
HAL Id: hal-04547942
https://hal.science/hal-04547942

Submitted on 16 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Tensor Clustering for Multiple Graphs
Representation

Karima Boutalbi, Rafika Boutalbi, Hervé Verjus, Kave Salamatian

To cite this version:
Karima Boutalbi, Rafika Boutalbi, Hervé Verjus, Kave Salamatian. Hierarchical Tensor Clustering for
Multiple Graphs Representation. The ACM Web Conference 2024, May 2024, Singapoore, Singapore.
�10.1145/3589335.3651519�. �hal-04547942�

https://hal.science/hal-04547942
https://hal.archives-ouvertes.fr


Hierarchical Tensor Clustering for Multiple Graphs
Representation

Karima Boutalbi
Université Savoie Mont Blanc
Cegedim Business Services

Annecy, France
karima.boutalbi@univ-smb.fr

Rafika Boutalbi
Aix-Marseille University

Marseille, France
rafika.boutalbi@lis-lab.fr

Hervé Verjus
Université Savoie Mont Blanc

Annecy, France
herve.verjus@univ-smb.fr

Kave Salamatian
Université Savoie Mont Blanc

Annecy, France
kave.salamatian@univ-smb.fr

ABSTRACT
Graph clustering is a challenging task, especially when there is a
hierarchical structure. The availability of multiple graphs (or rela-
tional graphs), in the multi-graph setting, provides additional in-
formation that can be leveraged to improve clustering results. This
paper aims to develop a new hierarchical clustering algorithm for
multi-graphs, the HTGM algorithm. This algorithm represents the
set of graphs in the multi-graph as a 3-way tensor, and maximizes a
modularity measure, extending the modularity-based graph cluster-
ing algorithm to multi-graphs and tensor structures. We evaluate
the proposed algorithm over synthetic and real-world datasets and
show the effectiveness of the proposed algorithm by benchmarking
it to alternative clustering algorithms.

CCS CONCEPTS
• Unsupervised learning; • Clustering→ Graph clustering; •
NLP→Word embedding; • Representation learning → Tensor;

KEYWORDS
Hierarchical clustering, Tensor, Graphs, Data representation.
ACM Reference Format:
Karima Boutalbi, Rafika Boutalbi, Hervé Verjus, and Kave Salamatian. 2024.
Hierarchical Tensor Clustering for Multiple Graphs Representation. In Com-
panion Proceedings of the ACMWeb Conference 2024 (WWW ’24 Companion),
May 13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3589335.3651519

1 INTRODUCTION
Graphs are a generic way of modeling relations and interactions,
represented by edges with a given weight or distance, between en-
tities represented as vertices (or nodes). They can capture complex
interactions into a relatively simple framework. Nonetheless, in a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0172-6/24/05
https://doi.org/10.1145/3589335.3651519

larger number of settings, the relations between the set of vertices
can be different considering several aspects, where each aspect is
defined by a specific graph. This results in multi-graphs, where we
have several graphs over the same set of vertices [19].

Clusters or communities are generally defined as a set of nodes
that are densely connected internally and loosely connected to
external nodes. Graph clustering is known to be a challenging prob-
lem and several classes of approaches have been proposed in the
literature to implement it, e.g., multi-level [9, 12], spectral [13, 14],
model-based graph clustering [2, 11], and modularity-maximization
methods [1, 3]. All of these approaches involve solving instances
of NP-hard problems that are approximated through heuristics.

Modularity maximization techniques aim at splitting the net-
work into groups that have large positive modularity values. The
modularity of a cluster is defined as, the difference between the
fraction of edges that fall within the given cluster, with the expected
fraction if vertices were connected randomly. Despite the fact that
modularity-maximization is NP-hard, it has become a very popular
graph-clustering technique, because of its ability to auto-detect the
optimal number of clusters [16], its applicability to large graphs
because relatively high speed of heuristics [3], and high quality of
clustering results in practice [10].

When we deal with multi-graphs, three information fusion’s
frameworks can be considered: the a priori, the a posteriori, and the
joint fusion. In the a priori approach, themultiple graphs are merged
into a single graph, e.g., by defining edges in the resulting graph as
a weighted sum of edges in individual graphs. Thereafter a classical
single graph clustering approach is applied to the final graph. In
the a posteriori approach, each individual graph in the multi-graph
is clustered separately using a single graph clustering approach,
and the resulting clusters are merged by a consensus mechanism.
The joint clustering approach implements a global clustering over
all graphs, by optimizing a global clustering optimization func-
tion. This last approach needs new clustering techniques as single
graph clustering algorithms are not applicable to it. The literature
reports several extensions of spectral clustering techniques to joint
clustering of multi-graphs [19]. Nonetheless, despite their popular-
ity and desirable properties, modularity-maximization approaches
have not been extended to multi-graphs. This paper aims to fill this
gap and proposes modularity-maximization heuristics for multi-
graphs that lead to fast and robust hierarchical graph clustering.

https://doi.org/10.1145/3589335.3651519
https://doi.org/10.1145/3589335.3651519


WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Karima Boutalbi, Rafika Boutalbi, Hervé Verjus, & Kave Salamatian

This new multi-graph clustering approach is named Hierarchical
Tensor-based Multi-Graph Modularity (HTGM), and like [4] it lever-
ages modularity-maximization over a multi-graph, i.e., achieving
a high value of modularity with 𝑃 levels of hierarchy (see figure
1). Combining the different graphs HTGM is fusioning connectivity
information from different graphs to provide a more robust and
higher modularity clustering.

X

X

X

HTGM

Graphs Hierarchical Tensor Clustering

Tensor

Adjacency

... ...

... ...

X

Level 1 Level 2

...

...

...

Level P...

...

Hierarchy levels:

Adjacency

Adjacency

Adjacency

...

...

Figure 1: Goal of the proposed Hierarchical Tensor-based
Graph Modularity (HTGM) approach.

In this paper, we develop a new algorithm HTGM for the Hierar-
chical clustering of multi-graphs based on tensor representation
and graph modularity and adapt it to extract the hierarchical struc-
ture of clusters. We evaluate HTGM clustering on several real-world
datasets, by comparing it with state-of-the-art techniques in the
literature for hierarchical graph clustering.
2 HIERARCHICAL TENSOR-BASED GRAPH

MODULARITY
As explained before we represent a multi-graph as a three-way
tensor,X = [x𝑖 𝑗 ] ∈ R𝑛×𝑛×𝑣 , where each 𝑛×𝑛 slices is the weighted
adjacency matrix of one of the sub-graphs inside the multi-graph,
as shown in Figure 1. In the forthcoming, scalars are represented
in lowercase letters e.g., 𝑥 , a vector by a bold lowercase letter e.g.,
x, a matrix a bold capital letters e.g., X, and a tensor is denoted
by bold capital Euler letters e.g. X. 𝑥𝑏

𝑖 𝑗
represents the entry (𝑖, 𝑗)

of the graph 𝑏, which is also the entry (𝑖, 𝑗, 𝑏) of the 3D tensor
representation X.

Hereafter, we tackle the tensor hierarchical clustering problem
by maximizing a modularity-based criterion at each level ℓ = 1...𝑝
of the hierarchy. The cluster 𝑘 at hierarchy level 𝑙 is defined through
a membership index 𝑧ℓ

𝑖𝑘
= 1 when vertex 𝑖 belongs to cluster 𝑘 . The

modularity of the cluster 𝑘 in a graph 𝑏 is defined as:
𝑛∑︁

𝑖,𝑗=1

©«𝑥𝑏𝑖 𝑗 −
𝑥𝑏
𝑖.
𝑥𝑏
.𝑗

𝑥𝑏..

ª®¬𝑧𝑖𝑘𝑧 𝑗𝑘 (1)

The value 𝑥𝑏
𝑖.
=
∑

𝑗 𝑥
𝑏
𝑖 𝑗
is the degree of node 𝑖 in the graph 𝑏, and

𝑥𝑏.. =
∑
𝑖 𝑗 𝑥

𝑏
𝑖 𝑗
. We wish to maximize the sum of modularity over

clusters, and all graph in the multi-graph. This results into the
following objective function to maximize:

Q(X,Zℓ ) =
𝑣∑︁

𝑏=1

1
𝑥𝑏..

𝑛∑︁
𝑖,𝑗=1

𝑔ℓ∑︁
𝑘=1
(𝑥𝑏𝑖 𝑗 −

𝑥𝑏
𝑖.
𝑥𝑏
.𝑗

𝑥𝑏..
)𝑧ℓ

𝑖𝑘
𝑧ℓ
𝑗𝑘
. (2)

Zℓ ∈ R𝑛×𝑔ℓ is the graph partition matrix, i.e., 𝑧ℓ
𝑖𝑘

of Zℓ = 1, if vertex
𝑖 belongs to the cluster 𝑘 of level 𝑙 of the hierarchy, and 0 otherwise;

𝑏 ∈ {1, . . . , 𝑣} is the graph index, and the third dimension of the
tensor.

An iterative approach can maximize the above objective function.
At iteration (𝑡 + 1), we implement the following update to the
membership function:

𝑧
ℓ,(𝑡+1)
𝑖𝑘

=

{
1 if 𝑘 = argmax

1≤𝑘≤𝑔ℓ

∑𝑣
𝑏=1

1
𝑥𝑏..

∑𝑛
𝑖=1

∑𝑔ℓ
𝑘=1 (𝑥

𝑏
𝑖𝑘
−

𝑥𝑏
𝑖.
𝑥𝑏
.𝑘

𝑥𝑏..
)𝑧ℓ,(𝑡 )

𝑖𝑘

0 otherwise.
(3)

that adds the vertex 𝑖 to the cluster 𝑘 maximizing the global modu-
larity. The iteration continues until the global modularity can still
increase. As the iterations increase the global modularity that is
bounded from above, the iteration converges toward a stable point.
We leverage on the above iterative process to propose the HTGM
algorithm. As the global modularity integrates all sub-graphs in
the multi-graph, it implements a joint clustering.

We present in Algorithm 1 the details of the iterative method
at the core of the HTGM algorithm. The algorithm is considered to
have converged at level ℓ when the difference between the criterion
value Q(X,Zℓ ) at iteration 𝑡 and 𝑡 + 1 is less than 𝜖 .

Algorithm 1: HTGM
Input: X : Tensor, g ∈ R𝑝 : vector of cluster number for

each level ℓ .
(1) 𝐶 = [] // An empty clustering vector

(2) 𝐻𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = [] // Clustering vector of each level

(3) for ℓ ← 1 to 𝑝 do
(3.1) 𝐶𝑙𝑢𝑠𝑡ℓ =[] // Clustering vector of level ℓ

for 𝑐 ← 1 to 𝑔ℓ do
(3.2) Initialization: Z(0)

ℓ
randomly at 𝑡 = 0 repeat

(3.2.1) Compute Q(X,Z(𝑡 )
ℓ
)

(3.2.2) Compute Z(𝑡+1)
ℓ

maximizing Q(X,Z(𝑡 )
ℓ
)

using (3)
(3.2.3) Compute Q(X,Z(𝑡+1)

ℓ
)

until Convergence Q(X,Z(𝑡+1)
ℓ
) − Q(X,Z(𝑡 )

ℓ
) < 𝜖 ;

z← arg𝑘 Z
(𝑡+1)
ℓ

𝐶𝑙𝑢𝑠𝑡ℓ .append(z)
3.3 𝐻𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 .append(𝐶𝑙𝑢𝑠𝑡ℓ )

Return 𝐻𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠, ∀ℓ = 1 . . . 𝑝 Q(X,Zℓ )

3 EXPERIMENTS
3.1 Evaluation settings
In order to evaluate the HTGM algorithm, we are using real-world
datasets for the text clustering task. We compare HTGM with seven
state-of-the-art clustering algorithms applicable to graphs and ten-
sors, namely hierarchical NMF [17] (H − NMF), hierarchical ITCC [6]
(H − ITCC), hierarchical CoclustMod [1] (H − CoclustMod), hierar-
chical SPLBM [2] (H − SPLBM), hierarchical PARAFAC (H − PARAFAC),
hierarchical TUCKER decomposition (H − TUCKER), and hierarchical
TSPLBM [5] (H − TSPLBM). We have extended the above described
clustering algorithms to create hierarchical clusters. The extension
gets as input the data representation at level ℓ = 0 which contains
all vertices) and the number of clusters at each hierarchy level
ℓ = 1 . . . 𝑝 . We run the clustering method on all clusters of the level
ℓ to generate the clusters at level ℓ + 1. The process is iterated again
until the last level. We show the details of the proposed extension



Hierarchical Tensor Clustering for Multiple Graphs Representation WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

in Algorithm 2. The evaluation will try to answer the following
three questions:
Algorithm 2: Hierarchize − Algorithm
Input: X: Matrix or Tensor, Algo: Algorithm , g ∈ R𝑝 :

vector of cluster number for each level ℓ .
Initialization: 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙𝐿𝑎𝑏𝑒𝑙𝑠 =[] ;
(1) Run algorithm A(X, 𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝑔1) ;
(2) Generate the clustering vector 𝐶 from step (1) ;
(3) 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙𝐿𝑎𝑏𝑒𝑙𝑠 .append(𝐶) (4)for 𝐾 ← 𝑔2 to 𝑔ℓ do

(4.1)𝐿𝑎𝑏𝑒𝑙𝐻 =[] (4.2) for 𝐶𝑖 ∈ 𝐶 do
(4.2.1) X𝐻 = X[𝐶 == 𝐶𝑖 ] ;
(4.2.2) Run algorithm Algo(X𝐻 , 𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝐾) ;
(4.2.3) Generate the clustering vector 𝐶𝐻 ;
(4.2.4) 𝐿𝑎𝑏𝑒𝑙𝐻 .append(𝐶𝐻 )

(4.3) 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙𝐿𝑎𝑏𝑒𝑙𝑠 .append(𝐿𝑎𝑏𝑒𝑙𝐻 ) ;
(4.4) 𝐶 ← 𝐿𝑎𝑏𝑒𝑙𝐻 ;

Return HierarchicalLabels
• Q1- What is the difference between the proposed HTGM
and state-of-the-art tensor decomposition and cluster-
ing approaches in terms of the hierarchical clustering
performance?We compared the HTGM algorithmwith the de-
veloped hierarchical version (using algorithm 2) of PARAFAC
[7], TUCKER decomposition and TSPLBM [5].
• Q2-Do a posteriori fusion have a better hierar-
chical performance than the joint clustering meth-
ods, e.g., HTGM? To answer this question, we used the
ClusterEnsembles [18]1 consensus algorithm (Algorithm
3) which computes the consensus between different single
graph clustering outcomes. We have used this consensus
along all feature matrix and graph clustering algorithms.
• Q3-What are the HTGM clustering performances com-
pared to alternative methods at the leaf level? For this
purpose we added a Neural Network alternative, BERTopic
algorithm for text clustering [8] and its hierarchical version
(see documentation2).

Algorithm 3: Consensus − Algorithm
Input: X: Various data representation Matrices 1 . . . 𝑣 , Algo:

Clustering Algorithm , 𝑔: Number of clusters
(1) Initialization: 𝐴𝑙𝑙𝐿𝑎𝑏𝑒𝑙𝑠 =[] (2) for x𝑏 in X do

(2.1) Run the clustering algorithm Algo(x𝑏 , 𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝑔) ;
(2.2) Generate the clustering vector 𝐶𝑏 using Algo ;
(2.3) 𝐴𝑙𝑙𝐿𝑎𝑏𝑒𝑙𝑠 .append(𝐶𝑏 );

(3) Run the consensus algorithm ClusterEnsembles(𝐴𝑙𝑙𝐿𝑎𝑏𝑒𝑙𝑠) that
generates the consensus clustering vector 𝐶𝑜𝑛𝑠𝑒𝑛𝑢𝑠𝐿𝑎𝑏𝑒𝑙 ;
Return 𝐶𝑜𝑛𝑠𝑒𝑛𝑢𝑠𝐿𝑎𝑏𝑒𝑙
We used three metrics for evaluation, namely the Accuracy

(ACC), the Purity, and the Normalized Mutual Information (NMI)
which are widely used for clustering task evaluation [18]. All in-
cluded clustering algorithms are run 30 times to vary the initializa-
tion, and their average scores are compared.

.
3.2 Evaluation results
In order to answer all research questions, we are using three
real-world benchmark datasets coming from text clustering task
where the ground-truth partitions are known: DBpedia3, Yelp 4, and
1https://github.com/827916600/ClusterEnsembles
2https://maartengr.github.io/BERTopic/getting_started/hierarchicaltopics/hierarchicaltopics.html
3https://www.kaggle.com/code/danofer/dbpedia-hierarchical-text-classification-dl
4https://github.com/yumeng5/WeSHClass/tree/master/yelp

GitHub-AI-Bio 5 dataset. Each one of these datasets has a multi-
level hierarchy. The datasets are described in Table 1. We used five
text embedding methods, namely, Bow (Bag-of-word), Skipgram,
XLNET[20], and Sentence-Transformers (S-BERT) [15]. The feature
size of each dataset is presented in Table 1.

Table 1: Description of textual datasets.

Documents
Clusters/Level Features

l1 l2 l3 Bow Entity Skipgram XLNET S-BERT

D
at
as
et
s

Yelp 5000 2 4 / 22454 8008
DBpedia 11 049 3 6 12 67980 24254

100 120 384GitHub-AI-BIO 1528 2 4 8 4994 1643

Q1- To answer this first research question we compared, over all
datasets, the HTGM algorithm with three hierarchical tensor-based
algorithms, namely H − PARAFAC , H − Tucker, and H − TSPLBM. The
results are shown in Figure 2. Over Yelp data HTGM attains the best
performance in both levels 1 and 2, with the biggest improvement
compared to other approaches in level 2. We observe that over
GitHub-AI-Bio data, HTGM achieved the best result on level 1 and
level 2, but achieved second place in level 3 where the best perfor-
mance was achieved by the H − PARAFAC algorithm. On DBpedia
data which is the biggest dataset in our experiments, HTGM is slightly
overwhelmed by H − PARAFAC and H-Tucker in level 1 but achieves
the best performance in level 2 and level 3. To conclude, HTGM
achieves overall the best results, particularly at the leaf level.

Figure 2: Comparison results of HTGM and tensor-based ap-
proaches.

Q2-Thereafter, we try to answer the second research
question by comparing the results of a posteriori graph
consensus-based approach using algorithm 3, with the pro-
posed joint clustering approach HTGM. Table 2 presents the
obtained results at leaf level of hierarchical consensus-based
approaches namely H − consensus − NMF, H − consensus − ITCC,
H − consensus − CoclustMod, consensus − Louvain,
5https://github.com/yuzhimanhua/HiGitClass

https://github.com/827916600/ClusterEnsembles
https://maartengr.github.io/BERTopic/getting_started/hierarchicaltopics/hierarchicaltopics.html
https://www.kaggle.com/code/danofer/dbpedia-hierarchical-text-classification-dl
https://github.com/yumeng5/WeSHClass/tree/master/yelp
https://github.com/yuzhimanhua/HiGitClass


WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Karima Boutalbi, Rafika Boutalbi, Hervé Verjus, & Kave Salamatian

H − consensus − SPLBM, Hierarchical − BERTopic, and the
proposed HTGM. We observed that HTGM achieves consistently
the best performance on NMI, purity, and accuracy (ACC).
We notice, that H − consensus − ITCC achieves better results
than Hierarchical − BERTopic, which leads us to deduce that
combining multiple text representations improves clustering
results compared to fine-tuned transformer-model for clustering
task [8]. These results suggest that the contribution of multi-graph
clustering working as an implicit consensus is better than the
explicit consensus applied as a posteriori step in the clustering
schema. Nonetheless, HTGM achieves the best performance in
particular for retrieving the second level of hierarchy in the
two synthetic data examples. Our results match with the results
obtained by the TSPLBM in [5].

Table 2: Comparison of clustering results in terms of NMI
using consensus. The bold blue values represent the best
performances, and the bold ones are the second best perfor-
mances.
Data Algorithms NMI(Leaf level) ACC(Leaf level) Purity(Leaf level)

G
ith

ub
-A
I-
BI
O

H − Consensus − NMF 0.23 ± 0.0 0.37 ± 0.0 0.38 ± 0.0
H − Consensus − ITCC 0.26 ± 0.06 0.34 ± 0.02 0.35 ± 0.02

H − Consensus − CoclustMod 0.26 ± 0.01 0.32 ± 0.01 0.35 ± 0.01
Consensus − Louvain 0.19 ± 0.03 0.3 ± 0.02 0.33 ± 0.02
H − Consensus − SPLBM 0.25 ± 0.02 0.35 ± 0.01 0.38 ± 0.01

Hierarchical − BERTopic 0.25 ± 0.03 0.31 ± 0.01 0.35 ± 0.01
HTGM 0.61 ± 0.01 0.52 ± 0.02 0.66 ± 0.02

Ye
lp

H − Consensus − NMF 0.01 ± 0.0 0.3 ± 0.0 0.3 ± 0.0
H − Consensus − ITCC 0.04 ± 0.02 0.33 ± 0.02 0.33 ± 0.02

H − Consensus − CoclustMod 0.03 ± 0.02 0.33 ± 0.02 0.33 ± 0.02
Consensus − Louvain 0.04 ± 0.02 0.33 ± 0.03 0.33 ± 0.03
H − Consensus − SPLBM 0.04 ± 0.02 0.33 ± 0.02 0.33 ± 0.02

Hierarchical − BERTopic 0.02 ± 0.0 0.3 ± 0.01 0.31 ± 0.01
HTGM 0.52 ± 0.02 0.6 ± 0.06 0.6 ± 0.06

D
Bp

ed
ia

H − Consensus − NMF 0.7 ± 0.0 0.48 ± 0.0 0.48 ± 0.0
H − Consensus − ITCC 0.73 ± 0.04 0.48 ± 0.03 0.48 ± 0.03

H − Consensus − CoclustMod 0.51 ± 0.05 0.39 ± 0.03 0.39 ± 0.03
Consensus − Louvain 0.48 ± 0.06 0.38 ± 0.04 0.38 ± 0.04
H − Consensus − SPLBM 0.46 ± 0.05 0.37 ± 0.03 0.37 ± 0.03

Hierarchical − BERTopic 0.44 ± 0.03 0.28 ± 0.03 0.33 ± 0.02
HTGM 0.78 ± 0.03 0.78 ± 0.05 0.78 ± 0.05

Figure 3 shows the improvement results of the proposed HTGM
compared to Hierarchical − Bertopic at leaf level. In the left
figure, we compute the gain of performance using the three mea-
sures on all datasets. In the right figure, we vary the size of the
DBpedia dataset by generating multiple samples of different sizes,
and we compute the percentage of improvement considering the
NMI. Thus, the positive values give an advantage to HTGM and show
that it outperforms the fine-tuned Hierarchical − Bertopic for
clustering. Also, even if the dataset size increases, the HTGM seems
to be robust and stable regarding the data scalability.

Figure 3: Left: Gain of performance between HTGM and
Hierarchical − Bertopic at leaf level for all datasets. Right:
Percentage of NMI improvement for HTGM on DBpedia vary-
ing the dataset size.

4 CONCLUSION
In this paper, we presented joint clustering techniques working on
multi-graphs extending the modularity maximization approach to
multi-graph clustering. We validated and evaluated the proposed
method HTGM over several synthetic and real-world datasets and
observed that the HTGM method consistently achieves better perfor-
mance than alternative methods. The HTGM method is therefore a
promising approach for multi-graph clustering. For future work,
we plan to tackle the problem of cluster number selection for each
level of hierarchical clustering. Also, we are working on extending
the HTGM to other applications such as graphs extracted from the
web. Finally, assigning weights for graphs, that express their contri-
bution to maximizing the objective function is a relevant challenge
for multi-graph clustering task.

REFERENCES
[1] Melissa Ailem, François Role, andMohamed Nadif. 2015. Co-clustering document-

term matrices by direct maximization of graph modularity. In CIKM. 1807–1810.
[2] Melissa Ailem, François Role, and Mohamed Nadif. 2017. Sparse poisson latent

block model for document clustering. IEEE Transactions on Knowledge and Data
Engineering 29, 7 (2017), 1563–1576.

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics 2008, 10 (2008).

[4] Rafika Boutalbi, Mira Ait-Saada, Anastasiia Iurshina, Steffen Staab, and Mohamed
Nadif. 2022. Tensor-based Graph Modularity for Text Data Clustering. In Proceed-
ings of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval. Association for Computing Machinery, 2227–2231.

[5] Rafika Boutalbi, Lazhar Labiod, and Mohamed Nadif. 2021. Implicit consensus
clustering from multiple graphs. Data Mining and Knowledge Discovery 35, 6
(2021), 2313–2340.

[6] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha. 2003.
Information-theoretic Co-clustering. In Proceedings of the Ninth ACM SIGKDD.
89–98.

[7] Nan Du, BinWu, Xin Pei, Bai Wang, and Liutong Xu. 2007. Community Detection
in Large-Scale Social Networks. In Proceedings of the WebKDD Workshop. ACM,
16–25.

[8] Maarten Grootendorst. 2022. BERTopic: Neural topic modeling with a class-based
TF-IDF procedure. arXiv preprint arXiv:2203.05794 (2022).

[9] Bruce Hendrickson, Robert W Leland, et al. 1995. A Multi-Level Algorithm For
Partitioning Graphs. SC 95, 28 (1995), 1–14.

[10] Darko Hric, Richard K Darst, and Santo Fortunato. 2014. Community detection
in networks: Structural communities versus ground truth. Physical Review E 90,
6 (2014).

[11] B. Karrer and M. EJ Newman. 2011. Stochastic blockmodels and community
structure in networks. Physical review E 83, 1 (2011).

[12] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[13] Andrew Knyazev. 2018. On spectral partitioning of signed graphs. In Proceedings
of the Seventh SIAM Workshop on Combinatorial Scientific Computing. 11–22.

[14] Michael W Mahoney, Lorenzo Orecchia, and Nisheeth K Vishnoi. 2012. A local
spectral method for graphs: With applications to improving graph partitions and
exploring data graphs locally. The Journal of Machine Learning Research 13, 1
(2012), 2339–2365.

[15] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP-IJCNLP.

[16] Jianhua Ruan. 2009. A Fully Automated Method for Discovering Community
Structures in High Dimensional Data. In Ninth IEEE International Conference on
Data Mining. 968–973.

[17] Suvrit Sra and Inderjit Dhillon. 2005. Generalized nonnegative matrix approxi-
mations with Bregman divergences. Advances in neural information processing
systems 18 (2005).

[18] Alexander Strehl and Joydeep Ghosh. 2002. Cluster ensembles—a knowledge
reuse framework for combining multiple partitions. Journal of machine learning
research 3 (2002), 583–617.

[19] Wei Tang, Zhengdong Lu, and Inderjit S Dhillon. 2009. Clustering with multiple
graphs. In Ninth IEEE International Conference on Data Mining. IEEE, 1016–1021.

[20] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. 2019. XLNet: generalized autoregressive pretraining for language
understanding. Curran Associates Inc., Chapter 1.


	Abstract
	1 Introduction
	2 Hierarchical Tensor-based Graph Modularity
	3 Experiments
	3.1 Evaluation settings
	3.2 Evaluation results

	4 Conclusion
	References

