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Abstract: Motivated by the interest in modeling real-world systems as mixed logical dynamical
(MLD) systems with signal temporal logic (STL) specifications, this paper introduces an efficient
iterative optimization scheme for this class of systems. We focus on a microgrid system with
energy losses, providing two formulations: a mixed-integer-based model and a model tailored
to the proposed technique. A numerical case study using model predictive control (MPC)
demonstrates that the proposed method significantly improves computation time compared to
the classical mixed-integer linear programming (MILP) approach for longer time horizons, while
also addressing discontinuity and volatility issues sometimes observed in the MILP approach.
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1. INTRODUCTION

Over the past decades, there has been a growing recogni-
tion of the efficacy of utilizing high-level languages in the
design and verification of controllers. Among several high-
level languages, Signal Temporal Logic (STL) stands out
as it was introduced to facilitate the reasoning about tem-
poral properties of continuous-time dynamical systems. It
offers a useful quantitative semantics called robustness,
which quantifies how robustly a formula is satisfied (Donzé
and Maler (2010)). By maximizing this score, control input
sequences can be synthesized robustly, and the resulting
trajectories can formally satisfy the specification. Initially,
Karaman et al. (2008) proposed formulating it as a mixed-
integer program (MIP). However, this MILP formulation
tends to be computationally expensive when the horizon
increases, due to the exponential increase of the binary
variables (see Karaman et al. (2008); Sadraddini and Belta
(2019)). To avoid this issue, recent work has focused on
formulating the problem as nonlinear programs (NLP) by
a smooth approximation of max and min operators in the
robustness function (e.g., Pant et al. (2017); Gilpin et al.
(2021)). This NLP is then solved naively through a se-
quential quadratic programming (SQP) method (or other
gradient-based methods). However, the major drawback in
such approaches is that they can easily become infeasible
and may not find the global optima due to the iterative
approximations.

To tackle these issues, Takayama et al. (2023a,b) propose
a novel iterative optimization framework that exploits
STL structures utilizing a heuristic method called convex-
concave procedure (CCP) (see Lipp and Boyd (2016)).
This scheme has shown superior performance with respect
to the aforementioned algorithms. However, it does not
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Y. Takayama acknowledges the support of the Watanabe Foundation
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fully consider cases where the dynamics include logical
components. With the aim of implementing these algo-
rithms in practical contexts, this paper seeks to expand
upon the concepts introduced in Takayama et al. (2023a,b)
for such hybrid systems. We focus on a class of Mixed
Logic Dynamical (MLD) systems that are of interest for
modeling, among others, power systems. Therefore, we
extend the basic algorithm to this class of MLD systems
with STL specifications. As a first step, we consider the
power management of an electrical microgrid that takes
into account power losses and consequently necessitates
logical constraints (see Iovine et al. (2019)).

The proposed framework first transforms these logical
parts of the MLD systems into certain inequalities with
min functions. These min-type constraints have nice struc-
tures that can be leveraged with the simultaneous use
of the STL decomposition algorithm in Takayama et al.
(2023a,b). Then, the proposed framework only approxi-
mates the disjunctive part of the system and temporal
specifications, which is different from the simple applica-
tion of sequential quadratic programming (SQP). To the
best of the authors’ knowledge, no iterative algorithms
exploiting problem structures have been proposed particu-
larly for MLD systems with STL specifications. The main
contribution of this paper is the aforementioned frame-
work. A secondary, albeit minor, contribution concerns the
novel transformation of the microgrid MLD model into the
suggested preferable form and the solution of the power
management problem with an STL specification.

A comparison of the considered problem between the sug-
gested methodology and the classical MILP one is per-
formed in numerical simulations via a Model Predictive
Control (MPC) approach. It demonstrates the better per-
formance of the proposed methodology with the increase
of the prediction horizon while addressing discontinuity
and volatility issues, sometimes observed in the MILP
approach.



The rest of this paper is organized as follows. Section 2
introduces preliminaries, while Section 3 models the power
management of a direct current microgrid as a linear MLD
system and formulates the problem as a MILP. Section
4.1 demonstrates how the problem can be recast as a
Difference of Convex (DC) program, enabling the proposed
approach, which is described in Section 4.2. Section 5 then
compares the performance of the proposed methodology
against the MILP-based framework commonly used in the
existing literature.

2. PRELIMINARIES

Notations Let R, N, and N>0 be the set of real numbers,
integers, and positive integers, respectively. Let P denote
the probability measure. For x ∈ R, |x| denotes its
absolute value. The superscript ⊤ indicates transpose. A
signal is defined as an infinite sequence x = x0x1 · · · ,
where xt ∈ R, t ∈ N. Signals starting at timestep t,
i.e., xtxt+1 · · · are denoted as (x, t). For xi ∈ R, i ∈
{1, 2, ..., n}, Diag(x1, x2, ..., xn) denote the diagonal matrix
of order n where the elements on the main diagonal are
given by x1, x2, ..., xn.

2.1 Mixed Logical Dynamical (MLD) Systems

MLD systems are a class of systems involving both con-
tinuous and boolean-valued states, constraints, and logic
statements (Bemporad and Morari (1999)):{

xt+1 = A1xt +A2dt +B1ut +B2δt +B3zt,

E2δt + E3zt ≤ E1ut + E4xt + E5dt + E6,

(1a)

(1b)

where xt =
[
xT
t,c, x

T
t,l

]T
, xt,c ∈ X ⊆ Rn is the

state, ut =
[
uT
t,c uT

t,l

]T
, ut,c ∈ U ⊆ Rm is the con-

trol input, and dt ∈ Rl is the exogenous input. δt ∈
{0, 1}rl is a vector of discrete auxiliary variables, z ∈
Rrc is a vector of continuous auxiliary variables, and
A1, A2, B1, B2, B3, E1, E2, E3, E4, E5, and E6 are the sys-
tem matrices. The subindex c denotes the continuous-
valued components while the subindex l denotes the
discrete-valued ones. Given an initial state x0, a hori-
zon κ ∈ N>0 and a sequence of control inputs u =
(u0, . . . , uκ−1) and exogenous input d = (d0, . . . , dκ−1),
the trajectory x = (x0, . . . , xκ) is uniquely generated.

2.2 Signal Temporal Logic (STL)

STL is a predicate logic that specifies continuous signal
properties (see Fainekos and Pappas (2009)). Predicates,
or atomic propositions, are a part of STL and take either
True (1 or ⊤) or False (0 or ⊥). A predicate µ can be
acquired through function gµ : Rn → R as µ = (gµ(xt) ≤
0). In addition to the standard boolean operators ∧ and ∨,
the STL also incorporates temporal operators □ (always),
3 (eventually), and U (until). The semantics of STL is
defined as follows (Baier and Katoen (2008)):

φ := µ| ∨ φ| ∧ φ|□[t1,t2]φ|3[t1,t2]φ | φ1U[t1,t2]φ2. (2)

The symbol | stands for OR and the definition is recursive.
Each temporal operator has associated bounded time
interval [t1, t2] where 0 ≤ t1 < t2 and t2 < ∞. The
temporal operator always □[t1,t2]φ is satisfied at time t if
φ is True at all times in t+[t1, t2] while eventually 3[t1,t2]φ
is satisfied at time t if φ is True at some time in t+[t1, t2].
As an instance, formula φ = □[0,2](xt > 0) evaluated at
time 0 specifies that for all times between 0 and 2, xt > 0 is
satisfied, and the formula φ = 3[0,2](xt > 0) evaluated at

time 0 specifies that there exists a time instant t between
0 and 2 such that xt > 0.

The concept of robustness is a significant semantics defined
for STL formulas, which is a real-valued function that char-
acterizes how well a trajectory satisfies an STL formula.
The robustness of an STL formula φ to a trajectory x
and a time t can be obtained recursively according to the
following quantitative semantics:

ρµ((x, t)) = −gµ (xt)

ρφ1∧φ2((x, t)) = min(ρφ1((x, t)), ρφ2((x, t)))

ρφ1∨φ2((x, t)) = max(ρφ1((x, t)), ρφ2((x, t)))

ρ□[t1,t2]φ((x, t)) = min
t′∈[t+t1,t+t2]

(ρφ ((x, t′)))

ρ3[t1,t2]φ((x, t)) = max
t′∈[t+t1,t+t2]

(ρφ ((x, t′)))

ρφ1U[t1,t2]φ2((x, t)) = min
t′∈[t+t1,t+t2]

(
max

([
ρφ1((x, t′)),

max
t′′∈[t+t1,t′]

(
ρφ2((x, t′′))

)]))
(3)

Trajectory x satisfies formula φ, denoted as x ⊨ φ, if and
only if ρφ((x, t)) ≥ 0. By maximizing the robustness score
ρϕ that results from (3), a robust control input sequence
can be synthesized. The trajectory length N has to be
chosen so that it is longer than the formula length of φ,
which is the horizon needed to calculate the robustness of
a formula (see Sadraddini and Belta (2015)).

3. PROBLEM FORMULATION

3.1 Microgrid Model

In this paper, we consider the microgrid model in Iovine
et al. (2019) to demonstrate our main idea. The considered
microgrid consists of a battery, a supercapacitor, a renew-
able generator from the photovoltaic panel (PV), a load,
and a direct current bus connecting the aforementioned
components, as shown in Fig. 1. The dynamical model of
the microgrid given by

EDC(t+ 1) = EDC(t)

+γ

[
ηPV (OPV (t)− PPV (t))−

1

ηL
(OL(t)− PL(t))

]
+γ

[
ηdBP

+
B (t)− 1

ηcB
P−
B (t) + ηdSP

+
S (t)− 1

ηcS
P−
S (t)

]
EB(t+ 1) = EB(t) + γ

[
−P+

B (t) + P−
B (t)

]
ES(t+ 1) = (1− γαS)ES(t) + γ

[
−P+

S (t) + P−
S (t)

]
+ w(t)

(4)
where EB , ES , EDC(t) ∈ R are the energies stored in
the battery, supercapacitor, and microgrid, respectively.
OPV −PPV is the power produced by the PV array, where
OPV (t) ∈ R is the current available power and PPV (t) ∈ R
is the amount of power to be cut off for the stability of
the entire grid; according to the same reasoning, OL −PL
is the power demanded by the load, with OL ∈ R the
current demanded power and PL ∈ R the amount of power
to be cut off. The terms P+

B , P−
B , P+

S , P−
S ∈ R are the

powers exchanged by the battery and the supercapacitor,
respectively, where the power absorbed by the storages
are P−

B and P−
S , while the ones provided are P+

B and

P+
S . We introduced these different variables for charging

and discharging to take into account the losses due to
the physical characteristics, which could result in different
values in the charge or discharge case. The parameters



Fig. 1. The considered microgrid framework

ηPV ,
1
ηL

, ηdB ,
1
ηc
B
, ηdS ,

1
ηc
S

∈ R describe the loss in

efficiency due to OPV −PPV , OL −PL, P
+
B , P−

B , P+
S , P−

S ,
respectively. The parameter αS ∈ R is the self-discharge
ratio of the supercapacitor with respect to the considered
sampling time γ ∈ R.
Differently from Iovine et al. (2019), a Gaussian distur-
bance w(t) is considered in (4). It is a white noise with the
variance being 0.01, i.e., w(t) ∼ N (0, 0.01). By focusing
exclusively on the secondary control layer of the hierarchi-
cal power system, we introduce a stochastic disturbance
to accurately reflect the discrepancies between this layer
and the unconsidered primary layer. As highlighted in
Iovine et al. (2019), the supercapacitor is particularly
sensitive to these mismatches, striving to address rapid
disturbances from lower levels that the secondary layer
does not fully capture. This leads to variations between
the supercapacitor’s target value and its actual state in
each iteration. To address this, this study introduces a
white noise specifically tailored for the supercapacitor.

Next, we define the constraints on the dynamics. For state
constraints of the microgrid and battery, we impose each
energy to be kept between an interval to ensure a certain
level of power quality and not damage the devices as
follows:

Em
B ≤ EB(t) ≤ EM

B , Em
DC ≤ EDC(t) ≤ EM

DC ,∀t ∈ N (5)

where the constants Em
B , EM

B , Em
DC , E

M
DC ≥ 0. For the

supercapacitor’s state, however, a similar hard constraint
Em

S ≤ ES(t) ≤ EM
S can make the optimization problem

infeasible due to the disturbance w(t) ∈ N (0, 0.01) in the
simulated model. To avoid this issue, the classical approach
is to introduce the chance constraints or the robust tubes
by stochastic/robust optimizations. However, we avoid
these approaches by introducing a temporal specification
in the next section.

For control inputs, we introduce the following constraints.

• The inputs of the PV and the load must not exceed
the provided energies themselves;

PPV (t) ≥ 0, OPV (t)− PPV (t) ≥ 0,∀t ∈ N, (6)

PL(t) ≥ 0, OL(t)− PL(t) ≥ 0,∀t ∈ N. (7)
• The charging power and the discharging power by the
battery and the supercapacitor are bounded;

0 ≤ P+
B (t) ≤ P

+

B , 0 ≤ P−
B (t) ≤ P

−
B ,∀t ∈ N, (8)

0 ≤ P+
S (t) ≤ P

+

S , 0 ≤ P−
S (t) ≤ P

−
S ,∀t ∈ N, (9)

where P
+

B ≥ 0, P
−
B ≥ 0, P

+

S ≥ 0, P
−
S ≥ 0.

• The battery power variation should be restricted to
save the battery life;

|P+
B (t+ 1)− P+

B (t)| ≤ ∆P
+

B ,∀t ∈ N (10)

|P−
B (t+ 1)− P−

B (t)| ≤ ∆P
−
B ,∀t ∈ N (11)

where ∆P
+

B ≥ 0, ∆P
−
B ≥ 0;

• To avoid the simultaneous charging and discharging
of the battery and the supercapacitor, either P+

B (t) =

0 or P−
B (t) = 0 (resp. P+

S (t) = 0 or P−
S (t) = 0) must

be satisfied for all t ∈ N.
if P+

B (t) ̸= 0 then P−
B (t) = 0 (12)

if P+
S (t) ̸= 0 then P−

S (t) = 0 (13)

The last condition includes logical components. We intro-
duce two formulations for these constraints in Subsections
3.2 and 4.1.

3.2 MLD Formulation

The classical formulation of (12) and (13) is the MLD sys-
tem using binary variables. We introduce binary variables
SB , SS ∈ {0, 1} and constraints as

P+
B (t) ≤ SB(t) · P

+

B , P−
B (t) ≤ (1− SB(t)) · P

−
B , (14)

P+
S (t) ≤ SS(t) · P

+

S , P−
S (t) ≤ (1− SS(t)) · P

−
S , (15)

Adding the constraints (14) and (15) directly into the
optimization problem results in a mixed integer nonlinear
program, which is extremely difficult to solve. Therefore,
the nonlinearity of these constraints (14), (15) are trans-
formed into a linear constraint with binary variables in
the literature. Due to page constraints, we refer readers
to Bemporad and Morari (1999); Pham et al. (2022) for
full details. Let us denote the state, input, and exogenous
input as

xt = [EDC(t) EB(t) ES(t)]
T (16)

ut =[PPV (t) PL(t) P+
B (t) P−

B (t) P+
S (t) P−

S (t) ]T (17)

dt = [OPV (t) OL(t)]
T (18)

The resulting system is an MLD system of the form (1),
which is denoted as SMLD below.

3.3 Problem Statement

Given the hybrid system SMLD, an estimation d̃ of ex-
ogenous inputs d = (d0, . . . , dN−1), and constraint sets X
and U defined in (5)–(11), this paper considers the control
problem with STL specifications.

Problem 1. Given an initial state x0 ∈ X , an STL specifi-
cation φ, and a prediction horizon N ∈ N>0, compute the
control inputs u = (u0, . . . , uN−1) ∈ U and the resulting
trajectories x = (x0, . . . , xN ) that satisfies φ robustly by
solving the following optimization problem:

min
u

− ρφ(x) (19a)

s.t. system SMLD (19b)

xt ∈ X , ut ∈ U (19c)

ρφ(x) ≥ 0 (19d)

The STL specification part of the problem, i.e., (19a) and
(19d) can be encoded as mixed integer constraints, which
results in a mixed-integer linear program (MILP). This
MILP approaches tend to be computationally expensive
when the horizon increases. Therefore, we provide an
alternative approach in the next section.



4. PROPOSED FRAMEWORK

The proposed algorithm extends an STL encoding frame-
work in Takayama et al. (2023a,b) to a class of hybrid
systems by combining it with a specific system reformu-
lation. In Takayama et al. (2023a,b), an STL encoding
framework was proposed, which decomposes the part of
STL specification (19a) and (19d) into a set of constraints.
This algorithm can be directly applied to our problem
(19) as well, as the formulation of the STL specification
part is the same. The main difference between them is the
approximation of the system parts at each iteration. The
algorithm in Takayama et al. (2023a,b) only approximates
the concave parts of the STL specification, while this paper
proposes to approximate also the concave parts of the
system in the same manner.

4.1 Proposed Formulation

The proposed approach transforms the system SMLD into a
particular form. In particular, constraints in (12) and (13)
are formulated as constraints with min functions without
introducing binary variables:

min(P+
B (t), P−

B (t)) ≤ 0, (20)

min(P+
S (t), P−

S (t)) ≤ 0. (21)

Importantly, although these constraints themselves are not
equivalent to the inequalities of (14) and (15) in general,
we demonstrate their equivalence under certain additional
conditions in the following result:

Proposition 1. Constraints (8) and (14) (respectively (9)
and (15)) are equivalent to the inequalities in (8) and (20)
(respectively, (9) and (21)).

Proof. We only provide a proof for the first case, the
second case can be derived similarly. From (8), one has
that P+

B (t) and P−
B (t) are positive for all t ∈ N. Therefore,

(20) is equivalent to

min(P+
B (t), P−

B (t)) = 0, ∀t ∈ N.
These equality constraints state that for all t ∈ N, either
P+
B (t) = 0 or P−

B (t) = 0, which is the same statement as
in (14). This concludes the proof.

By this interpretation of the energy loss constraints, the
system model (4) is transformed into


xt+1 = A1xt +B1ut + C1dt,

min(D1xt +G1ut + F1dt, ..., Dhxt +Ghut + Fhdt)

≤ E1ut + E4xt + E5dt + E6.

(22a)

(22b)

The matrices A1, Dj , E4 ∈ Rn×n, B1, Gj , E1 ∈ Rn×m,
C1, E5, Fj ∈ Rn×l, j ∈ {0, ..., h}, represent the dynamics
of the system, while E6 ∈ Rn is a constant vector.

4.2 STL Decomposition

In this subsection, we briefly describe the basic idea of the
reformulation. Due to page limitation, we changed some
notations from Takayama et al. (2023b) and have omitted
or simplified many explanations. We refer to the paper for
further details.

The first procedure is to decompose the robustness func-
tion −ρφ in the cost function (19a) into a set of con-
straints. For simplicity, we consider the case where the
outermost operator of the robustness function ρφ is min,
i.e., ρφ = min(ρφ1 , ρφ2 , ..., ρφr ) (see the definition of STL

robustness in (3)). We introduce a new variable sξ, and
reformulate the program as follows.

min
x,u,sξ

sξ (23a)

s.t. system (22) (23b)

xt ∈ X , ut ∈ U (23c)

sξ ≤ 0 (23d)

− ρφ1 (x) ≤ sξ, . . . ,−ρφr (x) ≤ sξ (23e)

As each −ρφi for i = 1, . . . , r in (23e) is a robustness
function, each inequality can be restated as a constraint
in one of the following two forms, depending on whether
the outermost operator is max or min:

max(−ρΦ1 , ...,−ρΦymax ) ≤ sξ, (24)

min(−ρΨ1 , ...,−ρΨymin ) ≤ sξ, (25)

where functions −ρΦj (j ∈ {1, ..., ymax}) (resp. −ρΨj (j ∈
{1, ..., ymin})) are robustness functions associated with Φj

(resp. Ψj), which are the subformulas of φi(i ∈ {1, ..., r}).
We continue decomposing these max and min functions
until all the arguments in each function become the predi-
cates, which is the bottom of the STL specification. When
these repetitive operations finish, the program becomes a
Difference of Convex (DC) program, and can be written
as

min
z

sξ (26a)

s.t. system (22a) (26b)

xt ∈ X , ut ∈ U (26c)

sξ ≤ 0, (26d)

ρµmax ≤ smax, (26e)

system (22b)

min(−ρµ
(1)
1 , ...,−ρµ

(1)
ymin ) ≤ s

(1)
min

...

min(−ρµ
(w)
1 , ...,−ρµ

(w)
ymin ) ≤ s

(w)
min

 concave parts

(26f)

where z = [xT,uT, sξ, smax, s
(1)
min, ..., s

(w)
min]

T ∈ Rn+m+1+v+w

denotes the vector of optimization variables. smax =

[s
(1)
max, ..., s

(v)
max]T denotes all the introduced variables dur-

ing the decomposition procedures of constraint-type (24),

in addition to variable sξ. Similarly, [s
(1)
min, ..., s

(v)
min]

T de-
notes all the introduced variables during the decom-
position procedures of constraint-type (25). ρµmax =

[ρµ
(1)
max , ..., ρµ

(v)
max ]T denotes all the predicates whose par-

ent node is a conjunctive-type node. Similarly, ρµmin =

[ρµ
(1)
1 , ..., ρµ

(1)
ymin , ρµ

(w)
1 , ..., ρµ

(w)
ymin ]T denotes all the predi-

cates whose parent node is a disjunctive-type node. Note
that some slight abuse of notations are made such that

some of the variables s
(·)
max, s

(·)
min in constraints (26e),(26f)

can also be variables sξ, and some of the arguments of the

min functions (26f) are variables s
(·)
max. Despite the sev-

eral non-equivalent transformations, this transformation is
proven to retain important properties of the original pro-
gram. Specifically, building upon the findings of Theorem
1 in Takayama et al. (2023a), one can easily show that
the optimal solutions of both programs (19) and (26) are
identical.

The resulting problem (26) has a particular structure:
First, (26) belongs to a class of programs called Difference
of Convex (DC) Programs (see Shen et al. (2016)), where
the program only consists of convex parts and concave



parts. Moreover, the concave parts are all in the form
of min functions in (26f). These structures enable us to
efficiently solve the problem.

4.3 Smooth Approximations

Next, we provide a smooth approximation for all the min
functions in (26f) using the log-sum-exp (LSE) function, as
mink := −maxk (−a), where maxk (−a) := 1

k ln
∑r

i=1 e
kai

(e.g., Pant et al. (2017)), and k ∈ R is the smoothing
parameter. Note that the proposed approach uniquely
focuses on smoothing only minimum functions due to the
aforementioned structure. This differs from the literature
where typically both max and min functions in the robust-
ness function (3) are smoothed.

4.4 Iterative Optimization

Finally, we solve the smoothed version of (26) by se-
quentially solving a quadratic program: At each iteration,
we linearize the concave parts, i.e., the min functions in
(26f), which corresponds to the disjunctive node of the
robustness tree of the specification φ. Then, we solve the
resulting efficient quadratic program, given the solution of
the previous iteration as the initial guess. We operate this
procedure sequentially until it converges to an optimum.
The following proposition is a direct consequence of the
propositions in Takayama et al. (2023b). Note that sets X
and U defined in (5)–(11) are restricted to intersections of
polyhedra.

Proposition 2. Let all predicates gµ of the STL speci-
fications φ be restricted to linear functions. Then, the
proposed algorithm solves a (convex) quadratic program
at each iteration, while it only approximates logical parts
(26f) of Problem 1 by their linearizations, that is, the
disjunctive parts of specification φ and the logical parts
of system (22b).

This proposition demonstrates the benefits of our iterative
optimization approach. Firstly, it eliminates the need for
binary variables, simplifying the problem structure. Sec-
ondly, it preserves complete information of the problem’s
convex components. Additionally, all concave parts share
the same min form, which can enhance the algorithm’s
efficiency.

5. NUMERICAL EXPERIMENT

We demonstrate the effectiveness of the proposed method
through a numerical experiment in a MPC scenario with
prediction horizon N . We compare the proposed method
described in Section 4 with the MILP formulation men-
tioned in Subsection 3.2. All experiments were conducted
on a MacBook Air 2020 with an Apple M1 processor
(Maximum CPU clock rate: 3.2 GHz) and 8GB of RAM.
All parameter settings for the state and control constraints
are the same as the ones in Iovine et al. (2019) with the

sampling time γ being one second. We set Ẽm
S = 3.0 and

ẼM
S = 6.0 for STL specification in (28) inside the range of

Em
S = 1.5 to Em

S = 8.0, and the estimated exogenous

inputs d̃ = (d̃0, . . . , d̃N−1) = ([OPV (0) OL(0)]
T, . . . ,

([OPV (0) OL(N−1)]T), assuming that OPV (t) is constant
throughout the horizon while OL is known.

Both programs are solved using the QP-solver and the
mixed integer solver of GUROBI in Python with the de-
fault options. For the proposed approach, the parameters
of the STL encoding algorithm, STLCCP in Takayama et al.
(2023b) are set as follows: the weight on penalty variables

in the cost function at the outset to 5.0 (denoted as pτ ), the
rate at which pτ increases to 5.0, maximum values on vari-
ables for the terminal condition to 1e2. Other parameter
variables for the algorithm are set as the defaults. For more
details on these parameters and their default values, please
refer to https://github.com/yotakayama/STLCCP. For
the compared MILP, STL specification φ is transformed
with the method in Belta and Sadraddini (2019) with the
default setting of the parameter values.

For the STL specification φ, we consider maintaining a
specific energy level in a microgrid component (the super-
capacitor) against the added disturbance while avoiding
too much conservativeness. We require ES(t) to come back

to the safe range between Ẽm
S to ẼM

S for τ seconds in the
horizon N , where the unsafe regions is both 1.5 to 3.0 and
6.0 to 8.0. The specification of interest, φ, is defined as
follows using predicates ϕ1 and ϕ2 as

ϕ1 = [ES(t)−ẼM
S ≤ 0], ϕ2 = [Ẽm

S − ES(t) ≤ 0], (27)

ϕ = [ϕ1∧ϕ2], φ = [□[−τ,N−τ ]3[0,τ ]ϕ]. (28)

During each iteration of the receding horizon computation,
we explore a finite trajectory with a horizon length of N ,
a part of which is dedicated to assessing the satisfaction
of the past trajectory. The reason for assessing the past
trajectory is to satisfy the formula in the actual trajectory,
not only in the predicted trajectory.

In addition to the STL specifications, we also incorpo-
rate state tracking as our objective. We add a standard

quadratic cost 1
2

[
x̃T
NPx̃N +

∑N−1
i=0 x̃i

TQx̃i + uT
i Rui)

]
,

where x̃t = xt − xref
t . We require the state xt to track

the reference xref
t = [1.39e−5, 310, 4.5]T, while also requir-

ing each element of the control inputs to track 0. The
weight matrix is determined as Q = Diag(e17, e8, e9), R =
Diag(e5, e7, 5e2, 5e2, 1, 1), so that we put more importance
on PPV and PL than PB and PS . This is because we prefer
to charge or discharge the power to curtail the supply and
demand in practice

We first compared the two methods with a fixed prediction
horizon N = 15, with the STL specification parameter
being τ = 5. The results are presented in Fig. 2. The
left-hand sides of all figures represent the results of the
MILP approach, while the right-hand side represents that
of the proposed approach. We can see in each comparison
that the trajectories of both approaches are similar in all
states and control variables. It is also worth noting that
the MILP approach sometimes exhibits rapid variations in
the supercapacitor’s power depending on the parameters
Eref

B and EB during the experiments. In contrast, the
proposed approach successfully avoids this behavior. One
possible reason for this behavior could be that the MILP
formulation does not satisfy the complementary condition,
meaning that the optimal solution from the previous
iteration is not always a good solution for the current
iteration due to the influence of added white noise. The
proposed approach successfully avoids this behavior as it
uses no boolean variables.

Next, we compare the computational time of the two
approaches with fixed τ = 5 over different horizons from
N = 15 to 50. The result is summarized in Table 1. All
the units are seconds. The computational time is divided
into two parts: one is the required time for creating the
program, which is called “Formulation”, and the other is
the required time for solving the program, which is called
“Solve”. The values in the table represent the average
values up to the first 20 MPC simulation time, and the



values in parentheses represent the median values. We
add the median value in the parenthesis because the
computational time of the MIP method is greatly volatile
depending on the initial values of variables. The MIP
method took 1122 seconds at horizonN = 35 and exceeded
5000 seconds at horizons N ≥ 40 to solve the initial
simulation program. Therefore, we did not proceed with
subsequent simulations for these horizons.

While results are comparable to MIP mthod with short
horizons, the proposed method is more efficient than the
MIP method for longer horizons. Moreover, the MIP
method exhibits higher volatility, meaning values can
vary significantly across different simulation times. This
volatility is evident in the difference between the average
and median values for the MIP method. This is in contrast
with the proposed method, which is more consistent.

Table 1. Comparison of computational time

Horizon [N] Formulation [s] Solve [s]
MIP Proposed MIP Proposed

15 0.10 0.08 0.17 (0.08) 2.23 (2.26)
20 0.14 0.10 1.06 (0.41) 3.38 (3.30)
25 0.14 0.12 16.85 (1.23) 4.00 (4.00)
30 0.23 0.14 329.40 (20.57) 4.84 (4.70)
35 0.24 0.16 >1000 5.55 (5.50)
40 0.25 0.17 >5000 6.32 (6.25)
50 0.30 0.29 >5000 9.22 (9.20)

6. CONCLUSIONS

This paper proposes an efficient optimization scheme ded-
icated to a class of MLD systems with STL specifications,
avoiding the utilization of binary variables. The power
management of an electrical microgrid with complex spec-
ifications is considered as a case study to show the effec-
tiveness of the proposed approach. One future direction
is to generalize the proposed framework and construct an
efficient framework applicable to a wider class of hybrid
systems, not limited to the MLD system that can be
transformed into the form (22).
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Donzé, A. and Maler, O. (2010). Robust satisfaction
of temporal logic over Real-Valued signals. in Formal
Modeling and Analysis of Timed Systems, 92–106.

Fainekos, G.E. and Pappas, G.J. (2009). Robustness of
temporal logic specifications for continuous-time signals.
Theoretical Computer Science, 410(42), 4262–4291.

Gilpin, Y., Kurtz, V., and Lin, H. (2021). A smooth
robustness measure of signal temporal logic for symbolic
control. IEEE Control Systems Letters, 5(1), 241–246.

Iovine, A., Rigaut, T., Damm, G., De Santis, E., and Di
Benedetto, M.D. (2019). Power management for a DC
microgrid integrating renewables and storages. Control
Engineering Practice, 85, 59–79.

Karaman, S., Sanfelice, R.G., and Frazzoli, E. (2008).
Optimal control of mixed logical dynamical systems
with linear temporal logic specifications. in IEEE
Conference on Decision and Control, 2117–2122.

0 50 100 150
Time (s)

300.0

302.5

305.0

307.5

310.0

E B
 (k

W
h)

EB
PB

−200

0

200

P B
 (k

W
)

(a) E+
B

− E−
B

0 50 100 150
Time (s)

300.0

302.5

305.0

307.5

310.0

E B
 (k

W
h)

EB
PB

−200

0

200

P B
 (k

W
)

(b) E+
B

− E−
B

0 50 100 150
Time (s)

0.0

2.5

5.0

7.5

10.0

E S
 (k

W
h)

ES
PS
Er
S

EM
S

̃EMS −250

0

250

500

P S
 (k

W
)

(c) E+
S

− E−
S

0 50 100 150
Time (s)

0.0

2.5

5.0

7.5

10.0

E S
 (k

W
h)

ES
PS
Er
S

EM
S

̃EMS
−250

0

250

500

P S
 (k

W
)

(d) E+
S

− E−
S

0 40 80 120 160
Time (s)

0

200

400

600

800

kW

DV − PV
DV

(e) OPV − PPV

0 40 80 120 160
Time (s)

0

200

400

600

800

kW

DV − PV
DV

(f) OPV − PPV

0 40 80 120 160
Time (s)

325

350

375

400

kW

DL − PL
DL

(g) OL − PL

0 40 80 120 160
Time (s)

325

350

375

400

kW

DL − PL
DL

(h) OL − PL

Fig. 2. Comparison of the resulted trajectory with N = 15
(lefts: MILP, rights: Proposed)

Lipp, T. and Boyd, S. (2016). Variations and extension
of the convex–concave procedure. Optimization and
Engineering, 17(2), 263–287.

Pant, Y.V., Abbas, H., and Mangharam, R. (2017).
Smooth operator: Control using the smooth robustness
of temporal logic. in IEEE Conference on Control
Technology and Applications (CCTA), 1235–1240.

Pham, T.H., Iovine, A., Olaru, S., Maeght, J., Panciatici,
P., and Ruiz, M. (2022). Nonlinearity handling in MPC
for Power Congestion management in sub-transmission
areas. In 18th IFAC Workshop on Control Applications
of Optimization (CAO).

Sadraddini, S. and Belta, C. (2015). Robust temporal
logic model predictive control. In 53rd Annual Allerton
Conference on Communication, Control, and Comput-
ing (Allerton), 772–779.

Sadraddini, S. and Belta, C. (2019). Formal synthesis of
control strategies for positive monotone systems. IEEE
Transactions on Automatic Control, 64(2), 480–495.

Shen, X., Diamond, S., Gu, Y., and Boyd, S. (2016).
Disciplined convex-concave programming. in IEEE
Conference on Decision and Control (CDC), 1009–1014.

Takayama, Y., Hashimoto, K., and Ohtsuka, T. (2023a).
Signal temporal logic meets convex-concave program-
ming: A structure-exploiting SQP algorithm for STL
specifications. in IEEE Conference on Decision and
Control (CDC).

Takayama, Y., Hashimoto, K., and Ohtsuka, T. (2023b).
STLCCP: An efficient convex optimization-based frame-
work for signal temporal logic specifications. Preprint
available at https://arxiv.org/abs/2305.09441.


