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Damage detection with ultrasonic
guided waves using machine learning
and aggregated baselines

Vivek Nerlikar1 , Olivier Mesnil1, Roberto Miorelli1

and Oscar D’Almeida2

Abstract
In guided wave (GW)-based structural health monitoring (SHM), ultrasonic elastic waves are used to detect damages in
structures by comparing the acquired signals with those acquired before defect formation. Making the SHM system
automatic, especially for similar structures, such as turbine blades, is rather challenging. The high sensitivity of GWs to
environmental and operational conditions, the variabilities due to sensor positioning, sensor coupling, and material varia-
bility in composites limit the baseline application. This work presents a machine learning (ML)-based damage detection
method using aggregated baselines independent of their damaged states to enhance the generalization capability of ML
algorithms by considering similar structures’ variabilities. The methodology relies on feature extraction from raw GW
signals and training classification algorithms (e.g., kernel machines, ensemble methods, and neural networks). Two
experimental data sets on composite panels are used. The first experimental data set of 45 composite panels is used to
validate the approach by considering the aforementioned inter-specimen variabilities. Half of the 45 panels provide pris-
tine data, and the rest provide damaged data so that the same sample is present in the training or test set but never in
both. High classification performance is obtained, demonstrating that the classifier has successfully learned to recognize
defect signatures despite the influence of the variabilities linked to the multiple instrumented specimens. The second
experimental data set of 1 composite panel with temperature variation is used. Good classification performance is
obtained without using baseline correction methods.

Keywords
Ultrasonic guided wave SHM, kernel machines, ensemble methods, deep learning, temperature variation, composite
materials

Introduction

Structural health monitoring (SHM) is implementation
of damage detection strategies for structures by means
of permanently embedded sensors acquiring informa-
tion seamlessly.1 This information is later processed to
diagnose the state of the structure. Different types of
SHM systems have already been proposed; among
them are vibration-based and guided wave-based SHM
(GW-SHM).2 The latter uses ultrasonic sound waves
for inspection, which can travel long distances and are
highly sensitive to defects. The potential areas of GW
application are pipeline inspection (oil and gas indus-
tries), bridges, and aircraft structures.

In GW-SHM, a pair of piezoelectric transducers are
used; one acts as an emitter and the other as a receiver
placed away from the emitter. The emitted GWs inter-
act with the defect, which causes changes to the

waveform, such as, change in amplitude and/or change
in phase.3 This change in the signals is then identified
by subtracting the acquired signal with a reference sig-
nal measured on undamaged state. The resulting resi-
dual signal is the indication of the presence of a defect;
this approach is called baseline subtraction.3 However,
GWs are not just sensitive to defects but also to envi-
ronmental and operational conditions, material proper-
ties, and transducer coupling; for example, increasing
temperature reduces the stiffness of the material that in
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turn changes the wave speed. Hence, the variation in
the temperature of the current state must be limited to
ensure the reliability of baseline subtraction method.
Along with temperature, other influences on GW pro-
pagation are listed in the study by Gorgin et al.4 With
the influence of aforementioned factors, baseline sub-
traction becomes ineffective.

The literature offers numerous baseline correction
methods that mainly focus on temperature compensa-
tion. Optimal baseline selection,5 is one in which the
residual signal amplitude is minimized until an optimal
baseline is selected from the pool of acquired baselines.
In baseline signal stretch technique proposed by
Croxford et al.,6 the current signal is stretched until it
matches with the baseline. A big pool of baselines is
required for optimal baseline selection method which is
not practical, and baseline signal stretch alters the fre-
quency content of the signal which is not effective for
higher temperatures.4 Other proposed methods are,
combination of the above two methods7 and dynamic
time warping. An optimal mapping between two time
series with changing amplitude or speed is determined
in dynamic time warping.8 Other temperature compen-
sation methods requiring a baseline/a set of baselines
include those given under references.9–12 The efficiency
of these methods degrades when the temperature of the
test specimen is beyond the range considered for
acquiring baselines.13 Improved baseline signal stretch
methods listed in the review paper by Gorgin et al.4

can be effective for a temperature difference of 18�C.
Kulakovskyi14 showed in his thesis that, dynamic time
warping is effective for a temperature difference of up
to 25�C. The aforementioned methods, however,
employ alignment of the baseline signals, and their
main focus is temperature compensation alone, but
other environmental conditions, sensor variability, and
so on also affect GW signals.4

Baseline-free approaches have been proposed to
overcome the baseline dependency. Time reversibility
of lamb waves,15 transfer impedance of transducers,16

cross-correlation analysis proposed by Alem et al.17 are
some of the baseline-free methods listed in the review
paper by Gorgin et al.4 The baseline-free techniques
utilize mainly the signal energy, and because environ-
mental and operational conditions also modify the
amplitude of the signal, these techniques become less
effective.4 In recent times, the use of machine learning
(ML) and deep learning is increasing in defect detection
and localization in GW-SHM. Miorelli et al.18,19

employed post-processed GW-imaging to train kernel
machines, but ultrasound- and GW-based images are
constructed using residual states obtained from base-
line subtraction. Schnur et al.20 worked on the detec-
tion of temperature-affected signals using standard
classifiers and features. However, the temperature

effect was compensated through optimal baseline selec-
tion and baseline signal stretch. Rautela et al.21 showed
good classification performance on a composite panel
using a One-Dimensional Convolutional Neural
Network (NN). The aforementioned works depend on
baseline correction and do not present the study on the
robustness of the developed methodology concerning
similar structures or when baselines are unavailable.

ML-based damage detection in GW-SHM results in
a configuration-specific monitoring scheme, which
means that the structure on which a ML model is
trained cannot be used for the diagnosis of other simi-
lar structures, let alone other arbitrary structures. To
achieve a real-time automatic monitoring GW-SHM
system for similar structures, the generalization capa-
bility of ML models needs to be enhanced. It can be
accomplished by taking into account the inter-specimen
variability across multiple similar instrumented struc-
tures. These variabilities include material properties,
sensor position, sensor coupling, defect location, shape
and size, and environmental and operational condi-
tions. The main goal of this work is to develop a robust
damage detection scheme for similar structures.

To conduct the research, we considered two distinct
data sets. The first one (in-house measurement data
set) contains inter-specimen variabilities as a result of
measurement data coming from 45 carbon fiber rein-
forced polymer (CFRP) panels and has minor tem-
perature variation (i.e., 20 6 2�C). Therefore, the
Open guided wave (OpenGW) data set22 is considered,
which contains more significant temperature variation
(i.e., [20�C, 60�C]). The methodology consists of base-
line aggregation, AutoRegression (AR) for extracting
features from the signals under the influence of vari-
abilities without correcting the baselines and classifica-
tion. The supervised ML classifiers are used to classify
the two states. Furthermore, variability inclusion
through multiple structures aid in improving the gener-
alization capability of ML models. The most recent
works on the OpenGW data set include applying base-
line correction methods to compensate for temperature
effect.20 And Abbassi et al.23 perform damage classifi-
cation without relying on baseline correction but con-
sider temperature groups with shorter ranges (i.e.,
10�C temperature difference). We conducted the study
on the OpenGW data set by applying AR modeling
and baseline aggregation methodology to avoid using
baseline correction methods and considering tempera-
ture groups with a more comprehensive temperature
range (i.e., up to 40�C).

Experimental setup and data description is first pre-
sented in methodology section. Then data annotation
process is explained, in which significant defect
information-carrying signals in damaged panels are
separated from those carrying less significant
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information. The following section explains baseline
aggregation procedure. Then feature extraction pro-
cess, experimental validation, discussion, and conclu-
sion are presented in the subsequent sections.

Methodology

Data description

The experimental set up consists of 45 CFRP panels.
Each of the panels is instrumented with 6 PZT transdu-
cers distributed over a 150-mm radius circle, one sam-
ple instrumented panel is shown in Figure 1. In this
experiment, delamination type defects are induced by
means of impacting each panel with a 16-mm radius
steel head and no second impact was allowed. The 45
panels are impacted at different locations within the
circle defined by the sensor network.

GWs were generated by using a two-cycles tone
burst waveform and four excitation frequencies
namely, 40, 60, 80, and 100 kHz are used for measure-
ment. The size of the delamination to be detected
drives frequency selection. But for higher frequencies,
multiple modes exist, and there is an overlap of modes,
which does not allow for the extraction of proper time
of flight (ToF) information. Therefore the four

frequencies’ selection is a trade-off between damage
detectability and mode overlap. Signal acquisition was
carried out by exciting the transducers in round robin
fashion, thereby acquiring 15 unique signals per panel
at a sampling frequency of 5 MHz.

Signal acquisition was first completed on 45 pristine
panels. Later, the impact-caused delamination of vary-
ing sizes and at either one of the five different locations
as shown in Figure 1 were created on all 45 panels, and
damaged state signals were acquired. Three sample sig-
nals of shortened length are shown in Figure 2 to illus-
trate the complexity in the signals caused by intra- and
inter-specimen variabilities. The pristine signals do not
overlap in both the cases (see Figure 2(a)) despite the
absence of flaw; this implies the presence of some fac-
tors influencing the GWs. Similarly, in damaged state
signals, these variations are present along with varia-
tions due to defects (see Figure 2(b)). These changes
can be attributed to Inter-Specimen and Intra-
Specimen Variabilities. The prior contains variabilities
of multiple specimens, such as material properties,24

sensor positioning and coupling, defect size, and loca-
tion, whereas the latter contains sensor coupling and
material properties. The influence of these variabilities
on the considered data set is listed in Table 1. The illus-
tration of sample signals suggests that the effect of
these variabilities is dominant and may mask the
changes due to defect; this poses a challenge in the
defect identification task.

Damage path identification

In a pitch-catch measurement method and for a spe-
cific defect location, the amount of defect-related infor-
mation contained by all the paths differs. When the
defect is at the center, as shown in Figure 1, not all the
paths carry defect information provided windowing
based on the arrival of A0 mode. In other words, the
adjacent paths (1–2, 2–3, 3–4, 4–5, and 5–6) may carry
minimal defect information. Hence, the paths contain-
ing significant defect information need to be separated
from those not containing. This procedure works as a
preprocessing stage in a ML-based classification pipe-
line. Furthermore, this step is essential to appropriately
annotate the data required for supervised ML algo-
rithms. The following steps describe the procedure
involved in the signal separation process.

Signal treatment and data annotation
Filtering. In the path identification process pristine

and defect signals are compared. Therefore to better
learn the effect of a defect, both signals are filtered
with a fifth order Butterworth filter allowing

Figure 1. A sample CFRP panel of size 400mm 3 400 mm
instrumented with six PZT sensors. The elliptical marker (ffi)
shows five delamination locations (i.e., DLam1, DLam2, DLam3,
DLam4, and DLam5). Note that the delamination is present at
either one of the five locations given a single panel.
CFRP: carbon fiber reinforced polymer; PZT: piezoelectric transducer.
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frequencies between 20 kHz and 23Fc, where Fc is the
center frequency of excitation.

ToF-based windowing. Signal windowing helps remove
the reflections depending on the length of the window.
The length of a window is decided based on the ToF.
It is calculated based on the velocity of the GW-mode,
and the path traveled. The velocity of GW-modes is
determined from dispersion diagrams. In an anisotro-
pic medium the GW-modes propagate with varying
velocities as a function of propagation angle. But for
the CFRP panel used in this study they exhibit mini-
mal variation in the group velocities, which is shown in
Figure 3(a). Therefore, an average of the velocities is
computed (see Figure 3(b)) and used to estimate the
ToF.

For the considered frequencies A0 mode is more
sensitive to the defect sizes present in the dataset than
S0 mode; therefore A0 mode is used for damage detec-
tion process. The ToF of A0 mode is computed by a
simple velocity, distance, and time relationship which
is given below,

ToFðf Þ=
d

Cgðf Þ
ð1Þ

where, d is the distance between a sensor pair (path)
and Cgðf Þ is the average group velocity as a function of
frequency. All the paths have been grouped into three

groups. The first group contains the adjacent paths
(i.e., the peripheral paths), the second one contains
paths (1–3, 1–5, 2–6, 2–4, 3–5, 4–6), and the third group
consists of paths (1–4, 2–5, 3–6) (refer to Figure 1). The
ToFs for each path are then calculated with the corre-
sponding distance average group velocity. Similarly,
the electromagnetic coupling is also windowed by cal-
culating the time of the excitation pulse (tcoup), that is,
tcoup = Ncyc/Fc, where Ncyc is the number of cycles in
the excitation pulse and Fc is the excitation frequency.

Since the CFRP panel used in the study exhibits
negligible changes in the group velocities at different
directions, a representative velocity is considered by
taking an average of all the velocities. In the case of
strong anisotropy, the representative velocity needs to
be replaced by individual directional group velocities
to extract the ToF information.

(a) (b)

Figure 2. (a) Inter-specimen variabilities: normalized signals corresponding to path 1–4 of three instrumented pristine panels and
intra-specimen variabilities: normalized signals corresponding to three paths (similar paths) of one pristine panel, that is, 1–4, 2–5, and
3–6; (b) effect of inter (top) and intra-specimen (bottom) variabilities in damaged case (considering similar paths as in pristine case).

Table 1. List of intra-specimen and inter-specimen
variabilities.

Variability Intra-specimen
variability

Inter-specimen
variability

Measurement noise Present Present
Sensor positioning Absent Present
Sensor coupling Present Present
Defect size and shape Present Present
Material properties Absent Present
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Damage index. To quantify significant defect carry-
ing signals, root mean squared deviation (RMSD) as a
damage index (DI) is employed. It accounts for the
overall changes in a signal by comparing it with a
defect-free signal. The mathematical expression of
RMSD is shown in Equation (2),

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1 ðSpðiÞ � SdðiÞÞ2Pn

i = 1 ðSpðiÞÞ2

s
ð2Þ

where, Sp and Sd are pristine and damaged signals
respectively. ðSp � SdÞ is the residual signal, and i cor-
responds to n time samples.

Threshold selection. For supervised ML algorithms,
appropriate data annotation is a crucial step.
Therefore, appropriate annotation of the signals is
accomplished based on the DI obtained for each path
in a damaged panel. Not all the paths might carry sig-
nificant defect information for a specific delamination
location in a panel. Referring to Figure 1, where the
defect is at the center of the panel, considering the
TOF corresponding to just the sensor paths (1–2, 2–3,
3–4, 4–5, 5–6), the GWs do not interact with the defect
at all by the time they reach the receiver. Figure 4(b)
shows calculated RMSD versus 15 unique paths for
defect at the center. Higher DIs correspond to the
direct paths, and for defects away from the sensor
paths, DI decreases. Similar phenomena is observed
for other two defect locations which is shown in Figure
4(a) and 4(c). A threshold is applied to facilitate the
separation of higher DI from lower ones. The selection
of this threshold is a tricky task and is arbitrary in a
way. A higher threshold aiming at picking just very
high DIs would lead to data scarcity, which is not
desirable, as enough data is required to train ML

classifiers. Hence, as a trade-off, a threshold of 0.1 is
selected to allow sufficient data in the defect category.

Baseline aggregation. In developing an automatic
damage detection system for similar structures, the
idea is to use a few damaged and a few pristine struc-
tures (aggregated baselines). Using aggregated base-
lines to train the models ensures the coverage of the
variability and ensures monitoring of new similar
structures even without the availability of baselines.
Forty-five panels are divided into two groups to work
on this idea. Pristine signals are considered from the
group 1 and defect signals from group 2 (see Table 2).
The latter group consists of damage-annotated signals
resulting from the path identification process. This
intermediary step ensures that the baseline signals of
the damaged panels are not present in the data set
(Figure 5).

A quantification of the pristine and damaged-state
signals at the end of data annotation process is pre-
sented in Table 2. From here on pristine annotated sig-
nals are referred to group 1 signals only and defect
annotated signals to group 2.

Feature extraction

The effect of delamination on the GW signals is
masked by the presence of inter- and intra-specimen
variabilities. Therefore, instead of compensating the
effect of the aforementioned variabilities, a feature
extraction method is required to extract the defect sig-
natures hidden under the influence of variabilities.
Some of the feature extraction methods applied on
GW signals include: principal component analysis for
extracting features from post processed GW signals18

and various feature extraction methods, such as

(a) (b)

Figure 3. (a) Polar dispersion diagram containing A0 and S0 group velocities at different propagation angles and (b) the averaged
group velocity diagram containing average A0 and S0 group velocity.
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principal components and best Fourier coefficients as
presented in the study by Schnur et al.20 The aforemen-
tioned feature extraction methods have been shown
effective on baseline-corrected signals. But this work
aims not to use classical baseline correction methods
but instead apply a feature extraction method to
extract features hidden under the influence of variabil-
ities. Therefore, AR modeling is employed in this study

to extract the hidden defect signatures from raw time
domain signals.

AR is a linear combination of immediate preceding
values in a sequence.25 In other words, when a time

(a) (b)

(c)

Figure 4. Defect configuration with delaminations at (a) (250, 135) mm, (b) (200, 200) mm, and (c) (150, 300) mm, and their
corresponding damage index plots.

Figure 5. Schematic describing removing baselines of the
damaged states. This step ensures that the pristine and
damage acquisitions correspond to distinct panels.

Table 2. Details of data set preparation.

Dataset

Group 1
(pristine)

Group 2
(defect)

Number of panels 22 23
Unique signals per panel 15 15
Frequencies 4 4
Total signals 1320 1380
Result of path identification
and signal annotation
Signals annotated as defect 0 693
Final amount of pristine and
defect signals from each group
Final total 1320 693

Number of defect signals after path identification and number of

baseline aggregated signals.
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series is stationary, then modeling the time series on
past values yield the current value. A pth order AR
model can be represented mathematically as shown in
Equation (3).

yðtÞ=
Xp

j = 1

Fjyðt � jÞ+ E t ð3Þ

where, yðtÞ is the current observation, yðt � jÞ is the
lag, Fj is the AR model parameter and Et is the white
noise term. Unknown model parameters Fj can be esti-
mated by employing algorithms such as, least square
approach and Yule-Walker approach; furthermore, in
SHM, these parameters can be used as damage-
sensitive features.26 Model parameters are determined
by fitting an AR model on GW signals.

Selection of AR model order is a delicate task,
because, higher model orders tend to show poor gener-
alization and lower model orders may not capture the
underlying dynamics of the system.27 Therefore, model
order p should be chosen in such a way that it

minimizes some model selection criteria. Akaike,
Schwarz-Baysian, and Hannan-Quinn are the three
common information criteria used to determine the
order of an AR model.28 All the criteria yielded similar
trends in model selection, therefore only Akaike
Information Criterion (AIC)-based model order selec-
tion plot is presented in Figure 6 and its statistic is
defined below.

AIC= 2p� 2logðLLHÞ ð4Þ

Where p is the number of model parameters estimated
and L is the maximum likelihood of the model with p

model parameters. Figure 6 depicts the AIC values as
a function of the AR model order. The trend of the
plot suggests that, the AIC values start stagnating
after model order 37. A model order of 40 is chosen
to model GW-signals and in turn extract the features
from them.

On each windowed raw signal AR model of order
40 is fitted, and the result is 40 encodings (AR model
parameters) per signal; the final feature matrix of size
½N340� is formed, where N is the total number of sig-
nals (both pristine and defect). The parameter distribu-
tion is reordered as a function of decreasing difference
between the means of pristine and defect feature distri-
butions, which is shown in Figure 7. Along the X-axis
are the 40 parameters, and variation in the model para-
meters is along the Y-axis. Each of the pristine and
defect box plots consists of an equal number of pristine
and defect features since the AR model is fit on
balanced data set.

The first ten reordered pristine and defect feature
distributions have less overlap than the rest, meaning
that the AR model is sensitive to damage information
in the presence of the variabilities. This discrimination

Figure 6. AR model order selection using AIC.
AR: AutoRegression; AIC: Akaike Information Criterion.

Figure 7. Box plot of reordered AR parameters in the decreasing order of the difference between the means of pristine and
defect distributions.
AR: AutoRegression.
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between pristine and defect feature distributions may
be exploited using ML algorithms.

Background of classification algorithms

In SHM, ML algorithms have been used for damage
detection and quantification tasks. Some of the estab-
lished ML algorithms in SHM are listed as follows:
Naive Bayes (NB) and kernel-based classifiers,18

ensemble methods: random forest (RF) classifier29 and
extreme gradient boosting,30 and convolutional NN.21

Five different established classifiers from different fam-
ilies of algorithms are chosen to learn the AR encod-
ings. The NB classifier, however, is used as a reference
classifier to compare the performance with others. The
description of the chosen classifiers is presented below.

NB classifier. NB classifier is based on the Bayes theo-
rem. Consider a random vector (X , Y ) consisting of fea-
ture vector X = ðx1, x2, . . . xmÞ with cardinality m and
class label Y with k labels. For k 2 1, 2, . . . ,K classes,
the prior probability can be given as, pk . The likelihood
of X given a class label has a probability density func-
tion,YokðxÞ, whereYk = ðY1k , . . .YmkÞ.

According to the Bayes decision theory, a new
observation X

0
= ðx01, x

0
2, . . . x

0
mÞ is classified into a class

based on the conditional distribution. Moreover, the
observations are assumed to be independent (condi-
tioned on to a class) to simplify the estimation process
in case of multiple features.31 With conditional inde-
pendence assumption, the decision rule assigning an
observation to a class is given as,

pk

Ym
o = 1

Ymkðx
0

oÞø pr

Ym
o = 1

Ymrðx
0

oÞ; 8r = 1, . . . ,K ð5Þ

Support vector machines. Support vector machines
(SVM) algorithm constructs a hyperplane on the train-
ing data to separate two classes. Two parallel lines on
both sides of a hyperplane exist, called the width/slab.
SVM tries to maximize this width, and if this maximum
width has no internal training samples, then the hyper-
plane is said to be best, and the samples lying on the
margin are called support vectors.32 For a linearly
separable data, the best hyperplane can be represented
by yeðw 3 xe + bÞø 0, where xe and ye are vectors along
with their classes respectively and w is the unknown
normal vector. When the data is not linearly separable,
SVM allows for misclassification of some samples but
classifies most of them correctly, and this is known as a
soft margin.33 The soft margin is formulated by adding
slack variables zl and a penalty parameter C. The soft
margin formulation (minimization problem) is also
known as the primal problem presented below.

min
w, b, z

1

2
wT w + C

X
l = 1

zl ð6Þ

Dual problem of the soft margin is formulated for
easier computations using Lagrange multiplier a. The
objective function of the dual problem is shown below.

Lsvm =
X

e

ae �
1

2

X
e

X
g

aeagyeygxe3 xg

 !
ð7Þ

The optimization depends on the dot product of pair
of training samples ðxe � xgÞ. Similarly, primal and dual
problems can be formulated for nonlinear SVM by
using kernel functions. Details on nonlinear SVM can
be found in the studies by Boser et al.32 and Kecman.33

Random forest. RF is an improvement to the bagging
technique, which averages the big collection of de-
correlated trees.34 In other words, averaging over cor-
related samples does not yield any new information.
Therefore training samples are randomly sampled to
obtain de-correlated decision trees.35 It consists of
numerous decision trees. Each of the trees gets inde-
pendent and randomly sampled samples with the same
distribution from the pool of data, and the decision
made by this individual classifier is taken into account.
The prediction of the RF classifier is the majority vote
of the prediction of individual trees. The classification
result of the new sample b is the prediction Ŷ B

p which is
shown below.

Ŷ B
p ðbÞ=majority vote fŶ b

p ðbÞg
B
1 ð8Þ

Where b is the index to refer to individual trees in B

number of decision trees and Ŷ b
p is the prediction of tree

b.

eXtreme gradient boosting. eXtreme gradient boosting
(XGB) is a tree boosting-based algorithm proposed by
Chen et al.36 Boosting of decision trees works in a
sequential way; in other words, underperforming trees
are given more importance so that the outcome is the
total response of both boosted trees and learning trees.
Weight is added to the weak learners until their perfor-
mance is better than a random classifier. It has an
inbuilt regularization term which helps in reducing
overfitting problem and parallel processing enables
faster tree building and solving process. Gradient
boosting classification of us whose prediction vs, is
given as,

v̂s =
XNtree

n = 1

fnðusÞ ð9Þ
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where, Ntree corresponds to total number of trees and fn
are the weak learners. The objective function J can be
formed as shown below,

objðJÞ =
XS

s = 1

lðvs, v̂sÞ+
XNtree

n = 1

OðfnÞ ð10Þ

with l corresponding to loss function and O is the regu-
larization term.

Neural network. The simplest form of a NN is a multi-
layer perceptron (MLP) and the architecture consists
of hidden layers, an input layer, and an output layer.
Input layer is made up of input units, output layer is
made up of output units and the hidden layers contain
the output units of the previous layer, and all these
layers are connected by weights.37 The working of a
MLP can be divided into forward pass and backward
pass. In the forward pass, the weighted input is passed
through an activation function j, which propagates to
the succeeding layers.

zh = j
X

a

Chaka + bh

 !
ð11Þ

Where, zh is hth output unit, j is an activation function,
Cha is the weight connecting hth and ath units, k is the
input, and b is the bias term. For a classification prob-
lem, the output units equal to number of classes. The
final activation value ðzÞ is compared with the ground
truth ðzÞ by means of a cost function, L.

LðC, bÞ= Lðz, ẑÞ ð12Þ

The error between the predicted label and the
ground truth is minimized by re-calibrating the weights
in the backward pass. The gradients of weights and bias
(rL) propagate backwards and the new weights are
updated as a function of the gradients and the learning
rate, c.

Cl = C � crLðC, bÞ ð13Þ

This process continues until the error is reduced sig-
nificantly. Detailed information about working of NNs
and other NN types can be found in.38,39

Hyperparameter space selection

In this study, a range of values is assigned to each of
the hyperparameter given a classifier. The best hyper-
parameter space (i.e., best model) for shallow classifiers
is automatically selected through grid search cross

validation (CV)40 strategy with stratified group CV
(Appendix B). KerasTuner, a hyperparameter optimi-
zation framework with Bayesian Optimization algo-
rithm,41 is employed to select the best hyperparameter
space for MLP. Defining the range of hyperparameter
values is a crucial step and it is defined based on the
recommendations in the study by Pedregosa et al.40

First a large range of coarse values was used to get an
intuition of the range required to tune the models. The
range of hyperparameter values are mentioned below.

Support vector machines. There are three main para-
meters to be chosen carefully: (1) the type of kernel
function; (2) C, the regularization term which is used to
penalizes the misclassifications; and (3) g which mainly
comes into picture when the radial basis function
(RBF) or a polynomial kernel function is employed. In
this study, RBF kernel is chosen given the nonlinearity
of the data. The range of C is defined as: 10i, i 2 ½�1, 7�
and g is defined as: 10i, i 2 ½1, � 7�.

Random forest. List of hyperparameters chosen to be
tuned. (1) The number of trees:
½20, 50, 100, 150, 200, 250�; (2) maximum depth a tree:
½2, 6, 10, 15, 20�; (3) minimum number of samples to be
present in a node for further splitting: ½2, 5, 10, 15, 20�;
and (4) maximum number of samples to draw from
training data set to train the base estimator:
½50, 100, 200, 300, 400�.

eXtreme gradient boosting. In XGB there are four cate-
gories of parameters, namely: General parameters,
Booster parameters, Learning task parameters, and
Command line parameters. The tunable parameters
are (1) The number of trees: ½20, 50, 150, 250, 350�; (2)
maximum depth of a tree: ½2, 5, 10, 15, 20�; (3) learning
rate: ½0:001, 0:05, 0:01, 0:3, 0:5�; and (4) column sam-
pling: ½0:05, 0:1, 0:3, 0:5, 0:7�.

Multi-layer perceptron. Some of the parameters used for
tuning: (1) Adam optimizer with learning rate sampled
from ½1e� 4, 1e� 2� with logarithmic sampling
method; (2) hidden layers: ½1, 2, 3�; and (3) hidden
units: ½5, 20� with steps = 3.

Performance evaluation and reliability assessment

The performance of ML models is evaluated using per-
formance measures; their selection depends on the main
objective of the evaluation. They can broadly be
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categorized into three groups as listed in the study by
Ferri et al.42

� Threshold-based measures: These measures are used
when the total prediction error is to be minimized.
Examples include accuracy, F-score, Kappa statis-
tic, and so on. Some of the measures are suitable
for balanced and/or imbalanced data sets.

� Probabilistic measures: These measures quantify
the uncertainty in the predictions and are useful to
assess the reliability of a classifier. Some examples
include cross-entropy and Brier score.

� Rank-based measures: They do not focus on mini-
mizing prediction errors based on the quality of
one particular choice of threshold; rather, they
measure the class separability of a classifier at dif-
ferent thresholds. Receiver operating characteristic
(ROC) curve, precision-recall (PR) curve, and area
under these curves fall in this category.

In the SHM domain, the damaged case is labeled as
a positive instance and the undamaged case as a nega-
tive instance. The false positives (damage indication
when it is not present) incur downtime, which causes
revenue loss and results in a less reliable SHM system.
Whereas, for misclassifications, false negatives (no
damage indication even though it is present) means the
risk of human life (in the case of rail and aircraft appli-
cations) is at stake. Furthermore, it is desirable to have
trade-offs between false positives and false negatives,
that is, when an SHM application is focused more on
costs than life-safety, false positives need to be mini-
mized (false positive is given more emphasis than false
negative). On the other hand, if life safety is of para-
mount importance, then false negatives need to be
minimized (false negative is given more emphasis than
false positive).43 Especially in aircraft applications, a
trade-off between false positives and false negatives is
desired. Therefore, a performance measure providing
this trade-off becomes essential.

One more commonly encountered problem in a
SHM system is that, undamaged instances usually out-
number damaged ones because the continuous acquisi-
tion of sensor data comes from a healthy condition
and damage episode seldom occurs. Consequently,
there is a natural imbalance in the data, and in such
scenarios, not all measures are effective. In such cases,
measures, which are less sensitive to class skew are
appropriate. Rank-based measures are not sensitive to
class skew, whereas threshold-based measures are sen-
sitive to class skew. Hence, the ability of a classifier to
separate a positive class from a negative class does not
suffer while using rank-based measures.44

The trade-off between false positives and false nega-
tives can be obtained by plotting a ROC curve. It is a

graphical representation of false positive rate versus
true positive rate; each point on the ROC curve corre-
sponds to a unique threshold. It gives an excellent
visual of the behavior of a classifier on a given data-
set, and a trade-off between false positives and false
negatives. A single quantity of measure derived from
the ROC curve is area under the curve (AUC), which
is used in addition to provide more clarity.45 The PR
curve is one more measure that does not provide very
optimistic results like ROC in the case of data imbal-
ance because it focuses more on the minority class.46

In this study, the AUC of ROC curves is used to mea-
sure the performance of classifiers on balanced data
and the AUC of PR curves for imbalanced data; from
here on we refer to them as ROC_AUC and PR_AUC
respectively.

The probability of detection assesses the reliability
of a monitoring system which is widely being used in
the NDT community. It’s a fundamental evaluation
technique that informs as to what size of defect the sys-
tem can detect with 95% confidence. Usually, the criti-
cal defect size is supposed to be less than a90j95 value to
qualify a monitoring system as a reliable one.47 The
probability of detection is determined using two meth-
ods; one of them is the hit-miss method which is based
on binary data and signal response analysis.48 In this
study, since we use ML algorithms for classification,
the prediction results are binary data. This type of data
is appropriate to compute the probability of detection
curve using the hit-miss method. The probability of
detection (POD) analysis of the ML predictions helps
analyze the detectability of the defect sizes, thereby
assesses the reliability of a ML-based damaged detection.

Experimental validation

Parametric study to select AR features

As shown in Figure 7, 40 AR parameters are extracted
from pristine and damage signals. From here on, AR
parameters and features are used interchangeably. To
determine how many of those 40 parameters are neces-
sary to obtain the best performance, a parametric study
is conducted by varying the AR parameters and train-
ing samples. Note that the parametric study’s primary
focus is selecting the optimal number of features, not
the number of training samples. The left side flowchart
as shown in Figure 8 presents the parametric study
methodology, wherein the first stage forms groups of
aggregated baselines and damage signals, then features
are extracted through AR modeling of group 1 and
group 2 signals.

A feature set containing six varying features starting
from four with step six in increasing order is formed.
Similarly, a training sample set is formed with five
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varying training sample sizes. These two formed sets
result in a total of 30 combinations of features and
training sample sizes. For each of the 30 combinations,
the best hyperparameter space (i.e., best model) for
shallow classifiers is automatically selected through
grid search CV with stratified group CV (the CV
groups formed are equivalent to the number of CFRP
panels to enable the models to train on signals from
some panels and validate on an entirely different set of
panels) and for MLP KerasTuner with Bayesian
Optimization algorithm is employed. For each of the
30 combinations and for each of the classifiers, the
mean of the CV scores based on ROC_AUC is plotted
as shown in Figure 9. The X-axis shows the increasing
volume of training samples, Y-axis shows the increas-
ing number of features, and the Z-axis presents the
validation results (i.e., ROC_AUC score).

All the plots correspond to each of the classifiers in
Figure 9 exhibit increasing ROC_AUC scores with the
increasing number of features and training samples.
This increment can be tracked by the elevation of the
plots and dark red color shades, which correspond to
higher ROC_AUC. The minimum number of required
features is selected based on the best-performing model
given the combination of features and training sam-
ples. All classifiers’ best models are obtained at 16 fea-
tures, and the cross marker (3) indicates this selection

on the plots. Therefore, for the final training and eva-
luation of the classifiers, the selected 16 features are
used.

Model training and evaluation with uncertainty
assessment

The final training set used for training the five classi-
fiers can be represented as T = X1,X2, ::,XNtrain

ð Þ.
T 2 R

Ntrain3h, where Ntrain = 866 (train samples) and
h = 16 features selected from feature-selection study for
the balanced case. The entire training methodology is
presented in the right flowchart in Figure 8. In the first
stage of the process, selected features (resulting from
the feature selection schema) corresponding to each of
the classifiers is used. In the second step, pristine sam-
ples are randomly sampled to construct balanced data
sets, for path identification process (see Figure 10)
results in fewer damage samples in group 2 than pris-
tine samples in group 1. Depending on the type of clas-
sifier used either grid search CV or Bayesian
optimization techniques are employed to find out the
best hyperparameter space on the train set suitable to
learn to distinguish pristine and damage features. The
CV is performed according to the stratified group CV
strategy, wherein signals acquired on each panel are
treated as an individual group. Herewith, this CV

Figure 8. The left side flowchart shows the feature selection schema starting from feature extraction applied on grouped classes,
followed by hyperparameter space optimization algorithms to determine the required features. The right-side flowchart shows the
final training and evaluation procedures, starting from considering selected features from the feature selection schema. The best
shallow and MLP models are obtained by grid search CV and KerasTuner with Bayesian Optimization algorithm, respectively.
MLP: multi-layer perceptron; CV: cross validation.
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strategy allows the classifiers to build the best models
by training on features corresponding to some panels
and predicting classes from unexposed panels. The
trained best models predict the classes in the unseen
test set in the evaluation stage. The small volume of
the data set introduces variability in the sampling stage
(when pristine samples are drawn to form a balanced
data set) and in the formulation of train–validation–
test sets stage. Therefore, to evaluate the skill of a clas-
sifier, sampling with replacement technique is
employed, whereby pristine samples are drawn ran-
domly with replacement five times in the sampling
stage and train–validation–test sets are formed by ran-
domly drawing pristine and damage samples five times
(see Figure 8). The random drawing of samples with
replacement in both the stages results in a total of 25
times random sampling. This procedure ensures that,
both good and bad performing models are evaluated
and the mean of the results gives an accurate and
robust estimate of a classifier’s skill when evaluated on
unseen test data. The best selected hyperparameters of
each of the classifiers corresponding to the first model
among 25 models is presented in Appendix A, Table
A1. The accurate estimates of all the classifiers in the
form of mean ROC curves and mean AUC scores
along with the variance is presented in Figure 11. The
ROC curve represents the false positive rate along the
X-axis and the true positive rate along Y-axis. The
diagonal line represents a model with no skill, that is,
which cannot discriminate between two classes and
predicts a constant class for all thresholds.
Furthermore, if the curve is above this line, the classi-
fier learns helpful information (called a skillful model).
In contrast, if the curve is below the line, the classifier
is not learning anything.

A classifier is said to have the best performance
when the point in the ROC curve is bowing toward the
top left corner. Comparing performances of multiple
classifiers based on the ROC curve is cumbersome.
Therefore, a single scalar measure, AUC, is often used
as a performance metric. In Figure 11, the AUCs are
shown with corresponding deviation due to 25 models.
All the classifiers registered more than 90% AUC on
test data, meaning that the classifiers are learning to
distinguish between pristine and defect classes. NB,
used as a reference classifier, yielded the lowest mean
AUC of 91%. In comparison, the other classifiers
exhibited 94 and 95% AUC. The results suggest that,
given the complexity of the data set, the classifiers can
better separate defect and pristine classes. Table 3
shows the mean train scores and test scores.

As discussed in performance evaluation section, the
SHM system often results in imbalanced pristine and
defect instances. Therefore, a thorough study is

conducted to test how close the classifiers’ performance
with imbalance gets to that with the balanced case. To
this end five imbalanced data sets are prepared (artifi-
cially) with varying imbalance ratios (IRs), namely 60–
40%, 80–20%, 90–10%, and 95–5% (pristine–dam-
age%). However, train samples and test samples are
kept constant for all data sets and is same as for the
balanced data set, that is, 886 train samples and 278
test samples. The same methodology is applied for all
the considered imbalance cases as shown in Figure 8.
However, in the sampling stage, both pristine and
damage samples are randomly sampled with replace-
ment. The mean of the CV score, that is, PR_AUC is
presented in Figure 12 with error bars representing
the variance. The best set of hyperparameters corre-
sponding to the first among the 25 models are pre-
sented in Appendix A, Table A1. The plot contains
the mean test scores of all the classifiers. The
PR_AUC is along the Y-axis and the ratio of pristine
samples is along the X-axis. Some of the observations
are listed below,

� With increasing IR:
– The mean scores of all the classifiers decrease

gradually.
– The variance of the test scores increased, but

the variance of RF and XGB is lower com-
pared to others.

� The best performance is observed when the data set
is balanced and is worst for strong IR.

� At 60% IR and 50% pristine ratio, no significant
change in the performance is observed. But for fur-
ther reduction in the minority class ratio, the per-
formance starts decreasing significantly.

� NB exhibited the lowest mean score for balanced
case and the rest of the classifiers showed higher
mean scores.

Creating imbalances reduces representative samples
of the minority class, which makes it difficult for the
classification algorithms to learn to distinguish from the
majority class. The experimental data used here needs to
be larger; therefore, creating an imbalance further
reduces the representative samples from an already
small-sized data set. Hence, degradation in the classifiers’
performance is observed with increasing imbalance.

POD analysis

Following the classification of GW signals, the next
step involves analyzing the classification results using
probability of detection to identify what defect sizes
are being correctly detected. The data set contains sig-
nals corresponding to 4 frequencies and the defect size
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varies from 14 to 27.5 mm. Hit/Miss algorithm is
employed on the predicted defect classes to compute
the probability of detection curve. Since the trend in
the plots obtained from all the classifiers’ predictions is
similar, just one plot obtained from SVM is presented

in Figure 13. Along the X-axis are the defect sizes and
% probability of detection along Y-axis. The trend
observed in the plot suggests that, larger defects are
identified accurately which is a good indication for the
damage detection system.

(a) (b)

(c) (d)

(e)

Figure 9. Surface plots representing the learning of classifiers as a function of features and training samples of (a) Naive Bayes,
(b) support vector classifier, (c) RF, (d) XGB, and (e) MLP. The X-axis shows size of the train set, Y-axis shows number of features,
and Z-axis shows the mean ROC_AUC score. The cross markers (3) on each of the plots indicate the selection of necessary
features resulting in best performing models; the necessary features selected are 16.
NB: Naive Bayes; RF: random forest; XGB: eXtreme gradient boosting; MLP: multi-layer perceptron; ROC: receiver operating characteristic; AUC:

area under the curve; SVM: support vector machines.
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Discussion

In the previous sections, we showed the challenges in
damage detection due to intra- and inter-specimen
variability by considering the measurements acquired
on 45 CFRP panels. We performed the analysis by con-
sidering variability inclusion and baseline aggregation.
Furthermore, an AR-based feature extraction method
is applied to avoid using baseline correction methods,
and classifiers are used for the detection task. The

results obtained show an excellent classification perfor-
mance of 95% (ROC_AUC) and show the robustness
of the approach to intra- and inter-specimen viability.
The data set presented in the previous section contains
a minor variation in the temperature. Therefore, an
alternative data set is considered to investigate the
effect of the temperature (i.e., OpenGW22), and the
same methodology is applied to it.

Impact of temperature variation:
a preliminary study

The GW signals measured on CFRP panels with real-
impact-caused delaminations were analyzed in the pre-
vious data set. Unfortunately, the experiment campaign
was carried out in a laboratory setup with minor tem-
perature variations. On the other hand, it is well known
that temperature variation can significantly influence
GW propagation in both isotropic and anisotropic
materials. Therefore, to provide a preliminary valida-
tion of our proposed methodology in the presence of
high-temperature variation, we decided to consider the
OpenGW22 data set, which contains measurements per-
formed on CFRP with temperature variation between
20 and 60�C. It is also worth mentioning that the
instrumentation and artificial defect (mass attachment)
makes this problem more academic than the previous
one (brief details about the OpenGW data set are given
below). Nevertheless, we believe the proposed metho-
dology can directly be applied to this data set to assess

Figure 11. Mean ROC curves and AUC with standard
deviation computed on balanced test data set.
ROC: receiver operating characteristic; AUC: area under the curve.

Table 3. The mean train and test ROC_AUC scores and the variance of the predicted results for the balanced data set.

Classifiers Train score (ROC_AUC) Test score (ROC_AUC)

NB 0.9128 6 0.01 0.91 6 0.02
SVM 0.958 6 0.03 0.94 6 0.03
RF 0.975 6 0.02 0.94 6 0.02
XGB 0.99 6 0.01 0.95 6 0.01
MLP 0.98 6 0.007 0.95 6 0.01

ROC: receiver operating characteristic; AUC: area under the curve; NB: Naive Bayes; SVM: support vector machines; RF: random forest; XGB:

eXtreme gradient boosting; MLP: multi-layer perceptron.

Highest scores are highlighted with bold fonts.

Figure 10. Process used for performing data annotation.
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the robustness of baseline aggregation and AR-based
feature extraction under significant temperature
variations.

The measurements are conducted on a composite
plate instrumented with 12 piezoelectric transducers,
and reversible damage is placed by attaching weights
on different locations (see Figure 14). For a detailed
explanation of the experimental setup and acquisition,
the readers can refer to this article.22 The study is con-
ducted by forming four groups with increasing tem-
perature variations, that is, 20 8C, 30 8C

� �
,

20 8C, 40 8C
� �

, 20 8C, 50 8C
� �

, and 20 8C, 60 8C
� �

. This
particular subdivision of temperature variation enables
a thorough study of the applicability of the proposed
methodology on significant temperature variations.
The same methodology is also applied to each tem-
perature group, the baseline signals are aggregated so
that T2, T3, T4, and T5 transducers are considered
emitters. For each of these four emitters, only three
paths (couples) are considered, namely, one direct path
and two adjacent paths (e.g., T2!T7, T2!T8, and
T2!T9). Measurement signals corresponding to dam-
age DG12 alone are considered in this preliminary
study.

The path identification schema is employed with the
same threshold (i.e., 0.1) as used in the former data set
to identify more defect information-carrying paths (see
Figure 10). All the identified paths carrying more dam-
age information are grouped under the damage class,
and all the aggregated baselines are grouped under the
pristine class. AR modeling is applied to both groups
to extract the features. Five classifiers are chosen to
learn to distinguish the feature space: NB, SVM, RF,
XGB, and MLP. Measurements corresponding to just
one excitation frequency (i.e., 40 kHz) are considered
to conduct the preliminary study. However, except for

the CV strategy, the same feature selection and final
training methodology are applied as shown in Figure
8. Features selected (h) for all temperature groups are
hNB, SVM,RF,XGB = 5 and hMLP = 24. Training samples
(Ntrain) for all temperature groups and all classifiers
considered are Ntrain = 288, 450, 646, and 1164.

Figure 14. CFRP plate instrumented with 12 PZTs and a
reversible damage placed at either 4 locations to acquire
measurements.
CFRP: carbon fiber reinforced polymer.

Figure 12. Mean test precision-recall AUC with variance
depicted in error bars for all the IR and classifiers resulting from
25 models.
AUC: area under the curve; IR: imbalance ratio. Figure 13. POD computed on the model predictions

represented by the red curve. The POD curve shown here is
the representative result of PODs obtained from all five
classifiers’ predictions.
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Furthermore, the test samples for all temperature
groups and all classifiers are Ntest = 92, 142, 204, and
366. We used stratified CV40 instead of group stratified
CV, as only one panel is present and forming groups
requires multiple panels (to perform CV similar to the
previous data set). Furthermore, the hyperparameters’
range is unchanged except for XGB and RF, whereby
the range of some parameters are slightly adjusted.
Final mean train and test ROC_AUC scores are pre-
sented in Table 4 and the mean ROC curves for each
temperature group are shown in Figure 15. From the
first to the last temperature groups, NB, SVM, RF,
XGB, and MLP registered a 4, 7, 10, 2, and an 8%
drop, respectively, when tested on the test set.
Furthermore, XGB has shown robustness and stability
against small and large temperature variations with the
proposed aggregated-baseline and AR-based feature
extraction approach.

Comparison to the state-of-the-art and discussion

These results obtained can be considered promising
when compared with very recent works on the same
data set20,23 mentioned in the introduction. Schnur
et al.20 performed classification by compensating the
temperature effect through optimal baseline selection
and baseline signal stretch methods. Furthermore, the
authors analyzed just two sensor pairs, that is, T4!T9
and T1!T7, to apply compensation methods and clas-
sification schema. With the best Fourier coefficients
(features) and SVM, they showed high classification
accuracy with temperature compensation. In another
work, Abbassi et al.23 compared four unsupervised
dimensionality reduction algorithms to obtain latent
vectors and used them for damage detection. They

showed high detection accuracies on four temperature
groups formed between 20 and 60�C with 10�C step.

On the other hand, comparing our proposed metho-
dology with the study by Schnur et al.20 has shown to
be very effective under more considerable temperature
variations without the need for temperature compensa-
tion and aggregating various sensor pairs (i.e., baseline
aggregation). Furthermore, comparison with the study
by Abbassi et al.23 shows that the proposed methodol-
ogy works for shorter and wider temperature ranges,
that is, 20 8C, 40 8C

� �
and 20 8C, 60 8C

� �
, respectively.

The FPR in a GW-SHM system is generally
expected to be relatively low (i.e., less than a few per-
cent). However, depending on the application and the
system, the actual FPR can vary. The results obtained
with the proposed methodology suggest that the meth-
odology is robust to substantial temperature varia-
tions. Nevertheless, the mean AUC_ROC and, in turn,
the FPR shown in Figure 15 can be further improved
by enhancing the data set.

Conclusions and perspective

In GW-SHM, intra- and inter-specimen variabilities
have significant impact on the reliability of detection
systems. A methodology is proposed containing varia-
bility inclusion and baseline aggregation. With AR-
based features and classifiers, the final classification
results show that classifiers can distinguish the two
classes and have the highest classification performance
of 95% ROC_AUC by XGB and MLP. The results
suggest that the methodology is robust to variabilities
such as instrumentation, material properties, damage
size, and location.

Table 4. The mean train and test ROC_AUC scores for varying temperature ranges.

Temperature variation (�C) Train, test groups Classifiers and ROC_AUC scores

NB SVM RF XGB MLP

TempGroup 1
[20, 30]

Train 0.71 6 0.02 0.98 6 0.006 0.97 6 0.004 0.99 6 4e-7 0.96 6 0.02

Test 0.72 6 0.06 0.87 6 0.04 0.86 6 0.01 0.89 6 0.04 0.85 6 0.05
TempGroup 2
[20, 40]

Train 0.723 6 0.02 0.98 6 0.008 0.95 6 0.007 0.99 6 5e-7 0.95 6 0.02

Test 0.726 6 0.04 0.81 6 0.05 0.83 6 0.02 0.88 6 0.03 0.85 6 0.04
TempGroup 3
[20, 50]

Train 0.68 6 0.02 0.97 6 0.02 0.91 6 0.004 0.99 6 4e-7 0.89 6 0.03

Test 0.69 6 0.03 0.8 6 0.05 0.79 6 0.01 0.87 6 0.03 0.81 6 0.02
TempGroup 4
[20, 60]

Train 0.673 6 0.008 0.97 6 0.003 0.85 6 0.006 0.99 6 4e-7 0.86 6 0.03

Test 0.672 6 0.02 0.8 6 0.02 0.76 6 0.009 0.89 6 0.02 0.77 6 0.02

ROC: receiver operating characteristic; AUC: area under the curve; NB: Naive Bayes; SVM: support vector machines; RF: random forest; XGB:

eXtreme gradient boosting; MLP: multi-layer perceptron.

Highest scores are highlighted with bold fonts.
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To study the impact of significant temperature var-
iations (absent in the former data set), we consider an
alternative data set based on GW measurements on
CFRP (i.e., OpenGW data set). The same proposed
methodology is applied to this data set. For increasing
temperature variations, an average of 5% drop in the
performance of the classifiers is observed, except for
XGB, which registered only a 2% drop; furthermore,
for all the temperature variations, XGB exhibited an
average of 89% ROC_AUC, suggesting that it is the
more robust and stable classifier to large temperature
variations. Furthermore, XGB classifier has shown to
be the most robust classifier on both the data sets (i.e.,
inter-specimen variability and large temperature
variations).

Our future research will focus on the performance
of the robustness of classification algorithms based on

GW signals under the influence of intra- and inter-
specimen and temperature variability. Toward this
end, simulations can add synthetic data to the mea-
surements as a data augmentation procedure based on
physics.
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Appendix A

Best selected hyperparameter combination

Appendix B

Cross validation for machine learning model selection

Except for Naive Bayes, the rest of the classifiers con-
tain hyperparameters, and their selection defines the
model suitable for the data present at hand.
Furthermore, an appropriate selection of hyperpara-
meters counter overfitting and/or underfitting prob-
lems. Hyperparameter selection is carried out through
cross validation (CV). In this work, the data is coming
from multiple panels; therefore, group CV strategy is
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suitable, and this strategy enables to check how well
the models generalize on unseen groups of panels.40

The stratified group CV method ensures equal distribu-
tion of class labels in the train and validation set at
each fold. The working principle behind group CV is
that the training set is grouped according to the num-
ber of panels and is divided into k folds where k is the
number of splits. In other words, the training set is
divided into k subsets of groups. Out of k subsets,

ðk � 1Þ subsets only are used for training on a given set
of hyperparameters, and the model is validated on the
remaining subset of groups. It is an iterating scheme,
which means that in the next iteration, the left-out sub-
set becomes a part of the training sample, and a differ-
ent subset of groups is held out for validation. This
iteration repeats k times, and the final performance
measure is the average performance measure on the
validation sets at each iteration.

Table A1. Shows the list of best hyperparameters and features selected of the first model among 25 models.

Classifier Hyperparameter and features IR
Pristine ratio (%)

50 60 80 90 95

SVM AR features (h) 16 14 16 28 16
C 0.1 1 100 1e3 1
gamma 0.1 0.1 1e-3 1e-5 0.001

RF AR features (h) 16 20 8 28 10
max_depth 15 10 10 15 10
max_samples 400 400 200 100 400
min_samp_split 10 2 10 5 15
n_estimators 100 250 50 100 100

XGB AR features (h) 16 12 8 28 22
colsample_bynode 0.05 0.3 0.05 0.5 0.1
learning_rate 0.01 0.05 0.01 0.5 0.05
max_depth 2 6 10 10 15
n_estimators 150 250 50 50 100

MLP AR features (h) 16 28 14 14 18
hidden_layer 3 1 1 3 2
hidden_units (20,11,5) 20 20 (20,20,5) (20,20)
learning_rate 0.01 0.01 0.01 0.00056 0.01

AR: AutoRegression; SVM: support vector machines; RF: random forest; XGB: eXtreme gradient boosting; MLP: multi-layer perceptron; IR:

imbalance ratio.
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