indicates that the right
part of the equation is written in coordinates. The manifold considered here are supposed to be
Riemanian, we write gij (respectively gij), the components of the metric tensor (resp. its inverse)
in a local coordinate system. We suppose that they are equipped with their Levi-Civita connection,
and we write ∇∂i∂j=̇Γkij , the Christoffel symbol, given, in the case of the Levi-Civita connection by

Γkij = 1
2g
kl(∂igjl + ∂jgil − ∂lgij). Let TnmM be the (n,m)-tensor bundle over M consisting of ten-

sors being contravariant of order n and covariant of order m, then Ck(TnmM) denote the space of
k-differentiable sections of TnmM . Ckb (T

n
mM) indicates that the section is bounded for the tensor norm

∥ · ∥k,∞, defined as ∥A∥k,∞ = maxki=0 supM |∇iA|g, where ∇i is the i-th covariate derivative of the
tensor; if k is not specified then one should assume k = 0. The notation A · B indicates the scalar
product of the vector fields A with B, every time we will consider an operation on tensors, we will
specify it in local coordinates. The notation ◦ denotes Stratonovich integral.

We begin with a brief overview of the conceptual technicality encountered when introducing stochas-
tic systems on manifolds, we recommend the article of Elworthy [6], which specifically addresses this
matter. Formally we want to push a process with white noise on a manifold, and define stochastic
characteristics associated with some second-order operator. We need to specify how to map the noise
onto the tangent space, a priori there is no canonical way to define this notion, here are three main
approaches to give sense to the desired notion,

• embedded : given an isometrical embedding of the manifold as a submanifold on Rn, Nash theorem
ensures the existence of such embedding, we can use the n-dimensional Brownian motion and
project it onto the d-dimensional tangent space at each point, with n ≤ d.

• chart covering dependent : if we fix an atlas and a partition of unity of manifold, this defines a
noise-pushing map from the basis of the tangent space in charts.

• rolling without slipping : the equation is now set on OM the manifold of ordered orthonormal
basis of the tangent space TM , thus defining an equation on a moving basis of the tangent space
along a curve on M , that follows the desired dynamic.

The first two notions are extrinsic, in the sense that they need some structure outside of the
Manifold. The third notion, introduced by Eells and Elwothy in the case of the Laplace-Beltrami
Operator, is intrinsic, it seems more natural to stick to the third notion that is per se more geometrical
than the others.

1.1 Orthonormal frame bundle and horizontal lift

We now precise the third notion that we will use in the rest of this paper. First, we need to
introduce a few geometrical definitions and results. We refer to [4, chp 2, p35] and [10, sec 7.2, p.127]
for a detailed presentation of the following concepts.

Definition-Proposition 1.1. Let (M, g) be a d-dimesional Riemannian manifold, let OM denote the
set of all orthonormal basis of the tangent space at each point of M ,

OM = {(x,E1, · · · , Ed)|x ∈M, (E1, · · · , Ed) is an orthonormal basis of TxM},

and denote by π : OM −→ M , the canonical projection. Then, there exists a manifold structure
on OM , that makes (OM,π) a principal bundle over M , called the orthonormal frame bundle. An
element u ∈ OM , is identifiable as an isometry u : Rd −→ Tπ(u)M , for an element λ ∈ Rd, we will note

uλ =
∑d
i=1Eiλ

i ∈ Tπ(u)M .
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It is rather tempting to find a straightforward way to map the noise onto the tangent space by
fixing a global section of OM , however, the existence of such a section implies that OM is globally
trivializable; as a counter-example, S2 the 2-sphere doesn’t satisfy this property, we thus need to specify
how the frame is transported along the path of the process. To this purpose, we need to introduce the
horizontal lift of a vector field.

Definition-Proposition 1.2 (Horizontal Lift). Let (M, g) be a d-dimesional Riemannian manifold,
and OM denote its orthonormal frame bundle, with projection π : OM −→ M . A smooth curve (ut)
taking values in OM , is said to be horizontal if for each e ∈ Rd the vector field (ute) is parallel along
the M -valued curve (π(ut)). A tangent vector Y ∈ TuOM is said to be horizontal if it is the tangent
vector of a horizontal curve at u. The space of horizontal vectors at u is denoted by HuOM , we have
the decomposition

TuOM = VuOM ⊕HuOM,

where VuOM is the subspace of vertical vectors, that are tangent to the fibre TuOM . It follows that
the canonical projection π, induces an isomorphism πh : HuOM −→ Tπ(u)M , and for each B ∈ TxM

and a frame u at x, there is a unique horizontal vector Bh, the horizontal lift of B to u, such that
πh(B

h) = B. Thus if B is a vector field on M , then Bh is a vector field on OM .
In coordinates {xi, ζjk}, the lifted vector field writes,

Bh=̇bi(x)
∂

∂xi
− Γkij(x)b

i(x)ζjm
∂

∂ζkm
.

The differential structure of a manifold is built upon local trivializations, thus a continuous adapted
process on a manifold is a solution to the desired stochastic differential equation if it is a solution in
charts. To this end, we need to introduce a local regularisation of the dynamical system, that is an
atlas, where the integrals involved in coordinates are well-defined.

Definition 1.3 (Regular Localization). Let (M, g) be a d-dimensional Riemannian Manifold. Given
((Ω,F ,P),W·), a filtered probability space with the usual hypothesis, equipped with a d-dimensional
Brownian motion and A : [0, T ] −→ C2

b (T
1
1M), B : [0, T ]× Ω −→ Cb(T

1M), such that B is progressively
measurable. We say that an atlas {(Oα, ϕα) =: Λα, α ∈ K}, is a local regularization of the stochastic
differential system associated to (A,B), if in any chart α ∈ K,∃ C > 0, such that

sup
t∈[0,T ],x∈ϕα(Oα)

d
max
i=1

|bi(t, ω, x)| < C,P− a.s,

sup
t∈[0,T ],x∈ϕα(Oα)

d
max
i,j,k=1

|∂nk ail(t, x)| < C, for n = 0, 1,

sup
x∈ϕα(Oα)

d
max
k,i,j=1

|Γkij(x))| < C, sup
x∈ϕα(Oα)

d
max
i,j=1

|gij(x)| < C,

where alk(t, x), b
i(t, ω, x), gij(x), Γ

k
ij(x) are respectively the coefficients of the tensors A, B, the metric

tensor g and the Christoffel symbol in the coordinate chart α.

1.2 Moving frame strong solution

We are now ready to state the definition of the rolling without slipping or moving frame solution of
a stochastic differential system on a manifold, introduced by Eells and Elworthy in [7]. We recommend
[4], [5], [11], for a presentation of this notion.

Definition 1.4. Let (M, g) be a d-dimensional Riemannian Manifold, Given ((Ω,F ,P),W·) be a fil-
tered probability space with the usual hypothesis, equipped with a d-dimensional Brownian motion, and
{ei} are the coordinate unit vectors of Rd. Let A : [0, T ] −→ C2

b (T
1
1M), and B : [0, T ]×Ω −→ Cb(T

1M)
a progressively measurable tensor valued process. For u ∈ OM define, Ah

i (t, u) := (A(t, π(u))uei)
h :=

(Ai(t, u))
h, Bh(t, ω, u) = (B(t, ω, π(u)))h. A progressively measurable adapted and continuous process

(U·)[0,T ] taking values in OM , is said to be a moving frame strong solution of

dUt = Ah
i (t, Ut) ◦ dW i

t +Bh(t, Ut)dt on TUtOM, (Eh
M )
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with F0-measurable initial value U0 ∈ OM , if there exists, a regular localization, that affirms the
equation, that is, if for any t ∈ [0, T ], α ∈ K, defining, Ωαt := {ω ∈ Ω, π(Ut(ω)) ∈ Oα}, ταt : Ωαt −→ [t, T ]
the exit time from Oα, and (ξi(t), ζjk(t)) = (ϕα(π(Ut)), dϕ

α(π(Ut))Ut∂/∂x
k) the local trivialization of

the process in the chart, with ∂/∂xk the associated basis. We have that, (ξi(t), ζjk(t)) is P-as on ΩΛα

t

up to ταt solution of,{
dξi(t) = (ail(t, ξ(t))ζ

l
m(t)) ◦ dWm

t + bi(t, ξ(t))dt,

dζkm(t) = (−Γkij(ξ(t))ζ
i
m(t)ajl (t, ξ(t))ζ

l
n(t)) ◦ dWn

t + (−Γkij(ξ(t))b
i(t, ξ(t))ζjm(t))dt,

(EΛ)

where ail, b
i and Γkij are respectively the coefficients associated to the tensors A,B and the Christoffel

symbol, in the chart Λα.

All the hypotheses on the regular localization ensure that equation (EΛ) is well-defined. Indeed all
the coefficients involved are supposed to be bounded in the chart. And the C2 regularity of the tensor
A allows us to define the Stratonovich integral. Finally, since Ut is an orthonormal basis of Tπ(Ut)M ,

we have in coordinate that ζikgij(ξ)ζ
j
k = 1, which implies, since the coefficients of the metric tensor are

bounded, that |ζik| < K for some K possibly depending on the chart.

Remark 1.5. Since any element of OM can be identified as a point x inM and an associated orthonor-
mal basis of TxM , equation (Eh

M ) describes a moving frame along a process Xt = π(Ut) taking values
in M , itself solution of :

dXt = Ai(t, Ut) ◦ dW i
t +B(t,Xt)dt on TXt

M.

The fact that the equation on X is not autonomous, translates the need to keep track of how the noise
should push the process on the manifold.

Remark 1.6. We need Stratonovich integral to give a chart-independent definition of a solution. Indeed,
without the chain rule given by Stratonovich integral, we would get a second-order term when changing
chart, corresponding to Ito’s corrective term, that wouldn’t correspond to the change of coordinate of a
tensor field, and thus the process wouldn’t be a solution of the same equation by change of coordinate.

The notion of solution considered here is similar to [5], but one can also define Semimartingale
solution [8], [11], where the characterization of solution is against smooth function C∞([0, T ]×M,R).
It is classical [5], [11] to check that we have an analog to Ito’s formula for moving frame solutions. For
the sake of completeness, we give here a proof that is adapted to the general differential equations that
we consider in this paper.

Proposition 1.7. Let (Ut)t be a moving frame strong solution, then (Xt := π(Ut))t is a semimartingale
solution, i.e, it is a continuous adapted process taking values in M such that, ∀φ ∈ C1,2([0, T ] ×
M,R),∀t ≥ s ∈ [0, T ], (Ms

t )t≥s defined by,

Ms
t := φ(t,Xt)− φ(s,Xs)−

∫ t

s

(∂tφ+ (B +
1

2
∇A ·A) · ∇φ+

1

2
Σ · ∇2φ)(u,Xu)du,

is a martingale, and it holds that,

φ(t,Xt)− φ(s,Xs) =

∫ t

s

(∂tφ+B · ∇φ)(u,Xu)du+

∫ t

s

(Ai(u, Uu) · ∇φ) ◦ dW i
u.

or in Ito’s form,

φ(t,Xt)− φ(s,Xs) =

∫ t

s

(∂tφ+ (B +
1

2
∇A ·A) · ∇φ+

1

2
Σ · ∇2φ)(u,Xu)du+

∫ t

s

(Ai(u, Uu) · ∇φ)dW i
u,

where Σ is a (2, 0)-tensor, defined as Σ = A ·A∗, in coordinates it writes, σij=̇aikg
klajl .

Proof. Let φ ∈ C1,2([0, T ] ×M,R), since (U·)[0,T ] is a moving frame solution, there exists a regular
localization {Λα =: (Oα, ϕα), α ∈ K}, that affirms the equation. Since M is second countable, we can
assume that K is at most countable. For α ∈ K, define the following partition of unity,

Õ0 = O0, Õi = On/(∪i−1
j=0Õ

i).
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Let s ∈ [0, T ], and define Ωαs = {ω ∈ Ω, π(Us(ω)) ∈ Õα}, then up to a P-nullset, Ω = ⊔α∈KΩ
α
s . And,

since U is a solution, on the event Ωαs , up to the exit time ταs : Ωαs −→ [s, T ] of Oα, we have that the
process in a local chart is a solution of (EΛ). Thus using Stratonovich chain rule on φ in coordinates,
we obtain on the event Ωαs , for any t > s,

φ(ταs ∧ t, ξτα
s ∧t)− φ(s, ξs) =

∫ τα
s ∧t

s

(∂tφ+ bj∂jφ)(v, ξv)dv +

∫ τα
s ∧t

s

(aji (t, ξv)ζ
i
k · ∂jφ) ◦ dW k

v . (1)

Define, the following (F[s,T ])-stopping time τs : Ω −→ [s, T ], as τs = ταs on Ωαs . Since we have the
disjoint union of the events Ωαs , and rewriting in a coordinate independent manner (1), we obtain up
to a P-nullset on Ω, using the notation Xt := π(Ut),

φ(τs∧ t,Xτs∧t)−φ(s,Xs) =

∫ τs∧t

s

(∂tφ+B ·∇φ)(v,Xv)dv+

∫ τs∧t

s

(Ak(t, Uv) ·∇φ(v,Xv))◦dW k
v . (2)

Now let s < t ∈ [0, T ], define tnk = (t−s)k
n + s, from (2), P-a.s for any n ∈ N∗,

φ(t,Xt)− φ(s,Xs)−
∫ t

s

(∂tφ+B · ∇φ)(v,Xv)dv −
∫ t

s

(Ak(t, Uv) · ∇φ(v,Xv)) ◦ dW k
v

=

n∑
k=0

(
φ(tnk+1, Xtnk+1

)− φ(tnk+1 ∧ τtnk+1
, Xtnk+1∧τtnk+1

)

+

∫ tnk+1∧τtnk+1

tnk

(∂tφ+B · ∇φ)(v,Xv)dv +

∫ tnk+1∧τtnk+1

tnk

(Ak(t, Uv) · ∇φ(v,Xv)) ◦ dW k
v

)
.

Since the process is P-a.s continuous, and from the density of the sequences (tnk ), we can show that
the right term tends to 0 P-a.s, and get the desired Stratonovich development.

For the second Ito-like identity, it is the same reasoning, we just need to explicit the Ito-Stratonovich
equivalence. Omitting for the sake of conciseness t, ξ in the differential equation, the equation in a
local chart is,

dξi =(ailζ
l
m)dWm

t +
1

2
(∂ja

i
la
j
kζ
k
mζ

l
m − ailζ

n
mζ

j
ma

k
nΓ

l
kj)dt+ bidt,

dζkm =(−Γkijζ
i
mζ

l
qa
j
l )dW

q
t − (Γkijb

iζjm)dt

− 1

2
(Γkijζ

i
m∂na

j
l ζ
l
qa
n
p ζ
p
q + ∂nΓ

k
ijζ

i
ma

j
l ζ
j
qa
n
p ζ
p
q − ΓkijΓ

i
npζ

n
ma

p
l′ζ

l′

q a
j
l ζ
l
q − Γkijζ

i
ma

j
lΓ
l
npζ

n
q ζ

l′

q a
p
l′)dt.

From Ito’s lemma in chart, on the event Ωαt , we obtain that,

dφ(t, ξt) =
(
∂tφ+b

i∂iφ+
1

2

d∑
m=1

(∂ja
i
la
j
kζ
k
mζ

l
m−ailζnmζjmaknΓlkj)∂lφ+

1

2

d∑
m=1

ailζ
l
mζ

k
ma

j
k∂ijφ

)
dt+ailζ

l
m∂iφdW

m
t .

(3)
Now since by definition, ζjk is the j-coordinate in chart associated to the kth vector of an orthonormal

basis of Tπ(Ut)M , ζjkgijζ
i
m = δmk. And this implies that

∑d
m=1 ζ

i
mζ

j
m = gij , i.e the i, j components of

the inverse of the metric tensor, thus equation (3) rewrites,

dφ(t, ξt) =
(
∂tφ+ bi∂iφ+

1

2
(∂ja

i
la
j
kg
kl − ailg

njaknΓ
l
kj)∂lφ+

1

2
ailg

klajk∂ijφ
)
dt+ ailζ

l
m∂iφdW

m
t . (4)

Introduicing the tensor Σ = A·A∗, defined in coordinate by σij = ailg
klajk, and noting that in coordinate

∇A=̇∂jaik − alkΓ
i
jl), we can rewrite equation (4) in a coordinate independent manner as,

dφ(t,Xt) =
(
∂tφ+ (B +

1

2
Σ +

1

2
∇A ·A∗) · ∇φ

)
dt+Am(t, Ut) · ∇φ(t,Xt)dW

m
t .

This concludes the proof.
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2 Main restults.

2.1 Geometric hypothesis

In order to formulate our main theorem, we introduce the following hypotheses on the geometry of
the manifold.

Definition 2.1. Let i : M → R+ be the injectivity radius function, defined by i(x) is the largest
radius for which the exponential map expx is a diffeomorphism on {y ∈ M,d(x, y) < i(x)}. Note
i(M) = inf

m∈M
i(x). A manifold is said to have a positive injectivity radius if i(M) > 0.

Definition 2.2 (Manifold of bounded Geometry). A Riemannian manifold (M, g) equipped with its
Levi-Civita connection is said to be of bounded geometry if: it is a complete metric space, it has positive
injectivity radius, and if all covariant derivatives of the Riemann curvature tensor are bounded,

∥|∇kR|g∥∞ ≤ C(k),∀k ∈ N0.

Definition 2.3 (Uniformly Regular Atlas). Let (M, g) be a Riemannian manifold of dimension d
endowed with a Riemannian metric g, such that the underlying topological space is separable. An
Atlas A = (Oκ, ϕκ)κ∈K for M is said to be normalized, if ϕκ(Oκ) = Bd unit centered ball in Rd. The
atlas A is said to have finite multiplicity if there exists N ∈ N such that any intersection of more that
N coordinate patches is empty. An atlas A is said to fulfill the uniformly shrinkable condition: if it is
normalized and there exists r ∈ (0, 1) such that {ψκ(rB), κ ∈ K} is a cover of M . We say that A is a
Uniformly Regular Atlas on (M, g) if,

• A is uniformly shrinkable and has finite multiplicity.

• ∥ϕη ◦ ψκ∥k,∞ ≤ c(k),∀η, κ ∈ K,∀k ≥ 0 s.t Oη ∩Oκ ̸= ∅.

• ∥ψ∗
κg∥k,∞ ≤ c(k), κ ∈ K and k ∈ N0, where ψ

∗
κg is the pullback metric in the chart κ.

• ∃K ≥ 1, such that, ∥ζ∥2/K ≤ ψ∗
κg(x)(ζ, ζ) ≤ K∥ζ∥2, ∀ζ ∈ Rd,∀x ∈ Bd,∀κ ∈ K.

Such an atlas is always countable. We will denote by (r,K, c,A) a uniformly regular atlas on M.

The notion of uniformly regular manifold was introduced by Herbert Amann, to prove a maximal
regularity result for parabolic equations. A notable result proven by M. Disconzi, Y. Shao, and G.
Simonett in [2], is the equivalence between the geometrical definition of Manifold of bounded geometry
and the existence of a uniformly regular atlas. A few examples of Manifolds of bounded geometry, are
any Euclidean space, any isometric images of uniformly regular Riemannian manifolds, any compact
Manifold, the d-dimensional hyperbolic space or the d-dimensional sphere.

Lemma 2.4 ([12], Theorem 4.1, p.22). Let (M, g) be a manifold of bounded geometry. Then, it
admits a Uniformly Regular Atlas (r,K, c,A = {(Oα, ϕα) = Λα}α∈K).

The construction of the atlas relies on the positivity of the injectivity radius and the existence
of normal coordinate systems around each point. And the estimates of the metric tensor and its
derivatives in normal coordinates rely on Jacobi fields theory,(T. Aubin [13][Ch 1, sec. 8, Lemma 2.26,
p20] and J. Eichorn [14]).

2.2 Existence and uniqueness result

We are now able to state our main theorem.

Theorem 2.5 (Existence and Uniqueness). Given a Riemannian Manifold of bounded geometry (M, g),
and ((Ω,F ,P),W·) a filtered probability space with the usual hypothesis, equipped with a d-dimensional
Brownian motion. Let A be a deterministic (1, 1)-tensor valued function A : [0, T ] −→ C2

b (T
1
1M), and

B be a tensor valued adapted processes, B : [0, T ]× Ω −→ C1
b (T

1M), suppose that ∃C > 0, such that,

∥∇B∥∞, ∥∇A∥∞, ∥∇2A∥∞, ∥B∥∞, ∥A∥∞ < C ∀t ∈ [0, T ],P-a.s,

where | · |∞ designe the tensor norm induced by g, and ∇k the kth-covariant derivative operator.
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Then, for any F0-measurable initial condition U0 ∈ OM , there exists a unique solution to the lifted
equation (Eh

M ),
dUt = Ah

i (t, Ut) ◦ dW i
t +Bh(t, Ut)dt on TUt

OM,

in the sens of Definition 1.4, where Bh(t, ω, u) = (B(t, ω, π(u))h, and Ahi (t, u) = (A(t, π(u))uei)
h, with

ei the i
th coordinate unit vector of Rd.

Remark 2.6. There is no integrability assumption on the initial condition for this kind of solution.
However, A is required to be deterministic, and smooth, this comes from the imposed Stratonovich
formalism, as mentioned in the previous section, to define the stochastic differential equation in a
chart-independent manner. Extending this result to stochastic fields A could be possible, but one
should use Ito-Wenzel lemma.

We will first prove the following lemma, which gives an existence and uniqueness result in local
charts of the process.

Lemma 2.7. Under the assumptions and notations of Theorem 2.5, ∀s ∈ [0, T ], for any chart Λβ from
a uniformly regular atlas (r,K, c,A = {(Oα, ϕα) = Λα}α∈K), for any Fs-measurable (ξ(s), ζ(s)) ∈
Bd(0, 1) × Bd(0,K)d. There exists an unique adapted continuous process (ξi(t), ζjk(t))t∈[s,T ], with
initial condition (ξ(s), ζ(s)), solution of{

dξi(t) = (λ(ξ)ail(t, ξ)ζ
l
m) ◦ dWm

t + λ(ξ)bi(t, ξ)dt,

dζkm(t) = (−λ(ξ)Γkijζima
j
l ζ
l
n) ◦ dWn

t + (−λ(ξ)Γkijbiζjm)dt,
(λEΛ)

where λ is a bump function to be specified, confining the process.
Furthermore, the process stays in Bd(0, 1)×Bd(0,K

2)d,

(ξ(t), ζ(t)) ∈ Bd(0, 1)×Bd(0,K
2)d ∀t ∈ [s, T ],

with the following property

ζik(t)gij(ξt)ζ
j
m(t) ≡ ζik(s)gij(ξs)ζ

j
m(s) ∀t ∈ [s, T ], (ZΛ)

with gij is the metric tensor in the chart Λβ .
Moreover, we have a uniform in any chart estimate,

P
(
sup
[s,t]

∥ξu − ξs∥ > ρ|Fs

)
≤ C|t− s|2, (PEXIT)

where C is a constant depending on ρ,K, c(0), c(1), ∥|A|g∥∞, ∥|∇A|g∥∞, ∥|B|g∥∞,.

Proof. Let λ : Rd −→ [0, 1] be the following C2
b (Rd) ∩W 3,∞(Rd) bump function,

λ(x) =


1 if ∥x∥ < 1+2r

3 ,

−6( 3∥x∥−2r−1
1−r )5 + 15( 3∥x∥−2r−1

1−r )4 − 10( 3∥x∥−2r−1
1−r )3 + 1 if ∥x∥ ∈

[
1+2r

3 , 2+r3
]
,

0 otherwise.

Introduce, the Ito Stochastic differential equation associated to the Stratonovich equation (λEΛ). For
the sake of conciseness, we note aij = λ(ξt)a

i
j(t, ξ), b

i = λ(ξ)bi(t, ξ). We omit t in the differential

equation at time t, and ξt in the Christoffel symbol, so when we note ∂na
j
l , we mean ∂nλ(ξt)a

i
j(t, ξ) +

λ(ξt)∂na
i
j(t, ξ). The Ito’s counterpart of equation (λEΛ) writes as

dξi =(ailζ
l
m)dWm

t +
1

2
(∂ja

i
la
j
kζ
k
mζ

l
m − ailζ

n
mζ

j
ma

k
nΓ

l
kj)dt+ bidt,

dζkm =(−Γkijζ
i
mζ

l
qa
j
l )dW

q
t − (Γkijb

iζjm)dt

− 1

2
(Γkijζ

i
m∂na

j
l ζ
l
qa
n
p ζ
p
q + ∂nΓ

k
ijζ

i
ma

j
l ζ
j
qa
n
p ζ
p
q − ΓkijΓ

i
npζ

n
ma

p
l′ζ

l′

q a
j
l ζ
l
q − Γkijζ

i
ma

j
lΓ
l
npζ

n
q ζ

l′

q a
p
l′)dt.

Since the coefficients and the Christoffel symbol are regular in the chart, if we introduce the
following stopping time,

τ = inf{t > s,
d

max
m=1

∥ζm(t)∥ > 2K2},
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using classical results, we obtain existence and uniqueness of the localized stochastic equation, since
all the coefficients involved are P-a.s Lipschitz and bounded up to the killing time. Now by proving
the first property (ZΛ) of the lemma, for the localized system, this will imply that the localized system
stays in a ball inside the localization, since from the uniform equivalence of the norm in the chart, we
obtain that,

|ζk(t)|2 ≤ Kζikg
ijζjk(t) = Kζikg

ijζjk(s) ≤ K2|ζk(s)|2 ≤ K4.

Thus the localized solution is a solution of the non-localized equation. Proving (ZΛ), is the straight
forward following computation. We can use Ito Stratonovich equivalence [15, Prop.2.21, p.295], and
obtain that (ξ, ζ) is a solution of the localized version of the Stratonovich equation (λEΛ). Again we
omit for conciseness t, ξ(t) when evaluating a matrix value function or a coordinate in time, and the
bump function λ.

d(ζim(t)gij(ξ)ζ
j
n(t)) =gijζ

j
n ◦ dζim + gijζ

i
m ◦ dζjn + ζjnζ

i
m ◦ dgij

=(∂qgijζ
i
mζ

j
na

q
l ζ
l
k − gijζ

j
nΓ

i
pqζ

p
ma

q
l ζ
l
k − gijζ

i
mΓjqpζ

p
na

q
l ζ
l
k) ◦ dW k

t

+ (∂qgijζ
i
mζ

j
nb
q − Γipqb

qζimζ
p
ngij − Γipqb

qζpmζ
j
ngij)dt

=(ζimζ
j
na

q
l ζ
l
k(∂qgij − gilΓ

l
jq − gljΓ

l
iq)) ◦ dW k

t

+ (ζimζ
j
nb
q(∂qgij − gilΓ

l
jq − gljΓ

l
iq))dt

Now by the following identity, ∂kgij−gilΓljk−gljΓlik=̇∇g = 0, e.g [16], we obtain that, d(ζim(t)gij(ξ)ζ
j
n(t)) =

0. Thus,
ζim(t)gij(ξ(t))ζ

j
n(t) ≡ ζim(s)gij(ξ(s))ζ

j
n(s) ∀t ∈ [s, T ].

We now prove estimate (PEXIT). First, recall that,

ξi(u)− ξi(s) =M i(s, u) +
1

2

∫ u

s

(∂ja
i
la
j
kζ
k
mζ

l
m − ailζ

n
mζ

j
ma

k
nΓ

l
kj)dv +

∫ u

s

bidv,

where M i(s, u) :=
∫ u
s
ailζ

l
mdW

m
v is a martingale.

Noting that, ∂ja
i
l − ailΓ

l
kj=̇∇A, from the uniform equivalence of the norm, Cauchy-Schwratz in-

equality and the estimate on maxdk=1 ∥ζk∥, there exists a constant C depending on K only such that,

∥∂jaila
j
kζ
k
mζ

l
m − ailζ

n
mζ

j
ma

k
nΓ

l
kj∥Rd ≤ C∥|∇A|g∥∞∥|A|g∥∞.

Similarly, ∥b∥Rd ≤ K∥|B|g∥∞. From the convexity of the fourth power, we have the following bound,

sup
[s,t]

∥ξu − ξs∥4 ≤ 8(sup
[s,t]

∥Ms
u∥4 + (t− s)4C(∥∇A∥∥A∥+ ∥B∥)4),

where C depends on K only. Now, note that the quadratic variation of the i-th component of the
martingale M is expressed as ⟨Ms⟩it =

∫ t
s
ailζ

l
ma

i
kζ
k
mds, which implies that there exists a constant C

depending on K only, such that |⟨Ms⟩it| ≤ |t− s|C∥|A|g∥∞. Now, summing up, and using successively,
Markov Inequality on the quartic moment and Burkholder-Davis-Gundis Inequality,

P
(
sup
[s,t]

∥ξu − ξs∥ > ρ|Fs

)
≤ 1

ρ4
E
[
sup
[s,t]

∥ξu − ξs∥4|Fs

]
≤ 1

ρ4

(
E
[
8 sup

[s,t]

∥Ms
u∥4|Fs

]
+ C(t− s)4

)
≤C

(
E
[
∥(⟨Ms⟩it)i=1,··· ,d∥2|Fs

]
+ (t− s)4

)
≤C|t− s|2.

We obtain the desired estimate, for a constant C, only depending on K, ρ, the tensor norm of A, ∇A
and B, uniformly in any local coordinate.

We now can prove the main theorem.
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Proof of Theorem 2.5. We will use Ito’s random switching construction [3], which we adapt to the
moving frame solution.

Step 1: Contruction of the process.

Since (M, g) is of bounded geometry, from Lemma 2.4, there exists a uniformly regular atlas
(r,K, c,A = {(Oα, ϕα) = Λα}α∈K). Define Oα0 = ψα(rBd). Since A is uniformly regular (Oα0 )α∈K

covers M . Introduce the following partition of unity,

Õi = Oi0
/( i−1⋃

k=0

Õk
)
.

Fix m ∈ N∗, let tmk = kT
m , for k = 0, · · · ,m, and for any chart Λα in A, define the F0-measurable

random variables,

(ξ0, ζ0)
(α,U0) =

{
(ϕα(π(U0)), dϕ

α(π(U0))U0∂/∂x
j) if U0 ∈ Õα

(0Rd , 0Rd2) otherwise.

From lemma 2.7, for any chart α ∈ K there exists a unique solution to (λEΛ), starting from tm0 , with

initial condition (ξ0, ζ0)
(α,U0), we call this process (ξ·, ζ·)

(α,tm0 ,U0)

[0,tm1 ] . And from property (ZΛ), on the

event {π(U0) ∈ Õα},
ζim(t)gij(ξ(t))ζ

j
k(t) ≡ ζil (t0)gij(ξ(t0))ζ

j
k(t0) = δlk.

The last equality holds from the construction of ζ0. This implies that ζ remains an orthonormal basis

of Tψα(ξ)M , and that (ξ·, ζ·)
(α,tm0 ,U0)

[0,tm1 ] stays identifiable as an element of OM . Now set,

(m)

U· = (ψα(ξ·
(α,tm0 ,U0)), dξψ

αζ·
(α,tm0 ,U0)) ∈ OM on [tm0 , t

m
1 ] if π(U0) ∈ Õα.

Since K is countable, (
(m)

U· )[tm0 ,tm1 ] is an adapted process defined up to a P-nullset. By continuing this
procedure, define at step k = 1, · · · ,m− 1, for any chart α the Ftmk

-measurable random variable,

(ξtmk , ζtmk )
(α,U

(m)

tm
k

)
=

{
(ϕα(π(U

(m)
tmk

)), dϕα(π(U
(m)
tmk

))U
(m)
tmk

∂/∂xj) if U
(m)
tmk

∈ Õα

(0, 0) otherwise.

And from lemma 2.7, for any chart α, note by (ξ·, ζ·)
(α,U

(m)

tm
k

)

[tk,tmk+1]
the unique solution of (λEΛ) starting at

tmk with initial condition (ξtmk , ζtmk )
(α,U

(m)

tm
k

)
. And extend the process

(m)

U as,

(m)

U · = (ψα(ξ·
(α,tmk ,U

(m)

tm
k

)
), dξψ

αζ·
(α,tmk ,U

(m)

tm
k

)
) ∈ OM on [tmk , t

m
k+1] if π(Utmk ) ∈ Õα.

For m ∈ N∗, k = 0, · · · ,m− 1, define the following events,

Ω
(k,m)
αβ =

{
ω ∈ Ω, π(U

(m)
(tmk ,ω)

) ∈ Õα, π(U
(m)
(tmk+1,ω)

) ∈ Õβ , ξ
(α,tmk ,U

(m)

tm
k

)

([tmk ,t
m
k+1])

∈ BRd

(
0,

1 + 2r

3

) }
(m)

Ω =
⊔

n0,··· ,nm∈Km

⋂
k=0,··· ,m−1

Ω(k,m)
nk,nk+1

And introduce the adapted process (U·)[0,T ], defined up to a P-nullset on the event
⋃
m∈N

(m)

Ω as,

U· =


(1)

U· on
(1)

Ω ,
(m)

U· on
(m)

Ω /(
⋃m−1
n=1

(n)

Ω ).
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Let us prove that U is defined P-a.s, by proving that, limm P
((m)

Ω
)
= 1. To this end, define Ω̃

(k,m)
nk

:={
Xtmk

∈ Õnk , sup[tmk ,tmk+1]
∥ξ(α,k,m)

(u) ∥ < 1+2r
3

}
, where Xt := π(Ut). And note that,

{
Xtmk

∈ Õnk , sup
[tmk ,t

m
k+1]

∥ξ(α,k,m)
(u) − ξ

(α,k,m)
(tmk ) ∥ < 1− r

3

}
⊂ Ω̃(k,m)

nk
,

so that, for any event A ∈ Ftmk
,

P
(
A ∩ Ω̃(k,m)

nk

)
≥P

(
A ∩

{
Xtmk

∈ Õnk , sup
[tmk ,t

m
k+1]

∥ξ(α,k,m)
(u) − ξ

(α,k,m)
(tmk ) ∥ < 1− r

3

})
=

∫
A∩{Xtm

k
∈Õnk}

P
(

sup
[tmk ,t

m
k+1]

∥ξ(α,k,m)
(u) − ξ

(α,k,m)
(tmk ) ∥ < 1− r

3

∣∣∣Ftmk

)
P(dω)

≥
∫
A∩{Xtm

k
∈Õnk}

(
1− C

m2

)
P(dω) = P

(
A ∩ {Xtmk

∈ Õnk}
)(

1− C

m2

)
,

where C is a constant depending on the tensor norms of A and B, some bounds on the geometry and
1−r
3 , uniformly in any chart. Thus we can conclude that,

P
(
Ω(m)

)
= (1− C

m2
)

∑
n0,···nm−1

P
(
Ω

(1,m)
(n1,n2)

∩ · · · ∩ Ω
(m−2,m)
(nm−2,nm−1)

)
≥

(
1− C

m2

)m m−→+∞−−−−−→ 1. (5)

Step 2: Verify that the process is a solution.

We constructed a continuous adapted process, and we now verify that it is indeed a solution for
the regular localization given by the restriction of the uniformly regular atlas used in the construction,
specifically {(Oα0 =: ψα(BRd(0, r), ϕα), α ∈ K}. Let t ∈ [0, T ], α ∈ K, and introduce as in the definition
(1.4), Ωαt := {ω ∈ Ω, π(Ut(ω)) ∈ Oα0 =: ψα(BRd(0, r))} ∈ Ft, and the exit time ταt : Ωαt −→ [t, T ] of
Oα0 ⊂ Oα. From the convergence of Ω(m) in (5), we obtain that,

Ωαt =
( ⋃
m∈N

Ωαt ∩
(m)

Ω
)
∪ Ω0,

where Ω0 is a P-nullset. For any m ∈ N∗, recall that
(m)

Ω =
⊔

(n0,··· ,nm)∈Km

⋂
k=0,··· ,m−1 Ω

(k,m)
nk,nk+1 .

Take a multi-index
⇀
n ∈ Km and define

Ω
(m)
⇀
n

=
⋂

k=0,··· ,m−1

Ω(k,m)
nk,nk+1

.

Then, either Ωαt
⋂
Ω

(m)
⇀
n

= ∅ and the property is verified, or Ωαt
⋂

Ω
(m)
⇀
n

̸= ∅ and there exists k =

0, · · · ,m−1, such that kT
m ≤ t < (k+1)T

m , and Oα0 ∩ψnk(B(0, 1+2r
3 )) ̸= ∅, and if we denote (ξ̄i, ζ̄jk)[t,τα

t )

the process U· in coordinate Λα, from the change of coordinate rule and by construction of U· on the

event, ∀s ∈ [t, ταt ), if
lT
m ≤ s < (l+1)T

m then,

(ξ̄(s), ζ̄k(s)) = ((φα ◦ ψnl)(ξ
(nl,tl,U

(m)
tk

)

(s) ), ∂j(φ
α ◦ ψnl)

(
ζ
(nl,tl,U

(m)
tk

)

k(s)

)j
)

For the sake of clarity, we introduce the following notations for the up coming computations. First

x̄(y) := (φα ◦ ψβ)(y), ∂x̄
i

∂xk (y) = ∂k(φ
α ◦ ψβ(y))i, respectively, x(ȳ) := (φβ ◦ ψα)(ȳ), ∂x

i

∂x̄k (ȳ) = ∂k(φ
β ◦

ψα(ȳ))i, then the change of coordinate rule writes, (ξ̄i, ζ̄jk) = (x̄i(ξ), ∂x̄
j

∂xl (ξ)ζ
l
k). From the construction

of the process U , on the considered event, ξ stays where the bump function is equal to 1. From
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the Stratonovich chain rule, we obtain the following equation on (ξ̄i, ζ̄jk), again, we omit t, ξ for the
matrix-valued functions.{

dξ̄i = (∂x̄
i

∂xl a
l
mζ

m
k ) ◦ dW k

t + ∂x̄i

∂xl b
ldt,

dζ̄jk = ( ∂2x̄j

∂xl∂xi a
i
mζ

m
n ζ

l
k − ∂x̄j

∂xpΓ
p
ila

i
mζ

m
n ζ

l
k) ◦ dWn

t + ( ∂2x̄j

∂xl∂xi b
iζlk − ∂x̄j

∂xpΓ
p
ilb
iζlk)dt.

Every time there is a repeating index, we introduce ∂x̄j

∂xl
∂xl

∂x̄p = ∂p(φ
α ◦ψβ(φβ ◦ψα))j = δjp, and thus the

change of coordinate of the concerned tensors, e.g āij =
∂x̄i

∂xl
∂xk

∂x̄j a
l
k, where ā(resp. a) is the coefficients

of A the (1, 1)-tensor in the chart Λα(resp. Λβ). We then obtain,
dξ̄i = (āimζ̄

m
k ) ◦ dW k

t + b̄idt,

dζ̄jk = ( ∂2x̄j

∂xl∂xi
∂xi

∂x̄q ā
q
mζ̄

m
n
∂xl

∂x̄p ζ̄
p
k − ∂x̄j

∂xmΓmil
∂xi

∂x̄q ā
q
m′ ζ̄m

′

n
∂xl

∂x̄p ζ̄
p
k) ◦ dWn

t

+( ∂2x̄j

∂xl∂xi
∂xi

∂x̄q b̄
q ∂xl

∂x̄p ζ̄
p
k − ∂x̄j

∂xmΓmil
∂xi

∂x̄q b̄
q ∂xl

∂x̄p ζ̄
p
k)dt.

Rewriting the second equation as,

dζ̄jk =
(
(
∂2x̄j

∂xl∂xi
∂xi

∂x̄q
∂xl

∂x̄p
− ∂x̄j

∂xm
Γmil

∂xi

∂x̄q
∂xl

∂x̄p
)āqm′ ζ̄

m′

n ζ̄pk
)
◦ dWn

t

+
(
(
∂2x̄j

∂xl∂xi
∂xi

∂x̄q
∂xl

∂x̄p
− ∂x̄j

∂xm
Γmil

∂xi

∂x̄q
∂xl

∂x̄p
)b̄q ζ̄pk

)
dt.

And by combining, ∂2x̄j

∂xl∂xi
∂xi

∂x̄q
∂xl

∂x̄p + ∂2xl

∂x̄p∂x̄q
∂x̄j

∂xl = ∂pq(φ
α ◦ ψβ(φβ ◦ ψα))j = 0, with the change of

coordinate of the Christoffel symbol identity,

Γ̄jpq =
∂x̄j

∂xm
Γmil

∂xi

∂x̄q
∂xl

∂x̄p
+

∂2xl

∂x̄p∂x̄q
∂x̄j

∂xl
,

we conclude that,

−Γ̄jpq = (
∂2x̄j

∂xl∂xi
∂xi

∂x̄q
∂xl

∂x̄p
− ∂x̄j

∂xm
Γmil

∂xi

∂x̄q
∂xl

∂x̄p
).

And thus, (U·) is a solution of (Eh
M ) in the sense of Definition 1.4.

Step 3: Proof of uniqueness.

Let (U1
· ), (U

2
· ) be two solutions of (Eh

M ), with initial condition equal P-a.s, we can suppose that
they are solutions on the same uniformly regular atlas. Indeed, if U1 is a solution in atlas A1, it is a
solution in atlas A2. Choose a countable dense subset D of [0, T ] with 0 ∈ D . For t0 ∈ D , define the
events Eαt0 = {U1

t0 = U2
t0 ∈ Oα0 } and Ωα[t0,t1] = {Eαt0 , t1 < ταt0}, where τ

α
t0 : Eαt0 −→ [t, T ], is the minimum

of the exit time of Oα0 for each of the processes. Then by hypothesis, since they are both solutions of
(Eh

M ), up to a P-nullset, that we note Zα[t0,t1], they are solutions in the chart Λα of the same Euclidean
stochastic differential equation, and from the uniqueness result of Lemma 2.7, both processes are equal
on Ωα[t0,t1]

/
Zα[t0,t1].

Taking ω ∈ Ω, both process are continuous a.s, let s ∈ [0, T ] and assume that the processes agree on
(ω, [0, s)), then there exists α ∈ K, with ω ∈ Ωα[t0,t1] for some t0, t1 ∈ D satisfying 0 ≤ t0 ≤ s < t1 ≤ T .

Then if ω /∈ Zα[t0,t1] we have that the processes agree on (ω, [0, t1]). Noting that t1 is strictly greater

than s, using the sample continuity and the fact that
⋃
t0,t1∈D,α∈K Z

α
[t0,t1]

is a P-nullset, we obtain the
desired result.

2.3 Stochastic flow estimate and integrability

As mentioned earlier, the type of solution considered here does not require an integrability assump-
tion, in this section, we will prove a Lipschitz in time integrability estimate on the flow of the solutions
associated with the drifted Laplace-Beltrami operator, i.e associated to B · ∇g +

1
2∆g, where ∆g is

the Trace of the Hessian, in local coordinates it writes ∆gf = gij∂ijf − gijΓkij∂kf . In the Euclidean
setting, this is straightforward from the triangular inequality of the norm, Jensen’s inequality and
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Burkholder-Davis-Gundy inequality. On a Riemannian manifold, one needs to use Ito’s formula on
the distance function, however, outside the injectivity radius the distance function fails to be differ-
entiable. For example, on the 1-dimensional Torus, T = R/Z, then the distance function d(0, ·) is not
differentiable at 1/2. Nevertheless, on a connected manifold of bounded geometry, it is possible to
construct a substitute of the distance function with natural smoothness properties, this is the subject
of the following result due to Yu.A. Kordyukov.

Lemma 2.8. Suppose that (M, g) is a connected manifold of bounded geometry. There exists a
function d̃ :M ×M −→ [0,∞) satisfying the following conditions,

• there exists ρ > 0 such that:

|d̃(x, y)− d(x, y)| < ρ, ∀x, y ∈M.

• ∀x ∈ M , r̃x : y 7→ d̃(x, y) is C∞(M), and its derivatives are uniformly bounded in x, in other
words, for n > 0,

∥∇nr̃x∥∞ ≤ C(n) ∀x ∈M

This relies on an appropriate partitioning of the unity to regularise the distance function. There
exists a proof in English, in [17][Lemma 2.1 p70], where the statement gives a uniform bound in
coordinates of |∂αy d̃(x, y)|, to conclude, one uses the uniform equivalence of the euclidean norm in a
local chart with the pullback metric.

We also need to control the Laplacian of the distance function inside the cut locus, that is, the set
of points sufficiently close, so that they are uniquely connected from the starting point with a geodesic.

Proposition 2.9 (Laplacian Comparison Theorem, [18] Thm 3.4.2, p.90). Let x0 ∈ M and note
r(x) = d(x0, x), suppose that the sectional curvature is bounded from above by K2

1 and the Ricci
curvature is bounded from below by −(n− 1)K2

2 . Then inside the cut locus of x0,

(n− 1)K1cot(K1r(x)) ≤ ∆gr(x) ≤ (n− 1)K2coth(K2r(x)).

In particular, r∆Mr is uniformly bounded on any compact subset of M within the cut locus.

We now can state the stochastic flow estimate.

Theorem 2.10. Let (M, g) a connected Riemannian Manifold of bounded goemetry. Let ((Ω,F ,P),W·)
be a filtered probability space and suppose that (U·)[0,T ] is a moving frame solution of

dUt = Hh
i (Ut) ◦ dW i

t +Bh(t, Ut)dt

where B ∈ L∞([0, T ]× Ω, Cb(T
1M)), and Hh

i (u) = (uei)
h, we note Xt = π(Ut).

Then, we have the flow estimate,

E[dp(Xs, Xt)] < C(|t− s|p + |t− s|p/2) ∀p ≥ 1, (6)

where C depends on T, ∥B∥∞ and geometrical bounds.
If there exists x∗ ∈ M such that, E[dp(x∗, X0)] < +∞, for some random variable, we note X0 ∈

Lp(Ω, d(x∗, ·)dP). Then (6) ensures that the solution stays in the same space, if the initial condition
lives in this space.

Proof. Let us introduce the following notations, ry(x) = d(x, y) and Rs,t = d(Xs, Xt) = rXs
(Xt) for

any s < t ∈ [0, T ]. Since M is of bounded geometry, according to Lemma 2.8 there exists a C∞

regularisation, in the second variable, of the distance function, that we denote by d̃ :M ×M −→ [0,∞[.
Similarly we note by r̃x(y) = d̃(x, y), and R̃s,t = d̃(Xs, Xt).

Now, start by noting that

dp(Xs, Xt) = dp(Xs, Xt)1{supu∈[s,t] d(Xs,Xu)<ϵ/2} + dp(Xs, Xt)1{supu∈[s,t] d(Xs,Xu)≥ϵ/2}

≤ dp(Xs, Xt)1{supu∈[s,t] d(Xs,Xu)<ϵ/2} + (d̃(Xs, Xt) + ρ)p1{supu∈[s,t] d(Xs,Xu)≥ϵ/2}

≤ dp(Xs, Xt)1{supu∈[s,t] d(Xs,Xu)<ϵ/2} + Cp(d̃
p(Xs, Xt) + ρp)1{supu∈[s,t] d(Xs,Xu)≥ϵ/2},
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where ρ is a constant given in Lemma 2.8. The last inequality holds from the convexity of the p-th
power on R+.

We will first show that E[R̃ps,t] is finite. Since r̃Xs
is C∞, from Ito’s formula, we obtain that,

R̃s,t =

∫ t

s

(∇r̃Xs
·B +

1

2
∆g r̃Xs

)(u,Xu)du+

∫ t

s

(∇r̃Xτn )(Xu) · UueidW i
u.

From Lemma 2.8, and the bound on B, there exists C depending on ∥B∥∞ and some constant
depending of the geometry, such that, supu∈[0,T ] supx∈M |(∇r̃Xs ·B+ 1

2∆g r̃Xs)(u, x)| < C ωP− a.s.

Denote by M̃s,u =
∫ u
s
(∇r̃Xs)(Xv) · UveidW i

v. Then,

E[d̃p(Xs, Xt)] ≤ C(|t− s|p + E[ sup
u∈[s,t]

M̃p
s,u]) ≤ C(|t− s|p + E[⟨M̃s⟩p/2t ]),

from Burkholder-Davis-Gundis inequality. Since |∇r̃Xs
(Xt)·Utei| ≤ |∇r̃Xs

(Xt)|g|Utei|g = |∇r̃Xs
(Xt)|g ≤

∥|∇r̃|g∥∞, where ∥|∇r̃|g∥∞ = supx,y∈M |∇r̃x(y)|g, we obtain that,

E[d̃p(Xs, Xt)] ≤ C(|t− s|p + |t− s|p/2). (7)

Now, to tackle the distance function, recall that r2x : M −→ [0,∞[, defined as r2x(y) = d2(x, y) is in
C∞(BM (x, ϵ)), thus on the event {d(Xs, Xt) < ϵ/2}, from Ito’s formula, we obtain that,

dR2
s,t = (2Rs,t(∇rXs(Xt) ·B(t,Xt) +

1

2
∆grXs(Xt)) + |∇rXs(Xt)|2)dt+ 2Rs,t(∇rXs)(Xt) · UteidW i

t

Now observe that from the comparison proposition 2.9, we have that, r∆gr ≤ (d− 1)coth(Lr)Lr,
where L is a bound on the Ricci curvature. From the property of the coth function, we deduce that
r∆gr ≤ Cr + 1, for some C. Furthermore, the distance has the property that |∇r|g = 1 at any point
of differentiability, and by definition of Ut, we have that |Utei|g = 1 for any t, P-a.s. In a similar way
as in (7), this gives,

E[dp(Xs, Xt)1{supu∈[s,t] d(Xs,Xu)<ϵ/2}] ≤ C(|t− s|p + |t− s|p/2). (8)

Finally, introducing the exit time τ = inf{u > s, d(Xs, Xu) > ϵ}
∧
T .

P
(

sup
u∈[s,t]

d(Xs, Xu) ≥ ϵ/2
)
= P

(
sup

u∈[s,t∧τ ]
d(Xs, Xu) ≥ ϵ/2

)
≤ Cp,ϵE

[
sup

u∈[s,t∧τ ]
d2p(Xs, Xu)

]
≤ C|t− s|p ∧ 1, (9)

Summing-up the estimates (7), (8) and (9), in

E[dp(Xs, Xt)] ≤ E[dp(Xs, Xt)1{supu∈[s,t] d(Xs,Xu)<ϵ/2}]+

√
E[(d̃(Xs, Xt) + ρ)p/2]

√
P
(

sup
u∈[s,t]

d(Xs, Xu) ≥ ϵ/2
)
,

concludes the proof.

Remark 2.11. Note that by controlling a sequence of exit time, only a bound from below on the Ricci
curvature and on the injectivity radius are needed to prove this estimate. It is also possible to prove
this statement for a general tensor A as in Theorem 2.5.

3 Appendix

3.1 Riemannian Geometry

We recall here a few definitions linked to curvature in Riemannian geometry needed for the definition
of a manifold of bounded geometry. In the following, (M, g) is a Riemannian manifold equipped
with its Levi-Civita connection. We recommend J. Lee’s book [16], for the notions of vector bundle,
Riemannian metric, connection, tensor fields and for a detailed presentation of curvature, with the
natural derivation of the Riemann curvature tensor. In this paper, we refer to the following definition
of a Manifold.

13



Definition 3.1 (Smooth Manifold). A d-dimensional manifold M is second countable topological
space, such that there exists an atlas {Oα, ϕα}α∈K, where the Oα forms an open cover of M and ϕα

is a diffeomorphism from M to Rn. A couple (O,ϕ) is called a local chart.

At the first order, a Riemannian manifold locally resembles an Euclidean space. At the second order,
the Riemann curvature tensor characterizes how the manifold deviates from being locally isometric to
Euclidean space.

Definition 3.2 (Riemann Curvature Tensor). Let X,Y, Z ∈ C2(TM) be three vector fields on M .
We define the Riemann curvature tensor with the following formula,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where [X,Y ] is the Lie bracket of the vector fields. In coordinates it writes,

Rlijk = ∂jΓ
l
ik − ∂kΓ

l
ij + ΓljmΓmik − ΓlkmΓmij .

From the Riemann curvature tensor we can introduce, the Ricci curvature tensor, it is defined as
the contraction of the Riemann tensor. In coordinate it writes,

Ricij = Rkikj .

We say that the Ricci curvature tensor is bounded from below, if there exists a scalar λ > 0, such that
∀X ∈ C(TM),

−λg(X,X) ≤ Ric(X,X) (resp. Ric(X,X) ≤ λg(X,X)),

or equivalently in coordinates, −λgij ≤ Ricij in the sens of positive definite matrices.
We also introduce, for u, v ∈ TxM two linearly independent tangent vectors in the tangent space

at a point x, the sectional curvature as,

gx(Rx(u, v), u)

gx(u, u)gx(v, v)− gx(u, v)2
.

Finally, recall that the covariant derivative of a tensor is induced from the connection on the
tangent space, it is defined as follows, for a tensor field A ∈ C1(TnmM), the covariate derivative is a
(n,m+ 1)-tensor, defined in coordinate as,

(∇A)=̇∂iak1···knj1···jm + Γk1il a
lk2···kn
j1···jm + . . .+ Γknil a

k1···kn−1l
j1···jm − Γlj1ia

k1···kn
lj2···jm − . . .− Γljnia

k1···kn
j1···jm−1l

.
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