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Abstract: Uncertainties related to the energy produced and consumed in smart grids especially in 8 

microgrids are among the major issues for both the design and optimal management. In that context, 9 

it is essential to have representative probabilistic scenarios of these environmental uncertainties. 10 

The intensive development and massive installation of smart meters will help to better characterize 11 

local energy consumption and production in the following years. However, models representing 12 

these variables over large time scales are essential for microgrid design. In this paper, we explore a 13 

simple method based on Markov chains capable of generating a large number of probabilistic pro-14 

duction or consumption profiles from available historical measurements. We show that the devel-15 

oped approach can capture the main characteristics and statistical variability of real data on both 16 

short-term and long-term scales. Moreover, the correlation between both production and demand 17 

is conserved in generated profiles with respect to historical measurements. 18 

Keywords: Microgrids, uncertainties, integrated design, stochastic modeling, Markov chains, en-19 

ergy demand, solar production 20 

 21 

1. Introduction 22 

The design and operation of microgrids are challenging and have to be robust, espe-23 

cially because many parameters (e.g., future energy demands, renewable production, 24 

electricity tariffs) are inherently uncertain. So their future values cannot be predicted with 25 

perfect accuracy when making decisions during the system design phase or for setting the 26 

optimal operation strategy. On one hand, the design of microgrids under uncertainty 27 

might be based on stochastic programming optimization techniques [1] where a large 28 

number of scenarios are required. On the other hand, once the size of the assets has been 29 

fixed, short-term probabilistic forecasts might be needed for real-time operation strategies 30 

to optimize the power flows between the equipment under uncertainty. For instance, 31 

look-ahead control strategies [2] solve, at each time step, a multi-stage optimization prob-32 

lem, based on several probabilistic forecasts, each of them associated with a given proba-33 

bility. In both cases, a large number of data over multi-time scales are essential to accu-34 

rately solve the problems.  35 

Having said that, decision-makers and modelers often lack appropriate data to run 36 

the models, especially in a stochastic context. In many real case studies, no historical data 37 

are available or the dataset is of poor quality only covering short periods. Therefore, de-38 

cision-makers might come up with inappropriate design decisions while modelers do not 39 

have enough data to assess the design and control approaches they are implementing. To 40 

overcome these difficulties, scenario generation methods have been widely implemented 41 

in the literature [3, 4]. This work mainly focuses on the generation of solar production and 42 

energy demands (i.e., electricity and heat) profiles at an hourly time step. However, the 43 

generation procedure may be extended to a wide spectrum of environmental variables for 44 

any engineering systems. 45 
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While short-term forecasting is a relatively new topic driven by efficient real-time 46 

operation needs, long-term forecasting for energy systems has been studied for a long 47 

time [3]. Indeed, the latter has been used for decades to anticipate the energy demand 48 

growth in order to plan future energy production and transmission infrastructures. How-49 

ever, the recent and strong development of variable renewable energy (VRE) has led to 50 

new long-term forecast requirements where short temporal granularity (i.e., at an hourly 51 

time step) is needed to cope with the short-time scale variability of the production [5, 6]. 52 

Also, as noticed by Hong et al in [3] “another important step in the recent history is the 53 

transition from a deterministic to a probabilistic point of view”: taking into account the 54 

variability of production and consumption in future microgrids exploiting a growing part 55 

of VRE requires a shift from optimal design with regard to deterministic scenario to robust 56 

design under multiple-scenarios. Generating multiple scenarios integrating the correla-57 

tions of those stochastic variables is then critical in order to assess the efficiency of the 58 

microgrid design [7].  59 

Recently, Mavromatidis et al [4] draw a great review of uncertainty characterization 60 

for the design of distributed energy systems, which is of first interest for this work. A large 61 

number of methods are documented for both the generation of solar production and en-62 

ergy demand profiles [8]. The readers could refer to this article for an in-depth discussion 63 

about the different approaches. The objective of this part is to summarize the main con-64 

clusions and provide a clear insight into the direction of this paper. Therefore, the first 65 

observation from their review is that the generation method depends on whether or not 66 

historical data are available. These approaches can be classified into top-down (i.e., his-67 

torical data are available) and bottom-up categories, respectively. While obtaining solar 68 

production data is today relatively straightforward [9], the availability of energy demand 69 

measurements is generally rarer. Furthermore, the synchronicity between all environmen-70 

tal variables must be kept by the data generation method: “in the particular case of a solar 71 

generator based microgrid system design, it is not the same to have a huge solar produc-72 

tion during low energy demand or on the contrary during huge consumption phase”. 73 

In the top-down case, the most frequent and easiest generation method is the use of 74 

probability distribution functions (PDFs), derived from historical profiles for each hour. 75 

Then, a scenario is built by sampling from the PDFs. The drawback of such a method is 76 

that the uncertain parameters are treated as independent random variables between con-77 

secutive time steps, which might lead to unrealistic behavior where the autocorrelation 78 

and periodicity of the initial dataset are lost. To overcome this issue, more sophisticated 79 

and hybrid methods have been developed such as autoregressive models [10], Markov 80 

approaches [11], and machine learning based methods [12] to name just a few. The latter 81 

is probably the most popular approach for both the production and energy demands 82 

when large datasets are available [13]. Other recent methods are presented in [14,15]. 83 

On the other hand, when the case study lacks adequate energy demand measure-84 

ments (e.g., newly built buildings), physical model-based methods are usually imple-85 

mented to generate profiles. In smart building applications, the most common approaches 86 

are probably the use of ready-made Building Performance Simulation (BPS) tools (e.g., 87 

energyPlus [16]), but other model-based techniques are also implemented (e.g., resistance-88 

capacitance (RC) models [17], a stochastic model where the input parameters are charac-89 

terized based on interview information [18]). More elaborate methods are derived for 90 

large-scale districts where the previous approaches might not be appropriate (creating a 91 

model for each building of a district is quite laborious...) [19]. In the bottom-up case, un-92 

certainty is added to the input parameters of the simulation. The drawback of these meth-93 

ods is that a non-negligible amount of development time is usually required to get familiar 94 

with BPS tools and collect all the numerous input parameters. Thus, energy modelers who 95 

are only seeking a fast generation method to test their design and operation algorithms 96 

might be discouraged by these approaches. 97 

The main objective and contribution of this work is to provide an efficient and 98 

straightforward method to generate a large number of probabilistic energy production 99 
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and demand profiles when historical measurements are available. It is essential to men-100 

tion that this generation method keeps the correlation between production and demand 101 

time signals which is really relevant while design and operation optimization issues are 102 

concerned. The energy modeler’s perspective is deliberately adopted in this work: the fo-103 

cus is on creating large datasets at an hourly time step to build different microgrid design 104 

and operation algorithms. Nevertheless, the last section will show that the proposed 105 

method can capture the main statistical features and variations of real data despite the 106 

method’s simplicity. Also, another important aspect is that the generation approach can 107 

be used simultaneously to generate long term scenarios for design and short-term fore-108 

casts for optimal operation purposes. Hence, the method is intended for modelers seeking 109 

a simple generation approach without spending too much time on this phase. 110 

Therefore, the method implemented in this work is based on Markov chains over 111 

representative periods. The approach only requires historical measurements of the time 112 

series of the uncertain parameters in order to provide a wide range of contingencies. Dif-113 

ferently from other existing works, here the states of the Markov chain are represented by 114 

multiple environmental variables, so to keep the time-relationships between them. 115 

The rest of the paper is organized as follows: the methodology for generating syn-116 

thetic profiles is developed in section 2. Next, the performance of the approach is demon-117 

strated on a microgrid in a residential case study from the Ausgrid (Australian distributor 118 

of electricity) dataset in section 3. Finally, conclusions are drawn in section 4 119 

2. Methodology for generating synthetic profiles from historical data 120 

The uncertain parameters (here the electricity consumption, heat demands and solar 121 

production) of multi energy systems are modeled as discrete random variables. The fol-122 

lowing work aims at providing a method to build a discrete sample space where a scenario 123 

is a sequence of all the random variable realizations over a given time horizon H, associ-124 

ated with a given probability.  125 

Starting from an initial set of historical data, the method for generating synthetic and 126 

representative profiles of the random variables is illustrated by the process in Fig. 1 that 127 

can be divided into 4 different steps. The initial dataset contains the short and long term 128 

evolution of the random variables considered. Each element in this set can be defined as 129 

a sample state X(h) composed of observable realizations of the underlying random varia-130 

bles at hour h. The finite set of observed states is called the state space. In our case, as 131 

previously mentioned, states contain 3 components: the electricity and heat demands and 132 

the PV production measurements. 133 

 134 

Figure 1. Description of the scenario generation method based on Markov chains: from historical 135 

data (0); days are divided into representatives week and week-end days for each month (1); for each 136 

hour, a given number of states is selected using a clustering algorithm (2); then the transition matri-137 

ces based on the probabilities of going from one state to another between two consecutive hours are 138 

computed (3); finally, synthetic scenarios are generated by giving an initial state, a timestamp and 139 

the length of the horizon (4) 140 

2.1. Analysis and classification of the initial dataset 141 
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This first step of the methodology (step 1 in Fig. 1) is to identify representative peri-142 

ods from the historical annual dataset to account for the different time scales variability. 143 

The Markov chains will be later computed over these periods. Therefore, in our case, each 144 

month of the year is considered separately to avoid losing seasonality features. Further-145 

more, week and weekend days of each month are considered separately, as the energy 146 

demand pattern usually depends on the working activity. One Markov chain is built for 147 

each of these representative days. Finally, each day is segmented into 23 hourly transitions 148 

to account for intraday variability (i.e., daily cycles for PV production and load demands). 149 

Thus, 552 (12 (months) x 2 (week or week end) x 23 (hourly transitions)) Markov chains 150 

will be computed from the historical dataset. The classification of the representative peri-151 

ods is depicted in Fig. 2. 152 

 153 

 154 

Figure 2. Representative periods classification to account for the different time scales variability. 155 

Data are classified at the level of the day for each month and for all available years, distinguishing 156 

weekdays from weekends. 157 

It should be noted that this a priori classification is based on both statistical explora-158 

tion of the historical dataset and the intuition of the authors for taking account of deter-159 

ministic features in the random variables (i.e., daily and seasonal cycles). Other more re-160 

fined segmentations could probably be used by analyzing the historical data set in depth 161 

with classification methods such as [20, 21], which are out of the scope of this paper. 162 

2.2. Data reduction using clustering 163 

State variable data X(h) associated with the same hour h of a day (week or week-end 164 

days) of the same month, for all available years, are gathered and reduced to C𝑖(ℎ) clus-165 

ters  with a clustering algorithm [22]. In practice, this can be simply carried out with the 166 

k-means [23] or k-medoids [24] methods. It should be mentioned that the components of 167 

the state variables have to be normalized in order to take account of the different scaling 168 

between load demands and PV production data. This clustering step (step 2 in Fig. 1) al-169 

lows the determination of transitions matrices related to the state evolution between two 170 

consecutive hours (hourly transitions) as explained in the next section. 171 

2.3. Data reduction using clustering 172 

Our generation process based on Markov chains [11, 25] requires the exploitation of 173 

transition matrices related to the random states considered (step 3 in Fig. 1). As indicated 174 

in section 2.1, 23 transition matrices are built for each month and day type (week, week 175 

end day) for characterizing the evolution of the random state variables during each day. 176 

The calculation of those matrices is illustrated in Fig. 3 for a simple case of 3 clusters iden-177 

tified at hours h and h+1 from 8 historical data scenarios. In the general case, the expression 178 

of a transition matrix 𝑇ℎ+1(𝑖, 𝑗) is given by (1): 179 

𝑇ℎ+1(𝑖, 𝑗) = (
𝑁(C𝑖(ℎ)→C𝑗(ℎ+1))

card (C𝑖(ℎ))
), (1) 

where 𝑁(C𝑖(ℎ) → C𝑗(ℎ + 1)) denotes the number of elements in the cluster C𝑖(ℎ) going 180 

to the cluster C𝑗(ℎ + 1), card (C𝑖(ℎ)) being the size of the cluster C𝑖(ℎ). This matrix is of 181 

12         x        2           x         23
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size nc(h) × nc (h+1) where nc(h) and nc(h+1) respectively represents the number of clusters 182 

at hour h and at hour h+1. This matrix contains the probabilities that an element of a cluster 183 

identified at hour h joins an element of a given cluster at time h+1. 184 

 185 
Figure 3. Illustration of the transition matrix calculation for a simple example with 3 clusters at 186 

hour h and h+1. 187 

2.4. Scenario generation 188 

In this section, we describe in details the profile synthesis process based on Markov 189 

chains (step 4 in Fig. 1). Starting from an initial cluster C(0) at random, associated with the 190 

first month that has to be generated, the Markov process provides a sequence of 23 clusters 191 

over the first day using the transition matrices described in the previous section, according 192 

to (2): 193 

𝐶(0)
𝑇1
→ 𝐶(1)

𝑇2
→ 𝐶(2)⋯

𝑇ℎ
→ 𝐶(ℎ)⋯

𝑇23
→ 𝐶(23), (2) 

For each cluster C(h) of the random sequence, a state X(h) ∈ C(h) can be for instance 194 

chosen with respect to three different strategies:  195 

1. X(h) is randomly selected among all elements of the cluster C(h) with uniform 196 

probability.  197 

2. X(h) is selected among all elements of the cluster C(h) considering the closest distance 198 

to the previous state X(h-1).  199 

3. X(h) is the medoid of the cluster: this strategy results in systematically replacing the 200 

cluster C(h) by its corresponding medoid. 201 

While the first strategy should certainly improve the randomness and diversity of 202 

state sequences, the second on the contrary increases the deterministic characteristics of 203 

state transitions as in persistence models [26, 27]. The third strategy consisting in only 204 

generating medoids can be considered as intermediate between the previous ones.  205 

If the previous process allows the complete generation of the states over the day, the 206 

transitions between days of a same month have also to be explained. Again, three 207 

strategies can be employed similar to what was described earlier.  For each day to be 208 

generated: 209 

1. Start from an initial cluster C(0) at random (i.e., random row of the first transition 210 

matrix T1 of the month considered) 211 

2. Start from the first cluster C(0) which is the closest to the last of the previous day C(23) 212 

3. Build an additional transition matrix T24 which characterizes the transition between 213 

consecutive days of the month in the initial dataset T24=T(X(23)→X(0)) 214 

Here again, it should be mentioned that the first strategy implies that successive days 215 

are supposed to be uncorrelated while the second induces a persistence effect. The third 216 

h h + 1

Transition Matrix 
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strategy is probably a good compromise between the previous ones but it requires the 217 

computation of a 24th transition matrix each month. Similar strategies can also be imple-218 

mented for characterizing the transitions between consecutive months or years. 219 

In order to define C(h+1) knowing C(h) we apply a classical technique based on the 220 

drawing of a uniform density random number (between 0 and 1) which is compared to 221 

the sum of the probabilities of the line C(h). If we take the example of the matrix in Fig. 3, 222 

let us suppose that we have C(h) = C2, we draw a random number r between 0 and 1 223 

(r=U(0,1) with uniform random probability distribution): 224 

- example 1: if r = 0.1 then the cluster C(h+1) = C2 is chosen as successor because r greater 225 

than p(C1)=0 but r lower than p(C1)+p(C2)=2/3; 226 

- example 2: if r=0.8, while r is between p(C1)+p(C2) and p(C1)+p(C2)+p(C3)), the cluster 227 

C(h+1)= C3 is chosen as successor.  228 

As a consequence, N random draws are thus necessary to define the N sequences of 229 

transitions related to the N transition matrices.  230 

As conclusion of this section, it is important to note that this Markov process only 231 

generates existing states of the historical data and therefore keeps the synchronicity and 232 

possible correlations between the state components (i.e., intercorrelations between PV 233 

production, heat and electricity consumption). This issue is even more important as it con-234 

cerns the sizing of devices: for example, storage device sizing is driven by the difference 235 

between production and demand over the time. On the other hand, Markov based ap-236 

proaches are not able to predict and extrapolate extreme unforeseen behaviors (e.g. ex-237 

treme weather conditions or consumption evolutions due to sudden policy changes) 238 

which are not present in the initial data set and will occur with small probabilities.  239 

3. Evaluation on a case study 240 

The generation method is evaluated using the Ausgrid (Australian distributor of elec-241 

tricity) dataset [28] where 3 years of measured energy demands and production time se-242 

ries (at a 30 min time step) are openly available for 300 residential customers: finally, his-243 

torical data are upscaled to 1 hour resolution. In order to illustrate the generation process, 244 

the 39th customer is arbitrarily chosen. Among all the strategies presented in section 2.4, 245 

we only consider the following scheme for the scenario generation:   246 

- clustering is carried with the k-medoid algorithm considering a fixed value of k = 10; 247 

- states of each cluster are only represented by the medoids associated with random se-248 

quences of the cluster generated by the Markov process;  249 

- transition between days in a month are performed using a 24th transition matrix. 250 

The investigation and the comparison of other generation strategies among the ones 251 

illustrated in section 2.4 is not in the scope of the paper but naturally come in perspective 252 

of this work. While well-established metrics (e.g., root-mean-square error (RMSE), mean 253 

absolute error (MAE), etc.) are usually derived to assess the performance of short-term 254 

forecasting methods, the evaluation of long-term scenarios is less obvious at first glance. 255 

Therefore, following [11], [12] and [18] the evaluation for long-term scenarios will be 256 

based on a combination of both statistical and visual examination in comparison with the 257 

measured data.  258 

 259 

3.1. Statistical assessment over large representative periods 260 

To run the evaluation, Markov chains are built from the 3-year historical dataset of 261 

measured data. Then, 1000 scenarios of one year at an hourly time step are generated for 262 

the study. Fig. 4 shows the 3-year time series at an hourly time step for the electrical and 263 

thermal demands, in addition to the normalized solar production (in gray) followed by a 264 

one-year scenario generated with the Markov model (in color). Note that the first hour 265 

corresponds to the 1st of July as the season cycle is opposite to Europe. A first general 266 
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visual observation is that the shape of the profiles seems consistent with the measured 267 

data depicted in gray in the figure.  268 

 269 

 270 

Figure 4. Overview of the 3-year time series from the 39th Ausgrid customer (in gray) 271 

followed by a one-year scenario generated with the Markov model (in color). 272 

 273 

This conclusion is also verified at a lower time scale as depicted in Fig. 5 and Fig. 6. 274 

Indeed, the latter show the comparison between the real historical data and the Markov 275 

model for both the week and weekend days of each month.  276 

 277 

 278 

 279 
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Figure 5. Comparison between the Markov model (in blue) and the real historical data (in 280 

red) for each week day of each month. Mean values are depicted with a solid and dash 281 

line for the model and the real data, respectively. All the values are given in the back-282 

ground of each figure for both cases. 283 

 284 

 285 

Figure 6. Comparison between the Markov model (in blue) and the real historical data (in 286 

red) for each weekend day of each month. Mean values are depicted with a solid and dash 287 

line for the model and the real data, respectively. All the values are given in the back-288 

ground of each figure for both cases. 289 

 290 

As observed in the figures, it appears that the Markov model correctly reproduces 291 

both the shapes and the main statistical features of the historical dataset for each of the 292 

representative days (e.g., the model mean values match those of the historical dataset). 293 

Furthermore, the seasonal issues are accurately addressed by the model as it follows the 294 

monthly variations of the real data. This latter observation is reinforced by comparing the 295 

power level amplitudes, in addition to the sunrise and sunset times of the different 296 

months. Note that for this case study, there are no major differences between the week 297 

and weekend day energy demand patterns. This latter observation might not be true with 298 

other residential customers. 299 

 300 

3.2. Short-time scale variability 301 

Beyond those statistical similarities, the Markov model still introduces short time 302 

scale variability from one scenario to another as shown in Fig.7, where the energy de-303 

mands and production are depicted over one week for 10 scenarios randomly chosen in 304 

July. Indeed, power values are not simultaneously the same between scenarios which 305 

leads to a wide range of contingencies. This latter aspect is of first importance when deal-306 

ing with the robust design and operation under uncertainties of microgrids. Also, remem-307 

ber that each scenario is associated with a given probability which is computed thanks to 308 

the transition matrices (see section 2). Thus, the generation procedure is also suitable for 309 

short-term probabilistic forecasts, which can be later used by look-ahead control strategies 310 

[2] to operate microgrids.  311 
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 312 
Figure 7. Short time scale variability over one week for 10 randomly chosen scenarios in 313 

July. The mean values are depicted in red. 314 

 315 

3.3. Quantitative comparisons 316 

In addition to the previous qualitative comparisons, we provide in this section two 317 

quantitative criteria for characterizing our Markov synthesis process. Autocorrelation and 318 

load duration curves are computed over the 1000 scenarios generated and compared with 319 

those of the initial set of data (i.e. the 39th Ausgrid customer) for the three stochastic vari-320 

ables (PV generation, heat and electricity demands). It should be noted that both criteria 321 

are commonly employed for assessing the quantitative correspondence of synthetized 322 

profiles with initial sets of data (e.g. [11, 12] for the use of autocorrelation and [8, 18] for 323 

the use of load duration curves). Note that other classic statistical criteria such as Proba-324 

bility Density Functions (PDF) and Cumulative Density Functions (CDF) could also have 325 

been used but load duration curves are more meaningful and popular in the field of mi-326 

crogrid design.    327 

Autocorrelation refers to the correlation of a time series with a lagged copy of itself. 328 

The goal is to determine if the signal shows similarities between observations at different 329 

time lags. The result is given as a function of the delay (also called lags in Fig.8). Despite 330 

the Markovian property attached to the generation method (i.e., the future state of the 331 

stochastic process only depends on the current state, without any memory of the past), 332 

the autocorrelation of the three variables is also recovered by the model as shown in Fig.8. 333 

This might be explained as Markov chains are computed for each hour of representative 334 

days, leading to realistic power level sequences. Fig.8 also shows the duration curves of 335 

the three variables. The duration curve [29] defines in abscissa the number of hours during 336 

one year for which the production or demand power is greater or equal to the value de-337 

fined in ordinate. For example, one can see that the PV production has a positive value 338 

during less than 4380 hours (less than 2000 hours for the heat demand) while the electric 339 

demand is nearly always positive along the year. The area under the duration curve cor-340 

responds to the total energy consumed (or produced) over the horizon. As shown in the 341 

Fig. 8, the Markovian approach tends to generate scenarios (blue curves) with annual en-342 

ergy demands close to the average of the 3-year historical dataset (in red): “the synthesis 343 
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approach is then consistent in the sense of average values”. Furthermore, with this repre-344 

sentation, the values are sorted in descending order, which makes easier the comparison 345 

between the real data and the synthetic scenarios at a yearly time scale. In this sense, this 346 

indicator can be assimilated to the CDF statistical indicator. While the whole shape of the 347 

duration curves are very close comparing historical data and Markov’s model, “one can 348 

also say that the statistical content of both signals are consistent on a large (yearly) time 349 

scale. Finally, the first values (h=1) on the left of the duration curves provide a clear infor-350 

mation on the peak values which are also in accordance between historical data and Mar-351 

kov’s model. 352 

 353 
 354 

Figure 8. Autocorrelation of the three variables and Load/production duration curves for 355 

both the synthetic scenarios (in blue) and the 3-year historical dataset (in red). 356 

 357 

To conclude this section, all these visual and statistical indicators emphasize the rel-358 

evance of the Markov’s synthesis process with respect to the input data (i.e., the historical 359 

data). It should be noted that, while the generated profiles are really variable on a short 360 

(daily) time scale (see Fig.7), the key statistical characteristics (e.g, mean, peak value) are 361 

recovered over the long term (annual) (see Fig.8).  362 

4. Conclusions and perspectives  363 

In order to generate scenarios for both long and short-term applications, a simple but 364 

relevant stochastic model based on Markov chains was presented in this paper. First, the 365 

methodology was introduced where the Markov chains are computed over representative 366 

periods to account for the different time scale variability. Then, the method was applied 367 

to a residential case study where the objective was to build several (electric and heat) en-368 

ergy demands and solar production scenarios. The results have shown that the main cycle 369 

and statistical features of the initial dataset have been recovered with this straightforward 370 

Markov model while introducing realistic temporal variability to the annual time series. 371 

Finally, the last section has demonstrated that the Markovian approach is also suitable to 372 

generate short-term profiles, later used to control microgrids. 373 
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A first perspective beyond this work may come from the classification procedure 374 

manually operated to identify the representative periods. Indeed, the performance of the 375 

Markov method is directly related to the expert knowledge concerning the structure and 376 

patterns of the initial dataset. Other approaches (mostly based on machine learning as in 377 

[12] for instance) do not require this first step and might be more relevant if little infor-378 

mation is available about the stochastic processes. Concerning the generation process, sev-379 

eral strategies were discussed in the section 2.4 but only one has been implemented. A 380 

good perspective should be to compare and evaluate them with regard to their complex-381 

ity, CPU time and other performance criteria associated for example with the diversity of 382 

the synthesized profiles. Furthermore, a fixed size clustering has been used while the 383 

number of clusters per hour could be optimized by using metrics such as the silhouette 384 

[30] or other well-known statistical criteria [31]. It seems quite obvious that the number of 385 

clusters strongly differs during the day, especially between day and night (with null PV 386 

production) periods. 387 

Since the Markov generation model is based on “historical data”, the relevance of the 388 

generated profiles clearly depends on the accuracy of these historical data. A complemen-389 

tary adaptation of the process is necessary to address prospective scenarios of data. For 390 

instance, what happens if the future PV production and the energy demands increase, or 391 

if the shape of the daily consumption changes due to policy changes or extreme weather 392 

conditions?  393 

Finally, Markov-based approaches have to be compared with other profile synthesis 394 

methods (e.g. machine learning techniques or classical stochastic processes using regres-395 

sive or autoregressive models) with respect to several criteria: accuracy, complexity, CPU 396 

time and sensitivity to possible errors in the initial datasets used as reference. These latter 397 

points are beyond the scope of this paper but should be addressed in future works. 398 
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