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ABSTRACT 17 

Languages show substantial variability between their speakers, but it is currently unclear how 18 
the structure of the communicative network contributes to the patterning of this variability.  19 
While previous studies have highlighted the role of network structure in language change, the 20 
specific aspects of network structure that shape language variability remain largely unknown. 21 
To address this gap, we developed a Bayesian agent-based model of language evolution, 22 
contrasting between two distinct scenarios: language change and language emergence. By 23 
isolating the relative effects of specific global network metrics across thousands of simulations, 24 
we show that global characteristics of network structure play a critical role in shaping inter-25 
individual variation in language, while intra-individual variation is relatively unaffected. We 26 
effectively challenge the long-held belief that size and density are the main network structural 27 
factors influencing language variation, and show that path length and clustering coefficient are 28 
the main factors driving inter-individual variation. In particular, we show that variation is more 29 
likely to occur in populations where individuals are not well-connected to each other. 30 
Additionally, variation is more likely to emerge in populations that are structured in small 31 
communities. Our study provides potentially important insights into the theoretical 32 
mechanisms underlying language variation. 33 

1. INTRODUCTION  34 

 35 
Variation is ubiquitous not only in the natural world, but also in culture. There are intriguing 36 
patterns of variation ranging from within to between individuals (in most biological, 37 
psychological, cognitive and linguistic characteristics) and groups (most obvious in various 38 
aspects of culture). In the language domain, one can think about how two different persons 39 
would pronounce the phoneme /r/ in different ways, even if they speak the same language 40 
(Sankoff & Blondeau, 2007), or how grammatical constructions vary between English dialects 41 
(Trudgill & Chambers, 2017), or even about lexical variation (d42 
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way it is, and what processes govern its dynamics are extremely important and non-trivial 44 
scientific questions. 45 

Language variation arises from divergences in the evolution of linguistic features over time 46 
among different populations. It is customary to distinguish the emergence of an innovation 47 
(the so- y 48 

49 
2014; Yu, 2013). Initiation is usually seen as an individual-level process, while actuation is 50 
essentially a community-level process involving competing linguistic variants (Blythe & Croft, 51 
2012; Fagyal et al., 2010). These processes can take place in two main scenarios: when the 52 
language used by the population is being created de novo (language emergence scenario, as 53 
is arguably the case for emergent sign languages such as Al-Sayyid Bedouin Sign Language 54 
and Kaka Kolok; Zeshan & de Vos, 2012), and when a language is already in use and 55 
undergoing change (language change scenario, by far the most frequent and studies case). 56 
The selection of variants during the actuation phase can be influenced by many different 57 
factors, such as aspects of the environment (e.g., the effect of environment type on the 58 
phonemic inventories of languages; Everett et al., 2015; Maddieson & Coupé, 2015), cultural 59 
and historical factors (degree of contact with outsiders, or number of L2 speakers; Lupyan & 60 
Dale, 2010), or factors related to the structure of the network of linguistic interaction itself 61 
(Wray & Grace, 2007; Trudgill, 2011a). Indeed, interactions between individuals in human 62 
societies are embedded in social networks with specific characteristics (Beckner et al., 2009; 63 
Newman & Park, 2003), which would constrain the transmission of linguistic features 64 
(Chambers, 1995). While all human networks tend to share a few features, such as a small 65 
average path length, social network structures exhibit a great diversity across populations 66 
(Newman, 2003; Nichols, 1992). Our goal in this paper is to disentangle what characteristics 67 
in network structures are instrumental to understand how variation unfolds through evolution.    68 

It is, however, challenging to carefully disentangle the relative effects of network structure from 69 
those of the other factors involved, prompting several researchers to introduce experimental, 70 
computer modeling and observational paradigms. The rich tradition of sociolinguistic studies 71 
uses fine-grained methods that provide insight into the role of network structure (among many 72 
other factors) on language change (Labov, 1972, 2001, 2010; Milroy & Milroy, 1985; Yu, 2013). 73 
Following a different approach, Raviv et al. (2019, 2020) tackle this question with an 74 
experimental approach involving the learning and transmission of an artificial miniature 75 
language within a carefully controlled network structure. Network structure was even put 76 
forward to have an influence on cultural evolution (Derex & Boyd, 2016; Migliano et al., 2020).  77 
These laboratory experiments emphasize the role of population size and network structure on 78 
language variability. However, despite their inherent advantages, laboratory experiments are 79 
strongly constrained in terms of population size, network structure and aspects of language 80 
considered, limiting the direct extrapolation of these results to understanding the dynamics of 81 
actual linguistic communities.  82 
 83 
Artificial multi-agent models do provide ways to address some of these issues, in particular 84 
concerning the number of linguistic agents, the structure of their communicative networks, and 85 
the usually long time scale necessary for innovations to spread in large populations. Some 86 
studies based on the use of such models highlight the role of population structure in shaping 87 
convergence (Lee et al., 2015), the formation of categories  (Zubek et al., 2017; Gong et al., 88 
2012), the diffusion of innovations (Ke et al., 2008), and linguistic structure (Reali et al., 2014; 89 



 

 

Lou-Magnuson et al., 2018). Despite using different communication algorithms and 90 
addressing various aspects of language, these models share a common approach: they all 91 
compare different types of pre-existing network structures (such as fully-connected, star, or 92 
small-world networks) and then observe whether language evolves differently in these distinct 93 
network structures. For example, Lee et al. (2015) examined populations of learners in fully-94 
connected, linear, Neumann lattice, and bridge network structures and showed that these 95 
distinct network typologies result in different patterns of grammar convergence. Departing from 96 
these pre-existing network structures, in the field of cultural evolution, Kobayashi et al. (2016) 97 
aimed to untangle two key metrics: population size and social connectedness. They propose 98 
that social connectedness might exert a stronger influence on the level of culture compared to 99 
population size. While most of these models address the dynamics of language change and 100 
do not specifically explore language variation, Mudd (2022) and Meir et al. (2012) also 101 
emphasize the role of social structure on lexical variation in emergent sign languages. Notably, 102 
Mudd (2022) developed computational models grounded in observations from the Kata Kolok 103 
community, focusing on various aspects of their social structure, such as connectivity and size. 104 
To explain why some sign languages witness more lexical variation than others, she proposed 105 
that population size is an important factor influencing lexical variability in these languages. 106 
However, while it appears that network structure influences language in both scenarios of 107 
emergence and change, it remains unclear whether the impact of network structure differs in 108 
these two contexts. 109 
 110 
Thus, a wide range of approaches strongly suggests that network structure likely influences 111 

112 
The networks used in such studies are either networks observed in the real world, or are 113 
automatically generated with specific properties (such as, for example, being fully connected, 114 
scale-free, or small-115 
using a set of measures (called metrics) that summarize various aspects of the network, 116 
varying between the relatively global to the quite local (see Illustration 1). As Raviv et al. (2020) 117 
observed, it is very difficult to tease apart the contribution of each network characteristic in 118 
real-world observational networks. In other words, comparing real-world populations raises 119 
the question of understanding which network structural factors are involved in the actuation of 120 
linguistic innovations, and in which manner. In contrast, multi-agent models allow a much finer 121 
degree of control over these factors. As a consequence, most agent-based modeling studies 122 
to date have investigated the separate role of various characteristics of the communicative 123 
network. However, this approach has two main limitations: first, when focusing on specific 124 
factors in isolation, it is very difficult to compare their relative influence, and to understand the 125 
interactions between them. Secondly, working with automatically generated networks has not 126 
led to a fine-grained understanding of which network metrics behind these networks actually 127 
affect the dynamics of actuation. Indeed, there are intrinsic relationships between various 128 
metrics resulting from the type of network being generated. As an example, if communities 129 
structured as scale-free networks produce more stable variation than those structured as 130 
small-world networks, is this due to their lower centrality, lower clustering coefficient, or any 131 
other metric that intrinsically differs between these two types of networks? 132 

Addressing these questions makes it essential to disentangle and bring a theoretical basis to 133 
the question of what aspects of network structure do, in fact, shape language. This has 134 
theoretical implications for understanding how languages adapt to fit their social environments 135 
and how network structure shapes language. In turn, it will help understand language 136 



 

 

137 
answer these questions, we introduce here a multi-agent model based on the one in 138 
Josserand et al. (2021). The agents use a Bayesian model of language learning in artificially 139 
generated static networks where we control various metrics, and, across thousands of runs, 140 
we effectively isolated the relative influence of several global metrics (average shortest path 141 
length, clustering coefficient, global assortativity, degree distribution, and size) and of local 142 
characteristics of the agents (measures of centrality and clustering coefficients). See 143 
Illustration 1 for an example. We found that these metrics have different contributions to the 144 
evolution of language in this model: while intra-individual variation is not shaped by network 145 
structure, inter-individual variation is strongly affected by the path length and the clustering 146 
coefficient. 147 

The paper is structured as follows: in the Data and Methods, we present our Bayesian agent-148 
based model, along with the networks used, the metrics under consideration, and the overall 149 
procedure of this analysis. In the Results, we investigate whether some of these metrics affect 150 
inter- and intra-individual variability in different types of networks. We close by discussing the 151 
limitations and implications of our findings, and suggest several future directions of study. 152 

 153 

 154 

Illustration 1. A. Dataset 1 comprises sets of networks differing on only one metric (here, clustering 155 
coefficient, but we applied it to every metric in Table 1). B. Dataset 2 comprises a wide range of different 156 
networks: scale-free, small-world, random networks of different sizes and parameters. C. Throughout 157 
our study, agents interact using Bayesian communication for an extended period of time. D. Finally, we 158 
investigate the language variability within and between agents in the network. To do so, we compare 159 
language variability in networks that differ based on global metrics, using dataset 1. We also explored 160 
the networks in dataset 2 by computing the correlations between different metrics and measuring their 161 
relative contributions to variability in models. More information about the differences between the two 162 
datasets will be presented in Data and Methods section. 163 

2. DATA AND METHODS 164 

Here we develop a Bayesian model of language evolution (Griffiths & Kalish, 2007) based on  165 
published work (Josserand et al., 2021), where agents exchange linguistic messages as 166 

167 



 

 

which all have an internal representation of language, here reduced to a single feature. The 168 
agents that are connected 169 

170 
171 

study how the language changes after multiple rounds of such interactions, and, in particular, 172 
the manner in which different network structures affect these dynamics in two types of 173 
scenarios: language emergence (agents interact without any initial language exposure) and 174 
language change (agents interact with an initial language exposure). 175 

1.1 The language 176 

The language in our model is a multinomial feature that can take one of k exclusive possible 177 
values. This simple representation is arguably adequate to approximate numerous aspects of 178 
human language, such as lexical choices (using one of several words or expressions to 179 
describe a given concept), allophony (different actual sounds for the same phoneme as 180 
conditioned by the phonetic environment, socio-linguistic/dialectal choices, or in free 181 
variation), or morpho-syntactic structures (different ways of organizing the sentence). Here, 182 
we call an utterance a token drawn from this multinomial distribution. For example, if the 183 
feature refers to the possible allophones 184 
alveolar trill [r], the approximant [ ], and the retroflex approximant [ ], among others. Abstractly, 185 
we can represent the feature through the vector of its possible utterances . 186 
We fixed the number of utterances k to 10 here, but simulations ran with different values of k 187 
led to similar conclusions. 188 

While we also generalized our feature to a continuous one (which can represent, for example, 189 
very fine-grained measurements of vowel height or voice-onset-time (VoT); presented for the 190 
Dataset 1 in the Supplementary Materials in Part 3.2.2), we decided to focus here on the 191 
case of the discrete valued feature. Indeed, using a continuous representation instead of the 192 
discrete one does not alter our conclusions, but presenting both would lead to clutter and 193 
unnecessary complexity in the presentation of the results.   194 

1.2 How do agents represent language?  195 

Agents are Bayesian learners (Griffiths & Kalish, 2007). In this framework, there is a fixed 196 
U, and each possible language h from this universe (h  U) has a 197 

certain probability p 198 
being exposed to any utterance, each agent has an a priori 199 
of each possible language, denoted p(h) and known as the a priori probability distribution of 200 
the languages (or the prior201 
d, it updates its subjective distribution of the probabilities of the languages in light of this data 202 

. Here, p(d|h) is the likelihood of observing data d 203 

given that the language is h, while p(h|d) is the updated belief, or posterior, i.e. the probability 204 
of the language being h after both the prior and the observed data d are considered. The 205 
denominator p(d) acts as a normalization factor and is not of immediate concern here. While 206 
this mechanism is extremely general, we apply it here in a very particular and relatively simple 207 
setting. 208 



 

 

p209 
, where each component pi represents the probability of the ith utterance ; as 210 

the utterances are mutually exclusive and exhaust the space of possible utterances for this 211 
features, . An agent has an a priori distribution that represents its initial belief in 212 
the probability of each utterance, which leads naturally to a multinomial distribution that 213 
represents the likelihood. More precisely, given n 214 
an agent, the random variable X   distributed as Multinomial(n, p) gives the 215 
expected number of times each possible utterance  appears. Here, the multinomial 216 
distribution models how frequent any one of the k possible utterances should be among the n 217 

p. 218 

To compute the posterior distribution after having seen the data, it is possible to use the very 219 
computationally expensive Markov Chain Monte Carlo technique. However, in particular 220 
cases, one may choose specific conjugate priors, which drastically simplify the application of 221 
Ba Dirichlet 222 
distribution, which is defined by a vector of k parameters  . These 223 
parameters  are related to the probability  of each utterance , so that the vector of 224 
probabilities p  is distributed as Dir( ). The prior and posterior distributions of 225 
probabilities are modeled by Dirichlet distributions and, thus, characterized by prior (denoted 226 
here as ) and posterior (denoted here as 227 
one can update the prior distribution Dir( ) into the posterior distribution Dir( ) after seeing a 228 
number n of independent utterances (the data, d): it reduces to trivial arithmetic:  = , 229 
where, as above,  gives the number of times utterance  d. Thus, 230 
this reduces to a simple model where the parameters of the Dirichlet distribution reflect the 231 

he prior belief. It is important to note that, as expected for 232 
Bayesian models, both the prior beliefs and the observed data matter. Seeing enough data 233 
should be able to overwhelm even very strong a priori beliefs and the order in which the 234 
utterances in the data arrive does not matter. This generalizes the prior model studied in 235 
(Josserand et al., 2021) by allowing more than two possible utterances (i.e., from a Bayesian 236 
model with a binary feature using Binomial/Beta conjugate distributions, to a multinomial 237 
feature using Multinomial/Dirichlet conjugate distribution). 238 

1.3 The initial language exposure: emergence vs. change  239 

240 
language emergence versus language 241 

change). In the populations in a language emergence scenario, the agents are born without 242 
initial language exposure. Such agents are naïve regarding the language, with all possible 243 
utterances having the same probability of occurrence. This is modeled by a Dirichlet 244 
distribution with all parameters  being equal,  . It represents the situation 245 
where agents are born in a language-less community, but it may as well represent a 246 
community with a language where all possible utterances are equally frequent.  247 

In contrast, in the language change scenario, agents are born in a population with initial 248 
language exposure, i.e. born in a community with a pre-existing language that favors a certain 249 
utterance at the expense of the others; say, utterance 4,  is 6 times more frequent than the 250 
others (for various reasons, including past internally-motivated language change, language 251 
contact, or top-down language policies). This situation is represented by a Dirichlet distribution 252 



 

 

with parameters  . Given how the parameters of the Dirichlet distribution 253 
254 

expecting, before they engage in communication with other agents, that the utterance  is 255 
much more frequent than all the others. A value of 6 is supposed to represent an initial 256 
language with a very skewed frequency of the utterances, but not too strong (however, we 257 
also investigated the effect of using 21 instead of 6 in the Supplementary Materials; see part 258 
3.2.1.8).  259 

1.4 The communication process 260 

261 
represents their bias concerning the language feature. The simulation happens in discrete 262 
timesteps (rounds263 

 264 

To produce utterances, an agent uses the following procedure: first, it normalises the k 265 
parameters of its Dirichlet distribution,  to a probability vector  m  where 266 

j k proportional to its probability mj, such that 267 

each index j can be chosen depending on its probability relative to the other k-1 indices in m. 268 
This is equivalent to the use of random multinomial generator, j ~ Multinomial(m), as 269 
implemented by, for example, , where =1, =1 and 270 

=m, or , where  is the 271 

simplex vector =m and =1. Finally, this value j represents the utterance that is actually 272 
produced, namely  (see Illustration 2). So, we use what is kno273 

strategy (Griffiths & Kalish, 2007; Josserand et al., 2021) in which the agent picks any of the 274 
possible k 275 
Dirichlet distribution).  276 

Conversely, upon hearing the utterances produced by its neighbors, the agent updates its 277 
current Dirichlet distribution as described above. This update consists of an addition, so that 278 
the Dirichlet hyper-parameters become , where  represents 279 
the number of times each utterance appears among those that the agent just heard.   280 

 281 

 282 



 

 

Illustration 2. Representation of the Dirichlet distribution for an agent without initial language exposure 283 
(language emergence, panel A) and for an agent with an initial language exposure towards  284 
(language change, panel B). For visualization purposes, we plotted here k=3 utterances instead of the 285 
k=10 actually used in the study. The dots represent the random draws from the Dirichlet distribution: if 286 
the random draw occurs in the a part, the agent will produce an utterance ; if it occurs in the b part, it 287 
will produce an utterance , and it will produce an utterance  when drawn in the c region. In the 288 
condition without initial language exposure, random draws happen equally probably for all three 289 
utterances, but with initial language exposure, they occur mostly in the b region, resulting in many more 290 
u2 utterances. The bar plot below each triangle is an alternative way of representing the values of the 291 
Dirichlet distribution. The color gradient reflects the density of random draws, with red denoting high 292 
density and blue indicating low density. 293 

1.5 The networks: types and metrics 294 

The agents form the nodes of a network with a static structure, f ixed for the duration of a 295 
simulation, while the edges between the nodes determine the agents that can talk to each 296 
other. Given that we focus on the structure of these networks, our discussion in this section is 297 
framed in terms of nodes and edges, instead of agents and their communicative exchanges. 298 
Here, we use three classes of network topology: random, small-world, and scale-free 299 

300 
each node has a fixed probability of connecting with other nodes in the network. We kept only 301 
networks without any isolated components. The small-world networks are generated using the 302 
Watts-Strogatz algorithm (Watts & Strogatz, 1998): this algorithm starts with a ring of nodes, 303 
where each node is connected to a fixed number N of neighbors on either side, followed by a 304 
rewiring with a fixed probability . This process leads to the generation of networks with many 305 
real-world properties (Kenett et al., 2018; Kitsak et al., 2010), such as the presence of short 306 

-free 307 
networks are generated using the preferential attachment algorithm of Barabási et al. (2000), 308 
and exhibit a power-law degree distribution: most nodes have a limited number of neighbors, 309 
while few nodes have very many (Albert, 2005; Albert et al., 1999), resembling real offline and 310 
online social networks. The algorithm gradually adds new nodes to a network such that the 311 

probability  that the newly added node is connected to node  is where  is the 312 

degree of node , and the sum is over all pre-existing nodes . We use these different classes 313 
of network topology to investigate the effects of specific network metrics (see Table 1). 314 
  315 

Name of the 
global 

network 
metric 

Short name Description Mathematical description Type of 
network 

Average node 
degree 

Degree Average number 
of neighbors for all 

nodes 

  

where  is the degree of a node  and  is the total 
number of nodes in the network 

Constant for 
Barabasi-Albert 

scale-free 
networks with a 

fixed size 

Network size Size Total number of 
nodes 

All 



 

 

Average 
shortest path 

length 

Path length On average, how 
close (defined by 

the number of 
intermediate 

nodes) are two 
random nodes 

The mean of the shortest path length between all 

pairs of nodes: , where  is the 

shortest path length between two nodes 

All, since we 
removed 
isolated 

components in 
random 

networks 

Global 
assortativity 
coefficient 

Assortativity Preference for a 
network's nodes to 

attach to others 
that are similar 

(here, in terms of 
 

The mean of the local assortativity based on the 
node degree, where local assortativity is defined as 

 , where  is the number of edges 

in the network,  is the excess degree of a particular 
node and   is the average excess degree of its 

neighbors. (The excess degree distribution  is 

defined as ). Thus, assortativity can 

vary between -1 (highly disassortative) to 1 (highly 
assortative). 

All 

Average 
clustering 
coefficient 

Clustering Measure of the 
degree to which 

nodes in a 
network tend to 
cluster together 

The average local clustering coefficient of all nodes 
(as in Watts & Strogatz, 1998), where the local 

clustering is defined as: , where  is 

the number of triangles on , ) being the 
set of all nodes in the undirected graph , and 

 is the number of triangles on . The 
clustering coefficient varies between 0 (the friends 

of my friends are never connected) and 1 (the 
friends of my friends are all connected) 

Constant in 
scale-free 
networks 

Degree 
distribution: 
the shape of 

the power law 
distribution 

Degree 
distribution 

Shape of the 
degree distribution 

for power-law 
distributions: how 

strongly hubs 
gather all 

connections 

A power-law distribution is defined as  

where is the exponent of the distribution. The 

larger the exponent, the rarer the large values are. 
The ex
degree distribution and looking at the slope of the 

obtained new graph. Exponents in scale-free 
networks obtained with Barabasi-Albert algorithm 

usually present some random fluctuations and vary 
between 2 and 3. 

Only networks 
exhibiting a 
power-law 
distribution 

In this study, we aim to isolate the effect of the different metrics in order to understand how 316 
they may influence language variability. Please note that we focus on these metrics because 317 
they capture essential properties of communicative networks that have been claimed, or may 318 
arguably contribute to language dynamics within networks. Moreover, some of these metrics 319 
are very hard to disentangle and, therefore, their effects might be confounded in most previous 320 
studies. To overcome those difficulties, we generated hundreds of thousands of networks, and 321 
then selected two sets of networks, each containing 100 networks: for a given metric, we 322 
selected the two sets of networks guaranteeing that the averages for the other metrics in the 323 
two sets were similar except for the metric under consideration (see Table 2).  As significance 324 
can be easily attained when it is possible to generate a high number of networks, we ensured 325 
that the difference between the two sets was much larger (at least two orders of magnitude) 326 

 We used scale-free networks to 327 
analyze the independent effects of the network size, the path length, the assortativity, and the 328 
degree distribution; small-world networks for the clustering coefficient; and random networks 329 
for the average degree and path length. 330 

 331 



 

 

Metric 
value1 

Difference between the two sets varying in the network metric (in bold)2 

Size 
Path 

length3 
Degree 

distribution 
Assortativity Clustering Node degree 

Size 
(100 / 50) 

50  
(50 / 50) 

0 
 (50 / 50) 

0 
(50 / 50) 

0 
(150 - 150) 

0 
(50 - 50) 

 0 

Path length 
(4.49 / 4.50) 

 0.01 
(4.99 / 3.37) 

 1.62  
(4.09 / 4.10) 

0.01 
(4.02 / 4.01) 

0.01 
(1.68 - 1.68) 

0 
(1.78 / 1.79) 

 0.01 

Degree 
distribution 

(2.85 / 2.85) 

0.00  
(2.79 / 2.80) 

0.01  
(3.04 / 2.55)  

0.49 
(2.75 / 2.75) 

 0 -- -- 

Assortativity 
(-0.29 / -0.30) 

0.01  
(-0.31 / 0.31) 

0  
(-0.35 / -0.35) 

0.01  
(-0.16 / -0.48) 

0.32  
(-0.01 / -0.01) 

0 
(0.02 / 0.01) 

0.01  

Clustering 
(0 / 0) 

0 
(0 / 0) 

0 
(0 / 0) 

0 
(0 / 0) 

0 
(0.58 - 0.32) 

0.26 
(0.25 / 0.25) 

0.01 

Degree 
(1.98 / 1.96) 

0.02  
(1.96 / 1.96) 

0  
(1.96 / 1.96) 

0  
(1.96 / 1.96) 

0   
(48 / 48) 

0 
(12.69 / 11.98) 

 0.71 

These metrics reflect the global network structure, but there is local heterogeneity between 332 
nodes, which is captured by node-level metrics. Using the same model, we investigated the 333 
influence of local network heterogeneity on language change (Fagyal et al., 2010). 334 
Specifically, we extended the results from our previous paper (Josserand et al., 2021). In this 335 
earlier work, we found that language adapts more to a group of biased agents namely, those 336 
born with a preference for a specific utterance when these biased agents have higher 337 
centrality. While in the prior study, we defined centrality as betweenness centrality, we 338 
complemented these results here by exploring whether various other node-level metrics (local 339 
clustering coefficient, node degree, eigenvector centrality, and closeness centrality) might 340 
exert different influences. These findings, available only in the Supplementary Materials (see 341 
part 3.4), not only expand upon but also validate the results presented by Josserand et al. 342 
(2021).   343 

Measurements 344 

Previous studies (see Figure 13 in Josserand et al., 2021) have shown that in a type of 345 
Bayesian model of language change similar to the ones implemented here but where the 346 
linguistic feature was binary, language stabilized before 1000 rounds in all network types (see 347 
our Supplementary Materials part 3.1 for visualization). Here, we introduced a conservative 348 

                                                
1 Each row shows the absolute difference between the two sets in the appropriate metric given by the 
names.The parenthesis indicates the mean value for each set of networks (high / low). 
2 Each column refers to the two sets of networks varying only in the shown metric. 
3 For example, the second column shows the differences between the two sets of networks differing 
by design in path length: these two sets contain 100 networks each, have the same size, clustering 
coefficient, average degree, and almost the same degree distribution and assortativity, but (as 
intended) markedly different path length. These numbers should be interpreted with caution, as the 

 



 

 

margin and analyzed the inter- and intra-individual variability after 3000 rounds (when all 349 
agents had produced 3000 utterances) in order to make sure that language would have 350 
stabilized.  351 
 352 
First, we define inter-individual variability by how different the agents are regarding their 353 
internal language representation. For example, if agents tend to use different utterances 354 
(some preferentially  while some others preferentially , the inter-individual variability will 355 
be high. We estimate inter-individual variation using the Kullback-Leibler divergence, which is 356 
a measure of the statistical distance between two probability distributions (as coded in the 357 
entropy package in R; Hausser & Strimmer, 2021). To do so, we computed for all possible 358 
pairs of agents the pairwise Kullback-Leibler divergence between their Dirichlet distributions, 359 
and then averaged the resulting pairwise Kullback-Leibler divergences to obtain an average 360 
measure of the inter-individual variation in the network. 361 
 362 
Secondly, intra-individual variability captures how consistent an agent is in its own language 363 
productions. For example, if an agent uses equally likely two utterances (  and  half of the 364 
time each, for example), its intra-individual variability will be high. On the contrary, an agent 365 
that always uses the same utterance has a low intra-individual variation. We estimate intra-366 

entropy 367 
package, using Jeffreys prior4; Hausser & Strimmer, 2021), which is bounded between 0 and 368 

, where here k=10. The average of this intra-individual variation across all agents 369 
captures their propensity to consistently use the same utterance (a high average indicates that 370 
agents switch between different utterances, while a low average suggests that agents tend to 371 
use the same utterance consistently), while its standard deviation across all agents captures 372 
to what degree there are differences between the agents regarding their intra-individual 373 
variation (a high standard deviation suggests that while some agents always use the same 374 
utterance, others show a high variability, and a low standard deviation suggests that all agents 375 
tend to be equally consistent or not in their language production). See Illustration 3 for a 376 
visualization of the entire process. 377 
 378 

                                                
4 This ensures that the resulting entropy value is robust and not overly influenced by the specific parameterization of the 
probability distribution. We also selected other priors, but conclusions were the same. 



 

 

 379 
Illustration 3. A schematic representation of the multi-380 
a network with a fixed structure and with given characteristics. Each agent has an internal language 381 
representation given by the parameters of the Dirichlet distribution (see gray bar plot in Illustration 2). 382 
For visualization purposes, we decided to represent k=3 utterances here instead of the k=10 utterances 383 
used in the paper. (B) Step 1. Each agent randomly extracts a number from its Dirichlet distribution: 384 
here, the probability of picking any of the three utterances is the same. Step 2. Each agent produces 385 
the chosen utterance (here, u1 for the agent on the left and u3 for the one on the right). Step 3. Each 386 
agent hears the utterance(s) of its neighbor(s) and updates its own Dirichlet distribution accordingly. 387 
(C) After each individual talks 3000 times, we measure the inter- and intra-individual variation among 388 
the agents in the final network. 389 
 390 

1.6 The network generation procedure 391 

We conducted simulations using Netlogo (version 6.2.2; Wilensky, 1999) and generated two 392 
datasets. In the first (which we will call dataset 1), we systematically compared two sets of 393 
networks differing in exactly one metric, as described above. To achieve this, we first 394 
generated 100 networks for each combination of parameters which resulted in 80,000 scale-395 
free networks (with varying sizes), 240,000 random networks (with varying connection 396 
probability to control for density and pathlength), and 600 small-world networks (with high and 397 
low rewiring probability, to examine the influence of clustering). Detailed information about the 398 
specific parameters is available in the Supplementary Materials (see Part 2.2.1). Following 399 
the generation of these networks, and using graphic visualization, we manually selected sets 400 
of networks that differed in only one metric. Subsequently, to compare the amount of variation 401 
in the two sets of networks and assess whether the difference was meaningful, we used 402 

d, a statistical metric that measures the difference between two groups. This metric 403 
is computed by dividing the difference between the means of the two groups by the pooled 404 
standard deviation of the groups.  405 



 

 

With dataset 2, we ran a series of simulations with random, scale-free, and small-world 406 
networks using a wide range of parameters. For each network type, we generated networks 407 
with sizes of 50, 150, and 300. In the case of random networks, we explored connection 408 
probabilities ranging from 0.05 to 0.95 in increments of 0.05. For small-world networks, we 409 
created networks with varying average numbers of neighbors (4, 8, 16, 48) and different 410 
rewiring probabilities (0.1, 0.3, 0.5, 0.7, 0.9). Initially, we examined how the metrics co-varied 411 

ions. Then, we 412 
modeled how these metrics influenced the final variability in the communicative network. We 413 
z-scored all the metrics and we predicted inter-individual, mean intra-individual and standard-414 
deviation of intra-individual variation using all our metrics as predictors. To do so, we used 415 
three machine learning techniques. First, we measured the predictor importance with random 416 
forests (using package ; Liaw & Wiener, 2002) using an accuracy-based index 417 
and a gini-based Index. Second, we used conditional forests (using  function in 418 

 package; Hothorn & Zeileis, 2015) to measure the unconditional predictor 419 

importance index. Last, we used Support Vector Machines (SVM;  function in  420 
package; Cortez, 2010) for sensitivity analysis. Additionally, for all of them, we measured the 421 
goodness of fit using R² and RMSE. To prevent overfitting, we trained the model on 80% of 422 
the data (stratified by size) and tested the model on the 20% remaining data using 50 423 
replications. For easier plotting, we z-scored and then aggregated the results for importance 424 
by method (accuracy-based, gini-based, unconditional, and sensitivity), by network type, and 425 
by predictor. The values for each method and each predictor, as well as additional details on 426 
the exact parameters used in the models, are available in the Supplementary Materials (see 427 
Part 3.3.4).  428 

3. RESULTS 429 

3.1 Dataset 1 430 

To produce sets of networks that vary only in one metric, we needed to use multiple types of 431 
networks. We used scale-free networks to investigate the influence of assortativity, degree 432 
distribution, path length, and size. Small-world networks were used to examine the impact of 433 
the clustering coefficient, while random networks were used to investigate the effect of the 434 
average node degree. The inter- and intra-individual variation (mean and standard-deviation) 435 
values are presented in Figure 1, while Figure 2 indicates the effect sizes and significance for 436 
each set. 437 
 438 
 439 



 

 

 440 
Figure 1. Measure of inter-individual variation (left column), mean of intra-individual variation (column 441 
in the middle), and standard deviation of intra-individual variation (right column). Each row shows the 442 
results for one metric: for example, the first row shows the results for 100 networks that have a low size 443 
on average (in blue), and 100 networks with a high size (in yellow) (see Table 2), in networks where 444 
there is an initial language exposure (language change, upper panel) and networks without initial 445 
language exposure (language emergence, lower panel). Depending on the network type used to study 446 
the metric of interest, the x axis may vary: the x axis of inter-individual variation shows the mean pairwise 447 
Kullback-Leibler divergence, while the two other columns show respectively the mean and the standard 448 
deviation of the entropy for all agents, computed using the final Dirichlet distribution for each agent. The 449 
quantification of the effect size between the two sets is indicated in Figure 2. 450 
 451 
Clustering coefficient. Both networks in language emergence d = 4.2) and 452 
language change d = 4.2) scenarios exhibit a strong influence of clustering 453 
coefficient on inter-individual variability, as shown in Figures 1 and 2. Networks without a 454 
clique structure tend to display lower levels of inter-individual variation. Similar to all other 455 
network structure metrics, the clustering coefficient has no effect on the mean intra-individual 456 
variation. However, higher clustering coefficients lead to more differences among agents in 457 
terms of standard deviation of intra-individual variation (with some agents consistently using 458 
the same utterance and others switching between several different utterances), which is 459 



 

 

observed in networks with language emergence or change s d = 2.0 and 460 
d = 2.2, respectively). 461 

 462 
Path length. The path length strongly affects inter-individual variability, in both emergence 463 

d d = 1.5) scenarios. Thus, networks where agents are 464 
easily reachable by others are likely to show low levels of inter-individual variation. Path length 465 
does not affect the mean amount of intra-individual variation, but it does slightly positively 466 
affect the standard deviation of intra-individual variation in networks in language change 467 

d = 0.7). 468 
 469 
Size. The network size also influences language variability, but its effect quickly disappears 470 
with higher initial language exposure. Big networks show higher inter-individual variation in 471 

d = 0.9) and language change scenarios 472 
d = 0.5). However, an additional analysis suggests that the stronger the initial 473 

language exposure, the less the network size will play a role in shaping inter-individual 474 
variation. More specifically, Cohen's d drops to 0.3 when the initial language exposure is 475 
strong (namely, if the initial language is skewed with 21 utterances instead of 6; see 476 
Supplementary Materials part 3.2.1.8). Thus, the size of the population may only affect inter-477 
individual variation in emergent languages. As for intra-individual variation, size does not 478 
appear to have any impact on the amount and standard-deviation of intra-individual variation 479 
observed. 480 
 481 
Average node degree. The average node degree has a discernible but moderate impact on 482 
the degree of language variation among individuals, compared to other metrics. In networks 483 
with language emergence (Cohen's d = 0.7) and language change (Cohen's d = 0.7) 484 
scenarios, networks with a low average node degree typically exhibit high inter-individual 485 
variation. However, the average node degree does not affect any type of intra-individual 486 
variation. 487 
 488 
Assortativity and degree distribution. Finally, both assortativity and degree distribution 489 
have no observable effect on inter-individual nor intra-individual variation. Networks where 490 
individuals are preferentially connected to individuals who have a similar degree, and networks 491 
with very skewed degree distributions, do not show specific patterns of variation.  492 
 493 
Initial language exposure. The initial language exposure, which reflects whether agents are 494 
born in language emergence or language change scenario, affects both inter- and intra-495 
individual variation. Networks in language emergence scenarios exhibit greater inter- and 496 
mean intra- individual variation: as expected, agents communicating in a language change 497 
scenario exhibit more consistency (lower entropy on average) than agents involved in a 498 
language emergence scenario. Notably, the amount of intra-individual variability is solely 499 
affected by the initial language exposure. However, the standard-deviation of intra-individual 500 
variation is lower in language emergence scenario. 501 
 502 
Summary. In summary, our findings indicate that clustering coefficient and path length are 503 
the main factors impacting both inter-individual variation and the standard deviation of intra-504 
individual variation. Size and density moderately affect inter-individual variation, specifically in 505 
language emergence scenarios. Notably, the mean intra-individual variation remains 506 



 

 

unaffected by any of our network structure measures. The initial language exposure, reflecting 507 
language change or emergence scenarios, also strongly influences all types of variation. 508 
 509 

 510 
Figure 2. Measure of inter-individual variation (left column), mean intra-individual variation (middle 511 
column), and standard deviation of intra-individual variation (right column) in networks with initial 512 
language exposure (language change; upper panel) and without initial language exposure (language 513 

514 
difference in variation between the two sets (high and low) for each predictor along with its confidence 515 
interval. Gray indicates a non-significant metric, while significant metrics are in shades of color.  516 

3.2 Dataset 2 517 

 518 
Here, we also use simulations obtained using automatically generated random, small-world, 519 
and scale-free networks (all generated networks were kept without any specific selection 520 
criteria5521 
clustering coefficient, the node degree, and the path length are highly correlated with each 522 
other. Thus, the more neighbors a given agent has on average, the more likely the friends of 523 
this agent will be connected to each other, and the lower the average path length will be in the 524 
network. Network size also correlate to the other metrics in scale-free networks: bigger scale-525 
free networks have higher path length and higher assortativity. These results reflect the 526 
necessity of the sampling procedure used above to study the effect of the different metrics 527 
separately. 528 

                                                
5 We only excluded random networks that possessed isolated component, in order to be able to 
compute the path length. 



 

 

 529 
Figure 3. Correlation matrix with the different metrics in scale-free (left), small-world (middle), and 530 
random (right) networks.  531 
 532 
Using this same set of simulations, we applied several machine learning techniques to predict 533 
variability in different network types using our metrics as predictors (see Figure 4) in both 534 
language emergence and language change scenarios. We observed that the R² for the mean 535 
intra-individual variation was notably low, with an average R² of 35% for language emergence 536 
and of 2% in language change scenarios (these means were computed for all methods and 537 
all types of networks; please note that there are high differences between the R² obtained in 538 
the different methods). Furthermore, our predictors in models using scale-free networks poorly 539 
predicted any types of variations, with R² around 37% for inter-individual variation and 4% for 540 
the standard deviation of intra-individual variation. However, in small-world and random 541 
networks, and in both language scenarios, our predictors effectively predicted inter-individual 542 
variation and the standard deviation of intra-individual variation, with R² values for these 543 
models around 92% for inter-individual variation and 76% for standard-deviation of intra-544 
individual variation. Thus, we focus our analysis on these two types of networks and types of 545 
variation. The exact R² and RMSE for each method, network type and type of variation are 546 
available in the Supplementary Materials (see Part 3.3.4). 547 
 548 
Inter-individual variation. Encouragingly, these results concur with the previous findings 549 
comparing sets of networks. The models consistently indicate that path length and clustering 550 
coefficient are the most reliable predictors for inter-individual variation in both language 551 
change and emergence scenarios. Notably, in this case, path length emerges as a stronger 552 
predictor than the clustering coefficient. Interestingly, the models reveal a substantial impact 553 
of average degree on inter-individual variation, particularly in random networks. The effect 554 
sizes of the other metrics are very small, corroborating the idea that network size and 555 
assortativity are not important for understanding inter-individual variability. There are no big 556 
differences between the language change and language emergence scenarios regarding the 557 
importance of predictors in both random and small-world networks. 558 
 559 
Mean intra-individual variation. Similar to our previous observations, strong differences in 560 
the mean intra-individual variation were identified between language change and language 561 
emergence scenarios. However, our metrics do not contribute significantly to predicting this 562 
type of variation, as evidenced by the relatively low R². This aligns with the findings of Dataset 563 
1. 564 
  565 



 

 

Standard-deviation of intra-individual variation. Concerning the standard deviation of intra-566 
individual variation, the importance of the predictors varies based on the type of network and 567 
the initial language exposure. In both random and small-world networks, path length emerges 568 
as the most crucial predictor. Notably, in small-world networks, it exerts a stronger influence 569 
in language change scenarios compared to language emergence scenarios. In small-world 570 
networks, the clustering coefficient takes the position of the second most important predictor, 571 
followed by node degree. Within random networks, node degree holds the second-highest 572 
importance as a predictor, closely followed by clustering coefficient and assortativity. In both 573 
cases, assortativity and size exhibit the least importance. 574 

 575 
 576 

Figure 3. Mean importance for inter-individual variation (left column) and standard deviation of intra-577 
individual variation (right column) in language change scenario (upper panel) and language emergence 578 
scenario (lower panel). Results for the mean intra-individual variation and for scale-free networks are 579 
not presented, as the predictors exhibited poor prediction performance for all types of variation (low R²). 580 
This measure of importance was computed by averaging the following z-scored predictor importance 581 
measures: accuracy-based and Gini-based (extracted from random forests models), unconditional 582 
(extracted from conditional forests), and sensitivity-based (extracted from support vector machines). 583 
The dots represent the mean of these four measures, and the line represents the standard error 584 
between these four measures. Results for random networks are shown in purple, while results for small-585 
world networks are displayed in green. 586 
 587 

4. DISCUSSION AND CONCLUSIONS 588 

 589 
Understanding the patterns of variability within a language provides important insights into the 590 

591 
network structure on language change, no differentiation was made between various network 592 
characteristics in real world-populations or agent-based models, making it impossible to 593 



 

 

disentangle their relative contributions. In this study, we applied several methods using a 594 
Bayesian agent-based model of language evolution to understand how specific characteristics 595 
of a network affect language in a language emergence and change scenarios.  596 
 597 
We found that network structure affects inter-individual language variation in both language 598 
emergence and change scenarios. Although most earlier studies focused on grammatical 599 
complexity and other aspects of language, rather than linguistic variation per se, previous 600 
claims supported the idea that the effect of network structure on language was largely 601 
attributed to differences in the size and density of social networks (Dale & Lupyan, 2012; 602 
Trudgill, 2011b; Wray & Grace, 2007; Raviv et al., 2019). However, our results suggest that 603 
when considering language change, the size and density of a social network do not appear to 604 
be the most important factors. Instead, parameters such as path length and the clustering 605 
coefficient seem to be more influential in determining language variability. The confusion 606 
between size and density on the one hand, and clustering and path length on the other hand, 607 
can be easily understood given that these factors are highly correlated: bigger and well-608 
connected populations tend to have shorter path lengths and higher clustering coefficients. 609 
Hampering the transmission of information and promoting the existence of distinct 610 
communities within a population will favor the emergence of variation in a language. Also, a 611 
population growing in size will not necessarily witness more variation, as long as the 612 
transmission of information is effective; this is, in particular, the case in populations with hubs, 613 
which facilitate the circulation of information. However, interestingly, in the first dataset and in 614 
the language emergence scenario only, it appears that the size of a network has an effect: 615 
larger populations tend to exhibit more variation. This emphasizes the intrinsic difference 616 
between the two scenarios and underscores the need to consider this factor when studying 617 
the evolution of language. Quite consistently, network density has a moderate effect in most 618 
analyses, but its exact role remains to be determined. 619 
 620 
Additionally, the type of scenario (language change versus emergence) also plays an 621 
important role in predicting the amount of inter-individual variation present in a population. 622 
Thus, individuals born in a society where there is already a pre-existing language (language 623 
change scenario) would be more likely to use homogenous forms of language. In turn, this 624 
would explain why emerging sign languages in small remote villages (such as Al Sayyid 625 
Bedouin Sign Language sign language in Israel; Jaraisy & Stamp, 2022) usually exhibit more 626 
variation than official deaf community sign languages taught at schools, even though these 627 
official languages are characterized by sparser and larger populations of signers (Meir et al., 628 
2012; Mudd et al., 2020). We suggest that the pressure for conformity (and more specifically, 629 
for using the dominant variant in the population) is the main factor underlying the differences 630 
between an established language (language change scenario) and an emerging language 631 
(language emergence scenario). Importantly, the strong influence of the type of scenario 632 
suggests that non-structural factors do play a very important role in shaping language 633 
variability, and that network structure cannot alone account for all the diversity present in real-634 
world networks. For example, other extrinsic factors such as the role of a shared context (Mudd 635 
et al., 2022) and the openness to strangers (Dale & Lupyan, 2012) were not taken into account 636 
here, but they might have additional contributions to the effect of network structure. 637 
 638 
On the contrary, intra-individual variability is not shaped by the network structure, but only by 639 
the type of scenario of the society in which an individual is born. An individual born in a society 640 
with low pressure to use a specific form of language (language emergence scenario) will use 641 



 

 

different types of utterances to refer to the same concept. These findings relate to the study 642 
of very recent emergent sign languages, such as Kata Kolok, where high intra-individual 643 
variation was observed (Lutzenberger et al., 2021). However, differences between individuals 644 
regarding their level of intra-individual variation are affected by the network structure. Here 645 
too, a high path length and a high clustering coefficient increase the probability that the 646 
population possesses both individuals very confident in their language beliefs and individuals 647 
with low confidence in which language form to use. We suggest that both high path length and 648 
high clustering coefficients are related to the presence of structural communities (cliques), 649 
which then lead to linguistic communities. Individuals bridging these communities are then 650 
more likely to possess high intra-individual variation, changing their language according to 651 
whom they are speaking to, while individuals inside communities use the language spoken by 652 
their group unconditionally. 653 
 654 
Together, these results suggest that differences at the global level of network structure, 655 
especially for path length and clustering coefficient, influence language inter-individual 656 
variability. They also highlight the weak role of network structure on intra-individual variation. 657 
However, one potential limitation of our study is that the degree of contrast between the sets 658 
of networks generated based on a single metric may not have been strong enough to capture 659 

660 
the high and low node degree networks may have been insufficient to fully explain the impact 661 
of node degree on language variability. Also, our "flat" Bayesian model contrasts with the 662 
human capacity to differentiate and track various language varieties depending on the 663 
interlocutors and contexts. This highlights the potential for elaborating more complex 664 
simulations (such as hierarchical Bayesian models) in future research, and meanwhile, our 665 
conclusions should be extrapolated with caution to real-world language networks. Additionally, 666 
the model only accounted for static networks, whereas real-world networks are dynamic and 667 
evolve through interactions. While interactions are the driving force behind network structure, 668 
further research could explore the mechanisms of preferential attachment to gain a deeper 669 
understanding of their impact on language variability.  670 
 671 
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