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Abstract

This paper proposes a non-iterative procedure for flaw(s) characterization based on Pulsed
Eddy Current Testing (PECT) signals analysis. The adopted inversion strategy is based on
the use of supervised statistical learning algorithms. A numerical forward solver, based on
the Finite Integration Technique (FIT), is used for the generation of the training data (the
input-targets couples of the learning algorithm). Predictions are then carried out in almost
real-time using a non-linear kernel based regression method, known as kernel ridge regres-
sion. It turns out that the direct fit of the regression model to the raw PECT signals may
lead to poor prediction accuracy due to the large cardinality of PECT signals. To remedy
this problem, an adaptive sampling strategy has been adopted in this work. The perfor-
mance of the proposed methodology is discussed and compared with solutions proposed
in the literature.

1 INTRODUCTION

Eddy-Current Testing (ECT) of conducting and/or ferromag-
netic materials is primarily concerned with the detection and the
dimensioning of structural anomalies like thinning, corrosion,
appearance of fatigue cracks etc., before such defects become
too critical for the integrity of the structure. Although simple
defect geometries can be successfully addressed using relative
simple techniques, such as amplitude and phase analysis of the
eddy-current probe complex impedance under harmonic exci-
tation, the interpretation of the inspection signals becomes dif-
ficult when complex geometries and defect shapes are involved.
Typical situations of such complex signals are met during the
inspection of riveted structures [1–4] or heat-exchanger tubes
in the proximity of support plates [5, 6], the former consist-
ing a significant problem for the aerospace industry and the
latter been related with critical security issues in the nuclear
plant maintenance.

Simple interpretation tools like the aforementioned complex
plane analysis in such involved geometries can fail, and the use
of more sophisticated inversion algorithms becomes a necessity.
To provide an adequate amount of information to the inver-
sion algorithm in order to minimise the inherit problem ill-
poseness, one has to scan the area of interest and build contour
plots of the respective probe response variations (in most cases
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variations of the probe complex impedance), also known in
ECT jargon as C-scans. The inverse mapping from these 2D
scans to a set of defect characteristic parameters is then yielded
by means of a cost-function minimization [7, 8].

A major drawback of classical iterative inversion approach
discussed above is that thousands of calls of the forward solver
are required in order to provide meaningful results. Thus, even if
efficient dedicated solvers have been proposed in the past years
in order to optimise the computation times, by decoupling the
field calculation in the flawless structure and the defect response
[4, 9–11], computational times remain non-negligible, especially
when entire probe-scans need to be simulated. Thus the overall
computation burden becomes prohibitive when complex situa-
tions like the aforementioned ones are targeted.

An additional difficulty is introduced when transient signals
are considered, which is the case when dealing with Pulsed Eddy
Current Testing (PECT) applications. The interest of using
pulsed instead of harmonic excitation relies on the broadband
content of the resulting signals, which, at least theoretically, can
significantly increase the amount of the acquired information
and hence to improve the performance of the characterization
algorithm. The beneficial effect of using multiple frequency sig-
nals is demonstrated, for example, in [5, 6], where the additional
information allows the separation of the defect signature from
parasitic signals caused by geometrical irregularities such as the
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tube support plates. This signal enhancement comes though at
the price of increasing the number of calculations by a factor
equal to the number of sampling points along the additional
frequency/temporal dimension. This dimension corresponds to
the number of frequencies, if the spectrum sampling and the
inverse Fourier Transform is used to construct the time signals
[12–16], the number of samples in the Laplace plane in case
of calculation of the Laplace transformed response, [17] or the
number of timesteps if the calculation is carried out directly in
the time domain [18, 19].

In this context, Machine Learning (ML) algorithms [20,
21] can prove useful, in the sense that an expensive (rigor-
ous) numerical solver is replaced by a so-called metamodel
(also known as surrogate model), when massive evaluation is
required. Hence, during a possibly expansive off-line phase, sets
of inputs-targets couples are computed in order to obtain a so-
called training set (sometimes called database). Thereupon, a
kernel based regressor is fit on the training set in order to built
an almost real-time estimator of the underlying numerical solver.
This approach is referred to in the literature as supervised learn-
ing [20].

Very recently, the Machine Learning (ML) paradigm has been
applied to perform non-iterative inversion studies based in ECT
with promising results [22]. A hybrid approach combining the
classical iterative minimization method based on a conjugate-
gradient algorithm and an artificial neural network approach has
been proposed for groove sizing using PECT signals [23].

A second issue that one has to encounter when dealing with
PECT is the augmented dimension of the output space, result-
ing in a high cardinality of its elements. The direct consequence
of this fact is that fitting the regression model directly on raw
signals may lead to poor prediction accuracy or merely failure,
when PECT signals are considered. In order to overcome this
drawback, a dimensionality reduction method based on Prin-
cipal Component Analysis (PCA) [24] is proposed in order to
work directly in a reduced space of a much smaller dimension
compared to the original (physical) space. This reduced space
will be referred to in the context of this work as the extracted
feature space. In this way, algorithms that can largely enhance
the regression accuracy through wise sampling strategies can
be developed.

This approach is followed in [16], where feature extraction is
employed to address the classification problem. In this paper, a
more general approach is devised in order to be able to tackle
the inversion (regression in ML language) problem, and which
is based on a generalization of ideas presented in [22, 25]. Since
the input space of the physical problem parameters is replaced
in this approach by the abstract feature space, the corresponding
sampling strategy for the generation of the training set has to be
modified accordingly in order to maximize the regression accu-
racy. Hence, provided a given budget of simulations, an adap-
tive generation of the training set by an homogeneous fill of
the extracted feature space is proposed here. In this context,
the main advances of this contribution of this article compared
to the literature (e.g. [25–28]) consist in the development of an
adaptive dataset generation algorithm aiming at:

∙ Enhancing the generation throughput thanks to the sam-
pling strategy based on the projection of PECT data in the
extracted features counterpart (e.g. adapt for parallel or dis-
tributed computing)

∙ Minimize the number of expensive-to-compute forward
solver calls for inversion problems and increasing the regres-
sion performance through the use of vector-valued regres-
sors algorithms

∙ Provide a general framework for dataset sampling strategies
based on ECT signals (regardless of the technique employed)

The paper is structured as follows. In the next section, an out-
line of the Kernel Ridge Regression (KRR) approach with an
outlook from the optimization problem perspective will be pro-
vided, followed by a brief introduction to the PCA algorithm. In
Section 4.1, the proposed adaptive sampling algorithm will be
described in detail and it will be applied for performing inver-
sion tasks. In Section 5, numerical results will be presented and
discussed. Some perspectives of this work are discussed upon at
the end of the article together with concluding remarks.

2 KERNEL RIDGE REGRESSION

In this section, we briefly introduce the solution of a non-linear
regression problem by means of the kernel based regularized
least square method, also known as Kernel Ridge Regression
(KRR) [20, 29]. Let us define the input matrix X ∈ ℝN×D,
where N stands for the number of samples and D for the
dimension (cardinality) of the measurements. A set of targets is
associated with every input, which is represented by the matrix
Y ∈ ℝN×M, with M standing for the targets size. We define
the dataset 𝕊 as a collection of inputs and targets such that
𝕊 = {(x1, y1),… , (xN , yN )}, where xn and yn represent the nth

row of matrices X and Y, respectively. The underlying idea in
KRR, known in the literature as the kernel trick, relies on the
introduction of a mapping between the input space X and an
alternative feature space with dimension F, in which the origi-
nally non-linear X − Y relation is possibly transformed to a lin-
ear one [29, 30]. Thus, we shall define the mapping as follows

𝜙 : x ∈ ℝD×1 ↦ 𝜙 (x) ∈ 𝔽 ⊆ ℝF×1. (1)

As a consequence, the mapped data set 𝕊 is described in the
alternative feature space via𝕊∗ = {(𝜙(x1), y1),… , (𝜙(xN ), yN )}.

For the sake of notation clarity, we shall restrict ourselves to
the case of scalar-valued targets, that is, Y ∈ ℝN×1. The gener-
alization to a vector valued data is straightforward. In the primal
version, the KRR can be formulated as an optimization problem
over the objective function  (w), such that [29, 30]

w = arg min
w

 (w) = arg min
w

N∑
n=1

(
yn − g (𝜙 (xn ))

)2
− 𝜆‖w‖2

,

(2)
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where 𝜆 ≥ 0 represents the regularization coefficient, and

g(𝜙(xn )) = ⟨w,𝜙(xn )⟩ = w⊤𝝓 =

D∑
d=1

wd𝜙(xnd ), (3)

is the linear prediction function associated with the mapped
input 𝜙(xn ). The superscript ⊤ stands for the transpose. By tak-
ing the gradient of  (w) with respect to w and equating to zero,
one obtains the primal solution as

w =
(
KK⊤ + 𝜆IN

)−1
K⊤Y, with w ∈ ℝN×1, (4)

where K represents the kernel matrix, which is a Gram matrix
with entries given by

Ki j =
⟨
𝜙(xi ),𝜙

(
x j

)⟩
= k

(
xi , x j

)
, (5)

and k(x, ⋅) being the kernel function used to evaluate the inner
product (⟨⋅, ⋅⟩) in the feature space mapped by 𝜙(⋅). In the
machine learning community, (5) is also known under the name
of kernel trick or kernel substitution. The kernel trick allows
to work directly in the feature space by considering the original
space X without explicitly performing the mapping (1) in (2) [29,
31]. Notice here that the solution of (4) can become computa-
tionally demanding when the size of the feature space F is much
larger than D. That is, a system of equation with a matrix of size
F × F needs to be solved. Alternatively, the dual representation
of (2) can be obtained by expressing (4) as [20, 29, 31]

w =

N∑
n=1

𝜶n𝜙 (xn ) = 𝚽
⊤
𝜶 , (6)

with

𝜶n = 𝜆−1
{

w⊤𝜙 (xn ) − Yn

}
, with 𝜶 ∈ ℝN×1. (7)

Then by replacing (6) into (2), one can show that the dual for-
mulation is obtained as [29, 30]

𝜶 = arg max
𝜶

 (𝜶 , 𝜆, S )

= arg max
𝜶

{
𝜶⊤KK𝜶 − 𝜶⊤KY + Y⊤Y + 𝜆𝜶⊤K𝜶

}
. (8)

By taking the gradient of  (𝜶 ) with respect to 𝜶 and equating
to zero, the solution is obtained as

𝜶 = (K + 𝜆IN )−1
Y. (9)

In other words, passing to the dual formulation, we need to
invert an N × N matrix in order to get 𝛼, which is computa-
tionally much less expensive than inverting the F × F matrix of
the primal solution. Once 𝜶 is calculated through (9), the regres-
sion is applied on a set made by T samples (i.e. the test set Xtst)

through

g
(
Xtst

)
= 𝜶⊤K

(
X, Xtst

)

= Y⊤
(
K
(
X, Xtst

)
+ 𝜆IN

)−1
k
(
Xtst

)
, (10)

with Xtst ∈ ℝT×D and Ki (X
tst
t ) = [k(xtst

t , x1),… , k(xtst
t , xN )]

⊤
.

3 DIMENSIONALITY REDUCTION BY
PROJECTION ONTO PRINCIPAL
COMPONENTS

The number of considered dimensions of D may be detrimen-
tal to the learning task, reducing both accuracy and computa-
tional efficiency of the regression process. This phenomenon is
known in machine learning under the name of ”curse of dimen-
sionality”. When PECT signals are simulated and/or measured
over linear or surface scans, one may be confronted with D ≥

104. In fact, to each probe position, hundreds of time samples
are collected, thus a strategy to extract a meaningful subset of
features is needed. That is, we must, in such cases, project the
NdT signals onto an intrinsic or latent space of a typically lower
or much lower dimension than the original space.

In this paper, the Principal Component Analysis (PCA) [24],
also known under the name (Karhunen–Loeve transform), has
been selected as a feature extraction method. Provided a set
of inputs xn ∈ ℝ1×D with n = 1,… , N, that is supposed to
have zero-mean, PCA provides a subspace of dimension J ≤ D
such that the projection of xn on the subspace spanned by J
maximizes the variance of the data [24]. Thus the extracted
feature space is described by a set of mutually orthogonal vec-
tors J. These vectors are known as principal components/axes.
From the computational point of view, PCA can be efficiently
performed by employing Singular Value Decomposition (SVD)
of the covariance matrix associated with the dataset inputs
X ∈ ℝN×D [20]. For the dimensionality reduction stage through
PCA, we first built the covariance matrix 𝚺 = X⊤X, then we
decompose 𝚺 through SVD as

𝚺 = UDV⊤, (11)

where U ∈ ℝD×D V ∈ ℝD×D are the matrices containing the
eigenvectors. D ∈ ℝN×N is the diagonal matrix of the singu-
lar values that, for the sake of simplicity, we assume it being
ordered in decreasing amplitude. When applying the PCA, we
are interested in keeping only a subset of the greatest J eigenval-
ues, which implies the projection matrix U ∈ ℝN×J. Formally
speaking, U has rank equal to J, and hence it maps the origi-
nal space to the new extracted feature space of J × N dimen-
sions. The number of latent components J can be conveniently
chosen by considering the cumulative sum of the ratio between
the first n eigenvalues of D and their sum over N, that is, by
considering the so-called explained variance. In the limit case,
where the explained variance of the entire dataset is accounted,
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262 MIORELLI ET AL.

the extracted subspace coincides with the original one, that is,
J = D.

4 TRAINING SET GENERATION AND
PREDICTIONS IN THE EXTRACTED
FEATURE SPACE

4.1 Training set generation by adaptively
filling the extracted feature space

Unlike other PCA-based strategies already studied in the litera-
ture (e.g. [16]), here an ad-hoc training set generation has been
applied for carrying out non-iterative inversion. Given the sig-
nificant computational time per direct solver call, the purpose
of this stage is to obtain a training set, which, for a predefined
simulations budget, maximizes therein contained information.
Furthermore, in contrast to the classification tasks addressed in
[16], the problem targeted hereafter is the construction of an
automatic quantitative and robust inversion strategy based on
machine learning regression (i.e. KRR).

In recent years, several efforts have been devoted in the
design of advanced training set generation schemata. Training
set sampling strategies can be divided into two main families: the
input space filling [32, 33], which aims to fill homogeneously the
parameter space, and the adaptive space sampling, which selects
the samples from a subset satisfying a given objective function
[22, 25–27]. In this work, we propose a sampling strategy relying
on sampling the space spanned by the extracted feature space,
which we refer to as Feature Space Filling (FSF) algorithm. It
is worth mentioning that a similar procedure has already been
studied in the framework of partial least squares feature extrac-
tion [22]. In contrast with that work, the approach proposed
here relies to PCA, and it aims to generate—that is, fill—the
extracted feature space without performing any iterative loop
with an obvious gain in terms of computational efficiency since
it is suitable for parallel computation on clusters or GPU. Fur-
thermore, the proposed schema can be readily applied to any
other, linear or non-linear, dimensionality reduction method
regardless of the knowledge of the targets (i.e. in an unsuper-
vised way).

The FSF algorithm is based on three main steps. First, a set
of I points is chosen in order to provide a suitable initialization
through standard design of experiments approach, like a coarse
tensor grid or pseudo-random strategies (e.g. Latin Hypercube
Sampling (LHS), Sobol’s or Halton’s sequences etc.). Then, the
forward solver ( ) is called on the Yinit ∈ ℝI×M sampling points
providing the associated Xinit ∈ ℝI×D signals and hence the
initialization dataset 𝕊init = {(x1, y1),… , (xI , yI )} is constituted.
Thereupon, the reduced space is determined through PCA lead-
ing to the dimensionality reduced initialization dataset 𝕊̃init =

{(x̃1, y1),… , (x̃I , yI )}, where tilde refers to the projected vectors.
We have discussed in Section 3 that the principal component
space can be seen as the space that maximizes the variance of the
considered signals set. In this framework, a homogeneous fill of
the space spanned by the principal components corresponds in
capturing the variance of all the signals associated to the con-

sidered problem. For the selection of model evaluations during
the feature space filling, the KRR, outlined in Section 2, is fit-
ted to the initialization set 𝕊init

fwd
= {(y1, x̃1),… , (yI , x̃I )}, where

the subscript ”fwd” refers to forward relationship. Then, (10)
is applied on Ytrial ∈ ℝT×M to predict the eigenvalues compo-
nents into the extracted feature space providing x̃trial ∈ ℝT×J,
where T is a representative (large) set of target candidates. Due
to the excessive computational burden for the simulation of
the whole set of candidate samples, an add-and-sorting pro-
cedure aiming at maximizing the information content (i.e. the
variance) is applied. More precisely, the procedure consists of
iteratively adding a candidate sample when the corresponding
position in the feature space is “sufficiently far” from the fea-
tures of the rest of the samples. In the opposite case, the sample
is discarded. This criterion is formally expressed by (12) with the
term "sufficienlty far" being translated to a minimum distance
value in the feature space. The iterations are terminated when
the predefined number of samples C has been reached, yielding
the sought training set 𝕊̃ = {(x̃1, y1),… , (x̃N, yN)}.

‖‖‖PCA
[
g
(
Ytrial

)]
− PCA

[

(
Yinit

)]‖‖‖
2
> tol, (12)

where PCA[⋅] indicates the projection of the dataset [⋅] onto the
space spanned by the principal components according to (11).
On the right hand side of (12), tol refers to a tolerance which
can be properly chosen as a ratio of the mean distances between
points in the feature space. In this work, we have chosen a toler-
ance value equal to tol = mean(median(‖PCA[ (Yinit )]‖2)). The
FSF algorithm is provided in the form of a pseudo-code in
Algorithm 1.

4.2 Learning the inverse model and perform
prediction in the reduced space

Let 𝕊̃ = {(x̃1, y1),… , (x̃N , yN )} be the dataset obtained via the
FSF Algorithm 1. The learning procedure presented herein con-
sists of fitting the KRR, presented in Section 2, to 𝕊̃. The
applied kernel function, introduced in (5), is the so-called Gaus-
sian kernel (also known under the name of radial basis function
kernel), and it is defined as

k
(
xi , x j

)
= exp−

‖x̃i−x̃ j‖
2𝜎 . (13)

In order to properly fit the KRR model to the data, a cross-
validation technique [29] has been applied to tune 𝜎 and the
regularization coefficient 𝜆 in (7). This step is known in ML as
training phase.

Once the model has been fitted, data regression can be
achieved at almost real time by applying (10). Let Xtst ∈ ℝT×D

be the matrix representing a new set of T × D points (e.g. the
set of PECT signals sampled in space and time), from which we
wish to predict T × M parameters (in case of NdT applications,
a the parameters of the flaw) defined as Ypred ∈ ℝT×M. Since
KRR has been trained on the projected data (13), one needs
to project the test set onto the laten feature space before the
prediction evaluation in the following fashion
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ALGORITHM 1 FSF sampling strategy

Begin

initialize the training set with I samples:

𝕊init = {(x1, y1 ),… , (xI, yI )}

project the data onto the extracted feature space spanned by the first J principal

components:

𝕊̃init = {(x̃1, y1 ),… , (x̃I, yI )}

fit KRR model f (𝕊̃init
fwd

) (see Equation 7) to the dataset:

𝕊̃init
fwd

= {(y1, x̃1 ),… , (yI, x̃I )}

generate a set of T candidates via pseudo-random sequences:

Ytrial = LHS (T, M )

perform predictions through KRR model ( f (.)) based on the Ytrial ∈ ℝT×M:
x̃trial = f (Ytrial ) with ∈ ℝT×J

add the first C candidates that fulfill the distance criteria:

Xcandid
1 = []; Ycandid

1 = []

for t = 1 to T do

if c > C then

break

else

check if the distance between extracted components among the candidate sample and

the already added samples is fulfilled:

if ‖PCA[g(Ytrial
t )] − [X̃init , X̃candid ]‖2 > tol then

update the parameter space:

Ycandid = [Ytrial
1,…,c−1, Ytrial

c ]

update the extracted feature space:

X̃candid = [Xcandid
1,…,c−1, Xcandid

c ]

c = c + 1

end if

t = t + 1

end if

end for

call the forward solver on the C retained candidates and update the training set:

X̃new = PCA[ (Ycandid )] with ∈ ℝC×J

fill the final training set containing samples:

𝕊̃ = {(x̃1, y1 ),… , (x̃I, yI )} ∪ {(x̃I+1, yI+1 ),… , (x̃I+C, yI+C )} =
{(x̃1, y1 ),… , (x̃N, yN)}

End

X̃tst = XtstU, with X̃tst ∈ ℝT×J, (14)

where U ∈ ℝD×J has been obtained from the training set
through PCA algorithm outlined in Section 3 based on the
knowledge of X.

5 APPLICATION TO THE
CHARACTERIZATION OF DEFECTS

5.1 Definition of the problem addressed

The above presented algorithm is applied for the detection
and the dimensioning of small cracks in steam generator tubes,
which are lying in the proximity of ferromagnetic tube support

FIGURE 1 Sketch of the considered inspection problem with details asso-
ciated with the groove parameters

plates with cylindrical openings. The measurement signals are
variations of an Eddy current probe response, as the latter inter-
acts with magnetic field anomalies, due to the presence of cracks
or other material anomalies. The sensing probe consists, in this
particular case, of a number of air-cored coils, and it moves
along the interior of the tube. This is an important nuclear safety
problem, where the purpose is to detect and characterise steam
generator tube degradations, which may potentially lead to water
coolant leakage from the primary to the secondary coolant cir-
cuit thus provoking a contamination incident.

The presence of large conducting/ferromagnetic pieces in
the vicinity of the steam generator tube, like steel support plates,
increases the complexity of the crack detection due to the strong
interaction of these parts with the Eddy current probe, which
alter and may even completely mask the crack signature [5, 6].
Thus, in order to be able to separate the eventual crack signal
from the rest of the contributions, an increase in the amount of
acquired information is required. The standard way to enhance
the signal information is via combination of measurements
acquired at different frequencies [5]. The main idea in this tech-
nique is to form a weighted sum of the signals obtained at dif-
ferent frequencies in order to eliminate the signature of the
plate. In a recent contribution, the use of classifiers based on
ML approaches has been proposed for the detection of defects
in the proximity of external structures like support plates and
material deposits with promising results [34].

PECT inspection is inherently broadband, which makes it
a good candidate for the improvement of the crack signature
extraction in environments consisting of various perturbation
components. In this context, ML-based approaches using tran-
sient signals, as the approach of the present contribution, can
provide an interesting framework for addressing the problem
of crack detection and dimensioning in the vicinity of exter-
nal structures.

In this section, we present the numerical results obtained for
the inversion of PECT crack signals in the vicinity of a support
plate (see Figure 1), and we study the performance of the pro-
posed algorithm in terms of prediction accuracy and robustness
to Additive White Gaussian Noise (AWGN) corruption. A non-
magnetic conductive tube with conductivity equal to 1.0 MS/m
and inner and outer radius equal to 17.96 mm and 19.05 mm,
respectively, is affected on the outer side by a 2D axis symmet-
ric groove just beneath the support plate. The support plate is
modelled as a thick ferromagnetic external tube wall with inner
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264 MIORELLI ET AL.

and outer radius equal to 11.30 mm and 20.00 mm, respectively,
and thickness equal to 19.00 mm. The support plate conduc-
tivity is 3.0 MS/m, and its relative permeability is equal to 50.
The probe consists of two axial coils connected in differential
mode, and it moves along the tube axis. The coils inner radius
is equal to 7.83 mm, the outer radius is 9.25 mm, and its length
is 2.0 mm. The two coils are wound with 70 each, and they are
separated by a 2.0 mm gap. The excitation signal injected into
the emitting coil is an increasing exponential with time constant
𝜏 = 15 ms and duration of T = 25.0 ms, and the current ampli-
tude at its peak is equal to 1 A.

5.2 Definition and details on the numerical
simulation campaign

The training set is obtained via the FSF algorithm, which has
been initialized with 100 samples generated in a Latin hyper-
cube sampling. The considered parameters range is equal to
[0.8, 1.0] mm and [1.1, 2.0] mm for groove depth and width,
respectively. Thus, 100 samples have been selected through FSF
schema and added to the initialization in order to built the
final training set. The axial scan comprises four sampling points
equally distributed with a step of 3.0 mm between them. The
temporal signals have been discretised using 100 time samples.

Hence, the training set are 2D signals, whose first axis cor-
responds to an axial scan of four points, whereas the sec-
ond dimension stands for a temporal discretization with 100
timesteps associated to the axial and the radial components of
the magnetic flux density variation. The above sampling scheme
results in a training set size with X ∈ ℝ200×800 PECT raw sig-
nals generated by accounting Y ∈ ℝ200×2 inputs.

When visualizing the samples distribution in the groove
parameter space, we can notice that there is a clear tendency
of FSF to sample the deepest and widest groove values. This
is coherent with the FSF sample strategy since these zones are
the ones responsible for the strongest variations which is where
the highest values of the variance are to be found. Looking at
Figure 2(b), we can notice that the initialization procedure tends
to create clusters of samples that cannot capture the variance
of the data since “holes” appear in the the project feature
space. On the other hand, the FSF sampling tends to fill the
gap between the initialization samples in an almost homoge-
neous fashion.

In this paper, we have chosen to apply a KRR based on Gaus-
sian kernel, thus both the regularization parameter 𝜆 and the
kernel parameter 𝜎 have been tuned via a fivefold cross vali-
dation procedure [22, 29]. The sampling intervals for 𝛼 and 𝛾
parameters are [102

, 10−11] and [10−8
, 107], respectively, with

logarithmic discretization. Figure 3(a)and(b) shows the inver-
sion results obtained by an unknown test set with 200 samples.
The training set was generated by randomly applying the FSF
training set generation and keeping only the first three principal
components, which correspond to 99% of the explained vari-
ance. In Figure 3(c) and (d), the prediction results are shown for
a training set generated via LHS design counting 200 samples
without applying PCA dimensionality reduction. Observing the

FIGURE 2 “×”: inititalization points, “∙”: FSF points. (a) Groove param-
eters compounding the training set and simulated through the numerical solver.
(b) 2D scatter plot collecting the first and the second principal components
(PCs). (c) First and third principal components.
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FIGURE 3 True versus predicted plots obtained by performing predictions on a synthetic noised test set with SNR = 20 dB, considering both groove depth
and width. In (a) and (b), FSF was used with three principal components. In (c) and (d), no dimensionality reduction was used. (e), (f) and (g) and (h) present results
obtained with sampling proposed in [22].

aforementioned couple of figures, concerning the groove width,
one can notice that performance is improved when FSF with
dimensionality reduction is employed since results are more
aligned and less spread along the 45◦ solid line representing
the perfect agreement between experiments and predictions.
These results show that learning a model accounting the three
dimensions (the ones associated to PCA feature extraction)
leads to overall better performance than considering the whole
PECT signal.

Furthermore, looking at Figure 2, one can readily notice that
the mapping between parameter space (i.e. Figure 2(a)) and
extracted PCA components (i.e. Figure 2(b) and (c)) is not trivial
since it involves a non-linear regression task. That is, one cannot
easily infer the groove size by analysing the groove parameter
space and PCA space separately.

5.3 Obtained results analysis and discussion

In Figure 3(e)–(h), we show the results obtained by applying
the adaptive sampling strategy proposed in [22]. Compared to
FSF (i.e. Figure 3(a) and (b)) one can notice that slightly worst
results are obtained by the approach [22] either considering Sup-
port Vector Regressor (SVR) model (Figure 3(e)and(f)) or KRR
model (Figure 3(g) and (h)) applied on the same adaptively gen-
erated training set.

Performing a closer analysis on the different group of plots
in Figure 3, we can notice that inversion based on complete
PECT signals leads to poor results for both the parameters con-
sidered (i.e. Figure 3(c) and (d)). This is due to the high cardi-
nality of PECT signals (tenth of hundreds of samples in time),
such behaviour is also known as curse of dimensionality issue.
Furthermore, Figure 3(e) and (f) show that the regression strat-
egy used in [22] provide much worst results in predicting the
smaller values of the groove width. This is very likely due to
the use of scalar-valued SVR regressor [22]. On the other hand,
in Figure 3(g) and (h), one can notice that the vector-valued

KRR regressor is able to enhance the inversion accuracy once
the sampling schema in [22] is employed. That is, as shown in
Figure 4, one can notice that the robustness of the FSF sam-
pling strategy, compared to [22] regardless of the regressor used,
is clearly superior for SNRs smaller than 20 dB. Furthermore, it
is worth mentioning that, unlike [22], the sampling technique
studied in this paper enables a more CPU time efficient training
set generation (e.g. multiprocessing, distribute calculations etc.)
since no cross-validation is needed on the choice of the princi-
pal components (i.e. explained variance is chosen once based on
statistical reasoning).

It worth mentioning that in order to carry out the whole set
of 100 inversions, KRR required about 0.02 s on a standard
laptop (e.g. Dell Precision 5520 equipped with Intel Xeon E3-
1505M v6).

6 CONCLUSION AND PERSPECTIVES

This paper proposes a training set generation strategy based on
adaptive sampling of PCA feature space, which is then used to
train a kernel ridge regressor targeting non-iterative parametric
inversion for crack characterization based on PECT signals. The
performed analysis demonstrates the accuracy improvement of
the inversion results, when FSF sampling is applied via projec-
tion of data onto the principal components subspace in com-
bination with a KRR, with respect to non-adaptive strategies.
Furthermore, a marginal improvement in terms of accuracy and
a robustness enhancement against AWGN corruption has been
obtained via application of the FSF sampling compared to the
adaptive sampling method [22].

Even not explicitly underlined in the paper, the FSF approach
can be also employed for the construction of training sets in
view of non-iterative predictions in the forward sense (i.e. meta-
models). In the latter case, one should replace the last step in
Algorithm 1 with 𝕊̃final = {(y1, x̃1),… , (yN , x̃N )} and train the
KRR consequently. It must be also stressed out that the FSF
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FIGURE 4 Regression results accuracy versus different AWGN levels
imposed on the test set. The Root Mean Square Error (RSME) is shown for
FSF, Lating hypercube sampling (LHS), and [22] (with SVR and KRR regres-
sors) sampling strategies for groove (a) depth and (b) width, respectively.

strategy does not depend to the kernel-based method employed,
and it can be extended directly to other linear and non-linear
feature extraction methods [35].
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